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We have performed transport measurements in tilted magnetic fields in a two-dimensional hole
system grown on the surface of a (311)A GaAs crystal. A striking asymmetry of Shubnikov-de Haas
oscillations occurs upon reversing the in-plane component of the magnetic field along the low-
symmetry [2̄33] axis. As usual, the magneto-conductance oscillations are symmetric with respect
to reversal of the in-plane field component aligned with the high-symmetry [011̄] axis. Our ob-
servations demonstrate that an in-plane magnetic field can generate an out-of-plane component of
magnetization in a low-symmetry hole system, creating new possibilities for spin manipulation.

PACS numbers: 71.70.Ej, 72.20.My, 73.21.Fg, 75.20.-g

Charge carriers in solids behave almost like free elec-
trons, as effects of the crystal lattice can be absorbed
into the energy-momentum relations of electronic states
associated with the material’s band structure. Often,
the resulting changes in the carrier dynamics are largely
captured by suitably renormalized single-particle param-
eters such as; effective mass, gyromagnetic ratio and spin-
orbit-coupling constant [1]. The advent of nanofabrica-
tion techniques has ushered in an era of new opportuni-
ties for tailoring the electric and magnetic properties of
charge carriers in low-dimensional systems such as quan-
tum wells, wires and dots [2]. Our work presented here
reveals unusual properties of quantum-confined valence-
band states (i.e., holes) in semiconductor heterostruc-
tures [3].

Electrons in the conduction band of typical semicon-
ductors exhibit very similar behaviour to free electrons
– they carry a negative elementary charge and effec-
tive spin-1/2 degree of freedom. Valence band holes are
not only different in that they respond like a positively
charged particle to an applied electric field, they also typ-
ically possess an effective spin-3/2 that is strongly cou-
pled to their orbital motion [1]. As a result, the effective
mass of holes in the bulk material depends on the value
mj of the hole’s spin projection parallel to the propaga-
tion direction: states with mj = ±3/2 (±1/2) are heavy
(light) holes [1, 3]. In semiconductor heterostructures,
the size-quantization energies of quasi two-dimensional
(2D) heavy holes (HHs) and light holes (LHs) differ, and
confinement imposes a quantization axis of hole spins
parallel to the growth direction (denoted z-axis) [3–5].
As both the in-plane motion and the in-plane (i.e., x and
y) components of an applied magnetic field are in com-

petition with the HH-LH energy splitting, a rich – and
sometimes seemingly counter-intuitive – spin-magnetic
and spin-electronic behavior is exhibited by 2D hole sys-
tems. For example, for the uppermost hole subband,
which has HH character near wave vector k‖ = 0, the
Zeeman splitting linear in an in-plane field is suppressed
if the heterostructure is grown in a high-symmetry di-
rection, whilst a large Zeeman splitting results from a
magnetic field applied along the z (growth) direction [6].
Neglecting contributions to Zeeman splitting that depend
on the in-plane wave vector k‖ = (kx, ky), the coupling of
an external magnetic field B = (Bx, By, Bz)T to the spin

of 2D HHs is thus given by [5]H
(s)
Z = 1

2 g
∗
zz µBBz σz. Here

σz is the diagonal Pauli matrix acting in the pseudospin-
1/2 space of hole states, with spin projection ±3/2 (i.e.,
the HH states), T denotes the transpose of a vector or
matrix and g∗zz is the only non-vanishing g factor for 2D
holes in a high-symmetry heterostructure. In GaAs, the
theoretically predicted value g∗zz = 7.2 [3] has recently
been experimentally verified [7, 8]. However the situa-
tion changes when the quantum well is grown in a low-
symmetry crystallographic direction, e.g., on the (311)A
surface. In this case, the cubic crystal anisotropy induces
a finite B-linear Zeeman splitting even for in-plane fields,
which is described by a contribution [3, 9]

H
(c)
Z =

1

2
µB

[
(g∗xx σx + g∗xz σz)Bx + g∗yy By

]
. (1)

Here the x and y directions correspond to the [2̄33]
and [011̄] crystallographic axes, respectively. For GaAs,
g∗xx = g∗yy = −0.16 and g∗xz = 0.65 [9].

The existence of a non-collinear term ∝ g∗xz implies
the possibility to induce an out-of-plane spin polariza-
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tion by applying an in-plane magnetic field [10]. Here
we provide direct confirmation of the unusual spin po-
larization associated with g∗xz. Our work constitutes one
of the rare occasions where off-diagonal elements in the
gyromagnetic tensor g∗ are accessible for experimental
study [11–13].

