
Exploiting tightly-coupled cores

Daniel Bates

Robinson College

A thesis submitted in July 2013 for the Degree of Doctor of Philosophy

ABSTRACT

As we move steadily through the multicore era, and the number of processing cores

on each chip continues to rise, parallel computation becomes increasingly important.

However, parallelising an application is often difficult because of dependencies be-

tween different regions of code which require cores to communicate. Communication

is usually slow compared to computation, and so restricts the opportunities for prof-

itable parallelisation. In this work, I explore the opportunities provided when com-

munication between cores has a very low latency and low energy cost. I observe that

there are many different ways in which multiple cores can be used to execute a pro-

gram, allowing more parallelism to be exploited in more situations, and also providing

energy savings in some cases. Individual cores can be made very simple and efficient

because they do not need to exploit parallelism internally. The communication patterns

between cores can be updated frequently to reflect the parallelism available at the time,

allowing better utilisation than specialised hardware which is used infrequently.

In this dissertation I introduce Loki: a homogeneous, tiled architecture made up

of many simple, tightly-coupled cores. I demonstrate the benefits in both performance

and energy consumption which can be achieved with this arrangement and observe that

it is also likely to have lower design and validation costs and be easier to optimise. I

then determine exactly where the performance bottlenecks of the design are, and where

the energy is consumed, and look into some more-advanced optimisations which can

make parallelism even more profitable.

DECLARATION

This thesis:

• is my own work and contains nothing which is the outcome of work done in

collaboration with others, except where specified in the text;

• is not substantially the same as any that I have submitted for a degree or diploma

or other qualification at any other university; and

• does not exceed the prescribed limit of 60,000 words.

Daniel Bates

July 2013

ACKNOWLEDGEMENTS

First, I would like to thank my supervisor, Robert Mullins, without whose help, support

and insight, this work would not have been possible.

I would also like to thank David Greaves and Steven Hand for their role in guiding

me towards an achievable and worthwhile goal over the last few years.

The rest of Team Loki—Alex Bradbury, Andreas Koltes and George Sarbu—have

provided countless interesting discussions, whether work-related or not, and I am in-

debted to them for their work on other parts of the Loki design and infrastructure. Other

members of the Computer Architecture Group have also been quick to give advice and

feedback when I needed it.

Thanks must go to the Raspberry Pi Foundation – I admire their aim of getting more

people interested in Computer Science, and it has been a privilege to be as involved as I

have been. I am also thankful for the opportunities they provided to take the occasional

break from thesis-writing and meet some very interesting people.

My research was funded with a grant from the Engineering and Physical Sciences

Research Council.

