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Abstract
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1 Introduction

Market liquidity can evaporate in turbulent trading conditions, a phenom-

enon referred to as a “liquidity black hole” by Taleb (1997) and Persaud

(2003). Sharp drops in liquidity associated with discontinuous rises in price

impact create market stress and undermine investor confidence.1 Negative

sentiment can spread across financial markets, and what starts as an asset-

specific crisis may end up having very costly systemic repercussions; see

Borio (2000) and Cifuentes et al. (2004). In that regard, Morris and Shin

(2004) show that net selling pressure can arise endogenously from the strate-

gic interaction of long- and short-horizon traders. When the latter have

privately-known liquidity constraints, these authors locate a unique trigger

point at which a liquidity black hole emerges, and produce V-shaped price

reversals consistent with Campbell, Grossman and Wang (1993) and Pastor

and Stambaugh (2003). Understanding the onset of such catastrophic events

is important for financial practitioners and policymakers alike.

In this paper I study the potential for high-frequency market stress and/or

turbulence in the absence of information asymmetries or fundamental news.

Specifically, market participants’ asset demand is generated by two feedback

rules at high frequency. First, according to positive feedback, investors buy

(sell) the risky asset if its return over the last trading interval was posi-

tive (negative). Such trend-following amplifies price fluctuations in either

direction and can become self-reinforcing in models with boundedly rational

traders and short horizons; see Abreu and Brunnermeier (2003) and Brun-

nermeier and Pedersen (2005).

1Such headline episodes include the 1987 stock market crash, the collapse of the U.S.
dollar against the yen on October 7, 1998, distressed trading in certain fixed income
markets during the LTCM crisis in the summer of 1998, and the recent liquidity crisis
driven by the U.S. sub-prime mortgage market in August 2007.
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Second, following risk feedback, investors sell more (less) of the risky asset

if its squared return in the last trading interval was high (low). Risk feedback

trading always induces net selling pressure, and its absolute contribution to

net orderflow rises (declines) during volatile (tranquil) periods. The infor-

mation content of a larger absolute (square) return is that mean reversion to

fundamentals-based price level–however defined–becomes more likely. In

the presence of fundamental information, this may reflect Black’s (1986) hy-

pothesis that “the farther the price of a stock is from its [fundamental] value,

the more aggressive the information traders become”. In a continuous-time

framework, Longstaff (2001) also shows that liquidity-constrained investors

may optimally short-sell the asset if volatility is large enough.

In the absence of fundamental news, risk feedback is motivated by the

observation that bad periods (negative returns) also tend to be more volatile.

Risk feedback trading then amplifies net selling pressure and increases intra-

day returns persistence. Evidence to that effect has been found for the U.S.

Treasury bond market by Cohen and Shin (2003). These authors report the

presence of positive feedback in tick-by-tick trading on February 3, 2000, a

particularly stressful day in the U.S. Treasury market: price declines (rises)

elicit sales (purchases) at short horizons. Importantly, they also find positive

feedback tends to be stronger when the market is under stress. To the extent

that volatile market conditions tend to coincide with negative performance,

the sales pressure on price will be growing in last period’s volatility. The

resulting conditional trading pattern can then be attributed to risk feedback.

Positive feedback trading is related to “momentum” strategies and herd-

ing behavior, while the sign asymmetry involved in risk feedback trading

contributes to stabilize the market during an upswing–possibly extending

the life of an asset price bubble–and to destabilize it during a downswing.

Cohen and Shin (2003) argue that both short-term feedback types are more

likely to arise in “pressurized” high-frequency environments where traders

are subject to stop-loss constraints, such as those modeled by Morris and
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Shin (2004). Both feedback rules are more relevant at high-frequency when

there is no news about fundamentals. Indeed, Hwang and Salmon (2004)

report that herding behavior is independent of fundamentals also at daily

frequency.2

The paper’s approach follows the microstructure literature investigating

the presence of temporary but persistent imbalances between asset demand

and supply at the transaction level. On the empirical side, Brandt and Kava-

jecz (2004) report that orderflow imbalances in the U.S. Treasury market can

account for over 25 percent of the daily yield variation on days without ma-

jor news, while Furfine and Remolona (2005) find that the market regains its

composure quickly after experiencing discontinuous price changes.3

Feedback trading models with temporary orderflow disequilibrium start

with Beja and Goldman (1980). These authors employ a linear pricing rule

aggregating the demands of positive feedback traders (chartists, or directional

traders) and information traders (fundamentalists, or value investors). The

latter trade on subjective assessments of price in relation to value and their

expectation formation matters for equilibrium behavior. A key finding then

is that the equilibrium price can become unstable if the proportion of positive

feedback traders is sufficiently large. More recently, Day and Huang (1990)

introduce a market maker and find that price behavior can be chaotic if the

price impact coefficient becomes too large. Using a nonlinear pricing rule,

Chiarella (1992) shows that the price level reverts to a limit cycle following

a shock away from equilibrium, and dynamic instability becomes more likely

as feedback traders’ horizons become shorter.4

2The asymmetry inherent in risk feedback is consistent with experimental evidence
suggesting that economic agents are asymmetrically loss averse (Duxbury and Summers
(2004)) and exhibit both herding and contrarian behavior in simulated trading conditions
(Cipriani and Guarino (2005) and Drehmann et al. (2005)).