Samples containing a high-mobility 2D hole system
were fabricated from a GaAs/Al0.33Ga0.67As heterostruc-
ture grown on a conducting (311)A substrate which dou-
bles as an in situ back-gate, 2.6 µm away from a sym-
metrically doped 20 nm wide GaAs quantum well [14].
To detect the out-of-plane spin polarization we perform
transport measurements in tilted magnetic fields, within
a dilution refrigerator with a base temperature of 25 mK.
The sample was mounted on an in situ piezoelectric ro-
tator featuring an in-built angle readout mechanism with
±0.01◦ accuracy [15].

To minimize the B = 0 Rashba spin splitting due to
structural inversion asymmetry, the electric field across
the quantum well was tuned via the in situ back-gate.
The optimum operating point was identified as the back-
gate bias where beating in the low field Shubnikov-de
Haas (SdH) oscillations was minimized, and the classi-
cal magnetoresistance dip at B = 0 arising from two-
band transport was eliminated [16–19]. This symmetric
point was found to be VBG = +1.5 V, where the 2D
hole density was p = 9.26×1010 cm−2 with a mobility
of 0.6×106 cm2 V−1s−1 (see Supplemental Material [20]
for details). For this experiment only the lowest 2D HH
subband is occupied. To detect the presence of the un-
usual g∗xz term we take advantage of the fact that the ad-
ditional out-of-plane spin polarization created by g∗xz Bx

can add to (or subtract from) the out-of-plane spin polar-
ization induced by a perpendicular field g∗zz Bz depending
on the relative signs of Bx and Bz. The total spin po-
larization can then be observed by examining the spin
splitting of the SdH oscillations. In this experiment, the
magnitudes and relative signs of Bx, By and Bz are con-
trolled by tilting the sample with respect to the magnetic
field by some angle θ, shown in Fig. 1(a). We begin by
applying the in-plane field along the high symmetry [011̄]
crystal axis, where there is no out-of-plane spin polariza-
tion. Figure 1(c) shows the magnetoresistance ρxx as a
function of Bz, for different tilt angles ±θ. When the
field is perpendicular to the quantum well [top trace in
Fig. 1(c), θ = 0◦], SdH oscillations are observed with no
sign of beating at low fields. No spin splitting of magneto-
conductance oscillations is observed up to Bz = 0.25 T
and there is a well-defined ρxx minimum at ν = 16 and
a ρxx maximum at ν = 17.

Tilting the sample introduces an in-plane field compo-
nent By along [011̄], lifting the spin degeneracy of the
Landau levels as indicated schematically in Fig. 1(b).
This can be seen in the Fig. 1(c) datasets, by following
the resistivity at odd filling factors νodd, such as ν = 17.
At θ = 0◦ the nearly spin degenerate Landau levels yield

FIG. 1. (a) Sample orientation and crystal axes with the in-
plane field By aligned along the [011̄] axis. (b) Schematic
evolution of the Landau levels, beginning with a purely per-
pendicular field Bz, then increasing the spin splitting by ap-
plying an in-plane field By, introduced by tilting the sample.
(c) Magnetoresistance data for different tilt angles with traces
offset vertically by 80 Ω/� for clarity. Solid red lines corre-
spond to +θ and dashed blue lines to −θ. The vertical dashed
lines mark filling factors ν = 16 and ν = 17.

a peak in ρxx. Tilting to θ = ±80◦, a weak dip starts to
appear and grows stronger with increasing in-plane field,
so that by θ = ±85◦ the ρxx maximum has evolved into
a ρxx minimum. For even filling factors νeven, the oppo-
site happens, with ν = 16 starting as a well defined ρxx
minimum at θ = 0◦ and evolving into a ρxx maximum at
θ = ±85◦.

As a first approximation it is tempting to analyse the
data and extract g factors using the ‘coincidence’ ap-
proach introduced by Fang and Stiles for 2D electrons
[25–27]. This method compares the cyclotron energy (de-
pendent on Bz) with the Zeeman splitting (dependent on
total field), to extract the product |g∗m∗|. However the
coincidence technique assumes parabolic bands (constant
m∗) and an isotropic g factor, neither of which is the
case for 2D holes. Nevertheless, a crude estimate of the
product |g∗zzm∗| can be obtained from the θ = 0◦ data
by comparing the magnetic field at which the SdH oscil-
lations first become visible (∆νeven = ~ωc − g∗zzµBB at
0.12 T) with the field at which spin splitting first appears
(∆νodd = g∗zzµBB at 0.35 T). This suggests g∗zzm

∗ ∼ 0.5,
which is lower than the simple theoretical expectation of
g∗zzm

∗ = 1.4 (using m∗ = 0.2 and g∗zz = 7.2 [3]). The
reason for this apparent discrepancy is addressed further
on in the paper.