CONTENTS

1 Introduction 17

1.1 Motivation . 17

1.2 Contributions . 20

1.3 Publication . 22

2 Background 23

2.1 History . 23

2.2 Classes of architecture . 27

2.2.1 Multi-cores . 27

2.2.2 Graphical processing units (GPUs) 28

2.2.3 Field-programmable gate arrays (FPGAs) 29

2.2.4 Application-specific integrated circuits (ASICs) 30

2.2.5 Comparison with Loki . 30

2.3 Related work . 31

2.3.1 Network . 32

2.3.2 Instruction supply . 34

2.3.3 Reconfiguration . 35

2.3.4 Dynamic configuration . 37

2.3.5 Miscellaneous . 39

2.4 Homogeneity vs. heterogeneity . 40

2.5 Compilation . 41

2.6 Future developments . 41

3 Loki architecture 43

3.1 Overview . 44

3.2 Core microarchitecture . 47

3.2.1 Instruction fetch . 49

9

3.2.2 Decode . 53

3.2.3 Execute . 54

3.2.4 Write back . 54

3.2.5 Network integration . 54

3.2.6 Data supply . 58

3.3 On-chip network . 60

3.3.1 Intratile networks . 61

3.3.2 Intertile network . 63

3.4 Memory hierarchy . 63

3.5 Programming Loki . 65

3.5.1 Predicated execution . 65

3.5.2 Remote execution . 66

3.5.3 Parallelism . 66

3.5.4 Loki-C . 67

3.6 Limitations . 67

3.7 Summary . 68

4 Evaluation methodology 69

4.1 Performance modelling . 69

4.2 Compiler . 70

4.3 Benchmarks . 70

4.3.1 Optimisations . 74

4.4 Energy modelling . 76

4.5 Models . 81

4.5.1 ALU . 82

4.5.2 Arbiter . 83

4.5.3 Clock . 84

4.5.4 Crossbar . 85

4.5.5 FIFO buffer . 85

4.5.6 Instruction decoder . 86

4.5.7 Instruction packet cache . 87

4.5.8 Interconnect . 88

4.5.9 L1 cache bank . 89

4.5.10 Multicast network . 90

4.5.11 Multiplier . 91

4.5.12 Pipeline register . 91

4.5.13 Register file . 91

4.5.14 Router . 92

4.5.15 Scratchpad . 92

4.6 Summary . 92

5 Design space exploration 95

5.1 Instruction supply . 95

5.1.1 Instruction packet cache . 96

5.1.2 Instruction buffer . 99

5.1.3 Cache pinning . 100

5.1.4 Buffer pinning . 104

5.1.5 Summary . 106

5.2 Scratchpad . 106

5.3 Network . 111

5.4 Summary . 114

5.5 Comparison with other work . 119

5.6 Conclusion . 121

6 Exploiting tightly-coupled cores 123

6.1 MIMD . 124

6.2 Data-level parallelism . 125

6.2.1 DOALL and DOACROSS 127

6.2.2 Evaluation . 129

6.2.3 Helper core . 131

6.2.4 Instruction sharing . 135

6.2.5 Worker farm . 137

6.2.6 Parallelism extraction . 141

6.2.7 Conclusion . 142

6.3 Task-level pipelines . 143

6.3.1 Evaluation . 144

6.3.2 Parallelism extraction . 148

6.3.3 Conclusion . 149

6.4 Dataflow . 150

6.4.1 Power gating . 152

6.4.2 Case studies . 153

6.4.3 Dataflow within a core . 159

6.4.4 Reducing bottlenecks . 161

6.4.5 Reducing power . 165

6.4.6 Reducing latency . 171

6.4.7 Parallelism extraction . 172

6.4.8 Conclusion . 172

6.5 Summary . 175

7 Conclusion 181

7.1 Future work . 182

Bibliography 199

A Instruction set architecture 201

A.1 Datapath . 201

A.1.1 Registers . 201

A.1.2 Predicates . 202

A.1.3 Channels . 202

A.2 Instruction formats . 204

A.3 Instruction summary . 205

A.4 Instruction reference . 207

A.4.1 ALU . 207

A.4.2 Data . 207

A.4.3 Instruction fetch . 209

A.4.4 Memory . 210

A.4.5 Network . 211

A.4.6 Remote execution . 211

A.4.7 Other . 212

12

LIST OF FIGURES

3.1 High-level Loki architecture . 45

3.2 Loki pipeline . 47

3.3 Loki instruction sources. 50

3.4 Loki instruction formats . 55

3.5 Network assembly code . 58

3.6 Register file. 59

3.7 Loki assembly code demonstrating use of the scratchpad. 59

3.8 Tile sub-networks . 62

3.9 Loki-C code sample . 67

4.1 Effects of hand-optimisation . 75

4.2 Error distribution examples . 80

5.1 Instruction packet cache implementations 98

5.2 Behaviour of instruction buffer relative to L0 cache. 100

5.3 Instruction supply energy distribution 102

5.4 Effects of cache pinning . 103

5.5 Buffer pinning . 105

5.6 Scratchpad size comparison . 109

5.7 Data supply energy distribution . 111

5.8 Network comparison . 113

5.9 Baseline energy distribution . 117

5.10 Loki architecture floorplan . 118

5.11 Comparison with ARM1176 . 120

6.1 MIMD execution pattern . 124

6.2 DLP execution pattern . 127

13

6.3 Impact of DLP execution . 130

6.4 DLP execution pattern with helper core 132

6.5 Impact of DLP execution, with helper core 133

6.6 Divergent code example . 134

6.7 DLP execution pattern with instruction sharing 135

6.8 DLP energy consumption with instruction sharing 136

6.9 Worker farm execution pattern . 138

6.10 Behaviour of worker farm execution pattern 140

6.11 Comparison between worker farm and DLP 141

6.12 Task-level pipeline execution pattern 144

6.13 Task-level pipeline behaviour . 146

6.14 Dataflow execution pattern . 151

6.15 CRC dataflow mappings . 155

6.16 CRC dataflow behaviour . 156

6.17 Bit count dataflow mappings . 156

6.18 Bit count dataflow behaviour. 157

6.19 A bottleneck packet in the crc benchmark. 162

6.20 A bottleneck packet in the bitcount benchmark. 163

6.21 Network buffer design space exploration 166

6.22 Core-to-core interconnect comparison 169

6.23 Summary of execution patterns . 177

14

LIST OF TABLES

2.1 FPGA lookup table . 29

3.1 Core input channel mapping . 56

3.2 Predicate encodings. 65

4.1 Comparison of benchmark suites . 71

4.2 Benchmark execution characteristics 75

4.3 Supported ALU operations . 82

4.4 ALU model . 83