3On the price impact of order imbalances in other markets see Andersen et al. (2004),
Chakravarty (2001) and Evans and Lyons (2002).

4Farmer and Joshi (2002) and Wieland and Westerhoff (2005) extend the Day and
Huang framework with stochastic information and dynamic noise. Hommes (2006) and
LeBaron (2006) survey agent-based models of feedback trading. For behavioral explana-
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Liquidity is defined as market depth, which is inversely related to the

price impact of trades (Kyle (1985)). High-frequency evidence suggests that

market liquidity is time-varying, especially in stressful periods; see Dufour

and Engle (2000), Farmer et al. (2005), and Goldreich et al. (2005). In

view of this stylized fact, I assume that the price impact coefficient mapping

net orderflow to prices follows a stationary AR(1) process characterized by

a certain persistence and noise.

At the start of each trading period, a risk-neutral market maker receives

the net orderflow and raises (lowers) the asset price if excess asset demand

is positive (negative). The returns process generated by the combination

of market participants’ orderflow–assumed to be driven only by the most

recent price fluctuation–and the market maker’s linear price adjustment is

shown to follow a logistic (quadratic) first-order difference equation. The

logistic mapping has two fixed points, one of which is always zero while the

other is generically nonzero.5 Fixed point stability then becomes a function

of price impact and feedback intensity. In this paper I consider the latter to

be exogenously fixed and focus attention on time-varying liquidity.

The main results are as follows. First, as price impact grows and market

liquidity declines, the dynamics progressively go through the following non-

overlapping “states of the market”: (i) stable, or tranquil markets, when the

zero fixed point is stable and feedback trading does not affect asset returns;

(ii) market stress, when the nonzero fixed point is unstable; and (iii) market

turbulence, in which both fixed points are unstable. Beyond the turbulence

range, the dynamics become chaotic and trading may be suspended. Hence,

financial instability can be simply defined as the relative likelihood of market

states (ii)-(iii), when feedback trading impacts upon asset returns, against

the likelihood of tranquil state (i).

tions of herding behavior, including short-termism, see De Bondt and Thaler (1995).
5The logistic’s potential for complex dynamics was realized by May (1973) and ini-

tially applied to evolutionary growth models, with positive feedback corresponding to the
reproduction tendency and risk feedback to the inhibiting factor in a population.
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Second, the magnitude of the price impact thresholds separating the three

states is independent of risk feedback intensity and smoothly decreasing in

positive feedback intensity. Therefore, the latter is potentially destabilizing.

However, given any positive feedback, volatile market-making activity–in

the sense of strong price impact persistence and noise–may always result

in the return dynamics entering the stress state. A key implication, then, is

that although low momentum is necessary for financial stability (state (i)),

it is not sufficient because states (ii)-(iii) can always arise from extreme price

impact realizations.

Third, the return dynamics are reversible: stochastic price impact may,

in principle, cross a threshold from either direction and re-enter the relevant

market state. Episodes of market stress and turbulence can thus be said to

be intermittent, after Mandelbrot’s (1974) original use of the term in fluid

mechanics.6 Intermittence amounts to “[...] the presence of irregular bursts

in time series of a wide variety of volatility estimators” (Cont (2001)). I also

find that as the market becomes stressed and turbulent, the distributions

of returns and absolute return autocorrelations display power-law features

(‘Pareto tails’), and these become stronger as liquidity dries up.

The paper is related to the continuous-time framework of Bouchaud and

Cont (1998). These authors posit behavioral-based trading rules–excess as-

set demand increases in positive feedback and decreases in returns volatility

and loss aversion–and show that low and stable price impact can absorb

big order imbalances with very small price changes. They also analyze the

likelihood of a market crash as a function of the strength of feedback trading

and liquidity conditions. I complement their approach by explicitly modeling

time-varying price impact on a discrete time-scale, and by studying market

dynamics in the absence of fundamental information other than that con-

6The potential unpredictability of a time series in the absence of shocks is central
to the endogenous economic fluctuations literature; see Boldrin and Woodford (1990).
Scheinkman and LeBaron (1989) presented evidence that U.S. stock returns may display
chaotic behavior.

5



tained in prices themselves, i.e. assuming “pure feedback” akin to program

trading at high-frequency.

