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Abstract

A quasi-continuous interpolation scheme is introduced for characterising physically real-

istic initial pathways from which to initiate transition state searches and construct kinetic

transition networks. Applications are presented for peptides, proteins, and a morphological

transformation in an atomic cluster. A simple interpolating potential is first defined, which

preserves the covalent bonding framework for the biomolecules. This potential is used to

identify an interpolating path by minimising contributions from a connected set of images

along with terms corresponding to minima in the interatomic distances between them. This

procedure, combined with repulsive terms between unconstrained atoms, helps to circumvent

unphysical geometries in the line segments between images. The most difficult cases, where

linear interpolation would involve chain crossings, are treated by growing the structure an

atom at a time using the interpolating potential. A second optimisation phase then intro-

duces a fraction of the true potential. Permutational alignment is achieved using a shortest

augmenting path algorithm based on the local environment.
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1 Introduction

The first step in analysing the kinetics for interconversion of different structures is usually the

construction of an initial path between the regions of interest. For large-scale changes in morphol-

ogy of a system treated in atomistic detail this construction may itself become a challenging task.

Obvious problems arise for methods where the initial interpolation is a straight line path between

the product and reactant states, as atom clashes may occur. For systems with chains of covalently

bonded atoms described by force fields such as CHARMM,1–4 AMBER,5–7 or coarse-grained bead

models,8, 9 more subtle problems can occur. Interpolation schemes that involve discrete images

of the system that bridge the product and reactant configurations can produce chain crossings

where the structure jumps between discrete images of the system in an unphysical manner. In

particular, we have found that coarse-grained/united atom models can exhibit transition states

and pathways corresponding to such chain crossings. These unphysical pathways generally lie sig-

nificantly higher in energy than the physically relevant paths, where the chain-crossing is avoided.

Nevertheless, they can lie below stationary points of the potential energy surface associated with

the higher energy denatured or liquid-like phase of a finite system. This energy overlap makes the

unphysical paths difficult to detect in automated procedures for constructing kinetic transition

networks,10–14 such as discrete path sampling.11, 15, 16

In a recent contribution17 we described the energy landscape and folding pathways of a reduced

representation for a knotted protein, where interpolation problems are particularly acute. To avoid

chain-crossings we adopted a scheme where distances were collapsed and regrown. However, in

subsequent work this approach has not proved sufficiently robust, and a more general scheme to

treat the interpolation problem has now been developed. The real difficulty with interpolation via

discrete images is that unphysical configurations can lie between them. Increasing the number of

images, or the force constants of springs that connect them,18–23 will not change the chain-crossing

topology once it has been established. What is really needed is some way to account for and avoid

unphysical geometries that lie between the images. Here we seek a solution that does not involve
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a fully continuous path,24–26 but augments a discrete set of images with terms that represent the

worst case energetic contributions from the intervening straight line segments between them. We

therefore refer to this approach as quasi-continuous interpolation (QCI). This QCI framework

enables the interpolation problem to be framed entirely in terms of geometry optimisation, where

a wide range of powerful techniques can be applied.27, 28

To further improve the efficiency of the QCI scheme, and avoid extracting specific energetic

terms from an external potential such as CHARMM and AMBER, an auxiliary potential is first

constructed. This potential can be based on just the two endpoints in question, or can employ

data for any number of local minima previously obtained for the same system. Constraints are

applied between atoms that are always separated by a fixed distance, to within a predetermined

tolerance, and repulsive interactions are defined between all other atoms, with a relatively short

cutoff. For these pairwise potentials the smallest and largest distances between each pair of atoms

on a synchronous straight line path between neighbouring images can be calculated analytically.

The total energy can therefore be augmented by terms corresponding to an internal maximum in

the auxiliary interpolating potential, as described in §2.1. This auxiliary interpolation potential,

which incorporates some features of an elastic network model,29 also enables the system to be

grown a single atom at a time for the most difficult chain-crossing examples. A sensible guess for

the interpolated position for the next atom can then be obtained in various ways from neighbouring

atoms for which constraints exist (§2.2).

The above procedure has been applied to a number of different examples, namely the twelve

residue tryptophan zipper peptide, trpzip230, 31 (§4.1), an atomic cluster (§4.2), and a coarse-

grained model of protein L (§4.3). The transition investigated for the atomic cluster is a change

of morphology, and a simplified procedure is employed since there is no chain-crossing issue. Fi-

nally, extensive benchmarking is conducted for 2100 pathways in the amyloidogenic GNNQQNY

peptide32, 33 (NH+
3 -Gly-Asn-Asn-Gln-Gln-Asn-Tyr-COO−) and the tryptophan zipper peptide, tr-

pzip130, 34 (NH3-Ser-Thr-Trp-Glu-Asn-Gly-Lys-Trp-Thr-Trp-Lys-CH3), for both the AMBER and

CHARMM potentials. The QCI procedure is compared with a number of alternative interpolation
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schemes described in previous work, which exploit specific structural information for the two pep-

tides. Optimal permutational alignment is essential in these calculations, and efficient methods

based on overall and local distance metrics are described in §3. The general QCI approach is com-

petitive with the schemes that exploit internal coordinates, and can provide physically meaningful

interpolations for the more complex rearrangements where chain-crossings would otherwise result.

2 Theory

2.1 An Interpolation Potential

Here we define the auxiliary interpolation potential, which consists of constraint and repulsive

terms for pairs of atoms, α, β. The complete potential for a set of interpolating images, labelled

by superscripts i and j, with configurations ri and rj, includes all the pairwise terms evaluated

at each image. The potential also includes terms corresponding to local minima in the distance

that appear for pairs of atoms on straight line paths between the images, as explained below. The

latter feature provides the quasi-continuous part of the interpolation.

We denote the three-dimensional position vectors for atoms α and β in configuration i as riα

and riβ, etc. The line segments joining the atomic images in two configurations i and j can be

written as

rα = riα sin2 θ + rjα cos2 θ,

rβ = riβ sin2 θ + r
j
β cos2 θ, (1)
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so the distance between atoms α and β as a function of the interpolation angle 0 ≤ θ ≤ π/2 is

[dijαβ(θ)]2 = (rα − rβ)2

= r2α + r2β − 2rα · rβ

= |riα|
2 sin4 θ + |rjα|

2 cos4 θ + 2riα · rjα sin2 θ cos2 θ +

|riβ|
2 sin4 θ + |rjβ|

2 cos4 θ + 2riβ · r
j
β sin2 θ cos2 θ − (2)

2
(

riα · riβ sin4 θ + rjα · rjβ cos4 θ + sin2 θ cos2 θ
[

riα · rjβ + rjα · riβ
])

Solutions of ∂[dijαβ(θ)]2/∂θ = 0 always exist for sin θ = 0 and cos θ = 0, i.e. θ = 0 and π/2 in the

range considered. The third root of the cubic equation is θ∗, where

cos2 θ∗ =

(

riα − riβ
)

·
(

riα − riβ − rjα + r
j
β

)

∣

∣riα − riβ − r
j
α + r

j
β

∣

∣

2 ,

or sin2 θ∗ =

(

rjα − r
j
β

)

·
(

−riα + riβ + rjα − r
j
β

)

∣

∣riα − riβ − r
j
α + r

j
β

∣

∣

2 , (3)

with cos2 θ∗ + sin2 θ∗ = 1.

