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Abstract

Given the sequential update nature of Bayes rule, Bayesian methods �nd natural application

to prediction problems. Advances in computational methods allow to routinely use Bayesian

methods in econometrics. Hence, there is a strong case for feasible predictions in a Bayesian

framework. This paper studies the theoretical properties of Bayesian predictions and shows

that under minimal conditions we can derive �nite sample bounds for the loss incurred using

Bayesian predictions under the Kullback-Leibler divergence. In particular, the concept of

universality of predictions is discussed and universality is established for Bayesian predictions

in a variety of settings. These include predictions under almost arbitrary loss functions, model

averaging, predictions in a non stationary environment and under model miss-speci�cation.

Given the possibility of regime switches and multiple breaks in economic series, as well as the

need to choose among di�erent forecasting models, which may inevitably be miss-speci�ed, the

�nite sample results derived here are of interest to economic and �nancial forecasting.
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1 Introduction

Bayesian methods have gained increasing importance in empirical work. In this respect, macro-

policy modelling is one of its success story. Indeed highly dimensional macroeconometric models are

often estimated an analyzed within a Bayesian framework (e.g. Sims and Zha, 1998, and the reviews

of An and Schorfheide, 2007, and Schorfheide 2007, where many references can be found). Besides

large dimensional macro-models used for policy making, there are many applications of Bayesian

methods to econometrics problems with strong empirical motivations related to macroeconomic

and �nancial forecasting (e.g. Canova and Ciccarelli, 2004, Pesaran et al., 2006, Chib et al., 2006).
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The goal of these application is to infer something about the future from past information, when

interest goes beyond point prediction. Motivated by the prediction problem, we will study the the-

oretical properties of Bayesian predictions which satisfy an important property called universality.

The goal is to present general results about universality of Bayesian predictions. Some results are

new, while others are known, though not necessarily in the form presented here and not in the

econometric literature. All these results fall within the same unifying approach and their generality

should induce the reader to consider the Bayesian approach as an ideal forecasting method. We

consider optimal prediction under arbitrary loss function and optimal model averaging. We also

consider the case when the optimal model changes over time and we wish to track these changes

as much as possible. In these cases, the straight Bayesian update will not lead to a satisfactory

prediction and some additional randomization over the models or parameters is required. Finally,

we show that if the �true model� does not belong to the class of parametric models considered,

the Bayesian predictor performs as well as the best parametric model in the class under no addi-

tional assumptions. Establishing a similar result in the maximum likelihood context would require

more stringent conditions (e.g. Strasser, 1981, and Gourieroux et al., 1984, for results related to

this claim, Phillips and Ploberger, 1996, for asymptotic connections between Bayes and maximum

likelihood methods).

Improvements in computational power and the presence of a rich number of computational

methods have made possible to routinely use Bayesian methods in practice (e.g. Chib, 2004, Evans

and Swartz, 1995, Geweke, 1989, 2005). Moreover, results concerning dimensionality reduction

may further alleviate the computational burden (e.g. Cardigan and Raftery, 1994, for Bayesian

model averaging). Computational issues will not be discussed here and the interested reader should

consult the above references.

Bayesian prediction is based on the natural principle that new collected evidence should be

used to update predictions in a forecasting problem. Bayes rule satis�es optimality properties in

terms of information processing (e.g. Zellner, 1988, 2002, Clarke, 2007) and Bayesian estimation

requires weaker conditions for consistency than other methods like maximum likelihood estimation

(e.g. Strasser, 1981). Predictions based on Bayes rule lead to forecasts that perform uniformly well

over the whole parameter space. Forecasts satisfying this property will be called universal. This

only requires a mild condition on the prior, i.e. the prior needs to be information dense at the �true

value� (e.g. Barron, 1988, 1998). It is a remarkable fact that this condition is not su�cient for

consistency of posterior distributions (e.g. Diaconis and Freedman, 1986, Barron, 1998).

There is a rich statistical literature on consistency of Bayesian procedures (e.g. Barron, 1998,

for a survey) to which the results of this paper are related. However, the present discussion will

also bring together ideas and results from a rich literature in information theory (e.g. Merhav and

Feder, 1998), arti�cial intelligence (e.g. Cesa-Bianchi and Lugosi, 2005, Hutter 2005), and game

theory (e.g. see special issue in Games and Economic Behavior, Vol. 29, 1999). It is not possible

to provide a review of the results in all these areas. However, each the theorems stated here will

be followed by a discussion of related references.
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The focus of the paper is theoretical. However, its conclusions have clear practical implication

for the use of Bayesian prediction and provide guidelines for the choice of prior. The choice of

prior is not crucial as long as it satis�es some general conditions. Under additional smoothness

conditions on the likelihood w.r.t. the unknown parameter, the optimal choice of prior is known

to be related to the information matrix (i.e. an exponential tilt of Je�ries' prior) and more details

can be given (Clarke and Barron, 1990, for exact conditions), but will not be discussed here.

While conducting inference to distinguish between two hypotheses, the posterior odd ratio

represents the evidence in favor of one hypothesis relative to another. The posterior odd ratio is

a�ected by the prior distribution. Hence, the Bayesian prediction and estimation problem contrasts

with the testing problem, where the choice of prior is more crucial (e.g. Kass and Raftery, 1995,

Section 5).

The plan of the paper is as follows. At �rst we provide background notation and de�nitions. We

introduce the de�nition of universality of predictions and give a game theoretic justi�cation for it,

linking it to the prequential and real time econometrics literature. Section 2 states the universality

results for a variety of problems including prediction under almost arbitrary loss function, model

averaging, predictions in a non-stationary environment and predictions under miss-speci�cation.

Further discussion including remarks about the conditions can be found in Section 3. Proofs are in

the appendix.

1.1 Background and Notation

For t ∈ N, let Z1, ..., Zt be random variables each taking values in some set Z and with joint law

Pθ where θ ∈ Θ, for some set Θ. For ease of notation, we suppress the dependence of Pθ on t, the

number of random variables. In particular Pθ (•|Ft−1) denotes the law of Zt conditional on Ft−1,

where Ft−1 is the sigma algebra generated by (Zs)s<t and F0 is assumed to be trivial. It follows

that

Pθ

(
zt
1

)
=

t∏
s=1

Pθ (zs|Fs−1)

where zt
1 := (z1, ..., zt) (where the above are understood as distribution functions). We assume that

Pθ is absolutely continuous with respect to a sigma �nite measure µ and de�ne its density (w.r.t.

µ) by pθ. When θ ∈ Θ is unknown, the Bayesian estimator of pθ (zt
1) is given by

pw

(
zt
1

)
=
∫

Θ

pθ

(
zt
1

)
w (dθ)

where w is a prior probability measure on subsets of Θ. Note that if we assume Θ compact, then∫
Θ

dw < ∞ for any sigma �nite measure w. Hence, if w is a di�use prior on a Euclidean set Θ, then

we shall assume Θ compact, so that we may always turn a sigma �nite measure w into a probability

measure by standardization.

Example 1 Suppose w is a uniform prior on Θ ⊂ R, then we just have w (dθ) = dθ/ |Θ|, where
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|Θ| < ∞ is the Lebesgue measure of Θ.

An estimator for pθ (zt|Ft−1) = pθ (zt
1) /pθ

(
zt−1
1

)
is just

pw (zt|Ft−1) =
pw (zt

1)
pw

(
zt−1
1

) (1)

where 0/0 := 0.
We are interested in sequential prediction of pθ (zt|Ft−1) for t = 1, 2, 3, ... which is recursively

estimated as

pw (zt|Ft−1) =
∫

Θ

pθ (zt|Ft−1)w (dθ|Ft−1) (2)

where

w (dθ|Ft) =
w (dθ|Ft−1) pθ (Zt|Ft−1)∫
Θ

w (dθ|Ft−1) pθ (Zt|Ft−1)
(3)

and w (dθ|Ft) is the posterior probability written in sequential form, more commonly written as

w (dθ|Ft) =
w (dθ) pθ (Zt

1)∫
Θ

w (dθ) pθ (Zt
1)

where the above relations follow by induction. The justi�cation of this approach is Bayes rule. In

a prediction context, we shall quantify the sequential loss incurred by using pw (zt|Ft−1) instead of

pθ (zt|Ft−1). To this end, we shall use the Kullback-Leibler (KL) divergence

Dt (Pθ‖Pw) :=
∫
Z

pθ (z|Ft−1) ln
(

pθ (z|Ft−1)
pw (z|Ft−1)

)
µ (dz)

= Eθ
t−1 [ln (pθ (Zt|Ft−1))− ln (pw (Zt|Ft−1))]

where Eθ
t is expectation w.r.t. Pθ (•|Ft−1) and de�ne D1,T (Pθ‖Pw) :=

∑T
t=1 Dt (Pθ‖Pw) as the

total KL divergence. KL divergence will be used interchangeably with the term relative entropy.

We shall use Eθ to denote unconditional expectation w.r.t. Pθ. Our interest is in predictions that

are universal, as de�ned next.