4.5 Arbiter model . 84

4.6 Clock model . 84

4.7 Crossbar model . 85

4.8 FIFO models . 86

4.9 Decoder model . 86

4.10 Cache tag models . 87

4.11 Instruction packet cache models . 88

4.12 Interconnect model . 88

4.13 L1 cache bank model . 90

4.14 Multicast network model . 90

4.15 Multiplier model . 91

4.16 Pipeline register model . 91

4.17 Register file model . 93

4.18 Router model . 94

4.19 Scratchpad model . 94

5.1 Instruction packet cache implementations 99

5.2 Data structures in MiBench programs 107

15

5.3 Loki structure sizes . 115

5.4 Energy consumption of common operations 116

6.1 New fetch instructions. 164

6.2 Network energy comparison . 168

6.3 Dataflow architecture comparison 173

6.4 Summary of dataflow optimisations 175

A.1 Register uses. 201

A.2 Predicate encodings. 202

A.3 Core input channel mapping . 203

A.4 Core output channel mapping . 203

A.5 Instruction set summary. 205

A.6 ALU functions . 208

16

CHAPTER 1

INTRODUCTION

This dissertation describes Loki, a homogeneous, many-core architecture targeted at

embedded systems. One of Loki’s main features is flexible and efficient communica-

tion between cores, allowing them to be grouped together in software to form an op-

timised virtual architecture. This software specialisation using tightly-coupled cores

allows both improved performance and reduced energy consumption, whilst also ad-

dressing many other challenges faced by today’s computer architects.

1.1 Motivation

Multi-core chips dominate the consumer market today. Everything from smartphones,

through tablets and desktops, all the way up to servers make use of multi-core proces-

sors, and the number of cores continues to rise as architects struggle to make effective

use of the extra transistors they gain each process generation. A group from the Uni-

versity of California, Berkeley describe the situation well [12]:

The shift toward increasing parallelism is not a triumphant stride for-

ward based on breakthroughs in novel software and architectures for par-

allelism; instead, this plunge into parallelism is actually a retreat from

even greater challenges that thwart efficient silicon implementation of tra-

ditional uniprocessor architectures.

The problem with the trend towards multiple cores is that even after decades of

research into parallelism, many applications do not make effective use of parallel ar-

chitectures [21], and it seems unlikely that the number of applications executing simul-

taneously will scale with the number of processor cores. Work has been done on cache

17

coherence and message passing to make using multiple cores easier, but more needs to

be done if the full potential of future processors is to be realised.

One of the main challenges is the power wall: the inability to increase power con-

sumption of processors due to limitations of the power supply (such as batteries in

mobile devices) or the ability to dissipate heat cheaply. Much of the exponential per-

formance improvements of microprocessors that we have enjoyed to date came at a

cost of increased power consumption; this was a reasonable tradeoff at the time, but

cannot continue today. Several factors conspire to make the power wall even more

intimidating:

• As we continue to shrink features on integrated circuits, the energy consumed by

each transistor goes down, but the delay and energy consumed per unit length of

wire go up. The delay rises due to increased resistance of the narrower wires, and

so more power-hungry repeaters are required to maintain clock rates [63]. This

suggests that large uniprocessors are no longer sensible and a move to decen-

tralised resources is necessary in order to reduce communication distances [6].

• The clock frequency of a microprocessor is intimately linked with power con-

sumption. Each change of state of a transistor or wire costs roughly the same

amount of energy, but a higher frequency means that the state can change more

often, increasing power consumption. Many techniques employed to increase

clock frequencies also bring with them additional energy costs: deeper pipelin-

ing, for example, requires additional pipeline registers and more-aggressive cir-

cuits. Since this power increase is no longer an option, clock frequencies of

desktop and server chips have stalled, along with the associated increase in per-

formance. Other ways of improving performance, such as exploiting instruction-

level parallelism, are also near their limits: ever more complex branch prediction

and increased speculation are required to find further independent instructions,

both of which require energy.

• Dennard scaling—the ability to reduce the supply voltage as transistors become

smaller—has essentially stopped. Power consumed when a transistor switches is

proportional to the square of the voltage, so the regular decline in voltage each

generation held the power wall at bay. Any attempts to reduce the threshold

voltage of transistors to allow a lower supply voltage result in increased leakage

current. Leakage power has quickly gone from a negligible overhead to a source

18

of energy consumption comparable with the total energy used by active parts of

the chip.