The solutions for θ = 0 and θ = π/2 correspond to the limits of the range with

[dijαβ(0)]2 = |rjα|
2 + |rjβ|

2 − 2rjα · rjβ ≡ [djαβ]2,

and [dijαβ(π/2)]2 = |riα|
2 + |riβ|

2 − 2riα · riβ ≡ [diαβ]2, (4)

respectively, where diαβ is the distance between atoms α and β in configuration i. If the solutions

for cos2 θ∗ and sin2 θ∗ lie between zero and one then [dαβ(θ)]2 exhibits a minimum in the range

0 < θ < π/2, with local maxima at the endpoints (Figure 1). Otherwise, one endpoint is a local

maximum and the other is a local minimum. For the internal minimum we find

[dijαβ(θ∗)]2 =

∣

∣riα − riβ
∣

∣

2 ∣
∣rjα − r

j
β

∣

∣

2
−

[(

riα − riβ
)

·
(

rjα − r
j
β

)]2

∣

∣riα − riβ − r
j
α + r

j
β

∣

∣

2 . (5)

In the quasi-continuous interpolation (QCI) procedure the basic idea is to add contributions

to the energy corresponding to every internal minimum in the distance [di i+1
αβ (θ∗)]2 for images

i and i + 1. We note that an analogous problem arises when computing the potential between
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rod-like particles using the distance of closest approach.35 The continuous path between endpoints

consists of the M images and the straight line segments between them. The associated energy

functional includes contributions from all the images, along with terms corresponding to minima

in the distance between pairs of atoms that occur between images. If the interpolation potential,

Vint, is a sum over pairwise additive functions of the interatomic distances, V1, V2, etc., and we

have an ordered chain of M configurations r1, r2,. . . , rM , then we minimise the sum

Vint =
M−1
∑

i=2

∑

p

∑

α<β

Vp[d
i
αβ] +

M−1
∑

i=1

∑

p

∗
∑

α<β

Vp[d
i i+1
αβ (θ∗)], (6)

where configurations 1 and M are the fixed endpoints, and the second term is over all the dis-

tances that exhibit internal minima between consecutive images. To minimise Vint we require the

derivatives with respect to all the Cartesian coordinates of atoms in the different images. Let xi
α

be the x coordinate of atom α in image i. Then

∂[dijαβ(θ∗)]2

∂xi
α

=
2
(

[(

riα − riβ
)

·
(

rjα − r
j
β

)]2
−
∣

∣riα − riβ
∣

∣

2 ∣
∣rjα − r

j
β

∣

∣

2
)

[

xi
α − xi

β − xj
α + xj

β

]

∣

∣riα − riβ − r
j
α + r

j
β

∣

∣

4

+
2
[

(

xi
α − xi

β

)
∣

∣rjα − r
j
β

∣

∣

2
+
(

riα − riβ
)

·
(

rjα − r
j
β

) (

xj
β − xj

α

)

]

∣

∣riα − riβ − r
j
α + r

j
β

∣

∣

2 , (7)

with analogous expressions for yiα and ziα.

Various possibilities have been tested for the construction of the interpolation function. For

example, harmonic springs were included by adding contributions proportional to |ri − ri+1|
2

for adjacent images, as for previous chain-of-states methods.18–23, 36 Aside from the all-atom

representation of trpzip1 with AMBER, the spring terms were not required. However, the examples

provided for benchmarking in §4.4 employ the same set of parameters for each QCI calculation,

and springs were added between QCI images with a force constant of unity in each case. The

parameter sets are therefore closest to optimal for the AMBER trpzip1 benchmarks, but provide

acceptable performance for the simpler examples as well.

In addition to the spring terms between images, the interpolation potential, Vint, consisted of

two further contributions, the first to maintain the conserved structure, and the second to keep
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unconstrained atoms apart. The first, constraint, term uses harmonic springs between individual

atoms to fix interatomic distances that are preserved to within a given tolerance in the two end-

points. Related constructions have previously been employed in elastic network-type29 treatments

of large-amplitude motion37–54 and double-well Gō-type models.55–59 Constraints were applied for

atoms α and β only if the distances in the endpoints, d1αβ and dMαβ , were both less than 5Å (5σ for

the atomic cluster), and the change in distance |d1αβ − dMαβ| < ∆. For the peptides and proteins

considered in the present work the constraints need to define a percolating network, and the input

parameter ∆ was increased by 10% until this condition was achieved. Percolation was diagnosed

by calculating the number of steps from one selected atom to all the others using a depth first

search.60 Here each constraint was taken as an edge connecting nodes of a graph defined by

all the atoms. The reference separation for constrained atoms was taken as the average value

dαβ = (d1αβ + dMαβ)/2. For each constraint the corresponding term in the interpolation potential

was set to

Vcon(diαβ) =























ǫcon

[

(

diαβ − dαβ
)2

−
(

Ccon
αβ

)2
]2

2
(

Ccon
αβ

)2 ,
∣

∣diαβ − dαβ
∣

∣ > Ccon
αβ ,

0,
∣

∣diαβ − dαβ
∣

∣ ≤ Ccon
αβ ,

(8)

where parameters ǫcon and Ccon
αβ determine the strength of the constraint and the width of the

interval around dαβ for which Vcon vanishes. Ccon
αβ is chosen large enough so that the constraint

term vanishes for the endpoints, and increased if necessary when new minima are found so that

Vcon also vanishes for these structures. Initially we simply set Ccon
αβ =

∣

∣d1αβ − dMαβ
∣

∣ /2. The chosen

form provides an even function of diαβ − dαβ , for which Vcon(diαβ) and its first derivative vanish at

diαβ = dαβ±Ccon
αβ . These properties were found to improve the efficiency in numerical minimisations

of Vint; distances that are shorter or longer than dαβ are penalised in a symmetrical fashion.