De�nition 1 The prediction pw is universal with respect to {Pθ : θ ∈ Θ} if

sup
θ∈Θ

EθD1,T (Pθ‖Pw)
T

→ 0

We now turn to the implications of universality.
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1.2 Implications of Universality

De�nition 1 has practical implications in a variety of contexts. For any prior w on Θ and any

measure Q on ZT , the mutual information between w and Q is de�ned by

I (w,Q) :=
∫

Θ

EθD1,T (Pθ‖Q)w (dθ)

(e.g. Clarke, 2007, Haussler and Opper, 1997). By the properties of the KL divergence, the mutual

information is minimized w.r.t. Q by Pw, i.e.

I (w,Pw) ≤ I (w,Q)

for any Q. Hence, the minimizer of the mutual information is the Bayes risk (e.g. Haussler and

Opper, 1997, p. 2455). Universality of Bayesian prediction implies that the Bayes risk divided by

T converges to zero.

The Bayes risk can be given a game theoretic interpretation. Suppose that the environment

samples a θ ∈ Θ according to the prior w and then observations ZT
1 are drawn according to Pθ.

The forecaster only knows {Pθ′ : θ′ ∈ Θ} and that the prior is w. Then, a predictive distribution

Q needs to be chosen such that the average loss I (w,Q) is minimized.

Using universality, we can go a step further and consider the following adversarial game. Nature

chooses θ ∈ Θ such that EθD1,T (Pθ‖Q) is maximized. The goal of the forecaster is to choose

a predictive distribution Q such that supθ∈Θ EθD1,T (Pθ‖Q) is minimized. The solution to this

problem is the Bayesian predictor Pw (Haussler, 1997, Theorem 1). Hence, the Bayesian prediction

Pw solves the following minimax problem

inf
Q

sup
θ∈Θ

EθD1,T (Pθ‖Q)

where the inf is taken over all joint distributions Q on ZT .

Another important consequence of universality is in the context of prequential (predictive se-

quential) evaluation (e.g. Dawid, 1984, 1986). Dawid calls D1,T (Pθ‖Pw) the prequential log-

likelihood ratio. Given that D1,T (Pθ‖Pw) ≥ 0, universality implies L1 (Pθ) convergence of the

standardized prequential log-likelihood ratio, which in turn implies its convergence in Pθ-probability

for any θ ∈ Θ. The prequential approach to statistical evaluation has also impact on real time econo-

metric issues (Pesaran and Timmermann, 2005). It would be desirable to establish a.s. convergence

of the prequential log-likelihood ratio. This is what the prequential approach advocates. Unfortu-

nately, the method of proof used in this paper will not allow to do so. Note that expectation of the

total relative entropy is equal to the relative entropy of the joint distributions.

The next question to ask is under what conditions on the prior universality holds. The su�cient

condition for this is called information denseness and is discussed next.
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1.3 Information Denseness and Resolvability Index

For any θ ∈ Θ, T ∈ N, and δ > 0, de�ne the following set

BT (θ, δ) :=
{
θ′ ∈ Θ : EθD1,T (Pθ‖Pθ′) ≤ δ

}
. (4)

To ease notation, we may write BT (θ, δ) = BT (θ) whichever is felt more appropriate for the

situation. The set BT (θ, δ) is called information neighbor and is the set of subsets of Θ with

expected total relative entropy less or equal to δ > 0. Then, the prior w is said to be information

dense (at θ) if it assign strictly positive probability to each information neighbor of size δT T ,

i.e. w (BT (θ, δT T )) > 0 for any δT > 0. Information denseness of the prior is often used in the

Bayesian consistency literature (e.g. Barron, 1998, Barron et al. 1999). Note that the standard

de�nition of BT (θ, δ) is in terms of either the individual or the average expected relative entropy.

For reasons that will become apparent later, we work with the total entropy, hence, to de�ne

information denseness we need to consider information balls of total entropy less or equal to δT T

for any δT > 0. Nevertheless, here we shall use a related and slightly weaker condition. To do so,

we need to de�ne the following quantity

RT (θ) := inf
δ>0

{δ − lnw (BT (θ, δ))}

where RT (θ) /T is called resolvability index (e.g. Barron, 1998). A candidate δ in the above

display is of the form δ = δT T where δT → 0 as T → 0 (this is consistent with the notion of

information denseness for neighbors of size δT T ). It can be shown that if w is information dense,

then, RT (θ) /T → 0 as T →∞ (Lemma 1). We state the condition that is used to show universality.

Condition 1

lim
T→∞

sup
θ∈Θ

RT (θ)
T

= 0.

Information denseness and Condition 1 are slightly stronger than needed. In fact the following

weaker condition would su�ce: there is a set AT := AT (θ, δT T ) ⊆ Θ such that

Eθ ln pθ

(
ZT

1

)
≤ Eθ ln

(∫
AT

pθ′
(
ZT

1

) w (dθ′)
w (AT )

)
+ δT T (5)

and {δT T − lnw (AT )} /T → 0 as T → ∞. This clearly resembles the index of resolvability and

requires δT → 0. It turns out that the set BT (θ, δ) ⊆ AT (θ, δ) for any δ > 0.
The following summarizes the above remarks.

Lemma 1 An information dense prior w (at θ) implies limT→∞RT (θ) /T = 0 and the latter

implies (5) with limT→∞ {δT T − lnw (AT )} /T = 0.

In practice, veri�cation of the above conditions is almost equivalent. Given that the index

of resolvability provides an upper bound in most of the results, we shall use this as our default
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condition. Moreover, for two of the results to be stated (Theorem 5 and 6), (5) will not be

su�cient. This suggests that Condition 1 is the relevant assumption to make for universality in a

general framework.

By direct inspection of (4), Condition 1 is automatically satis�ed with δ = 0 if Θ is countable

and �nite and w puts strictly positive mass to each element of Θ (see the proof of Theorem 3, for

details). Section 3.1 provides remarks on how to check Condition 1 in a special important case.

The next section gives a fairly complete picture of universality of Bayesian predictions in a variety

of contexts.

2 Universality Results

The previous section provided essential background on Bayesian prediction, its interpretations and

discussed information denseness and negligibility of the resolvability index (Condition 1). Here

we shall discuss universality results that can be derived from Condition 1 and obvious extensions

to cover more general cases. At �rst, the standard well known result about Bayesian predictions

is stated. Then, we show how this result can be used to prove Bayesian prediction under almost

arbitrary loss functions. Furthermore, we look at universal bounds for Bayesian model averaging and

the problem of Bayesian prediction in a non-stationary environment is discussed. In the last case,

the standard posterior update is not adequate, but we can shrink the posterior in order to account

for the uncertainty due to non-stationarity. Finally we discuss the problem of miss-speci�cation.

Explicit �nite sample upper bounds are provided for most of these problems.

2.1 Universality of Probability Forecasts

The following establishes universality of Bayesian predictions in the simplest case.

Theorem 1 Using the notation in (4)

sup
θ∈Θ

EθD1,T (Pθ‖Pw) ≤ sup
θ∈Θ

inf
δ>0

{δ − lnw (BT (θ, δ))}

so that under Condition 1, the prediction is universal, i.e.

sup
θ∈Θ

1
T

EθD1,T (Pθ‖Pw) → 0.

The upper bound is derived under no assumptions on the prior w and the r.h.s. can be in�nite.

Condition 1 makes sure that the bound is o (T ) as T →∞. Theorem 1 is well known (e.g. Barron,

1998) and it is a starting point for many other results to be discussed next. However, to give a

simple econometric application of this result, consider the autoregressive process

Zt = θZt−1 + Xt
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where (Xt)t∈N is an iid sequence with distribution function P (x) so that Pθ (z|Ft−1) = P (z − θZt−1),
and Z0 = z is given. If [0, 1] ⊆ Θ, under Condition 1, we obtain universality even when θ = 1, i.e.
the Bayesian prediction performs uniformly well without need to worry about the possible presence

of a unit root, and Theorem 1 gives a �nite sample upperbound for the loss in the prediction. For

example, in the Holder continuity case to be discussed in (15) (e.g. Xt is Gaussian noise, Cauchy,

etc.), the resolvability index would be O (lnT/T ). It is clearly unthinkable to derive such uniform

�nite sample upperbound in a maximum likelihood framework. We now turn to other related

problems and defer any further discussion to Section 3.

2.2 Universal Predictions for Arbitrary Loss Functions

Suppose that (Zt)t∈N is a sequence of random variables with values in Z. The problem is to �nd

a prediction f ∈ F for Zt+1, where F is a prespeci�ed set. The framework is as follows: observe

Z1, ..., Zt and issue the prediction ft+1 ∈ F. Finally, Zt+1 is revealed and a loss L (Zt+1, ft+1) is

incurred, where the loss takes values in R+ (the non-negative reals). Our ideal goal is to minimize

Eθ
tL (Zt+1, f) w.r.t. f ∈ F, i.e. to �nd

ft+1 (θ) := arg inf
f∈F

Eθ
tL (Zt+1, f) . (6)

As in the previous section, we suppose that we only know the class {Pθ : θ ∈ Θ}, but not under
which θ expectation is taken. Hence, the problem is the one of �nding a prediction that performs

well for any θ ∈ Θ and the given loss function. By suitable de�nition of Z and L, the framework

allows extra explanatory variables on top of autoregressive variables.