• Smaller transistors are less reliable due to fluctuations in the density of dopant

atoms in the underlying silicon [22]. The obvious solution to unreliable sys-

tems is redundancy, but this involves performing additional computation, which

increases energy requirements.

A consequence of the power wall in combination with the ever-increasing number

of transistors available due to Moore’s Law is that we may no longer be able to use all

of the available transistors at the same time. This problem is known as the utilisation

wall or dark silicon, and implies that some form of specialisation will be required to

reduce the fraction of the chip in use at any one time [37]. A move towards specialised

hardware is also desirable because of the relatively high overheads of general-purpose

chips [51].

Indeed, modern chips often bundle a number of different specialised processors,

cache, and other logic together, usually with a general purpose processor to fall back

on when no accelerator is available. The result is a system-on-chip (SoC) capable

of general purpose computation, but which can achieve high performance and energy

efficiency for many common operations such as graphics and signal processing. This

approach has seen success in the mobile market as the reduction in the number of

chips reduces circuitboard area and packaging costs, and is also gaining popularity in

the desktop landscape.

The move to heterogeneous computing will likely provide only a short reprieve

from the challenges faced by computer architects, however, and I believe that the bal-

ance will start to swing back towards homogeneity in the near future.

• Design and validation costs are increasing rapidly as we move to smaller feature

sizes. Including many different specialised units will only increase these costs,

and managing communication between them complicates the design further.

• Providing many different processing units means that many different forms of

fault tolerance need to be implemented when we cannot rely on all transistors

working correctly.

• Heterogeneous systems are more difficult to program, and as software and algo-

rithms become increasingly complex, this becomes less acceptable.

19

Computer architects are trapped by all of the constraints and walls: they can’t dy-

namically extract more ILP, they can’t use additional power to improve performance,

they can’t scale the voltage down to reduce power consumption, and they can’t add

specialised hardware because it will soon become too difficult to design and use. The

only escape route seems to be to make a step-change in the design of microproces-

sors – one which takes into account all of the current challenges, rather than making

incremental changes to decades-old designs.

Computer architecture is often described as a science of tradeoffs: there are many

different metrics for which a design can be optimised, most of which have conflicting

requirements. Smartphone consumers demand the most powerful hardware capable

of advanced 3D graphics, and a large, bright, high resolution screen, whilst simulta-

neously complaining if battery life drops. The problem is that these tradeoffs are not

static: processors designed today face completely different constraints to those de-

signed only a decade ago. Momentum in industry dictates that processor designs are

evolutionary rather than revolutionary in order to maintain backwards-compatibility,

but this direction appears to be leading us to a dead-end.

In this dissertation, I attempt to take a step back and look ahead to determine what

a processor should look like in the near future, in a world where high performance is

needed with low power consumption. Specialisation will be required to achieve effi-

ciency, but sacrificing programmability is unacceptable. Furthermore, we will not be

able to guarantee that all of the chip will behave as expected, and design and validation

costs are expected to continue rising exponentially.

To this end, I introduce Loki, a many-core homogeneous architecture, where cores

are very simple and designed to be dynamically grouped together to execute a program.

Flexible and efficient communication between cores is key, and allows for specialisa-

tion in software. This design attempts to address the issues imposed by Amdahl’s law

by allowing multiple cores to be used to accelerate both parallel and sequential regions

of code. I demonstrate how tight coupling between cores can be used both to improve

performance and to reduce energy consumption.

1.2 Contributions

My thesis is that efficient communication between processor cores provides op-

portunities for flexible parallelism, which can be profitable in terms of both en-

20

ergy and performance. In order to demonstrate this, I make the following contribu-

tions:

• I introduce the Loki architecture: a simple, homogeneous, many-core fabric,

where communication between cores is fast and energy-efficient (Chapter 3).

• I provide detailed energy, area and performance models of the main components

of the design, and show where the energy is consumed during execution (Chapter

4).

• I perform a simple design space exploration to determine a sensible implemen-

tation for a single tile of the Loki architecture (Chapter 5).

• I demonstrate that efficient communication opens up a wide range of parallelism

opportunities, and that it becomes possible to map programs to the architecture

in ways which are tailored to each program, or even each phase of an individual

program (Chapter 6).

• I show that as well as improving performance, mapping an application across

multiple cores can be used to reduce energy consumption (Chapter 6).

• I explore software and hardware optimisations to further increase the profitabil-

ity of parallelism (Chapter 6).