Constraints were restricted to atoms sufficiently close in sequence, as defined by a parameter

n1. Here the sequence corresponds to the atom ordering in the CHARMM or AMBER input files.

A value of n1 = 15 was used in calculations for peptides and proteins when the constraints were

defined on the basis of the separations in the two end points alone. This restriction avoids con-
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straining atoms distant in sequence that happen to have very similar separations in the reference

minima. When constraints are defined using a larger database of local minima this condition is

very unlikely to occur, and n1 was set to the total number of atoms.

The second, repulsive, contribution to Vint was applied to prevent unphysical geometries ap-

pearing along the line segments that define the interpolating path. Repulsions were only included

for atoms far enough apart in sequence, defined by the condition |α−β| > n2 for a second sequence

separation parameter n2. In fact, setting n2 = 0 proved to be satisfactory for all the tests described

in §4. Repulsions were not allowed for atoms involved in any of the distance constraint terms de-

scribed above. A cutoff distance was defined in terms of the minimum endpoint separation minus

a small displacement, 0 < δ ≪ 1, and an input parameter, C, with Crep
αβ = min(d1αβ−δ, dMαβ−δ, C).

For this choice the atoms in question do not repel one another in the fixed images, 1 and M . For

each pair of atoms satisfying these conditions the repulsion was defined as

Vrep[diαβ] =























ǫrep

(

(

Crep
αβ

)3
− 3Crep

αβ

(

diαβ
)2

+ 2
(

diαβ
)3
)

(

Crep
αβ

)3 (
diαβ

)2 , diαβ ≤ Crep
αβ ,

0, diαβ > Crep
αβ ,

(9)

This form again ensures that Vrep and its gradient vanish at the cutoff Crep
αβ , which can depend upon

the pair of atoms in question. Analytical derivatives of both Vcon and Vrep are easily formulated

using the chain rule and equation (7). A neighbour list was constructed for Vrep to avoid referencing

pairs that lie outside the cutoff in every iteration. The list included all pairs of atoms approaching

within a distance of ζCrep
αβ for any image or intervening minimum. ζ = 2 proved to be generally

effective, with the neighbour list updated every 20 minimisation steps and whenever the number

of active atoms changed.

When only two end points were specified constraints were only included for atoms close enough

in sequence by the condition |α − β| < n1 for the sequence separation parameter n1, introduced

above. However, a more general procedure makes use of previously determined stationary points

or configurations to define the constraint and repulsive terms. This approach was employed for

the benchmarking described in §4.4 for the peptides GNNQQNY and trpzip1. Constraints were
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applied using the percolation test described above for all the minima in the test set, and the

corresponding pairs and distances were saved to define the potential in all subsequent runs. The

pairs of atoms corresponding to repulsive interactions were also recorded, along with the reference

constraint distances dαβ and cutoffs Ccon
αβ and Crep

αβ . All cutoffs were defined large enough to give

Vcon = 0 and Vrep = 0 for all the local minima encountered, and increased if necessary during the

run. The reference distance for constrained atoms α and β was set to dαβ = (maxq d
q
αβ+minq d

q
αβ)/2

with cutoff Ccon
αβ = (maxq d

q
αβ − minq d

q
αβ)/2, where maxq and minq refer to the maximum and

minimum separation over the set of reference structures, q. The cutoff for repulsive interactions

between any pair of atoms was set to the smallest separation between the pair encountered in any

of the reference minima, or in any new minima subsequently encountered.

Since the interpolation potential is defined with respect to specific atom-atom contacts it is

essential to employ consistent permutational isomers throughout the procedure. When multiple

minima were used to define the potential all structures were aligned with respect to the first

reference minimum using the procedures described in §3. When only two endpoints were available,

the first one was taken as the reference.

The formulation of the interpolation potential to include contributions corresponding to lo-

cal minima in the interatomic distance prevents the line segments between images from cutting

through unfavourable regions of the true potential. Hence the problems of corner-cutting and

sliding-down61 that occur in discrete elastic band-type representations18–23, 36 do not appear di-

rectly for the QCI potential. To prevent images becoming too close together or too far apart new

images were added where large gaps appeared, and images were combined according to distance

thresholds. This procedure is described in the next section.

The overall scheme is probably most closely related to the geometric targeting (GT) ap-

proach,62–64 where the aim is to generate plausible all-atom pathways for large conformational

changes in proteins. For example, pathways for nitrogen regulatory protein C were recently ob-

tained using this approach,64 which has also been treated using discrete path sampling.65

The GT framework is based on geometrical constraints, as for the present QCI method, and
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employs more detailed information about protein stereochemical propensities. The aim of QCI

is somewhat different, since we are seeking an initial interpolation from which to characterise a

connected path in terms of local minima and transition states of the potential energy surface.

This calculation represents a single step in the construction of a kinetic transition network10–14

and the analysis of kinetics using discrete path sampling (see §4).11, 15, 16 Most of the computer

time required for such calculations is used in refining transition states, and good initial guesses can

speed up this process significantly. The QCI procedure therefore includes a minimisation phase

that incorporates the true potential corresponding to the force field in question. Furthermore,

the initial minimisation phase is general enough for application to molecules without a fixed set

of covalent bonds, as illustrated for an atomic cluster in §4.2. Exploiting a computationally

inexpensive potential for the interpolation phase provides an initial minimisation problem, in

contrast to targeted molecular dynamics approaches,66–68 and string methods.69, 70 QCI is the

only scheme for which we have managed to obtain reliable automated interpolation of folding

pathways for knotted protein structures.17 It would be interesting to compare methodologies that

employ fully continuous pathways24–26 with the present approach, but this exercise lies beyond

the scope of the present investigation.

2.2 Interpolation Procedure

Given two local minima as endpoints, and a true potential energy function, Vtrue, our objective is

to locate a continuous, physically sensible pathway for further refinement. The first step in this

procedure is to align the endpoints. Here we minimise the distance in 3N -dimensional Euclidean

space with respect to overall translation and rotation, as well as the feasible permutation-inversion

operations.36, 71 The permitted permutations for a given biomolecule and force field (here AM-

BER5–7 or CHARMM1–4) are obtained from an automated script.71 The permutational alignment

algorithms are described in detail in §3. The next step, also programmed in the OPTIM package,72

is to define the percolating network of distance constraints in Vcon. An initial guess could then

be generated from a straight line interpolation between the two endpoints using all the atoms.
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However, for the most difficult cases involving chain crossings it proved more effective to add one

atom at a time to a growing chain. The pairwise design of Vint makes it straightforward to deal

with a subset of atoms, where the constraints and repulsions are progressively turned on as atoms

are added.