Example 2 Suppose that Zt := (Yt, Xt) and Z = R× R, and

L (Zt+1, f) = |Yt+1 − f |2 .

Then, this is the usual problem of forecasting under the square loss using an autoregressive process

plus an explanatory variable. In fact, if Pθ (•|Ft) = Pθ (•|Yt, Xt) is Gaussian with mean θyYt+θxXt

and �nite variance, then,

ft+1 (θ) = θyYt + θxXt

= arg inf
f∈R

Eθ
t |Yt+1 − f |2 .

Since θ is unknown, in (6) we shall replace the expectation w.r.t. Pθ (•|Ft) with expectation

w.r.t. Pw (•|Ft). This leads to the following prediction

ft+1 (w) := arg inf
f∈F

Ew
t L (Zt+1, f) (7)
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where Ew
t stands for expectation with respect to Pw (•|Ft). We shall see that this prediction satis�es

some desirable properties. To be more speci�c, we need the following.

De�nition 2 Predictions f1, ..., fT are universal under L for {Pθ : θ ∈ Θ} if

sup
θ∈Θ

Eθ 1
T

T∑
t=1

Eθ
t−1 [L (Zt, ft)− L (Zt, ft (θ))] → 0

as T →∞.

Remark 1 As for the relative entropy, Eθ
t−1 [L (Zt, ft)− L (Zt, ft (θ))] ≥ 0 by construction, because

ft (θ) is the predictor that minimizes the loss L under expectation w.r.t. Pθ (•|Ft−1). Hence,

universality implies

1
T

T∑
t=1

Eθ
t−1 [L (Zt, ft)− L (Zt, ft (θ))] → 0

in L1 (Pθ) and consequently in Pθ-probability for any θ ∈ Θ.

The following gives conditions under which the predictions f1 (w) , ..., fT (w) are universal for a
loss function L.

Condition 2 For any θ ∈ Θ and t ∈ N,

Eθ
[
Eθ

t−1L (Zt, ft (w))r + Ew
t−1L (Zt, ft (θ))r]

< ∞

for some r > 1.

Remark 2 Further remarks on Condition 2 can be found in Section 4.2.

We have the following result.

Theorem 2 Under Condition 2,

sup
θ∈Θ

Eθ 1
T

T∑
t=1

Eθ
t−1

[
L
(
Zt, f̂t (w)

)
− L (Zt, ft (θ))

]
= o


 sup

θ∈Θ
infδ>0 {δ − lnw (BT (θ, δ))}

T

(r−1)/2r


and, if Condition 1 holds as well, the Bayesian predictions f1 (w) , ..., fT (w) are universal.

Remark 3 Theorem 2 says that if we use the Bayesian predictor (7), we can expect an average

conditional prediction error asymptotically equal (in L1 (Pθ)) to the average conditional prediction

error obtained using the optimal predictions f1 (θ) , ..., fT (θ). It is actually possible to write a proper
upperbound in terms of constants that depend on the moments of the loss function only. In the case

of a bounded loss function the rate of convergence is the square root of the one given by Theorem 1

up to a multiplicative constant (see the proof of Theorem 2 for details) .
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Merhav and Feder (1998) show how to relate the left hand side of Theorem 2 to the relative

entropy in the case of bounded loss functions (by an application of Pinsker's inequality, e.g. Pollard

2002, eq. 13, p. 62). (See also Hutter, 2005, ch.3, for related results for bounded losses). The

present result relates the expected di�erence of the loss functions to the resolvability index in the

more general case of unbounded loss.

2.3 Universality of Bayesian Model Averaging

Parameter uncertainty in the model {Pθ : θ ∈ Θ} can be extended to model uncertainty. It is

convenient to suppose K parameter spaces Θ1, ...,ΘK within which each model is indexed, e.g.

{Pθ : θ ∈ Θk} is model k. We shall de�ne K := {1, ...,K}. The Bayesian forecast of Pθ where

θ ∈
⋃

k∈KΘk is given by

pm (Zt) :=
∑
k∈K

pwk
(Zt|Ft−1) m (k|Ft−1)

where

m (k|Ft) =
pwk

(Zt|Ft−1) m (k|Ft−1)∑
k∈K pwk

(Zt|Ft−1) m (k|Ft−1)

pwk
(zt|Ft−1) :=

∫
Θk

pθ (zt|Ft−1) dwk (θ|Ft−1)

and wk, m are probability measures on subsets of Θk and K, respectively. By induction, we have

pm

(
Zt

1

)
:=
∑
k∈K

pwk

(
Zt

1

)
m (k) .

In this case, universality of the Bayesian prediction is understood as in De�nition 1 where Θ :=⋃
k∈KΘk.

For universality we need the following additional condition.

Condition 3 For any k ∈ K, m (k) is bounded away from zero.

Hence, we can state the following.

Theorem 3 We have the following upperbound,

max
k∈K

sup
θ∈Θk

EθD1,T (Pθ‖Pm) ≤ max
k∈K

sup
θ∈Θk

inf
δ>0

{δ − lnw (BT (θ, δ))− lnm (k)} ,

so that under Condition 1 and 3, the predictions are universal, i.e.

max
k∈K

sup
θ∈Θk

EθD1,T (Pθ‖Pm)
T

→ 0.

Remark 4 Condition 3 implies that K has �nite cardinality. If K does not have �nite cardinality,

but the models are not too far away such that a condition equivalent to Condition 1 holds, then we

10



still have universality. Details are exactly as in Theorem 1.

The stated version of the upper bound is related to results derived in the machine learning and

information theory literature (e.g. Cesa-Bianchi and Lugosi, 2006, and Sancetta, 2007 , for similar

results in econometrics). The above references derive bounds for worst case scenarios and treat

individual predictions to be combined as exogenous. The above bound also relates to some results

in Yang, 2004, which apply to conditional mean prediction under the square loss.

2.4 Universality over Time Varying Reference Classes

In some situations we would like the Bayesian prediction to perform well when θ varies over time.

We may think of this problem as the one when there are switches in regimes but we try not to make

any assumptions on the dynamics (see Hamilton, 2005, for a review of parametric regime switches

models). In this case, standard learning by Bayes rule is not appropriate and need to be modi�ed.

In fact, the application of Bayes theorem to derive Pw is based on θ constant overtime, i.e. it uses

the joint distribution

Pθ

(
ZT

1

)
=

T∏
t=1

Pθ (Zt|Ft−1)

while, here, we are interested in the joint distribution

PθS
1

(
Zt

1

)
=

S∏
s=1

Ts∏
t=Ts−1+1

Pθs
(Zt|Ft−1) (8)

where θS
1 := (θ1, ..., θS), and 0 = T0 < T1 < ... < Ts = T are arbitrary, but �xed.

Example 3 Suppose that Pθs (Zs|Fs−1) = Pθs (Zs|Zs−1 = zs−1) is a Markov transition distribu-

tion. If θs does not vary over time, the transition distribution is homogeneous (i.e. stationary).

Allowing for θs to vary with time leads to a inhomogeneous Markov transition distribution.

To ease notation de�ne the time segments Ts := (Ts−1, Ts] ∩ N. For s ≤ S, we shall denote

expectation w.r.t. Pθs
1
by Eθs

1 . To be precise, the notation should make explicit not only θs
1, but

also T1, ..., TS . For simplicity the times of the parameter's change are omitted, as they will be clear

from the context, if necessary.

The problem of universality of the predictions is formalized by the following de�nition.

De�nition 3 The prediction pw is universal for
{

PθS
1

: θS
1 ∈ ΘS

}
over S ≤ T partitions if

max
T1,...,TS

1
T

sup
θS
1 ∈ΘS

EθS
1

S∑
s=1

∑
t∈Ts

Dt (Pθs
‖Pw) → 0

as T →∞.
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Note that in the above de�nition S may go to in�nity with T . To allow for changing θ when the

time of change is not known apriori, we need to introduce a prior on the probability of changes. The

simplest approach that leads to constructive results is to de�ne a probability measure on subsets of

N: for each t, λt (r) is a probability density w.r.t. the counting measure with support in {0, 2, ..., t},
so that

∑t
r=0 λt (t− r) = 1. Then we mix past posteriors using λt (r) as mixing density:

w (dθ|Ft) =
t∑

r=0

λt (t− r)w′ (dθ|Ft−r) (9)

where

w′ (dθ|F0) = w (dθ|F0)

and

w′ (dθ|Ft) =
pθ (Zt|Ft−1) w (dθ|Ft−1)∫
Θ

pθ (Zt|Ft−1)w (dθ|Ft−1)
. (10)

The Bayesian interpretation is that with probability λt (r) the posterior of θ at time t is equal to the

posterior dw′ (θ|Fr) at time r + 1 < t. This means that at any point in time we may expect shifts

that take us back to a past regime. When r = 0 we are taken back to the prior, which corresponds

to the start of a new regime that has not previously occurred. This is the intuition behind (9) and

will be further developed next.