The most striking result of Fig. 1(c) is its similarity to
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FIG. 2. (a) Schematic of the sample orientation for the in-
plane field Bx aligned along [2̄33]. (b) Schematic of the evo-
lution of the Landau levels, starting with perpendicular field
Bz, and applying +Bx (red, +θ) and in part (c) applying
−Bx (blue, −θ). (d) Magnetoresistance ρxx for different tilt
angles for both +θ (red solid lines) and−θ (blue dashed lines).
Traces are offset vertically by 40 Ω/� for clarity.

2D electron systems in that the SdH traces are identical
for both +θ and −θ (solid red and dashed blue traces
respectively), as well as for +By and −By, depicted in
Fig. 3(a).

To detect the in-plane-field-induced out-of-plane spin
polarization, the sample was thermally cycled and reori-
ented so that the in-plane field is applied along the low
symmetry [2̄33] direction, as shown in Fig. 2(a). The
back-gate bias was once again tuned to symmetrize the
quantum well, with the symmetry point occurring under
similar conditions to the previous cooldown (the back-
gate bias differs by 1.3% and the hole density by 0.6%).
In this orientation the effect of the in-plane field on the
Landau levels is illustrated in Figs. 2(b,c). Applying a
perpendicular field Bz separates the Landau levels, caus-
ing them to split, generating an out-of-plane spin polar-
ization as in the [011̄] case. However introducing an in-
plane field component Bx generates an additional out-of-
plane spin polarization that adds to (or subtracts from)
the out-of-plane spin polarization due to Bz. In the case
of +Bx (i.e., +θ) shown in Fig. 2(b), the Zeeman split-
ting is maximized as the g∗zzBz and g∗xzBx terms add.
In contrast, for −Bx (i.e., −θ) in Fig. 2(c), these terms
have opposite signs, resulting in a reduced effective Zee-
man splitting. Hence the spin splitting of the Landau
levels evolves much faster for +θ than −θ.

The top trace in Fig. 2(d) shows the magnetoresistance
along [2̄33] in a perpendicular field (θ = 0◦), whilst the
remaining SdH traces correspond to an increasing in-
plane field component ±Bx, as the sample is tilted to
larger |θ|. The most striking feature of this dataset is
the difference between +Bx (solid red lines for +θ) and
−Bx (dashed blue lines for −θ). This difference is most
pronounced at high in-plane fields, such as θ = ±85◦ and
θ = ±86◦ where the SdH oscillations for opposite signs of
Bx are completely out of phase with each other. This can
only be explained by the out-of-plane spin polarization
due to g∗xz as described in Eq. 1.

The impact of the in-plane magnetic field on the Zee-
man splitting and Landau level energies can be studied
by following the evolution of ρxx at ν = 17 in Fig. 2(d).
At zero tilt angle the spin splitting is small, leading to a
maximum in ρxx. Beginning with the −θ traces (dashed
blue lines) we can identify three regimes sketched in
Fig. 2(c): (i) spin splitting at ν = 17 becomes appar-
ent at θ = −77◦, (ii) by θ = −80.5◦ the minima at both
ν = 16 and ν = 17 are equally well defined, and (iii) for
larger tilt angles the ρxx maximum at ν = 17 evolves into
a minimum, while the ρxx minimum at ν = 16 becomes a
maximum. In contrast to −θ, the g∗zzBz and g∗xzBx terms
add for +θ, and the spin splitting develops more rapidly
as a function of |θ|, shown in Fig. 2(b): For +θ (solid
red lines) (i) spin splitting at ν = 17 becomes apparent
much earlier at θ = +62◦, (ii) by θ = +72◦ the minima
at ν = 16 and ν = 17 are equally well defined, and (iii)
by θ = +77◦ the ρxx maximum at ν = 17 has become
a minimum, while the minimum at ρxx at ν = 16 has
become a maximum. Tilting the sample further causes
the oscillations to invert a second time at θ = +86◦ and
again at θ = +87◦.

To verify that the difference between +θ and −θ stems
from the interplay between the g∗xz and g∗zz terms, we
check the symmetry of the data with respect to the sign
of Bz. In Fig. 3(b), we see that the data are completely
symmetric only if the sign of both Bx and Bz are re-
versed, so that the sign of the ratio Bx/Bz remains the
same.