My work was undertaken as part of the larger Loki project, and the design of the

architecture was shaped by all members of the group and the needs of their research.

I therefore must clarify which parts of this thesis are not my work. As far as possible,

I treat others’ contributions as constants; I may discuss opportunities allowed by their

work, but do not explore them.

• The compilation toolchain was developed by Alex Bradbury. This had influences

on the choice of instruction set, and on the communication mechanism between

cores. Alex also performed an energy and performance characterisation of an

ARM processor.

• The memory system from the L1 cache onwards is the work of Andreas Koltes.

Again, the instruction set was influenced, and some small additions were made

to the core’s pipeline to optimise cache accesses.

21

• Robert Mullins made a significant contribution to the energy modelling frame-

work. This included many base SystemVerilog designs, and semi-automation of

the synthesis tools. He also produced the instruction set encoding.

1.3 Publication

A summary of this dissertation, with a particular focus on Chapters 3 and 6 is presented

in the following peer reviewed publication.

D. Bates, A. Bradbury, A. Koltes, R. Mullins, Exploiting tightly-coupled cores, Inter-

national Conference on Embedded Computer Systems: Architectures, Modeling, and

Simulation (SAMOS XIII), July 2013

22

CHAPTER 2

BACKGROUND

This chapter covers the main features of the architectures which have influenced Loki’s

design in some way. It starts with a high-level overview of broad classes of computer

architecture, and then drills down into work which is more-closely related to Loki. It

is of course impossible to cover all influential work, but an attempt has been made to

include everything significant.

2.1 History

This section gives a brief overview of the design of computer processors leading up to

the present day. Reasons for design decisions are explained, and the problems facing

today’s computer architects are discussed. Much of the information is drawn from

work by Horowitz [54] and Weste & Harris [133].

The first digital computers were necessarily very simple; they were limited by the

designers’ ability to manually draw and place all of the components in the design phase

and maintain the finished machine. Early machines were also very large, expensive and

power-hungry.

The invention of the transistor greatly improved the size and power consumption

of early computers, but reliabililty was still an issue – the mean time to failure of

the Harwell CADET was around 90 minutes [76]. Advances in transistor design and

manufacturing technology provided steady improvements.

Integrated circuits in the 1970s brought about another step-change, allowing thou-

sands of transistors to be placed on a single chip, each of which was much cheaper,

much more reliable, much faster and much lower-power than its discrete counterpart.

23

Continued refinement of the manufacturing process has continued to this day, with

billions of transistors per chip now possible.

Performance of microprocessors increased exponentially at around 50% per year

between the mid-1980s and early 2000s. This was due to advancements in several

areas. The execution time of a program can be broken down to expose a number of

factors which we are able to target to improve performance, and reduction of any one

of these will improve the overall execution time:

time

program
=

time

cycles
×

cycles

instructions
×

instructions

program

The clock period of microprocessors (time
cycle

) has improved greatly through a combi-

nation of advancements in manufacturing technology and pipelining.

In an attempt to keep up with the self-fulfilling prophecy that is Moore’s Law, semi-

conductor manufacturers have been steadily shrinking the sizes of features that can be

implemented on silicon chips. Each generation, the minimum feature size shrinks

by 30%, and smaller transistors hold less electric charge, so are able to switch states

about 1.4× quicker each generation. There were seven process generations in the two

decades described, giving a 10× speedup. This trend looks set to continue for a while,

at least, with many companies using Moore’s Law as a roadmap and investing increas-

ing sums in trying to maintain the exponential rate of development. However, we are

nearing the end of CMOS, where statistics and quantum effects will mean that the num-

ber of dopant atoms in transistors will vary widely, resulting in different behaviours and

even malfunction of some transistors.

In addition to improving existing transistors, new, faster logic families were discov-

ered, offering roughly 2.5× improvements. Improvements to these low-level building

blocks of digital circuits have wide-reaching effects across the design.

The advent of reduced instruction set computing (RISC) made pipelining much

more achievable because of its simpler instructions with predictable execution times.