We shall use DTs
(Pθ‖Pθ′) := DTs−1+1,Ts

(Pθ‖Pθ′) for the relative entropy over the time interval

Ts. To prove universality, we need a condition slightly stronger than Condition 1.

Condition 4 For any θs ∈ Θ, Ts, s ≤ S and δ > 0 de�ne the following set

BTs (θs, δ) :=
{

θ′ ∈ Θ : Eθs
1DTs (Pθs‖Pθ′) ≤ δ

}
and the following unstandardized resolvability index

RTs
(θs) := inf

δs>0
[δs − lnw (BTs

(θs, δs))]

Then,

lim
T→∞

sup
θS
1 ∈ΘS

S∑
s=1

RTs (θs)
T

= 0.

For de�niteness, two special cases will be considered. In one case we make no assumption on

the type of changes, and only assume that there are S − 1 changes. Hence, in this case any change

could be a new regime and past information might be useless. For this reason, we shall just shrink

the posterior towards the prior. In the second case, we assume that there are S − 1 shifts in the

parameter, but that these shifts are back and forth within a small number of V < S regimes (i.e.

parameters). The details will become clear in due course.

12



2.4.1 Shrinking towards the Prior

We restrict λt such that λt (t) = 1 − λt−α, λt (0) = λt−α, and λt (r) = 0 otherwise, with α ≥ 0
and λ ∈ (0, 1). This means that (9) simpli�es to

w (dθ|Ft) =
(
1− λt−α

)
w′ (dθ|Ft) + λt−αw (dθ) . (11)

Theorem 4 Using (11), for any segments T1, ..., TS,

sup
θS
1 ∈ΘS

EθS
1

S∑
s=1

∑
t∈Ts

Dt (Pθs
‖Pw)

≤ sup
θS
1 ∈ΘS

S∑
s=1

inf
δs>0

[δs − lnw (BTs
(θs, δs))]

+
2λ√

1− λ2

(
1 +

T 1−α − 1
1− α

)
+ S ln (1/λ) + αS lnT

so that the prediction is universal under Condition 4 if S lnT = o (T ).

Remark 5 If α → 1,
(
T 1−α − 1

)
/ (1− α) → lnT ; in fact, the second term in the bound of

Theorem 4 is monotonically decreasing in α. Increasing α does however increase the last term in

the bound, i.e. αS lnT .

In the bound of Theorem 4, α and λ are free parameters whose choice can be based on prior

knowledge or subjective believes. If S is of large order, we could minimize the bound setting λ close

to one and α close to zero. This is just a loose remark whose only purpose is to suggest that as

the number of shifts increases relatively to T , we are better o� shrinking towards the prior. This

idea can be related to the debate about equally weighted model averaging when we want to hedge

against non-stationarity (e.g. Timmermann, 2006, for discussions). Clearly, exact prior knowledge

of T (in the sense of number of predictions to be made) and S would allow us to minimize the

bound w.r.t. the free parameters.

In Theorem 4,

sup
θS
1 ∈ΘS

1
T

S∑
s=1

inf
δs>0

[δs − lnw (BTs
(θs, δs))] = o (1)

by Condition 4. However the above resolvability index can be quite large as the order of magnitude

of S increases. Moreover, all the shifts might not be to new regimes, hence, it could be advantageous

to use past information hoping to reduce the resolvability index. This issue will be addressed next.
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2.4.2 Improvements on the Resolvability Index: Switching within a Small Number

of Parameters

We now consider the case of shifting parameter within a set of V �xed parameters. Hence, even

if S → ∞ we may still have V = O (1) so that over the S − 1 shifts we move back and forth V

regimes. In particular, to setup notation, there are S − 1 shifts within
{

θ̃1, ..., θ̃V

}
⊂ Θ, V < S.

Hence, for given θ̃v, there are Sv ≤ bS/V c+1 segments of the kind [Ts−1 + 1, Ts] for which θs = θ̃v

is the �true parameter�. By the intuition that using past information should be helpful, we may

hope to improve on the bound of Theorem 4 letting λt (r) > 0 for any r ≤ t. This is indeed the

case and to this end we state the following.

Condition 5 For any θs ∈ Θ, Ts , s ≤ S and δS
1 := (δ1, ..., δS) > 0 (understood elementwise),

de�ne the following set

Bv

(
θ̃v, δS

1

)
:=

⋂
{s:θs=θ̃v}

BTs
(θs, δs)

i.e. the smallest set BTs (θs, δs) w.r.t. s such that θs = θ̃v, where BTs (θs, δs) is as in Condition 4.

Then,

lim
T→∞

sup
θS
1 ∈ΘS

inf
δS
1 >0

{
S∑

s=1

δs −
V∑

v=1

lnw
(
Bv

(
θ̃v, δS

1

))}
= 0.

Remark 6 Note that

lnw
(
Bv

(
θ̃v, δS

1

))
≤ min
{s:θs=θ̃v}

lnw (BTs (θs, δs))

with equality in some special important cases as in (15).

The simplest approach to let λt (r) > 0 for r ∈ [0, t] is to directly extend the density λt (r)
in the previous subsection: λt (t) = 1 − λt−α, λt (r) = λt−(1+α) when r ∈ [0, t) and α and λ are

as previously constrained. Direct calculation shows that λt (r) is a probability density (w.r.t. the

counting measure) on [0, t] ∩ N, leading to the following posterior update

w (dθ|Ft) =
(
1− λt−α

)
w′ (dθ|Ft) +

t∑
r=1

λt−α

t
w′ (dθ|Ft−r) . (12)

Under the above update, we can derive the following bound for S − 1 shifts within V regimes.

Theorem 5 Using (12), for any segments T1, ..., TS, for S shifts in θs within a �xed but arbitrary

14



set
{

θ̃1, ..., θ̃V

}
with V ≤ S,

sup
θS
1 ∈{θ̃1,...,θ̃V }S

EθS
1

S∑
s=1

∑
t∈Ts

Dt (Pθs
‖Pw)

≤ inf
δS
1 >0

{
S∑

s=1

δs −
V∑

v=1

lnw
(
Bv

(
θ̃v, δS

1

))}

+
2λ√

1− λ2S−2α

(
S−α +

T 1−α − S1−α

1− α

)
+ S ln (1/λ) + (1 + α)S lnT

so that the prediction is universal under Condition 5 if S lnT = o (T ).

Remark 7 Theorem 5 leads to a considerable decrease in the resolvability index when V is �xed

and S → ∞. However, comparison with Theorem 4 shows that this comes at the extra cost of an

error term S lnT together with an improvement in

2λ√
1− λ2S−2α

(
S−α +

T 1−α − S1−α

1− α

)
. (13)

Section 3.3 provides further remarks on the improvement in the resolvability index using λt (r) > 0
for r ∈ [0, t] when there are only V regimes, in a special important case. For the case to be considered

in Section 3.3, it can be shown that the gain in the resolvability index together with the gain in (13)

is o�set by S lnT , though only asymptotically. It is a matter of simple algebra to show that for

�nite T and large S we can �nd α ' 0 and λ close to one such that the result in Theorem 5 strictly

improves Theorem 4. Moreover, for comparisons, we do not need the α in Theorem 5 to be the

same as in Theorem 4. However, note that Theorems 4 and 5 only provide upperbounds, so that

one has to be cautious about comparisons. When Θ is countable and �nite, Bousquet and Warmuth

(2002) provide encouraging simulation evidence in favor of mixing past posteriors using λt (r) > 0
(r ∈ [0, t]) when V is small and S is large. This is exactly the case when one would be expected to

use α close to zero and λ close to one (recall the discussion just after Theorem 4). According to

these remarks, the mixing update in (12) should be used with small α and large λ if we expect S to

be relatively large and V small so that the resulting loss should dominate the one incurred using the

update in (11).

We now consider a second case that further improves on the previous result. This can be

achieved by letting λt (r) put less and less mass on the remote past. To this end we consider the

following simple case: λt (t) = 1 − λt−α, λt (r) = λt−αA−1
t (1 + t− r)−2

, for 0 ≤ r < t where

At =
∑t−1

r=0 (1 + t− r)−2
is a normalizing factor and α and λ are as previously restricted. This

means that we shall consider the following update

w (dθ|Ft) =
(
1− λt−α

)
w′ (dθ|Ft) +

t∑
r=1

λt−α

At (1 + r)2
w′ (dθ|Ft−r) . (14)
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Theorem 6 Using (14) instead of (12) in Theorem 5,

sup
θS
1 ∈{θ̃1,...,θ̃V }S

EθS
1

S∑
s=1

Ts∑
t=Ts−1+1

Dt (Pθs‖Pw)

≤ inf
δS
1 >0

{
S∑

s=1

δs −
V∑

v=1

lnw
(
Bv

(
θ̃v

))}
+

2λ√
1− λ2S−2α

(
S−α +

T 1−α − S1−α

1− α

)
S ln (1/λ) + αS lnT + 2S ln

(
V (T − 1)

S − 1

)
so that the prediction is universal under Condition 5 if S lnT = o (T ).