To start the initial interpolation procedure the two atoms involved in a distance constraint

that move least between the endpoints in the fixed images r1 and rM were identified. Having

found the constrained atoms that minimise |r1α − rMα | + |r1β − rMβ |, M − 2 images were created

for atoms α and β at regular intervals between the endpoints by linear interpolation. Atoms

were then added sequentially when local convergence criteria for Vint were satisfied for the current

set of active atoms, Nactive. It is usually possible to achieve paths with Vint = 0, where all the

distance constraints are satisfied within the tolerance Ccon
αβ , and all the repulsive interactions lie

outside Crep
αβ . A new atom was therefore added when Vint < V max

int and the root mean-square (RMS)

gradient for the 3(M−2)×Nactive degrees of freedom fell below a tolerance parameter Gmax
int . Some

element of randomness was introduced into this selection and the initial interpolation for the new

atom, to avoid repeating failed interpolation attempts in the backtracking procedure described

below. For each inactive atom, γ, the number of constraints to current active atoms, ǫ, and the

sum of reciprocal reference distances, sγ =
∑

ǫ∈active 1/dǫγ, were calculated. The probability of

adding atom γ to the active list was then chosen proportional to sγ/t
4
γ , where tγ was the number

of times this atom had been tried before plus one. This scheme was chosen empirically after

comparing various other possibilities.

To provide an interpolation for the next active atom several schemes were compared. For

Nactive ≥ 3 various possibilities were considered using active atoms to define a local orthogonal

coordinate system. A sorted list of all the active atoms was constructed based on the average

distance to the new atom for the two fixed endpoints. For three selected active atoms the com-

ponents of the displacement vector for the new atom were calculated for the first endpoint. The

interpolated position of the new atom was then obtained using the same components in the orthog-

onal coordinate system constructed from the same three active atoms in each image configuration
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2, 3, . . . , M − 1. For Nactive > 3 active atoms were selected according to probabilities based on

1/o2ǫ , where oǫ was the order in which atom ǫ appeared in the sorted list of average endpoint

distances. Various other selection schemes were also tested. For example, active atoms were also

ordered according to how well their distance to the new atom was preserved in the endpoints,

using
∣

∣d1ǫγ − dMǫγ
∣

∣. In addition, the Vint potential was also calculated using a coordinate system

constructed from the three closest active atoms involved in constrained distances to the new atom.

A fourth scheme simply interpolated the position based on the position of the active atom with

the shortest dǫγ constraint distance in each image. The initial position of the new atom in each

image was then taken as a displacement from this active atom, weighting the displacement vectors

in images 1 and M according to the image position in the chain of configurations.

The initial interpolation for each new atom was chosen according to the lowest initial value

of Vint for the four schemes described above. Vint was then minimised using the limited-memory

Broyden-Fletcher-Goldfarb-Shanno (LBFGS) algorithm of Liu and Nocedal,73, 74 reinitialising each

time Nactive increased. For examples involving possible chain crossings some cases were found where

the convergence conditions on Vint and the RMS gradient were not achieved within the permitted

number of refinement steps, L
(1)
max. Such cases were treated by backtracking, removing the last

Nback atoms added to active set, and adding one new one using the above scheme. Nback was

increased by one for every convergence failure, but was not allowed to exceed min(20, Nactive − 2).

If Nactive failed to reach N before a total of L
(2)
max LBFGS iterations then the interpolation was

abandoned. Otherwise the interpolation proceeded for a further L
(3)
max steps using a new objective

function (1 − x)Vint + xVtrue. The parameter x is the fraction of the true potential to use, which

can be one. However, the overhead for using the relatively simple interpolating function in this

stage was generally small, and retaining the fraction 1 − x of Vint was helpful in preventing the

interpolation from collapsing at the start of the refinement, when some of the derivatives of Vtrue

could still be large.

Separate convergence parameters were also specified for the minimisation of (1−x)Vint +xVtrue

in all 3N(M − 2) degrees of freedom, with a maximum number of additional steps, L
(3)
max. The ob-
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jective here is not to converge the interpolation accurately, but to supply starting configurations for

further refinement.36, 75 In fact, the value of the objective function must be allowed to rise during

the minimisation procedure, since internal minima can appear (and disappear) in the interatomic

distances. In the last refinement phase, where the potential considered is Vtrue, a doubly-nudged36

elastic band18–23 (DNEB) optimisation was conducted using starting images regularly spaced along

the path obtained by the QCI procedure. The local maxima were then converged tightly to tran-

sition states using hybrid eigenvector-following,20, 76, 77 and the connectivity verified by calculating

approximate steepest-descent paths using energy minimisation following small displacements par-

allel and antiparallel to the eigenvector corresponding to the unique negative Hessian eigenvalue

at the transition state.

Some further refinements of the interpolation procedure were used to improve efficiency, namely

dynamic removal and addition of images and provision for frozen images. Starting from a specified

number of images, M , images were removed if an image spacing became too close (less than a

parameter Dmin), and a bisecting image was added for image spacings that exceeded a specified

distance, Dmax, up to a specified maximum number of images, Mmax. This dynamic adjustment

was also permitted during the second phase minimisation of the function (1−x)Vint +xVtrue. The

corresponding degrees of freedom were simply removed from the LBFGS memory, and new degrees

of freedom were initialised using average values from the neighbouring images. Images were frozen

if the RMS gradient fell below a tolerance of Gfreeze
int . The gradient terms were simply set to zero

for frozen images with frozen neighbours, but calculated normally for frozen images with at least

one unfrozen neighbour to check whether any images should be unfrozen.

For large systems, where the majority of atoms do not move much throughout the pathway,

the interpolation can be speeded up significantly by treating these ‘spectator’ atoms separately. A

simple linear interpolation was used for such atoms, and their interpolated positions were frozen

during the initial phase, if the displacement between aligned endpoints fell below a specified

cutoff. To define active constraints in this framework the depth first search employed to diagnose

a percolating network was modified to admit all the frozen atoms as root nodes. Constraints and
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repulsive terms were included between active and frozen atoms, but not between pairs of frozen

atoms, thus reducing the computational cost of evaluating the interpolation potential. However, it

was also necessary to keep a minimum number of active atoms, since some parts of the molecule can

end up back almost where they started, but must be allowed to move significantly to accommodate

the motion of interest. For the benchmarking in §4.4 linear interpolation was used if the aligned

endpoint atomic distance for a given atom fell below 0.5 Å, and a minimum of 15 active atoms were

retained. However, for the system sizes considered in the present work there is little advantage in

identifying spectator atoms. A much larger gain in efficiency can result for molecules containing

several thousand atoms, and we will report on pathway calculations for such systems elsewhere.