In the remainder of the paper, Section 2 presents the feedback trading

model, derives its steady states and classifies their stability; Section 3 obtains

a correpondence between fixed point stability and the underlying state of the

market; Section 4 illustrates the dynamic transition between states numer-

ically, and estimates power-law exponents for returns and absolute return

autocorrelations for different states; Section 6 discusses some implications of

intermittence; and Section 7 concludes.

2 The model

2.1 Net order flow

Consider a single risky asset traded intraday, and denote its actual return

at time t by xt = x(t,∆t) = logP (t +∆t)− logP (t), where P (t) is the log
price level at t. High-frequency applications often discretize the time between

actual trades to ∆t = 5min. For my purposes the frequency should be high

enough so that fundamentals do not enter into consideration.

Asset demand is deterministically driven by the two short-term feedback

trading rules discussed in Section 1. Under positive feedback, investors buy

(sell) the asset at time t if they observe positive (negative) returns at t− 1.
Positive feedback generates orderflow ω+t = γ+xt−1 6= 0, where γ+ > 0 is

a scalar mapping returns at t − 1 to asset units demanded at t. The case
γ+ < 0, reflecting contrarian (buy low-sell high) strategies is excluded for

analytical tractability.

Contrarian behavior is effectively captured by risk feedback trading: in-

vestors sell more (less) of the risky asset at t if they observe higher (lower)

squared realized returns at t− 1. Considering x2t−1 to be a volatility proxy,
short-term contrarian traders employing some market equilibrium model will

respond to higher x2t−1 and the associated positive expected returns for pe-
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riod t by selling the asset, as they expect excess returns to mean-revert. This

is related to Campbell and Hentschel’s (1992) volatility-feedback hypothesis;

after a bad and volatile period, such traders amplify the down movement

while after a good (but less volatile) period they mitigate the up movement,

so that “no news is good news”.7

The orderflow component from risk feedback is ω−t = −γ−x2t−1 < 0,

where scalar γ− > 0 maps squared returns at t − 1 to asset units sold at t.
In principle, γ+ 6= γ− and the intensity of each feedback type is expected to

be time-varying. The net orderflow (signed trade volume) received by the

market maker at time t then is

ωt = ω+t + ω−t

= γ+xt−1 − γ−x2t−1 (1)

Given γ+ and γ−, the sign of ωt depends on the realized return and its

square over the last trading interval. Negative return shocks at t− 1 have a
larger absolute impact on orderflow at t than symmetric positive shocks. As

argued above, higher orderflow following a positive shock will be dampened

as risk feedback cancels some of the associated momentum. This asymmetric

contribution of risk feedback to asset demand is consistent with Longstaff’s

(2001) continuous-time asset pricing framework and the liquidity black hole

model of Morris and Shin (2004), both assuming liquidity-constrained in-

vestors facing short-term trading limits.

2.2 Stochastic price impact

Assuming a risk-neutral market maker, so the price change depends only

on the most recent orderflow and not on accumulated inventory, Farmer and

Joshi (2002) derive a linear price adjustment mechanism as an approximation

7Campbell and Hentschel (1992) use a quadratic function of a GARCH(1,1) and find
strong evidence of volatility feedback on stock market data; see also Campbell, Lo and
MacKinlay (1997).
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of a general price impact function. Upon receiving ωt a single market maker

adjusts prices from t− 1 to t using the linear pricing rule

xt = λt ωt = λtγ
+xt−1 − λtγ

−x2t−1 (2)

Equation (2) is consistent with order- rather than quote-driven markets. Co-

efficient λt > 0 measures the price impact of a unit change in net orderflow.

Price impact is always positive and inversely related to market liquidity, and

the sign of xt changes with the aggregate volume imbalance. It is positive

(negative) when there is net buying (selling) pressure. Further, following a

negative return at t− 1, net selling pressure has a greater absolute effect on
returns at t than equal buying pressure because, given λt > 0, risk feedback

reinforces the negative trend.

The price impact coefficient is assumed to follow an AR(1) process

λt = λ+ θλt−1 + ηt , ηt ∼ iid(0, ση) (3)

where the price impact innovations ηt are assumed to be iid. The constant

term λ > 0 is inversely related to average (intraday) market liquidity. Autore-

gressive representation (3) is similar to that used by Acharya and Pedersen

(2005) for the time-varying cost of illiquidity.8

The dynamics of price impact are driven by λ, θ, and the distribution

of the innovation terms η. The properties of {λt} are straightforward: it
is covariance-stationary iff | θ |< 1 and nonstationary otherwise; its un-

conditional mean and variance are λ/1 − θ and σ2η/1 − θ2, respectively; its

conditional mean and variance are λ + θλt−1 and σ2η; and its persistence at

lag k equals the relevant autocorrelation coefficient, ρ(k) = θk.