Remark 8 Theorem 6 shows that the extra cost S lnT in Theorem 5 can be reduced to 2S ln
(

V (T−1)
S−1

)
if we use (14) instead of (12).

Mutatis mutandis, Theorem 4, 5 and 6 are related to Lemma 6 and Corollary 8 and 9 in Bousquet

and Warmuth (2002) and improve on the bounds given by these authors using slightly di�erent

functions to mix posteriors. Bousquet and Warmuth (2002) were the �rst to propose predictions

by mixing past posteriors (see also Herbster and Warmuth, 1998, for related results). They are

essentially concerned with the forecast combination problem, called prediction with experts' advice

in the machine learning literature. The main di�erence lies in the fact that they use a �nite

and countable parameter space, while here the parameter space is possibly uncountable, given the

Bayesian prediction's setting. The machine learning literature is rich of results of this kind which

can often be justi�ed by Bayesian arguments.

By the same method of proof, we can consider other mixing distributions. For example, the case

λt (r) = λt−αA−1
t (1 + t− r)−γ

(r < t), where γ > 2, with suitably modi�ed At, is dealt similarly,

but seems to lead to a more complex bound.

2.5 Bounds when the True Model is not in the Reference Class

The previous results considered the case where expectation is taken with respect to one element

within a class of models, e.g. {Pθ : θ ∈ Θ}. This implies that we only face estimation error.

However, when expectation is taken with respect to a probability P /∈ {Pθ : θ ∈ Θ}, we shall also
incur an approximation error. This approximation error can be characterized in terms of the relative

entropy. With no loss of generality, we assume that P is absolutely continuous w.r.t. the sigma

�nite measure µ and we denote its density by p, so that

Dt (P‖Pθ) = Et−1 ln
p (Zt|Ft−1)
pθ (Zt|Ft−1)

where Et−1 is expectation w.r.t. P (•|Ft−1). Note that this does not imply that P is absolutely

continuous w.r.t. Pθ, however, if this is not the case, their relative entropy is in�nite. We shall
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also use E for (unconditional) expectation w.r.t. P . We need the following condition that extends

Condition 2 to the present more general framework.

Condition 6 De�ne

ft (P ) := arg inf
f∈F

Et−1L (Zt, f) .

Then, for any θ ∈ Θ and t ∈ N,

E
[
Et−1L (Zt, ft (w))r + Ew

t−1L (Zt, ft (P ))r]
< ∞

for some r > 1.

Then, we have the following that also gives the extra error term due to the approximation.

Theorem 7 Under Condition 6

E
1
T

T∑
t=1

Et−1

[
L
(
Zt, f̂t (w)

)
− L (Zt, ft (P ))

]
= o

([
infθ∈Θ infδ {ED1,T (P‖Pθ) + δ − lnw (BT (θ, δ))}

T

](r−1)/2r
)

.

Remark 9 By the following inequality

inf
θ∈Θ

inf
δ
{ED1,T (P‖Pθ) + δ − lnw (BT (θ, δ))}

≤ inf
θ∈Θ

ED1,T (P‖Pθ) + sup
θ∈Θ

inf
δ
{δ − lnw (BT (θ, δ))}

we deduce that if Condition 1 holds, the Bayesian prediction might not be universal, but will lead

to the smallest possible information loss, i.e. infθ∈Θ ED1,T (P‖Pθ) /T .

3 Discussion

3.1 Remarks on Condition 1

Veri�cation of Condition 1 requires smoothness of the total relative entropy. For simplicity suppose

Θ ⊂ R (the discussion easily extends to more general metric spaces, not just Euclidean spaces).

Smoothness can be formalized in terms of a Holder's continuity condition: for any t ∈ N

Eθ [ln pθ′ (Zt|Ft−1)− ln pθ (Zt|Ft−1)] ≤ b |θ′ − θ|a (15)

for some a, b > 0 . In this case, we set δ = Tb |θ′ − θ|a and

BT (θ, δ) =

{
θ′ ∈ Θ : |θ′ − θ| ≤

(
δ

Tb

)1/a
}

.
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Assuming for simplicity the Lebesgue measure as prior and Θ having unit Lebesgue measure,

w (BT (θ, δ)) = [δ/ (Tb)]1/a
. Then,

RT (θ) = inf
δ>0

{
δ − 1

a
ln
(

δ

Tb

)}
which is minimized by δ = a−1 so that the resolvability index is equal to

RT (θ)
T

=
1 + ln (abT )

aT

and the average relative entropy converges to zero at the rate lnT/T for any Holder's continuous

class of expected conditional log-likelihoods. To put (15) into perspective, note that di�erentia-

bility of the expected conditional log-likelihood per observation is stronger than (15). We give

a prototypical example where standard maximum likelihood methods are known to fail for some

parameter values.

Example 4 Suppose (Zt)t∈N is a sequence of iid random variables with double exponential density

pθ (z) = 2−1 exp {− |z − θ|}. Then, (15) holds with a = 1, while pθ is not di�erentiable at θ = 0.

3.2 Remarks on Condition 2

Condition 2 needs to be checked on a case by case basis and might be hard to verify except for

some special cases (e.g. when L is the square loss and pθ is Gaussian). Simplicity can be gained by

restricting the set F over which to carry out minimization. For example, we may choose F to contain

all the function such that |f | ≤ g where g is some measurable function such that supθ∈Θ Eθg < ∞.

In this case, restrictions on the loss function may lead to feasible computations. We provide a

simple example next.

Example 5 Suppose pθ (Zt|Ft−1) = pθ (Zt|Zt−1) is a Markov transition density. Then, we may

restrict F to contain only functions f such that |f (z)| ≤ g (z) = 1+b |z|a for some a, b > 0. Suppose
that the loss function can be bounded as follows L (z, f) ≤ |z|+ |f |. Then, to check Condition 2 it

is su�cient to check

EθL (Zt, ft (w))r + EθEw
t−1L (Zt, ft (θ))r . Eθ

(
Eθ

t−1 + Ew
t−1

)
|Zt|r + Eθ |Zt−1|ar

and the right hand bound might be easier to deal with (. is ≤ up to a multiplicative �nite absolute

constant).

.
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3.3 Improvement on the Resolvability Index of Theorem 6 over Theorem

4

Consider the Holder's continuity condition in (15) and the same prior as given in its discussion. To

simplify suppose that all the time segments Ts have same length T/S ∈ N. Then we shall choose

BTs
(θs, δ) =

{
θ′ ∈ Θ : |θ′ − θ| ≤

(
Sδ

Tb

)1/a
}

implying in Theorem 4

S∑
s=1

inf
δs>0

{δs − lnw (BTs
(θs, δs))} = S inf

δ>0

{
δ − 1

a
ln
(

Sδ

Tb

)}
=

S

a

(
1 + ln

Tab

S

)
substituting the minimizer δ = a−1. Clearly, if S is of large order this quantity will be large. On

the other hand, in Theorem 6 we would have

inf
δS
1 >0

{
S∑

s=1

δs −
V∑

v=1

lnw
(
Bv

(
θ̃v, δS

1

))}
= inf

δ>0

{
Sδ − V

1
a

ln
(

Sδ

Tb

)}
=

V

a

{
1 + ln

abT

V

}
substituting the minimizer δ = V/ (aS). Unlike the former, this latter bound does not depend on

the number of shifts S.

3.4 Further Remarks

This paper provided a comprehensive set of results for universal prediction using Bayes rule. The

conditions used restricted Θ only implicitly. For Condition 1 to hold, Θ cannot be completely

arbitrary, but the restrictions on Θ are quite mild. In fact, we could let Θ be a set of densities and

w a prior on it. Hence, the results stated here are not necessarily restricted to parametric models

(e.g. Barron et al, 1999, for results in this direction).

The relative improvement on the resolvability index when we mix past posteriors (and not just

the prior, i.e. (11)) might be o�set by an extra term that enters the error bound. This extra term

depends on the mixing update. For the updates considered, it is possible to show superiority in

�nite samples only in some special cases by �ne tuning of α and λ. Given that the improvement

on the resolvability index is independent of the mixing scheme (as long as λt (r) > 0 for r ∈ [0, t])
one could try to study and compare di�erent updates. For example, we showed that (14) already

improved upon (12). Perhaps, more de�nite claims could be made if a di�erent method of proof
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were used.

There is a number of topics of practical relevance that have not been discussed. Among the

most important omitted issues are computational issues, but references have been provided in the

Introduction. In general, computational improvements may be obtained by restricting Θ to be

compact and choose a prior from which simulation is easy. Computational problems in Bayesian

methods is an active area of research.