Direct comparison between the tilted-field experimen-
tal data and numerical calculations is currently impracti-
cal, as the highly complex nature of the hole bandstruc-
ture and the finite width of the 2D system make solving
the Hamiltonian with both Bz and B‖ components ap-
plied simultaneously a highly non-trivial task. The band
structure of holes for the low-symmetry (311)A surface
at zero field is already strongly non-parabolic [28, 29]. In
our system, the unoccupied HH2 and LH1 energy bands
are located −3.64 meV and −6.06 meV below the HH1
band (located at −0.67 meV) respectively (see Supple-
mental Material [20] for details). Indeed there are only
a few calculations of the Landau level structure of spin-
1/2 electrons with spin-orbit coupling in tilted magnetic
fields [30] and none for spin-3/2 holes.
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FIG. 3. Magnetoresistance versus |Bz| comparing the relative
orientations of the fields Bi and Bz, where (a) i = y, i.e.,
B‖ along [011̄] and (b) i = x, i.e., B‖ along [2̄33]. For each
curve the orientations of Bi and Bz are indicated in the figure.
Part (a) shows symmetric SdH traces for θ = ±85◦ in all four
cases. In part (b) the traces are distinctly different for +θ =
arctan(+Bx/Bz) (red) compared to −θ = arctan(−Bx/Bz)
(blue). Traces in each panel are offset vertically by 70 Ω/�.

In the case of a purely perpendicular field, the non-
parabolicity of the band structure and LH-HH coupling
yield a much more complex hole Landau fan diagram
compared to electrons. This is shown in Fig. 4(a), ob-
tained from 8×8 k·p calculations, taking into account the
self-consistent Hartree potential as well as bulk-inversion-
asymmetry (Dresselhaus) spin splitting [31]. Here the to-
tal spin splitting ∆EZ of the Landau levels is highly non-
linear with increasing field. The corresponding product
|g∗zzm∗|, extracted from the energy gaps between Landau
levels at the Fermi energy is given below in part (b). Here
m∗ has been derived from the cyclotron gap for a given
∆νeven, and g∗zz is the averaged value calculated from the
adjacent Zeeman gaps ∆ν − 1 and ∆ν + 1. The calcula-
tions show that the effective g factor determined from the
Zeeman energy gap between even and odd index Landau
levels, ∆EZ = g∗zzµBBz decreases from |g∗zzm∗| = 1.32
(g∗zz = 6, m∗ = 0.22) at Bz = 0.12 T to |g∗zzm∗| = 0.88
(g∗zz = 3.7, m∗ = 0.23) at 0.3 T, in Fig. 3(b). This ex-
plains why the product g∗zzm

∗ ∼ 0.5 obtained from the
experiments at θ = 0◦ is lower than the value predicted
by simple theory, although it is in good agreement with
Fig. 4 which trends to g∗zzm

∗ ∼ 0.6 at higher fields.

Despite the challenge of performing a quantitative
comparison between experiment and theory, we are able
to compare the sign of the out-of-plane spin polarization
with theory, assuming adiabatic spin dynamics, where
the k ·p calculations for our data show that both g∗zz and
g∗xz are positive (theory gives g∗zz = 7.2, g∗xz = 0.65 [5]).
From the tilted-field experiments, with B‖ applied along
the [2̄33] axis, we find a larger spin splitting for +θ than
−θ, i.e., g∗xz and g∗zz have the same sign, which is consis-
tent with theory.
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FIG. 4. (a) Lowest 20 Landau levels for a 20 nm GaAs
quantum well in a purely perpendicular field Bz calculated
by means of an 8 × 8 k · p Hamiltonian. The dashed orange
line indicates the Fermi energy at B = 0. (b) Product |g∗zzm∗|
versus perpendicular field Bz, where g∗zz is extracted from the
Zeeman energy gap between adjacent even-odd indexed en-
ergy levels around the Fermi energy, and m∗ is derived from
the cyclotron gap between adjacent odd-odd indexed levels in
(a).

In conclusion we report the direct observation of an
out-of-plane spin polarization of itinerant 2D holes gen-
erated by an in-plane magnetic field. This phenomenon is
unique to 2D holes formed in a low-symmetry zinc blende
crystal structure such as GaAs, and stems from the inter-
play between the quantum-well confinement and lattice
symmetries. We have determined the relative signs of the
g∗xz and g∗zz components in the g tensor, and shown these
to be consistent with 8× 8 k · p calculations. This work
demonstrates a unique way to manipulate the perpen-
dicular spin polarization without coupling to the orbital
momentum, paving the way for more detailed studies and
applications of non-collinear magnetic responses in low-
dimensional hole systems.
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