8Esser and Mönch (2002) and Frey (2000) also model illiquidity as a mean-reverting
state variable in continuous time. However, Bouchaud et al. (2004) and Upper and Werner
(2002, 2007) find that the process of high-frequency price discovery displays breaks and is
likely to be much more complex.
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2.3 Fixed point existence and stability

Combining equations (1), (2) and (3) yields

xt = h(xt−1) = λtxt−1γ
+

∙
1− γ−

γ+
xt−1

¸
(4)

Equation (4) is a quadratic (logistic) first-order difference equation de-

scribing the nonlinear relationship between returns in adjacent time intervals.

In principle, the resulting dynamics are independent of the time scale∆t used

to discretize returns.

The implied covariance between successive return observations then is

E(xtxt−1) = γ+E(λtx
2
t−1)− γ−E(λtx

3
t−1) (5)

Equation (5) clearly suggests that skewness matters for returns persis-

tence; ceteris paribus, short-term persistence grows in the asymmetry cap-

tured by risk feedback trading intensity γ−. Section 4.3 discusses the impli-

cations of this property for high-frequency return autocorrelations.

The fixed points of logistic map h are defined as x ≡ h(xt−1) = xt.

They are the equilibrium steady states of the underlying one-dimensional

dynamical system; thus if asset returns equal x they will remain there unless

perturbed. Specifically, the two fixed points are

x
(1)
t = 0 , x

(2)
t =

1

γ−

µ
γ+ − 1

λt

¶
6= 0 (6)

Note that x(1)t is always zero, hence I omit its time subscript, while x(2)t is

nonzero unless λt = 1/γ+.9 For given positive γ+ and γ−, fixed point x(2)t is

positive when λt > 1/γ+ and negative if λt < 1/γ+. In the first case, x
(2)
t > 0

increases in positive feedback intensity and price impact and decreases in risk

feedback intensity. In the second case (x(2)t < 0), the nonzero fixed point is

absolutely decreasing in γ+, γ− and in price impact.

9The two fixed points coincide when λt = 1/γ+. If price impact is continuously dis-
tributed then λt = 1/γ

+ has zero measure, so x(2)t is generically nonzero.
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The evolution of asset returns turns on the two fixed points’ relative

stability. A fixed point is stable (unstable) if the absolute value of the slope

of (4) at that fixed point is smaller (greater) than one. The slope of h with

respect to x is h0(x) = λtγ
+(1 − 2γ−

γ+
x). The absolute value of h0(·) at x(1)

and x
(2)
t then is

| h0(x(1)) |=| λtγ+ | (7)

| h0(x
(2)
t ) |=| 2− λtγ

+ |

At most one fixed point can be stable at any time. Equations (7) then

imply, first, that if 0 < λt < 1/γ+ then x(1) = 0 is stable, while x(2)t < 0 is

unstable. Second, if 1/γ+ < λt < 3/γ+ then x
(2)
t > 0 is stable and x(1) = 0

is unstable. In that case, the magnitude of the stable positive fixed point

grows with price impact, as ∂x
(2)
t

∂λt
= 1

γ−λ2t
> 0, and its sensitivity to λt declines

with risk feedback intensity γ−. Third, if λt > 3/γ+ then h0(·) always exceeds
one. Both fixed points are then unstable and the dynamics become turbulent.

Finally, if λt > 4/γ+, the logistic map can be shown to display sensitivity

to initial conditions, there are periodic points of all orders and the dynamics

become chaotic.

3 Intermittent financial (in)stability

3.1 Correspondence with market conditions

The above fixed point classification indicates that asset returs in each trading

interval lie in one of three possible dynamic states, depending on the strength

of positive feedback γ+ and the determinants of price impact λ, θ and ση. I

introduce the following correspondence between fixed point stability and the

“state of the market” at each point in time:

(i) Tranquil markets, corresponding to 0 < λt ≤ 1/γ+. For such values,
the nonzero fixed point is always negative and unstable. Consequently, the
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presence of feedback trading does not displace asset returns from zero, their

equilibrium level in the absence of fundamental news.

(ii) Market stress, corresponding to 1/γ+ < λt ≤ 3/γ+. The nonzero

fixed point is now positive and stable, hence feedback trading impacts upon

asset returns.

(iii) Market turbulence, where feedback trading generates unstable return

dynamics (3/γ+ < λt < 4/γ
+).

The price impact threshold separating tranquil markets from market

stress is 1/γ+, while that between market stress and turbulence is 3/γ+.

Note that each threshold is monotonically decreasing in the intensity of pos-

itive feedback but independent of risk feedback. Stronger momentum thus

makes financial instability more likely, other things equal.