Some theoretical issues not discussed here deserve attention. In particular the problem of model

complexity should be mentioned. An implicit measure of model complexity is given by Condition 1

and related ones. There are links between the Bayesian information criterion and other measures of

complexity like the minimum description length principle of Rissanen (e.g. Rissanen, 1986, Barron

et al., 1998). The relation between complexity (in a computable sense) and prior distribution has

also been discussed in the arti�cial intelligence literature (Hutter, 2005, for details). Tight estimates

of model complexity are the key for tight and explicit rates of convergence of Bayesian predictions.

Another issue not discussed is the multiple steps ahead prediction problem, where we want to

use Zt
1 to make (distributional) predictions about Zt+h, for �xed h > 1. Unfortunately, it seems

that the relative entropy is too strong to derive bounds in this case, while results can be easily

derived using the total variation distance (Hutter, 2005, sect. 3.7.1, for illustrations when Z is

countable). To the author's knowledge this is an open problem. Nevertheless, bounds under the

relative entropy for distributional prediction of Zt+h
t given Zt−1

1 can be derived directly from the

results given in this paper. Just note that, in this case, the relative entropy is given by

Eθ
t−1 ln

pθ

(
Zt+h

t |Ft−1

)
pw

(
Zt+h

t |Ft−1

) = Eθ
t−1 ln

pθ

(
Zt+h

1

)
pw

(
Zt+h

1

) − Eθ
t−1 ln

[
pθ

(
Zt−1

1

)
pw

(
Zt−1

1

)] {t > 1} (16)

using (1) (see Lemma 2 for the derivation). Hence, summing over t and taking full expectation, the

sum telescopes apart from initial h negative terms which can be disregarded in the upper bound

plus the last h + 1 terms which are kept:

Eθ
T∑

t=1

Eθ
t−1 ln

pθ

(
Zt+h

t |Ft−1

)
pw

(
Zt+h

t |Ft−1

) ≤
T+h∑
t=T

EθEθ
t−1 ln

pθ

(
Zt+h

1

)
pw

(
Zt+h

1

)
≤ (h + 1) Eθ ln

pθ

(
ZT+h

1

)
pw

(
ZT+h

1

)
[the joint KL divergence is increasing in T ]

= (h + 1) D1,T (Pθ‖Pw) .

The above display shows that the bounds grow linearly in h. In order to derive an h steps ahead

prediction we could start from the joint conditional distribution of Zt+h
t and integrate out Zt+h−1

t .

Unfortunately, doing so, (16) is not valid anymore. Moreover, the above approach does not allow

us to work directly with the h steps ahead predictive distribution and requires specifying the joint
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distribution of a segment given the past, which is potentially a more di�cult task. More research

e�ort is required in this direction using possibly di�erent convergence requirements.

A Appendix: Proofs

The proofs may refer to some technical lemmata stated at the end of the section.

Proof. [Lemma 1] Information denseness implies − lnw (BT (θ, δT T )) < ∞ for any δT > 0.
Hence δT − T−1 lnw (BT (θ, δT T )) can be made arbitrary small by choosing δT → 0. This implies

RT (θ) /T → 0. To show the last implication, de�ne

pw,AT

(
zT
1

)
:=
∫

AT (θ)

pθ′
(
zT
1

) w (dθ′)
w (AT (θ))

for AT (θ) := AT (θ, δT T ) such that

D1,T (Pθ‖Pw,AT
) ≤ δT T (17)

which is (5). Setting BT (θ) := BT (θ, δT T ),

D1,T (Pθ‖Pw,BT
) ≤

∫
BT (θ)

Eθ ln

(
pθ

(
ZT

1

)
pθ′
(
ZT

1

)) w (dθ′)
w (BT (θ))

[by Jensen's inequality]

≤ sup
θ′∈BT (θ)

Eθ ln

(
pθ

(
ZT

1

)
pθ′
(
ZT

1

))
≤ δT T

by de�nition of BT (θ). The above inequality together with (17) imply that BT (θ, δT T ) ⊆ AT (θ, δT T ).

Proof. [Theorem 1] Choosing a ball B (θ) := BT (θ) as in (4),

Eθ ln
∫

Θ

pθ′
(
ZT

1

)
w (dθ′) ≥ Eθ ln

∫
B(θ)

pθ′
(
ZT

1

)
w (dθ′)

[because pθ

(
ZT

1

)
is non-negative]

≥ Eθ ln
(
pθ

(
Zt

1

))
− δ + lnw (B (θ)) (18)

by the same arguments as in the proof of Lemma 1 noting that

ln
∫

B(θ)

pθ′
(
ZT

1

)
w (dθ′) = ln

∫
B(θ)

pθ′
(
ZT

1

) w (dθ′)
w (B (θ))

+ lnw (B (θ)) .
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Hence,

EθD1,T (Pθ‖Pw) = Eθ
T∑

t=1

Eθ
t−1 [ln (pθ (Zt|Ft−1))− ln (pw (Zt|Ft−1))]

= Eθ
[
ln pθ

(
ZT

1

)
− ln pw

(
ZT

1

)]
[because F0 is trivial, using Lemma 2]

≤ δ − lnw (B (θ))

by (18). Given that the above bound holds for any δ > 0 (with the r.h.s. possibly in�nite) we can

take supθ∈Θ infδ on both sides and obtain the result.

Notation 1 If A is a set, we directly use A in place of its indicator function IA.

Proof. [Theorem 2] De�ne ∆t (w, θ) := L (Zt, ft (w)) − L (Zt, ft (θ)). Then Ew
t−1∆t (w, θ) ≤ 0

because ft (w) is the minimizer of Ew
t−1L (Zt, f). De�ne the sets Mw := {L (Zt, ft (w)) ≤ M} and

Mθ := {L (Zt, ft (θ)) ≤ M} and denote their complements by M c
w and M c

θ . By this remark, adding

and subtracting Ew
t−1∆t (w, θ),

Eθ
t−1∆t (w, θ) = Ew

t−1∆t (w, θ) +
(
Eθ

t−1 − Ew
t−1

)
∆t (w, θ)

≤
(
Eθ

t−1 − Ew
t−1

)
[L (Zt, ft (w)) {Mw} − L (Zt, ft (θ)) {Mθ}]

+
(
Eθ

t−1 − Ew
t−1

)
[L (Zt, ft (w)) {M c

w} − L (Zt, ft (θ)) {M c
θ}]

≤
(
Eθ

t−1 − Ew
t−1

)
∆t (w, θ) {|∆t (w, θ)| ≤ M}

+
[
Eθ

t−1L (Zt, ft (w)) {M c
w}+ Ew

t−1L (Zt, ft (θ)) {M c
θ}
]

[by non-negativity of the loss function]

= It + IIt.
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Summing over t, dividing by T , and taking expectation, for M > 0,

Eθ 1
T

T∑
t=1

It = Eθ 1
T

T∑
t=1

∫
Z

∆t (w, θ) {|∆t (w, θ)| ≤ M} [pθ (z|Ft−1)− pw (z|Ft−1)]µ (dz)

≤ Eθ 1
T

T∑
t=1

M

∫
Z
|pθ (z|Ft−1)− pw (z|Ft−1)|µ (dz)

≤ Eθ 1
T

T∑
t=1

M
√

2Dt (Pθ‖Pw)

[by Pinsker's inequality, e.g. Pollard, 2002, eq.13, p.62]

≤ M

√√√√2Eθ
1
T

T∑
t=1

Dt (Pθ‖Pw)

[by Jensen's inequality and concavity of the square root function]

= M

√
2

1
T

EθD1,T (Pθ‖Pw).

Using Holder's inequality, for any t,

EθIIt ≤
[
EθEθ

t−1L (Zt, ft (w))r]1/r [EθEθ
t−1 {M c

w}
](r−1)/r

+
[
EθEw

t−1L (Zt, ft (θ))r]1/r [EθEw
t−1 {M c

θ}
](r−1)/r

= o
(
M−(r−1)

)
by Condition 2 using the fact that on the r.h.s. the �rst term in each product is �nite while the

second term in the product is o (M−r) because existence of an rth moment implies tails that are

o (M−r) (e.g. Ser�ing, 1980, Lemma 1.14). Hence,

Eθ 1
T

T∑
t=1

(It + IIt) ≤ M

√
2

1
T

EθD1,T (Pθ‖Pw) + o
(
M−(r−1)

)
= o

(∣∣∣∣ 1T EθD1,T (Pθ‖Pw)
∣∣∣∣(r−1)/2r

)

setting M = o
(∣∣ 1

T EθD1,T (Pθ‖Pw)
∣∣−1/2r

)
. Taking supθ, and substituting in, an application of

Theorem 1 gives the universality result.