In trial calculations schemes involving a maximum number of distance constraints were con-

sidered for each active atom. In some cases the interpolation phase can succeed using all the

constraints identified. However, the most efficient setting identified for the benchmarks in §4.4

used a maximum of six constraints per atom. Three constraints proved to be insufficient to prevent

spurious rotation of trp groups in the benchmarking for trpzip1 (§4.4). Interpolations were also

considered in which contributions from internal minima in dijαβ were only added for Vrep. However,

the results generally appear better when the corresponding terms are also included for Vcon.

One further refinement was employed in the present work, namely a dynamic adjustment of the

force constant for the springs between images in the DNEB refinement phase. This adjustment im-

proved all the benchmark timings reported in §4.4. The force constant was increased or decreased

by 5% every five DNEB steps depending on the average spacing of the images. If the average

deviation of the spacing from the mean exceeded 5% the force constant was increased, and oth-

erwise it was decreased. Variable spring constants between different images have previously been

used to increase the density of images near a transition state.21 However, the uniform rescaling

employed in the present work was employed to obtain a uniform image distribution more rapidly.

For pathways involving both high energy and low energy transition states our observation is that

the low-lying structure for the DNEB images can be unresolved if the spacings are not uniform

enough. The rescaling helped to converge some pathways of this sort much more efficiently.
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3 Permutational Alignment

The alignment of endpoints is critically important in obtaining efficient interpolation and path-

ways via geometry optimisation. The alignment of N atoms that define rigid body geometries

to minimise the Euclidean distance in 3N dimensions is easily achieved using a quaternion pro-

cedure.78 However, when permutations of atoms of the same element are also included there is

no longer a deterministic solution to this problem. For a fixed centre of coordinates and orienta-

tion, the distance can be minimised using a shortest augmenting path algorithm,79 and this is the

procedure that has been used in the OPTIM program for previous studies of biomolecules65, 80, 81

as well as clusters and condensed phases. Since it has not been described in detail before, this

implementation of the PERMDIST keyword is outlined below. In fact, when the two endpoints

are sufficiently distant in configuration space it is possible for the minimum overall distance to

correspond to permutations that misalign permutable atoms. In the present work we have there-

fore introduced a local alignment algorithm, which ensures that unnecessary rearrangements of

permutable atoms are avoided in pathway calculations.

Suitably symmetrised modifications of the CHARMM and AMBER potentials are used through-

out to ensure that permutational isomers of every stationary point have the same energy.36, 71 The

formulation of these force fields means that only limited subsets of atoms are actually permutable,

giving a much smaller subset of the full nuclear permutation group. An auxiliary file specifying

the allowed permutations is prepared via automated scripts.71 The entries in this file contain the

number of permutable atoms in the primary group and the number of other sets of permutable

atoms associated with this primary set, which can be zero. The indices of the atoms in the pri-

mary set are then provided, followed by the indices of the pairs of atoms in the secondary sets,

which must be permuted in correspondence with the primary atoms. Examples are given for ala-

nine, phenylalanine and valine in Figure 2. The Euclidean distance metric is minimised for each

group in turn, followed by overall translational and rotational alignment,78 and this procedure

is repeated until no further permutations result. The combination of permutational and transla-
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tional/orientational alignment can produce a different result depending on the initial orientation,

and it may therefore be necessary to start from a number of random initial orientations to find

the global minimum for the Euclidean distance. For optimal alignment of atomic and molecular

clusters we also consider the enantiomer for one of the endpoints; this cycle is generally omitted

for biomolecules. Further complications occur if the system is subject to an electric or magnetic

field,82, 83 a pulling potential,84 or a central harmonic potential.85–88 In these situations the overall

translational and orientational alignment is restricted to operations that leave the Hamiltonian

invariant.

In constructing kinetic transition networks via geometry optimisation it is also necessary to

recognise permutation-inversion isomers whenever they are encountered. To achieve this goal

we employ standard orientations before the shortest augmenting path procedure and diagnose

equivalent isomers via ‘zero’ overall distance within a given tolerance. The atom that is furthest

from the centre of coordinates is placed on the z axis and the atom that is then most distant

from the z axis is moved into the xz plane by overall rotation about this axis. Due regard must

be paid to the presence of external potentials. For example, only rotation about the axis of an

applied electric or magnetic field is allowed in preparing the corresponding standard orientations.

There is also a complication due to symmetry, which can be approximate symmetry in the local

alignment procedure described below. In general, there could be more than one atom that is

approximately the same distance from the centre of coordinates or from the z axis. Permutational

alignment must therefore be attempted for standard orientations based on all the atoms in each

of the corresponding orbits for the two endpoints, and a cutoff is required to decide whether the

distances are considered the same or not. A tolerance of 0.2 Å generally seemed to be satisfactory.

Unfortunately, minimising the total Euclidean distance in 3N dimensional space can actually

result in incorrect local permutational alignment. For example, the terminal NH+
3 groups of

lysine residues that undergo a large spatial displacement in space can sometimes give a slightly

shorter overall distance if they are permuted cyclically relative to the rest of the residue. Worse

still, the optimal overall distance could correspond to swapping a pair of hydrogen atoms in
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the NH+
3 group, which entails a very large barrier on the corresponding pathway. To overcome

these problems a local permutational alignment procedure has been implemented, corresponding

to the LPERMDIST keyword in OPTIM. The standard orientation and shortest augmenting path

procedures (including loops over atoms in the same orbit) are performed locally for each group of

permutable atoms and n nearest neighbours. The neighbours are chosen from the atoms outside

the permutable group (i.e. excluding all primary atoms in the group, as defined above) inside a

cutoff distance from the centre of coordinates of the permutable set for the two endpoints. A

tolerance is also specified in terms of the minimal Euclidean distance for the permutable and

neighbour atoms for an acceptable alignment. Atoms were added to a trial neighbour list one at

a time in increasing order of the mean distance from the centre of coordinates of the permutable

set, and accepted if the alignment threshold was achieved. Permutable neighbours were added

together with the rest of the atoms in their primary permutable set. This procedure was continued

until a specified number of neighbours was reached, or no more candidate atoms remained within

the cutoff distance. For the peptide benchmarks described in §4.4 a maximum of ten neighbour

atoms, a threshold of 1.0 Å for the overall alignment, and a cutoff distance of 5Å were found to

give good results for the 2,100 pathways considered.