For price impact values beyond λt = 4/γ+, the logistic map generates de-

terministic chaos; see Devaney (1989) and Holmgren (1997). Returns diverge

and the corresponding state of the market has measure zero.

3.2 Simulation design

In this paper I restrict γ+ and γ− to 1 for illustration purposes; time-

varying feedback intensities are discussed in Section 7. The subsequent

simulations investigate the transition between states (i)-(iii) for Gaussian

price impact innovations {ηt}.10 The returns time series {xt} is initialized at
x0 = γ+/2γ− = 0.5, the logistic’s unique critical point.11 In turn, the price

impact process is initialized at its unconditional mean: λ1 = λ/1− θ where

λ = 0.5. Feeding the starting values x0 and λ0 to logistic map (4) yields

x1, the return in the next trading interval. The price impact coefficient for

t = 1, λ1 is then computed from equation (3), the values of x1 and λ1 are fed

10Using the uniform and other non-Gaussian shock pdf’s did not affect the essence of
the results; these are available upon request.
11The choice of x0 is justified by Fatou’s Theorem: if the trajectories of a quadratic

polynomial have an attracting periodic point, then its critical point(s) are in the stable
set of one of the points in each trajectory.
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to equation (4) to determine x2, etc. In this way, positive and risk feedback

trading generate t = 1, ..., T observations for {xt}, each characterized by a
different price impact realization {λt}.
I present t = 1, ..., T = 500 price impact and return realizations for states

(i), (ii) and (iii). The choice of T reflects high-frequency trading in the

U.S. Treasury market. Daily trading in U.S. Treasuries takes place between

7:00am and 5:00pm. Assuming, without loss of generality, that each minute

in the 8-hour period contains a single trade yields 480 trading intervals.12

The simulated asset returns can thus be viewed as snapshots of a trading

day in a particular state of the market.

In order to assess the characteristics of the pdf’s, the above 1-day process

is run n = 1, ..., N = 1, 000 times, yielding over 3 years of simulated high-

frequency data. For each state, I report the simulated pdf’s first four mo-

ments averaged over allN 1-day paths. Following standard practice in nonlin-

ear dynamic simulations, the first 200 iterated returns of each path ({xt}200t=1)

are discarded to ensure convergence has occured. The simulated moments

are then computed from the remaining ({xT=500t=201 }Nn=1) iterations.

4 Numerical simulations

4.1 Tranquil markets: 0 < λtγ
+ ≤ 1

When markets are tranquil (0 < λt ≤ 1) feedback trading does not affect

price dynamics. To illustrate, I set the persistence of price impact to θ = 0.2,

and assume that price impact innovations are iid distributed ηt ∼ N(0, 0.05).

Price impact is initialized at its unconditional mean, λ1 = λ/1− θ = 0.625.

Fig. 1 below shows the simulated {λt} and {xt} series

FIGURE 1 HERE
12Fleming (2001) describes the microstructure of the U.S. Treasury market.
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All price impact realizations are less than one, so the dynamics is in the

stable range of x(1) = 0.

The simulated returns’ risk-adjusted mean (sample mean/standard devi-

ation), skewness and kurtosis averaged over all N = 1, 000 distributions, i.e.

{xT=500t=201 }Nn=1, are reported in Table 1

Table 1: Tranquil markets

Simulated return pdf’s
μ/s 0.000
Skewness 8.82
Kurtosis 87

Risk-adjusted expected returns are zero up to 8 decimal places. The simu-

lated returns pdf is very skewed and fat-tailed. Excess kurtosis is broadly

consistent with the high-frequency evidence: for example, Cont (2001) re-

ports values of 15.95 for S&P 500, 74 for US$/DM, and 60 for returns on

USD/SF exchange rate futures.

Next, I use bifurcation diagrams to assess the evolution of fixed point

stability in the price impact domain. Initializing λ1 = 0.625, i = 1, ..., 400

price impact realizations {λi} are drawn from equation (3). For each λi, an

asset return trajectory is initialized at xi0 = 0.5 as above. Each trajectory

then consists of t = 1, ..., 300 iterations of logistic map (4): (λi, hi(0.5)300t=1).

The resulting behavior of return trajectories in tranquil market conditions is

shown in the bifurcation diagram below

FIGURE 2 HERE

The key feature of Fig. 2 is that, at each choice of λi (i = 1, ...100), the

feedback return trajectories xit (t = 1, ..., 300) become dense towards zero.

Price impact ranges from 0.45 to around 0.75, hence h is firmly in the stable

range of x(1) = 0 (x(2)t 6= 0). Note that some simulated trajectories correspond
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to positive returns. However, they are unstable because feedback trading–

continued iteration of {xit} given i–attracts them back to zero. Also note

that as price impact increases (liquidity declines), the unstable trajectories

slope upwards and the dynamics edge towards the stress threshold.