Pipeline lengths increased, reducing the amount of logic between pipeline registers and

allowing clock frequencies to rise. RISC was also helped by continuous improvements

to compiler technology and memory capacity, making the lower instruction density

less of an issue. Pipelines increased from 5 to 20+ stages during this period, allowing

a 4× improvement in clock rates. RISC was so successful in driving clock frequencies

up that many architectures with more-complex instruction sets started to internally

24

translate their instructions into RISC-like microcode so that they could take advantage

of the same techniques. This trend was not sustainable for two main reasons:

1. Increasing the clock frequency increased the power consumed by the chip su-

perlinearly, as splitting the pipeline into more stages required complex logic and

additional pipeline registers, and each transistor was switching on and off more

times per second [111]. The power dissipation of processors hit various limits

depending on the application domain – the power wall. Mobile devices such

as laptops and mobile phones became more popular, and had very strict energy

constraints imposed by their limited battery supplies. In the desktop and server

market, the limits of how much heat could be cheaply dissipated from the chip

were being reached. Servers have now reached a point where the cost of pow-

ering and cooling the chip over its lifetime is more than the cost of the chip

itself [26].

2. There are not many natural points to split the pipeline up. As the number of

stages increased, more of the fundamental pieces of the pipeline, such as the

ALU and cache, needed to be spread across multiple stages. This increased com-

plexity, and was not always worthwhile due to non-linear performance gains [111].

Today, with power consumption as a first-order design constraint, pipeline lengths

have dropped and there has even been convergence between the mobile and desktop

worlds: Intel’s Core i series has 14-16 stages (the precise number has not been re-

vealed) [38], and ARM’s A15 has 15 stages [74].

The process of shrinking transistors not only improved their performance and en-

ergy consumption, but also allowed more of them to fit on a single chip. This paved the

way for additional logic and memory, which allow more work to be performed each

cycle (reducing cycles

instruction
, otherwise known as CPI).

The structure of pipelines changed so that more work could be done at once. Dat-

apath widths increased from 8 to 64 bits, allowing manipulation of larger numbers

with fewer instructions. There are limits to how far this trend can continue because in-

creasing the bus width adds an overhead to any instructions which do not need the full

width, and there is currently limited need for anything beyond 64 bits. Many architec-

tures now offer special vector instructions and registers, allowing the same operation

to be performed on multiple operands simultaneously without impacting the common

case.

25

Pipelines also introduced multiple functional units to allow multiple independent

instructions to be executed simultaneously. Again, there are limits to the number of

independent instructions which can be found. While there is often a large amount

of available ILP [83], it is usually hard to access. Finding enough independent in-

structions to supply all functional units requires speculation across multiple branches

and accesses to many separate parts of the instruction (and data) store simultaneously,

which is expensive to support.

Compiler technology improved greatly as higher-level languages became more

popular, reducing the number of instructions used to execute a program.

In total, these changes to caches, datapaths and compilers delivered a 5-8× im-

provement in SPECint/MHz, a measure of how productive a processor is each clock

cycle. This improvement took place even with the much-reduced clock period.

In recent years, to try to continue improving performance of microprocessors de-

spite all of the obstacles in the way, chip designers have turned to placing multiple

cores on each chip. The performance of each core now increases only slowly, if at all,

and instead the number of cores on each chip increases exponentially. Mobile devices

with four or more cores are not uncommon today.

The problem with this new approach is that in order to take advantage of the mul-

tiple cores, there needs to be available thread level parallelism (TLP). It is not too

difficult to find small amounts of TLP: multiple programs can run at the same time, or

a single program can have separate threads for the user interface and the background

processing to keep everything running smoothly, but TLP is not scaling anywhere near

as quickly as the number of cores per chip, despite the decades of research that have

been put into parallel computation [21].

The work in this dissertation looks ahead a few years, assuming that the number of

cores keeps increasing, to a time where single chips can have hundreds or thousands of

cores. I explore how these cores might be implemented and how such a large number

of them can be managed and utilised effectively. Available thread level parallelism

is expected to rise slightly, as devices perform an increasing amount of background

processing, and programmers slowly begin to write more-parallel applications, but I

concentrate on exploiting other forms of parallelism within individual applications to

make use of the many cores.

26

2.2 Classes of architecture

This section describes the main broad classes of architecture which currently exist,

and the tradeoffs between them. Each class is designed for a different purpose and is

at a different point in the design space encompassing programmability, flexibility, cost

and energy efficiency. There are also architectures which attempt to bridge the gaps

between different classes to combine a number of different desirable traits.

2.2.1 Multi-cores

Multi-core processors are ubiquitous today, in devices ranging from mobile phones

to servers. They are an evolution of the “standard” single-core chips which came

previously; they consist of multiple cores with additional logic to ensure that shared

structures (such as caches and memory contollers) are always in a consistent state.

Architects were forced to head in this direction because of the diminishing returns in

making single cores faster and more complex.

Many multi-cores are homogeneous (Intel, AMD, Tilera), but some are heteroge-

neous to optimise for the various use cases. Cell [46] offers one complex core for

handing control-intensive code, and eight simpler vector units optimised to speed up

data processing. Modern mobile phone processors typically have two to four general

purpose cores, and a large number of accelerators to improve performance and reduce

energy consumption of common operations such as video decoding.