Although the permutational alignment procedures entail a considerable amount of bookkeep-

ing, they are generally fast compared to operations that involve evaluating the potential, especially

when only small subsets of atoms are permutable. This effort can greatly reduce the computa-

tional expense of finding connected pathways, especially for large systems with many equivalent

atoms, such as atomic clusters and condensed phases. Further complications arise for systems

with periodic boundary conditions, where the cell symmetries and the centre of coordinates must

be accounted for. Our alignment procedures for condensed phases described by periodic supercells

will be described in detail elsewhere.
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4 Results

Several examples that employ the QCI procedure to obtain initial pathways are described in the

subsections below. These initial paths would generally require further refinement using discrete

path sampling11, 15, 16 to build up a kinetic transition network.10–14 For distant endpoints we

usually find that the initial path can be improved significantly by additional pathway searches.

Nevertheless, the efficiency with which kinetically relevant paths are located depends strongly on

the initial path.

The QCI images and straight line segments connecting them were used to generate equispaced

images for a doubly-nudged36 elastic band18–23 optimisation. Local maxima in the DNEB profile

were then converged tightly to transition states using hybrid eigenvector-following.20, 76, 77 The

connectivity of each transition state was defined in terms of local minima obtained by energy

minimisation using a modified version of the limited-memory Broyden–Fletcher–Goldfarb–Shanno

(LBFGS) algorithm73, 74 coded in OPTIM.72 To produce a complete connected path may require

further connection attempts. Pairs of unconnected minima were chosen for subsequent pathway

searches using our missing connection algorithm,89 which is based on Dijkstra’s algorithm.90 To

define a metric for the missing connection algorithm we normally employ a function of the distance,

minimised with respect to overall translation and rotation, as well as permutation of equivalent

atoms. However, in the present work the metric was calculated as the Euclidean distance in 3N

dimensional space, minimised with respect to translation, overall rotation, and local permutational

alignment, plus Vint/103, with the result exponentiated or raised to a power such as 10 or 20. The

latter rescaling tends to disfavour single connection attempts between minima separated by large

metric values relative to multiple connection attempts between ‘closer’ minima. The value of

Vint was calculated using the two minima in question as the only images. This choice proved to

be particularly important for pathways where a straight line interpolation would result in chain

crossing. In this case the minimised distance for one chain passing through another chain could

be quite small, whereas Vint should be large. Hence it is possible to work around the crossing via a
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longer pathway that corresponds to lower energy and physically reasonable transition states. True

transition states corresponding to unphysical chain crossings seem to exist for all the biomolecular

force fields we have investigated, and cannot generally be eliminated on the basis of Vtrue. Dividing

Vint by 103 means that the metric is dominated by Vint for unphysical straight line interpolations,

but correlates mainly with the Euclidean distance for more realistic interpolations.

4.1 Trpzip2

As a straightforward test case we first considered the twelve residue tryptophan zipper peptide,

trpzip230, 31 (NH3-Ser-Thr-Trp-Glu-Asn-Gly-Lys-Trp-Thr-Trp-Lys-CH3). The force field employed

was a symmetrised36, 71 version of CHARMM192 together with the implicit solvation potential

EEF1.91 Eleven different pairs of local minima were selected from a large database, which will

be described elsewhere in terms of a detailed kinetic analysis. These pairs were selected as cases

where relatively high barriers remained between low-lying minima for endpoint alignment schemes

involving internal coordinates.92 The QCI calculations therefore served to check whether pathways

with lower barriers exist.

The QCI procedure either reproduced the pathway with the lowest barrier found using inter-

polation in internal coordinates,92 or, in a few cases, improved upon it. The number of transition

states in the resulting paths varied from one to 40, depending on the endpoints in question. Two

of the shorter paths are illustrated in Figure 3 and Figure 4. The first path is obtained via a single

interpolation and involves a conformational change in the lys side chain, which is involved in a salt

bridge to glu (Figure 3). The second path consists of a more complicated reorganisation of the

trp side-chains, with eight transition states linking nine local minima (Figure 4). A complete path

was obtained in three cycles of the missing connection procedure,89 which required 700 s of cpu

time on a laptop computer (using one core of a 2.50 GHz Intel T9300 processor), including tight

convergence to an RMS gradient of 10−6 kcal/mol and normal mode analysis for all stationary

points. The overall path involves rearrangements on rather different length and energy scales,

which can cause problems with automated geometry optimisation procedures. For example, the
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first step corresponds to rotation of the hydroxyl group in ser, while the second step involves a

much higher barrier for restacking trp side chains.

4.2 An Atomic Cluster

The QCI scheme was also implemented for an atomic cluster, to test whether useful interpolations

could be obtained for systems without a fixed connectivity defined by covalent bonds. For clusters

bound by the Lennard-Jones potential93 Vint was defined as

Vint =
M−1
∑

i=2

∑

α<β

VLJ[d
i
αβ] +

M−1
∑

i=1

∗
∑

α<β

Vrep[di i+1
αβ (θ∗)], (10)

where VLJ is the usual Lennard-Jones form and

Vrep[di i+1
αβ (θ∗)] =

ǫrep
(

diαβ − di i+1
αβ (θ∗) − δ

)2 (
di+1
αβ − di i+1

αβ (θ∗) − δ
)2

[

di i+1
αβ (θ∗)

]4 , (11)

for diαβ − di i+1
αβ (θ∗) ≥ δ, and di+1

αβ − di i+1
αβ (θ∗) ≥ δ, and zero otherwise. Reduced units for the LJ

potential are employed throughout this section. The form of Vrep was chosen to provide a smooth

function and first derivatives. The parameter δ was included to prevent numerical instabilities

that might occur in the limits where the internal minimum is very shallow and close to one of the

images. The results reported below employed M = 11 initial images, a maximum of Lmax = 2000

LBFGS steps, Gmax
int = 10−3, ǫrep = 1, and δ = 10−6. However, sensible pathways were also

obtained with δ = 0. No constraints were applied, and the complete Vint including all atoms was

used throughout the minimisation. This procedure is therefore simpler than the two-phase scheme

employed for the biomolecules considered in this report. Dynamic addition, deletion, and freezing

of images was included, as described in §2.2, with Dmin = 0.1, Dmax = 2.5, and Gfreeze
int = 10−10.

The QCI images were again used to seed DNEB calculations followed by single-ended hybrid

eigenvector-following transition state refinement.

The pathway illustrated in Figure 5 corresponds to a change in morphology from the face-

centred-cubic global minimum of the 38-atom cluster LJ38 bound by the Lennard-Jones potential.93

This system exhibits a double-funnel potential energy landscape,94–99 and has served as a bench-

mark for global optimisation,100, 101 thermodynamics,,95–98 and rare event dynamics.15, 16, 102, 103
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The pathway calculation based on QCI required 6 s of CPU time (on one core of a 2.50 GHz Intel

T9300 processor), and four cycles of the missing connection procedure.89 For comparison, when

a DNEB interpolation was used via an initial straight line guess the CPU time was practically

the same, although a slightly different pathway was produced. The precise sequence of transition

states and minima is generally quite sensitive to parameters of the interpolation procedure in

all these calculations, and small changes can significantly affect the number of cycles required to

obtained a complete connected path.