4.2 Market stress: 1 < λtγ
+ ≤ 3

In the range 1 < λt ≤ 3, the zero fixed point x(1) becomes unstable (repelling)
and x

(2)
t > 0 is stable (attracting). Asset returns generated by feedback

trading then induce market stress: state (ii) in Section 3.1. Clearly, in order

for some price impact realizations to break into the stress range, {λt} has to
become more persistent and/or noisy. To illustrate such dynamics, I increase

the AR(1) coefficient to θ = 0.5 and double the standard deviation of liquidity

shocks, so that ηt ∼ N(0, 0.10). The price impact coefficient is now initialized

at λ1 = λ/1− θ = 1. The simulated {λt} and {xt} series are shown in Fig. 3

FIGURE 3 HERE

The market stress threshold is indicated with a horizontal line at λ = 1 in

the bottom panel. Price impact is less than the threshold 45.2 percent of

time (300 trading periods averaged over 1, 000 1-day paths), and above it the

remaining 54.8 percent. In the top panel, positive fixed point x(2)t attracts

neighboring points towards it and away from x(1) = 0. Asset returns are still

close to zero (note the 10−8 scale on the vertical axis) but much more volatile

than in state (i).

The risk-adjusted mean, skewness and kurtosis averaged over {xT=500t=201 }Nn=1
simulated return distributions are reported in Table 2
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Table 2: Market stress

Simulated return pdf’s
μ/s 0.0011
Skewness 1.52
Kurtosis 5.21

Risk-adjusted expected returns are now positive, reflecting the fact that

x
(2)
t > 0 when λt ∈ (1, 3]. There is much less right-skewness and leptokurtosis
than in the tranquil state.

Beyond λ = 1, x(2)t switches from being unstable to stable. This discon-

tinuous dynamic transition is shown in the bifurcation diagram below

FIGURE 4 HERE

The price impact coefficient now ranges from 0.75 to 1.30. As in tranquil

state (i), the return trajectories become more dense towards zero at each λi

realization. Unlike state (i), however, as {λi} exceeds 1 the return trajectories
slope upwards because steady-state returns have turned positive.

4.3 Market turbulence: 3 < λtγ
+ < 4

Asset returns enter state (iii), market turbulence, if both fixed points become

unstable, which occurs when | h0(·) |> 1. In turn, that requires price impact
to be in the range λt > 3. To illustrate, I maintain λ = 0.5 and ηt ∼
N(0, 0.10) but raise the AR(1) coefficient to θ = 0.85, so λ1 = λ/1−θ = 3.33.
The simulated {λt} and {xt} series are shown in Fig. 5

FIGURE 5 HERE

Only 0.4 percent of price impact realizations now falls in the tranquil state

0 < λt ≤ 1 (bottom panel). 6.8 percent is in the stress state 1 < λt ≤ 3,
and the remaining 92.8 percent is in the turbulent range 3 < λt < 4. There
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are no outcomes in the chaotic range λt ≥ 4, and there is very pronounced
volatility clustering (top panel).

Table 3 reports the risk-adjusted mean, skewness and kurtosis averaged

over all {xT=500t=201 }Nn=1 return distributions

Table 3: Market Turbulence

Simulated return pdf’s
μ/s 0.0064
Skewness −0.258
Kurtosis 1.837

Risk-adjusted returns are now very high; moreover, the simulated xt dis-

tributions have become left-skewed and there is negative excess kurtosis.

Left-skewness is particularly interesting because it relates to short-horizon

returns persistence. From equation (5) recall that, given γ−, the first-order

(adjacent ticks) autocorrelation decreases in the skewness of returns. There-

fore, the switch of skewness from positive to negative along the transition

from tranquil markets to turbulence (via market stress) suggests that re-

turns persistence progressively increases as market liquidity “dries up”. This

property appears consistent with Cohen and Shin’s (2003) evidence for the

U.S. Treasury market.

The bifurcation diagram for state (iii) is in Fig. 6

FIGURE 6 HERE

Note that the dynamics begin to change very rapidly beyond the turbu-

lence threshold. In the range 3 < λt ≤ 3.45 there are period-doubling bi-
furcations. From λ ' 3.33, the return trajectories display a period-doubling
bifurcation “cascade” familiar from chaotic dynamics. Specifically, every

period-2 attracting orbit divides into an attracting period-4 trajectory and

a repelling period-2 trajectory. Another period-doubling bifurcation occurs
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when λi is near 3.5: period-4 trajectories then split into period-8 and period-

16 trajectories, and so on. For λ > 3.6 it can be shown that there are

periodic points of all orders if a period-3 periodic point exists. Finally, be-

yond λi = 4, the iterated return orbits can be shown to be period-k for all

k > 0 and deterministic chaos emerges.