General-purpose processors are the easiest of these architectures to program. There

is an established compiler infrastructure which can transform a large range of high-

level languages to the required machine code. The problems are that writing code

for multiple cores is often difficult due to the need to find parallelism whilst avoiding

conflicts and deadlock, and that the flexibility introduces inefficiency. Only a small

portion of the area of a processor is devoted to computation; the rest is there to make

sure there is a steady supply of instructions and data, and that the instructions can

execute quickly. It has been shown that only 6% of the energy of a representative

general-purpose processor is used to perform arithmetic [33].

27

2.2.2 Graphical processing units (GPUs)

With the increasing importance of graphical user interfaces and smooth 3D graphics in

games, architectures specialised for computer graphics have become common. Typical

workloads involve massive data-level parallelism, since graphical computations often

involve performing the same task for each pixel on the screen or each vertex in a model.

The usual approach is to have a huge number of threads. These are organised into

thread blocks which represent the computation to be performed, and are in turn split

into warps (in NVIDIA’s nomenclature). A warp may consist of 32 threads, all of

which execute the same code simultaneously on one of the GPU’s streaming multi-

processors. This means that only one instruction fetch unit is required for each warp,

greatly reducing the resources spent supplying instructions to the functional units. The

huge number of threads is used to hide memory latency: if a warp requests data which

is not held locally, instructions from other warps are issued until the data arrives. This

reduces the need for on-chip cache, making space for more functional units.

GPUs are more energy efficient and perform better than general-purpose processors

for their domain of applications, but their specialisation means that they are useful less

of the time. When the number of threads drops, performance is impacted since it is no

longer possible to hide memory latency. Dealing with control flow is also awkward.

Since all threads in a warp execute the same instruction at the same time, there are

problems if different threads are on different paths. In practice, all required paths are

executed sequentially, with some way of masking out threads which do not need to

execute the current instructions.

There is a movement towards making GPUs more general purpose and easier to

program so that their efficiency can be used more of the time [95], and a similar move-

ment towards making it possible for general purpose processors to exploit increas-

ing amounts of data-level parallelism [1]. Taking one step further, OpenCL [67] pro-

vides a framework for writing parallel code which can be used across both CPUs and

GPUs. This trend also includes hardware modifications such as adding increasingly-

wide SIMD units to general-purpose processors, and adding scalar execution resources

to GPUs [85].

The two classes of architecture are also physically being brought closer together,

with many companies providing general-purpose processors and a number of graphics

cores on the same chip. In addition, AMD plans to introduce a shared ISA and dy-

namic run-time compilation, so that code can transparently migrate between GPU and

28

CPU depending on the available parallelism [110]. This trend suggests that perhaps in

the future the two architectures will converge as a massively-parallel, general-purpose

architecture.

2.2.3 Field-programmable gate arrays (FPGAs)

FPGAs consist of a large number of lookup tables (LUTs) and a configurable inter-

connect which can be used to simulate arbitrary digital circuits. Each logic block is a

small memory which is addressed using a number of input lines, and outputs a result.

A simple example of a LUT has two input lines (a two-bit address space) and a

single bit of output. It therefore needs 22 entries of one bit each. Depending on the

values of the input lines, different entries are read, and so various logic gates can be

simulated. For example, setting entry 3 (112) to 1, and all other entries to 0 makes the

LUT act like an AND gate, where an output of 1 is only produced if both inputs are 1

(Table 2.1). LUTs of typical modern FPGAs are more complex than this to reduce the

overheads of routing signals between them.

In0 In1 LUT contents

0 0 0

0 1 0

1 0 0

1 1 1

Table 2.1: FPGA lookup table emulating an AND gate.

The first commercial FPGA, in 1985, had 128 LUTs, each with three inputs. A

modern FPGA, such as Xilinx’s Virtex 7, can have hundreds of thousands of LUTs,

each with six inputs [135].

FPGAs are very flexible and can be reprogrammed to accelerate different applica-

tions, but the overheads of their configurability mean that they are not very efficient

implementation platforms for general purpose code. They are good for low-level bit

manipulation, because the datapaths are only a few bits wide, but combining multi-

ple blocks to form wider datapaths introduces inefficiencies. They are also difficult to

program – since they are designed for digital circuit simulation, they need to be pro-

grammed in low-level hardware description languages (HDLs). Tools exist to convert

from high level languages to HDLs [94], but they have not yet reached the mainstream.