4.3 Protein L

Protein L exhibits a ubiquitin fold with a central α helix packed against a mixed four-strand β

sheet.104 This system was modelled using the sequence-dependent BLN potential of Brown and

Head-Gordon,8, 9 where each of the 56 amino acids is represented by a hydrophobic (B), hydrophilic

(L), or neutral (N) bead. A detailed analysis of the energy landscape for this protein as a function

of static pulling force is presented elsewhere.84 The QCI procedure proved to be very effective in

providing pathways between distant structures that avoid chain crossings, and has been tested in

millions of connection attempts in this work.84 One example will be illustrated here, for which

an initial straight-line interpolation is very inefficient. The two minima correspond to the global

minimum for zero force and the global minimum that first appears when a static force is applied

to residues 1 and 56, relaxed for zero force.

The pathway in Figure 6 involves 41 transition states and required 12 cycles of the QCI

procedure, which took 3045 s CPU time on an Intel Xeon E5404 processor (running at 2.0 GHz).

The folding path involves initial formation of the N-terminal hairpin, followed by association of

the hairpin with the helix. Strand β1 then dissociates and strand β3 associates with the helix and

strand β2. Strands β1 and β4 then form a connection and associate with the helix in a concerted

fashion. For reference, the path that makes the largest contribution to the overall rate constant for

transitions between these two minima after refinement of the kinetic transition network involves

22 transition states and a similar overall barrier. In the folding direction the N-terminal hairpin
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forms first, followed by association with the helix and strand β3. Finally, strand β4 joins the β

sheet. Hence the fastest path corresponds to the same mechanism as the longer initial path, but

with some unnecessary motion cut out.

4.4 Benchmarks for the Trpzip and GNNQQNY Peptides

In previous work92 we tested seven different combinations of internal and Cartesian coordinates for

interpolation and alignment of the amyloidogenic GNNQQNY peptide32, 33 (NH+
3 -Gly-Asn-Asn-

Gln-Gln-Asn-Tyr-COO−) and the tryptophan zipper peptide, trpzip130, 34 (NH3-Ser-Thr-Trp-Glu-

Asn-Gly-Lys-Trp-Thr-Trp-Lys-CH3). Details of these calculations can be found in the original

reference;92 the abbreviations are summarised in Table 1.

For each peptide we chose the same pairs of minima from existing databases for connection

attempts as in previous work. Pairs known to be connected by pathways involving at least one, two

and three transition states were selected to give test sets denoted TS1, TS2, and TS3. The test sets

for CHARMM involved connections between 150 pairs of local minima, except for GNNQQNY TS1

and TS2, where 300 examples were chosen, giving 1200 in total. For the AMBER benchmarks

150 pairs were considered in each case, i.e. 900 paths in total. The CHARMM calculations

employed the united-atom force field CHARMM192 with the implicit solvation potential EEF1,105

while the AMBER calculations used the ff03 parameters106 and the generalised Born solvation

model GBOBC.107 Both potentials were symmetrised so that permutational isomers would have

the same energy.36, 71 The mean cpu time required to achieve a reconnection for each procedure

and test set are summarised in Table 2 and displayed graphically in Figure 7. A consistent set

of parameters was employed for the OPTIM program throughout these tests, the only differences

being the keywords associated with the interpolation procedure. The neighbour list for nonbonded

interactions in CHARMM was updated every 100 geometry optimisation steps, after noting an

apparent discontinuity that occurred in one test case when the check was every 1000 steps.

The timings for these 2,100 connection attempts, referred to hereafter as the MSB test set, are

summarised in Table 2 and plotted in Figure 7. These timings refer to the local permutational
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alignment procedure, which improved the overall performance in virtually every case. In particular,

the QCI approach is generally as good as the methods that use internal coordinates, and even

DNEB searches starting from straight line interpolations are competitive when the permutational

alignment is optimal. The overhead for the QCI procedure is visible in the simple connections that

run very quickly with all the interpolation procedures. For the most difficult connections, namely

TS3 with AMBER and trpzip1, the QCI interpolation is the fastest among the methods that give

zero failures. The principal advantage of QCI is that it does not require prior identification of

internal coordinates, which may be problematic for systems containing separate molecules, for

example. To facilitate future comparisons all the necessary input files, along with the OPTIM

output in each case, will be made available for download from the OPTIM web site.72

5 Conclusions

The quasi-continuous interpolation (QCI) procedure can identify physically realistic initial paths

between fixed end point configurations in a variety of systems. QCI is a chain-of-states method,

involving geometry optimisation of all the coupled images of the system to locate a pathway

that satisfies various constraint conditions. During the minimisation procedure for the chain of

states additional terms are added to the potential energy function, which account for constraint

violations between the images. For synchronous motion between images, local minima in the

distance between any given pair of atoms can be identified analytically. The auxiliary interpolation

potential is evaluated for these pairwise local minima, and corresponding penalty terms are added

to the total energy and gradient. Hence we account for atom clashes or chain crossings that occur

between images.

The pairwise interpolation potential can be evaluated for any subset of atoms, which enables

paths to be constructed by adding one or more atoms at a time. Once a path that satisfies all

the bond distance and atom-atom repulsion constraints has been obtained, further refinement is

allowed using a combination of the interpolation function and the real potential. Regularly spaced
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configurations along the path between images are then used as the starting guess for a doubly-

nudged36 elastic band18–23 calculation, and local maxima in the DNEB profile are tightly converged

to transition states using hybrid eigenvector-following.20, 76, 77 This approach has been tested and

benchmarked for an atomic cluster, selected pathways of trpzip2, a coarse-grained model of protein