5 Power-law properties of returns

This Section investigates whether the asset returns generated by these dy-

namics are power-law distributed. I adopt the following nonparametric esti-

mator of α, the power-law distribution’s exponent for an empirical distribu-

tion consisting of {xTt=1}N=1,000n=1 return vectors, where each vector corresponds

to a day consisting of T = 500 trading periods (ticks)13

bαn = 1 + T

"
TX
t=1

log

µ
xtn
xnmin

¶#−1
(8)

where xnmin is the minimum obervation in returns vector n that could be

consistent with a power-law distribution. The power-law exponent estimator

in (8) is always greater than 1, implying that all moments m ≥ bαn + 1

will diverge. Note that the summation terms are well-defined in the market

stress and turbulence states, where the negative fixed point is unstable, but

not in the tranquil state where returns can be negative. This α-estimator

has the advantage of being less biased than regression methods, also in small

samples, and is equivalent to the Hill estimator; see Hall (1982) and Newman

(2005). However, it need not give the right estimate if the true dgp is not

Pareto-type.

I use the same θ and σ values for each dynamic state as in Section 4,

motivated by the U.S. Treasury market’s microstructure. Averaging bαn over

n = 1, ..., N = 1, 000 1-day paths for each parameter combination, the mean

13The power-law exponent is α, where the Pareto-tail probability of returns x is pro-
portional to Pα(x) ∼ Aα

|x|1+α for x→ ±∞.
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value of the power-law exponent is bα = ³PN
n=1 bαn

´
/N . The bα values for

each state are reported in Table 4

Table 4: Power-law exponents of returns14

Market state (θ, σ) bα
Tranquil 1.01
Stress 1.43
Turbulence 2.54

The estimates suggest that returns are power-law distributed in all 3

states. Indeed, the exponent is closest to one in the tranquil and stress states,

suggesting that all the corresponding moments diverge. However, this finding

should be treated with caution because the minimum return realizations xnmin
are arbitrarily close to zero in each of the N paths, and particularly in state

(i). This tends to lower all bαn estimates and their average.15 By contrast, the

2.54 exponent estimate for state (iii) is close to the lower end of the 2—5 range

reported by Bouchaud and Cont (2001), indicating that skewness, kurtosis

and higher moments will likely diverge during turbulence.

I now turn to assess the persistence properties of returns. The auto-

correlation coefficients of absolute return powers at lag τ are defined as

ρ(t, τ) = corr[| xt |δ, | xt−τ |δ]. As there is sufficient consensus that au-
tocorrelations decay slowest when δ = 1, i.e. absolute returns, I report on

that case only; see Bouchaud and Cont (2001). The absolute return autocor-

relograms for τ = 1, ..., 100 lags (ticks corresponding to 5min) during market

stress and turbulence are respectively shown in Figs. 7 and 816

FIGURES 7 AND 8 HERE
14The (θ, σ) parameter values for each state are as before. The empirical histograms ofbαn are available upon request.
15Another reason why α estimates in state (i) are unreliable is that excluding negative

(tranquil) return observations reduces the effective sample size.
16For consistency with Fig. 3 above, Fig. 7 shows three autocorrelation paths. .
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In both cases, the decay patterns of ρ (t, τ) clearly suggest the presence

of long memory. During stress (Fig. 7) this appears to be declining smoothly

and is more pronounced than the corresponding squared-returns autocorrel-

ogram in Bouchaud and Cont (2001) for the same maximum lag number.

During market turbulence (Fig. 8), persistence is even stronger but unex-

ploitable because of the rapidly alternating signs.

The negative autocorrelations present a computational problem, in that

the resulting power-law exponents estimated from equation (8) are complex-

valued. I circumvent this by using the absolute value of the autocorrelation

coefficient at all lags in the estimation; as persistence is symmetrical, this

transformation does not affect its properties. Fig. 9 below reports the empir-

ical histograms of α-exponents in states (ii) and (iii), respectively computed

from N = 1, 000 daily return paths

FIGURE 9 HERE

The wide range of α-exponents of absolute-return autocorrelation reflects

the rapid oscillation of returns, particularly during turbulence. For example,

the exponent for the particular autocorrelation pattern shown in Fig. 8 was

1.80. The first four moments of the power-law exponents included in the

empirical histograms of Fig. 9 are reported below

Table 5: Absolute return autocorrelations

Power-law exponent descriptive statistics
Market state Stress Turbulence
mean 3.17 3.04
s.d. 2.39 2.88
skewness 2.26 3.44
kurtosis 10.85 18.14

Table 5 indicates that the mean α-exponent of absolute return autocor-

relations is about 3 in both states, indicating that only kurtosis is undefined.
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Both distributions are significantly right-skewed and fat-tailed, and more so

for market turbulence. The tentative conclusion from the simulation evidence

is that the persistence of absolute returns displays power-law features.