Proof. [Theorem 3] By Condition 3,

Eθ ln
∑
k∈K

Pwk

(
Zt

1

)
m (k) ≥ Eθ lnPwk

(
Zt

1

)
+ lnm (k)

and we can then proceed exactly as in the proof of Theorem 1 with the extra error term − lnm (k).
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Proof. [Theorem 4] By Lemma 3,

−
S∑

s=1

Ts∑
t=Ts−1+1

ln pw (ZTs |FTs−1) ≤ −
S∑

s=1

ln
[∫

Θ

pθ

(
ZTs

Ts−1+1|FTs−1

)
w (dθ)

]

−
S∑

s=2

ln
(
λT−α

s−1

)
−

S∑
s=1

Ts∑
t=Ts−1+1

ln
(
1− λt−α

)
[because there is no update at t = T0]

≤ −
S∑

s=1

ln
[∫

Θ

pθ

(
ZTs

Ts−1+1|FTs−1

)
w (dθ)

]
2λ√

1− λ2

(
1 +

T 1−α − 1
1− α

)
+ S ln (1/λ) + αS lnT

by (27) (with S = 1) and (28) in Lemma 5. By Condition 4, as in the proof of Theorem 1,

S∑
s=1

Eθs
1

{
ln pθs

(
ZTs

Ts−1+1|Ft−1

)
− ln

[∫
Θ

pθ

(
ZTs

Ts−1+1|FTs−1

)
w (dθ)

]}

≤
S∑

s=1

inf
δs>0

[δs − lnw (BTs
(θs, δs))] .

Hence, this display and the previous one implies the result.

The following notation will be used in some of the remaining proofs.

Notation 2 w′t (•) := w′ (•|Ft) and similarly for w (•|Ft), where w (•) := w0 (•) := w (•|F0);
w′ (•|F0) =: w′ (•) = w (•). If u and v are measures such that u is absolutely continuous w.r.t. v,

then du/dv stands for the Radon Nikodym derivative of u w.r.t. v.

Proof. [Theorem 5 and 6] For each s ∈ {1, ..., S}, de�ne

ũs(v) (dθ) = ũv (dθ) :=
w (dθ)

w
(
Bv

(
θ̃v, δS

1

))I
{

θ ∈ Bv

(
θ̃v, δS

1

)}
(19)

24



where Bv

(
θ̃v, δS

1

)
is as in Condition 5. For any us ∈ {ũ1, ..., ũV }

EθS
1

S∑
s=1

∑
t∈Ts

[ln pθs
(Zt|Ft−1)− ln pw (Zt|Ft−1)]

= EθS
1

S∑
s=1

∑
t∈Ts

ln
[
pθs

(Zt|Ft−1)
pθ (Zt|Ft−1)

]
us (dθ)

+EθS
1

S∑
s=1

∑
t∈Ts

ln
[

pθ (Zt|Ft−1)
pw (Zt|Ft−1)

]
us (dθ)

≤
S∑

s=1

δs + EθS
1

S∑
s=1

∑
t∈Ts

ln
[

pθ (Zt|Ft−1)
pw (Zt|Ft−1)

]
us (dθ) (20)

by De�nition of Bv

(
θ̃v, δS

1

)
. By (9) and (10), us is absolutely continuous w.r.t. w′t because

λt (0) > 0. Therefore, we can apply Lemma 4,

EθS
1

S∑
s=1

∑
t∈Ts

∫
Θ

ln
(

pθ (Zt|Ft−1)∫
Θ

pθ′ (Zt|Ft−1)w (dθ′|Ft−1)

)
us (dθ)

≤
S∑

s=1

[∫
Θ

ln

(
dus

dw′Ts−1−rs

)
dus −

∫
Θ

ln
(

dus

dw′Ts

)
dus

]
(21)

−
T1−1∑
t=1

lnλt (t)−
S∑

s=2

Ts−1∑
t=Ts−1+1

lnλt (t)− lnλT (T )−
S∑

s=2

lnλTs−1 (Ts−1 − rs) .

Though the sum for s runs from 1 to S, there are only V di�erent shifts, i.e. us ∈ {ũ1, ..., ũV }. For
each s we can choose rs so that the sum in the brackets in (21) telescopes except for the �rst and

last term of each sequence of shifts of the same kind. Hence, denoting by
[
Tv(s)−1 + 1, Tv(s)

]
the
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sth time segment such that us = ũv,

S∑
s=1

[∫
Θ

ln

(
dus

dw′Ts−1−rs

)
dus −

∫
Θ

ln
(

dus

dw′Ts

)
dus

]

=
V∑

v=1

S(v)∑
s=1

[∫
Θ

ln

(
dũv

dw′Tv(s)−1−rv(s)

)
dũv −

∫
Θ

ln

(
dũv

dw′Tv(s)

)
dũv

]
(22)

≤
V∑

v=1

[∫
Θ

ln
(

dũv

dw′0

)
dũv −

∫
Θ

ln

(
dũv

dw′TS(v)

)
dũv

]
[setting rv(s+1) = Tv(s+1)−1 − Tv(s) and rv(1) = Tv(1)−1

so that the sum telescopes]

≤
V∑

v=1

∫
Θ

ln
(

dũv

dw′0

)
dũv

[because the second integral in the brackets is positive]

= −
V∑

v=1

lnw
(
Bv

(
θ̃v, δS

1

))
substituting (19) and evaluating the integral. To prove the theorems, it is su�cient to bound

−
T1−1∑
t=1

lnλt (t)−
S∑

s=2

Ts−1∑
t=Ts−1+1

lnλt (t)−
S∑

s=2

lnλTs−1 (Ts−1 − rs) (23)

uniformly in rs. To this end, for both updates

−
T1−1∑
t=1

lnλt (t)−
S∑

s=2

Ts−1∑
t=Ts−1+1

lnλt (t) ≤
T∑

t=S

lnλt (t)

[because − lnλt (t) is increasing in t]

≤ 2λ√
1− λ2S−2α

(
S−α +

T 1−α − S1−α

1− α

)
by Lemma 5. Now consider

I :=
S∑

s=2

lnλTs−1 (Ts−1 − rs)

for each update separately. For Theorem 5,

I =
S∑

s=2

ln
(
T

(1+α)
s−1 /λ

)
≤ (S − 1) ln (1/λ) + (1 + α) (S − 1) lnT
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by (28) in Lemma 5. For Theorem 6, note that

− lnλTs−1 (Ts−1 − rs) = ln (1/λ) + α lnTs−1 + lnATs−1 + 2 ln (1 + rs)

= Is + IIs + IIIs + IVs

and we shall bound the sum of the above, term by term, uniformly in rs. Trivially,

S∑
s=2

Is = (S − 1) ln (1/λ) .

By (28) in Lemma 5

S∑
s=2

IIs ≤ α (S − 1) ln T.

By (29) in Lemma 5,
S∑

s=2

IIIs ≤ 0.

Finally,

S∑
s=1

IVs = 2
S∑

s=2

ln (1 + rs)

≤ 2 (S − 1) ln

(
1 +

1
S − 1

S∑
s=2

rs

)
[by concavity and Jensen's inequality]

= 2 (S − 1) ln

1 +
1

S − 1

V∑
v=1

S(v)∑
s=1

rv(s)


by the same arguments and notation in (22). Recalling that in (22) we set rv(s+1) = Tv(s+1)−1−Tv(s)

and rv(1) = Tv(1)−1, we bound

S(v)∑
s=1

rv(s) = Tv(1)−1 +
S(v)∑
s=2

(
Tv(s)−1 − Tv(s−1)

)
= Tv(S(v))−1 +

S(v)∑
s=1

(
Tv(s)−1 − Tv(s)

)
≤ (T − 1)− S (v)

where we have bounded Tv(S(v))−1 ≤ (T − 1) and
(
Tv(s)−1 − Tv(s)

)
≤ −1 because each segment[

Tv(s)−1, Tv(s)

]
must have length at least one. Summing over v and substituting in the previous
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display,

S∑
s=1

IVs ≤ 2 (S − 1) ln

(
1 +

V∑
v=1

(T − 1)− S (v)
S − 1

)

≤ 2 (S − 1) ln
(

V (T − 1)
S − 1

)

because
∑V

v=1 S (v) / (S − 1) > 1. Putting everything together gives the bound for I under Theorem
6. The results are then given backing up all the previous bounds and substituting them in (23),

substituting this equation and (22) in (21) and �nally substituting (21) in (20).

Proof. [Theorem 7] De�ne ∆t (w,P ) := L (Zt, ft (w))−L (Zt, ft (P )) and MP := {L (Zt, ft (P )) ≤ M}
and M c

P for its complement. Then, following the proof of Theorem 2, using Condition 6 instead of

Condition 2, and the just de�ned notation,

E
1
T

T∑
t=1

Et−1∆t (w,P ) = E
1
T

T∑
t=1

(
Et−1 − Ew

t−1

)
∆t (w,P )

+E
1
T

T∑
t=1

Ew
t−1∆t (w,P )

≤ M
√

2ED1,T (P‖Pw) /T

+
1
T

T∑
t=1

E
[
Et−1L (Zt, ft (w)) {M c

w}+ Ew
t−1L (Zt, ft (θ)) {M c

P }
]

= I + II.