L, and atomistic representations of two peptides using both AMBER5–7 and CHARMM1–4 force

fields. For the most difficult peptide connections the QCI approach was somewhat faster than

schemes that use internal coordinates. However, the main benefit is realised in the construction

of kinetic transition networks for folding and unfolding of protein L and protein G, where chain

crossings were frequently obtained using straight line initial interpolations.84

Efficient construction of pathways using geometry optimisation for atomistic representations

of peptides and proteins depends upon proper treatment of permutational isomers. In previous

work we have shown how to automate the symmetrisation of CHARMM and AMBER force fields

so that consistent energies are obtained for equivalent configurations.36, 71 It is also necessary to

align the end points in double-ended calculations, to avoid unnecessary and potentially unphysical

rearrangements. The shortest augmenting path procedure employed in previous work65, 80, 81, 92 is

improved in the present contribution using local distance metrics by defining suitable neighbour-

hoods. The local permutational alignment solves the initial interpolation problem for cases where

the overall minimum distance for all atoms produces additional permutational rearrangements

on the pathway. For difficult cases involving distant end points local permutational alignment

can produce successful connections where previous procedures have failed or required excessive

computer time.
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Table 1: Summary of the different alignment and interpolation schemes used in previous work.92

method alignment interpolation

BCSC Cartesian Cartesian for backbone and sidechains

BCSI Cartesian Cartesian for backbone, CHARMM internal for sidechains

BISI Cartesian CHARMM internal for backbone and sidechains

NONI Cartesian natural internal

NI natural internal natural internal

NIS natural internal natural internal, using non-equispaced images

NIC natural internal natural internal or Cartesian, according to the lowest energy
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Table 2: Timings for the MSB test set introduced in previous work.92 QCI and DNEB refer to interpola-

tion using the QCI approach described in the text and to images placed along an initial straight line path

for the doubly-nudged36 elastic band18–23 procedure, respectively. The other abbreviations are defined

in Table 1. The average cpu time (s) for an Intel Xeon E5404 processor (running at 2.0GHz) is given in

each case; a number in brackets indicates that there were one or more failures for this combination when

a maximum of 50 cycles of the missing connection algorithm89 was allowed. The number of tests in each

category is 150, except for sets TS1 and TS2 for CHARMM, where 300 paths were considered. All the

input files required to run these OPTIM benchmarks will be made available from the OPTIM web site,72

together with the corresponding output.

GNNQQNY trpzip1

interpolation TS1 TS2 TS3 TS1 TS2 TS3

CHARMM

QCI 6.3 14.0 20.4 29.6 57.8 91.1

DNEB 3.0 8.6 14.7 30.0 62.9 115.0

BCSC 3.1 8.8 14.7 30.7 62.0 112.4

BCSI 3.1 9.4 13.1 30.6 50.8 90.8

BISI 3.7 12.0 19.7 47.9 96.9(1) 116.8

NONI 3.4 9.1 13.6 30.2 78.0 92.9(1)

NI 3.7 9.1 13.5 30.7 78.1 90.9(1)

NIS 3.7 8.8 14.4 30.9 74.9(1) 94.9(1)

NIC 3.7 8.5 13.6 29.9 55.9 106.1(1)

AMBER

QCI 37.5 79.7 92.2 214.2 412.4 562.8

DNEB 31.5 77.2 132.0(1) 251.5 516.2 576.7(3)

BCSC 31.6 76.1 131.4(1) 243.8 511.7 590.2(3)

BCSI 31.5 77.4 131.2(1) 245.2 518.2 590.5(3)

BISI 31.5 76.2 131.5(1) 244.8 524.2 584.6(3)

NONI 31.9 82.7 79.6(1) 177.4(2) 439.2 703.7

NI 32.1 82.4 79.9(1) 175.4(2) 445.7 690.7

NIS 31.8 72.2(1) 80.0 197.4 420.5 730.5

NIC 30.4 78.4 75.7 205.2(1) 360.9 614.2
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Figure 1: Squared distance (arbitrary units) between two atoms rα and rβ as a function of θ (radians).

As the z coordinate of rjβ, atom β in configuration j, varies, an internal minimum develops.
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Figure 2: Allowed permutations and corresponding entries in the auxiliary file, illustrated for three

amino acid sidechains (graphics generated with VMD108). (a) Alanine: the three hydrogens are per-

mutable, and comprise a single set. No other atoms are required to change places at the same time. (b)

Phenylalanine: the aromatic ring can rotate, exchanging exactly four pairs of atoms. If atoms 1 and 4

comprise the primary set, then three other pairs 2–3, 5–8 and 6–7 define the secondary sets of atoms that

must also be swapped. The definition of particular sets of permutable atoms as primary is arbitrary. (c)

Valine: the two methyl groups can be exchanged via four simultaneous pair swaps (here atoms 7 and 8

comprise the primary set). Additionally the three hydrogens within each methyl group can be permuted

as in alanine.
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Figure 3: Potential energy, V (kcal/mol), plotted as a function of the integrated path length, s (Å),

for a single transition state pathway of the trpzip2 peptide. The two local minima and the transition

state are superimposed above the path. This pathway corresponds to an internal rotation of the lys

sidechain constrained by the hydrogen-bonding contact in the glu/lys salt bridge. The snapshots (graphics

generated with VMD108) include the Cα carbon atoms of glu and lys, along with the sidechains and the

intervening gly and asn residues.
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Figure 4: Potential energy, V (kcal/mol), plotted as a function of the integrated path length, s (Å),

for a path involving trp side chain reorganisations in the trpzip2 peptide. The relevant atoms of the

nine local minima and the eight transition states are illustrated below and above the path, respectively

(graphics generated with VMD108), at approximately the corresponding path length. The trp residues

are all coloured differently to distinguish them, and the ser residue is also highlighted, since the first step

involves a conformational change in the corresponding OH group.
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Figure 5: Potential energy, V (ǫ), plotted as a function of the integrated path length, s (σ), for a path

connecting the global minimum and second-lowest minimum of the LJ38 cluster. This path corresponds

to an overall change in morphology from face-centred-cubic to icosahedral packing, and involves six

transition states and seven minima. These stationary points are illustrated above and below the path,

respectively (graphics generated with VMD108), at approximately the corresponding path length.

39



25

20

15

10

5

−5

−10

−15

−20

V

s

0

0

200 400 600 800 1000 1200

Figure 6: Potential energy, V (ǫ), plotted as a function of the integrated path length, s (σ), for a path

connecting the global minimum and an extended minimum for protein L represented by a coarse-grained

potential. Selected local minima are illustrated using the VMD program108 to generate representations

coloured from red to blue (N-terminus, β1, to C-terminus, β4) according to the position in the chain.

These structures are positioned at approximately the corresponding path length.
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Figure 7: Stacked bar charts displaying the results from Table 2. The average cpu time (s) using

an Intel Xeon E5404 processor (running at 2.0GHz) is plotted for the pathways in the MSB test set92

and each interpolation method. The results with AMBER are shown in the upper panel, and those with

CHARMM are in the lower panel. In the legend, G and T refer to GNNQQNY and trpzip1, respectively.

Stripes within a box indicate that there were one or more failures for this combination within 50 cycles

of the missing connection algorithm,89 and therefore that the box height shown is a lower bound.
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