6 Discussion

The numerical simulations in Section 4 suggest a positive relationship be-

tween the values of θ and σ and the likelihood of a dynamic transition from

tranquil to turbulent markets. Smaller price impact (greater liquidity) im-

proves the zero fixed point’s stability, while bigger price impact tends to

destabilize it, all else equal. In other words, stable market-making is critical

for maintaining financial stability. Given any intensity of feedback trading,

liquidity should be sufficiently high and stable at each point in time–in the

sense of weak persistence and small variance of price impact–to guarantee

the tranquil market state.

However, the transition between two dynamic states can go in both di-

rections. Turbulence is thus reversible, or intermittent in the sense of Man-

delbrot (1974), related also to Giardina and Bouchaud (2003) and Heagy

et al. (1994). To quote Shin (2004, p.150), “occasionally, financial markets

experience episodes of turbulence of such an extreme kind that they appear

to stop functioning”. Accordingly, one interpretation of the high-frequency

evidence offered by Morris and Shin (2004) is that active markets can un-

dergo mini-liquidity gaps several times in a day. Intermittent turbulence is

also consistent with Plantin et al. (2004), who find less liquid asset markets

are more vulnerable to episodes of turbulence. In the same vein, Danielsson

and Payne (2001) find intermittent “liquidity gaps” in electronic limit order

book-based FX trading.

The framework also serves to illustrate the asymmetric effects of net or-

derflow on prices. On one hand, excess buying pressure through positive

feedback is always mitigated by risk feedback. On the other hand, risk feed-
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back acts to amplify excess selling pressure. This asymmetry is in line with

evidence of relatively long periods of asset price rises–Alan Greenspan’s

irrational exuberance–followed by very steep price declines; Shiller (2005)

considers such patterns to be asset price bubbles. The simplifying assump-

tion that positive and risk feedback operate only on the last period’s returns

seems consistent with accounts of short-termism in financial markets. Trichet

(2005) outlines alternative rationales for market participants’ preoccupation

with short-term results; these range frommarking-to-market and benchmark-

ing of performance against competitors, to the spread of index management

and VaR considerations.

Finally, note that purely deterministic feedback trading cannot generate

a collapsing asset price, because x(2)t < 0 is unstable for all 0 < λtγ
+ < 1.

Thus, the dynamics generated by logistic map (4) can only sustain zero or

positive asset returns. Allowing for the possibility of falling price levels and

negative returns requires introducing a noise term ξt ∼ iid(0, σξ) affecting

returns in period t. Such noise can be thought of as a stationary pricing error

measuring the quality of the market microstructure; see Hasbrouck (1993).

A noisy version of equation (4) would be

xt+1 = λtxt−1γ
+

∙
1− γ−

γ+
xt−1

¸
+ ξt (9)

Simulating returns using stochastic first-order difference equation (9) is

necessary for asset price bubbles to eventually burst. A straightforward nu-

merical application of the noisy logistic map thus involves generating bubble

paths for different parameterizations of λt (θ and ση), γ+, γ− and σξ.

7 Concluding remarks

In this paper I investigated the potential for financial (in)stability and tur-

bulence arising from high-frequency feedback trading in the absence of fun-

damental information. A logistic interaction of feedback portfolio strategies
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generated stable (tranquil), unstable (stressful) or turbulent return dynam-

ics depending on stochastic market liquidity and fixed feedback trading in-

tensity. The dynamics were driven by price adjustment to short-term or-

derflow imbalances according to the combined strength of positive feedback

trading–reflecting momentum strategies–and risk feedback trading, driven

by liquidity-constrained investors’ volatility-dependent strategies. I obtained

a well-defined correspondence between the range of stochastic price impact

and the likelihood of each dynamic state. Importantly, price impact can

cross the thresholds separating the dynamic states in both directions, so the

occurence of market turbulence is intermittent in Mandelbrot’s sense.

The numerical calibration was motivated by high-frequency trading in the

U.S. Treasury market and its microstructure. Empirically, the contrarian-

based (volatility feedback) interpretation of risk feedback in Section 2 may

offer a useful avenue for estimating feedback intensities by fitting difference

equation (2) to lower-frequency data. However, for such applications feed-

back trading would have to be integrated within a market-clearing model.

Analytically, the dynamics was kept tractable by fixing the intensities of

both trading rules and limiting feedback to the last trading interval. In that

regard, two important extensions involve allowing stochastic price impact

to depend on the market’s realized volatility, and introducing time-varying

feedback intensities in response to the fluctuating heterogeneity of market

opinion. Overall, the framework serves to underline the key role of sto-

chastic price impact in driving high-frequency market dynamics, as well as

influencing the long-memory properties of returns and their persistence.
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