To bound I, by the properties of the KL divergence

ED1,T (P‖Pw) = ED1,T (P‖Pθ) + E
T∑

t=1

Et−1 ln
pθ (Zt|Ft−1)
pw (Zt|Ft−1)

= ED1,T (P‖Pθ) + E
[
ln pθ

(
ZT

1

)
− pw

(
ZT

1

)]
≤ ED1,T (P‖Pθ) + δ − lnw (BT (θ)) (24)

by (4). To bound II, mutatis mutandis, as in the proof of Theorem 2, by Condition 6,

E
1
T

T∑
t=1

Et−1∆t (w,P ) ≤ M
√

2ED1,T (P‖Pw) /T + o
(
M−(r−1)

)
= o

(
|ED1,T (P‖Pw) /T |(r−1)/2r

)
setting M = o

(
|ED1,T (P‖Pw) /T |−1/2r

)
. Substituting (24) inside and taking infθ infδ gives the

result.
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A.1 Technical Lemmata

Lemma 2 For any T ∈ N, for the predictor pw de�ned by (2) and (3),

pw (ZT |FT−1) =

∫
Θ

pθ

(
ZT

1

)
w (dθ)∏T−1

t=1 pw (Zt|Ft−1)

implying

pw (ZT |FT−1) =

∫
Θ

pθ

(
ZT

1

)
w (dθ)∫

Θ
pθ

(
ZT−1

1

)
w (dθ)

.

Proof. [Lemma 2] Note that (3) can be written as

w (dθ|FT ) =
w (dθ|FT−1) pθ (ZT |FT−1)

pw (ZT |FT−1)

so that

pw (ZT |FT−1) =
∫

Θ

pθ (ZT |FT−1) w (dθ|FT−1)

=

∫
Θ

pθ

(
ZT

T−1|FT−2

)
w (dθ|FT−2)

pw (ZT−1|FT−2)

and the �rst equality follows by recursion. Finally,

pw (ZT |FT−1) =

∫
Θ

pθ

(
ZT

1

)
w (dθ)

pw (ZT−1|Ft−2)
∏T−2

t=1 pw (Zt|Ft−1)
[factoring out pw (ZT−1|Ft−2) ]

=
∏T−2

t=1 pw (Zt|Ft−1)∫
Θ

pθ

(
ZT−1

1

)
w (dθ)

∫
Θ

pθ

(
ZT

1

)
w (dθ)∏T−2

t=1 pw (Zt|Ft−1)

substituting the �rst inequality of the lemma. The result then follows by obvious cancellation of

terms.

Lemma 3 For any t ∈ N, suppose

w (dθ|Ft) = (1− λt) w′ (dθ|Ft) + λtw (dθ) (25)

where λt ∈ (0, 1) and w′ (dθ|Ft) is as in (10). Then,

−
Ts∑

t=Ts−1+1

ln pw (ZTs
|FTs−1) ≤ − ln

∫
Θ

pθ

(
ZTs

Ts−1+1|FTs−1

)
w (dθ)

− lnλTs−1 −
Ts∑

t=Ts−1+1

ln (1− λt)

29



Proof. [Lemma 3] By (25)

pw (ZTs
|FTs−1) =

∫
Θ

pθ (ZTs
|FTs−1) [(1− λTs−1) w′ (dθ|FTs−1) + λTs−1w (dθ)]

≥ (1− λTs−1)
∫

Θ

pθ (ZTs
|FTs−1) w′ (dθ|FTs−1)

[by positivity of each single term]

= (1− λTs−1)
∫

Θ

pθ (ZTs
|FTs−1) pθ (ZTs−1|FTs−2)w (dθ|FTs−2)

pw (ZTs−1|FTs−2)
[by (10)]

≥ λTs−1

Ts∏
t=Ts−1+1

(1− λt)
∫

Θ

pθ

(
ZTs

Ts−1+1|FTs−1

)
w (dθ)∏Ts−1

t=Ts−1+1 pw (Zt|Ft−1)

iterating and lower bounding w′
(
dθ|FTs−1

)
with λTs−1w (dθ). Taking − ln on both sides,

− ln pw (ZTs |FTs−1) ≤ − ln
∫

Θ

pθ

(
ZTs

Ts−1+1|FTs−1

)
w (dθ) +

Ts−1∑
t=Ts−1+1

ln pw (Zt|Ft−1)

− lnλTs−1 −
Ts∑

t=Ts−1+1

ln (1− λt) ,

and rearranging

−
Ts∑

t=Ts−1+1

ln pw (ZTs
|FTs−1) ≤ − ln

∫
Θ

pθ

(
ZTs

Ts−1+1|FTs−1

)
w (dθ)

− lnλTs−1 −
Ts∑

t=Ts−1+1

ln (1− λt) .

Lemma 4 For s = 1, ..., S, suppose us is a measure on Θ, absolutely continuous w.r.t. w (•|Ft−1),
t ∈ Ts. Then for r ≥ 0, and s > 1,

∑
t∈Ts

∫
Θ

ln
(

pθ (Zt|Ft−1)∫
Θ

pθ′ (Zt|Ft−1) w (dθ′|Ft−1)

)
us (dθ)

≤
∫

Θ

ln

(
dus

dw′Ts−1−r

)
dus −

∫
Θ

ln
(

dus

dw′Ts

)
dus

−
Ts−1∑

t=Ts−1+1

lnλt (t)− lnλTs−1 (Ts−1 − r) .
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and for s = 1

T1∑
t=1

∫
Θ

ln
(

pθ (Zt|Ft−1)∫
Θ

pθ′ (Zt|Ft−1) dw (θ′|Ft−1)

)
u1 (dθ)

≤
∫

Θ

ln

(
du1 (θ)

dw′Ts−1−r

)
du1 −

∫
Θ

ln
(

dus

dw′T1

)
du1

−
T1−1∑
t=1

lnλt (t) .

Proof. [Lemma 4] By (10) and the Radon Nikodym Theorem,

It (s) :=
∫

Θ

ln
(

pθ (Zt|Ft−1)∫
Θ

pθ′ (Zt|Ft−1) dw (θ′|Ft−1)

)
us (dθ)

=
∫

Θ

ln
(

dw′t
dwt−1

)
dus (26)

≤
∫

Θ

ln
(

dw′t
λt−1 (t− 1− r) dw′t−1−r

)
us (dθ)

by (9) noting that all the terms in the summation in (9) are positive. Writing lnλt−1−r (t− 1− r)
outside and summing over t, with r = 0 when Ts−1 + 1 < t ≤ Ts and leaving r arbitrary but �xed

when t = Ts−1 + 1 and s > 1,

∑
t∈Ts

It (s) ≤
∫

Θ

ln

(
dw′Ts

dw′Ts−1−r

)
dus −

Ts∑
t=Ts−1+2

lnλt−1 (t− 1)− lnλTs−1 (Ts−1 − r)

=
∫

Θ

ln

(
dus

dw′Ts−1−r

)
dus −

∫
Θ

ln
(

dus

dw′Ts

)
dus

−
Ts∑

t=Ts−1+2

lnλt−1 (t− 1)− lnλTs−1 (Ts−1 − r) .

We still need to deal with the case t = 1. In this case, note that w0 = w′0 so that we can directly

substitute in (26) without incurring the extra error − lnλ0 (0) at the �rst trial (note that a fortiori,
r = 0). By a change of variable in the sums, the results follow.

Lemma 5 Using the notation of Theorem 4, for α ≥ 0 and λ ∈ (0, 1),

T∑
t=S

ln
(
1− λt−α

)
<

2λ√
1− λ2S−2α

(
S−α +

T 1−α − S1−α

1− α

)
(27)

−
S∑

s=2

ln
(
λT−α

s−1

)
≤ (S − 1) ln (1/λ) + α (S − 1) ln T (28)
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S∑
s=2

lnATs−1 ≤ 0 (29)

Proof. [Lemma 5] For x ∈ [0, 1], Taylor expansion of ln (1− λx) around x = 0 shows that

− ln (1− λx) =
∞∑

i=1

(λx)i
/i

≤

√√√√ ∞∑
i=1

(λx)2i
∞∑

i=1

i−2

=

√
(λx)2

1− (λx)2
π2

6

<
2λx√

1− (λx)2
. (30)

Hence,

−
T∑

t=S

ln
(
1− λt−α

)
<

2λ√
1− λ2S−2α

T∑
t=S

t−α

[by (30)]

=
2λ√

1− λ2S−2α

(
S−α +

T∑
t=S+1

t−α

)

≤ 2λ√
1− λ2S−2α

(
S−α +

∫ T

S

t−αdt

)

=
2λ√

1− λ2S−2α

(
S−α +

T 1−α − S1−α

1− α

)
by a simple integral bound for the sum, showing (27). The second inequality trivially follows noting

that T > TS−1. To show (29), note that

t−1∑
r=0

(1 + t− r)−2 =
t+1∑
r=2

r−2

≤
∫ t+1

1

r−2dr

= 1− (t + 1)−1
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using the integral bound for the sum of a decreasing function. Hence,

S∑
s=2

lnATs−1 =
S∑

s=2

ln

Ts−1−1∑
r=0

(1 + Ts−1 − r)−2


≤

S∑
s=2

ln
(
1− (Ts−1 + 1)−1

)
≤ 0

because the argument of ln is less than one.
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