29

A study has shown that FPGAs require an average of 40 times more area, 12 times

more power and 3 times more time to execute a program than a comparable ASIC [73].

Modern FPGAs now contain specialised hard blocks to reduce this difference; multi-

pliers, block memories, and even entire processor cores can be found on FPGA chips.

2.2.4 Application-specific integrated circuits (ASICs)

ASICs are circuits which have been specialised for a particular application or domain

of applications. For example, mobile phones may contain ASICs to accelerate digital

signal processing and image processing. ASICs are generally the most efficient im-

plementation of an application, and achieve the best performance and lowest energy

consumption. They are able to tune all of the datapaths and storage elements so they

are exactly as large as required (minimising wasted space) and optimise the place-

ment of subcomponents to minimise communication distances (reducing energy and

time) [51].

The problem with ASICs is that they are expensive, and their cost is rising ex-

ponentially [104, 116]. Designing an ASIC requires experts in both hardware design

and the target application area of the ASIC, and engineering costs of producing new

chips are rising due to the increasingly complex processes involved with modern tech-

nologies. It is only economically viable to produce an ASIC if many million will be

produced (6.5 million at 28nm [116]), and this reduces the number of applications they

can feasibly be used to accelerate because they are often not cost-effective to produce.

In practice, ASICs often have some degree of flexibility so they can be used in

more situations and justify the engineering costs. For example, a video decoding unit

may also be capable of encoding the video, and of processing static images.

2.2.5 Comparison with Loki

In advance of a full description of the Loki architecture (Chapter 3), a comparison

is made with each of these major classes of architecture to show where Loki fits in

to the overall design landscape. Loki aims to take the best features of all of these

architectures, while leaving behind the negative aspects.

Loki’s design is a lot like that of a general-purpose multi-core: each of the cores can

independently run full programs which have been compiled from high-level languages

using standard compiler toolchains. The aim is to make it easy to program for multiple

30

cores by making communication very cheap (and therefore less of an obstacle) and

by exposing the interconnect to the compiler and programmer. The ability to bypass

unused functionality is provided whenever possible to reduce energy consumption.

There are similarities with GPUs because of the large number of very simple cores

and the sorts of parallelism Loki is able to exploit. Loki is easier to program, because

of its support for high-level languages, and more flexible, because it is able to exploit

more forms of parallelism. Loki could be seen as a potential result of the observed

CPU-GPU convergence.

Loki could also be seen as similar to an early FPGA, but instead of configurable

logic blocks, Loki has entire processing cores. Cores are generally not used alone (like

LUTs), but are used as a platform upon which a software overlay can be mapped, so

that the architecture is tuned to the application. This concept is explored in Chapter

6. Each core in the overlay is specialised by specifying the software it will execute,

rather than statically storing data to a block of memory. This software may deactivate

unneeded parts of the pipeline, or ensure that all necessary data and instructions are

stored locally and can be accessed cheaply. The mapping can be changed rapidly if the

structure of the program changes, or if a different program is to be executed. While

FPGAs are useful targets for mapping low level digital circuits, Loki is a useful target

for mapping high-level software.

Loki is similar to an ASIC in that it discards any functionality which is not needed

in order to create an optimised platform on which a program can be executed. In Loki’s

case, the functionality is discarded by software at runtime, rather than by the architect

at design time. The unused components remain on the chip, increasing the distances

and communication costs between the components which are in use, but there is no

switching activity within them and techniques such as clock gating can be applied so

they consume virtually no energy. Loki is flexible enough that it can be designed and

validated once, and then used for a wide range of applications, reducing costs.

2.3 Related work

In the last decade or so, there have been many architectures which may look similar to

Loki at first glance, but they have a variety of different goals. This section describes a

selection of them.

31

2.3.1 Network

With the need to decentralise resources to reduce communication distances and costs,

some form of interconnect is required to transfer information between distant com-

ponents. This section discusses some architectures which treat their communication

networks as main components, rather than peripherals.

The transputer [2] in the 1980s was built around the idea that there should be a

small number of different types of processor which are used for all purposes, from

central processing units to disk drive controllers. Each transputer aimed to be cheap,

but could be combined with other transputers to increase performance. Spare cycles of

nearby idle transputers could be “borrowed” to increase performance. The transputer

was designed to perform parallel computations: serial links were provided to up to four

neighbouring transputers which allowed very fast communication. Processes commu-

nicated via channels, which were mapped to a set of reserved memory addresses [56].

This allowed a uniform interface between processes, whether they were on the same

transputer or not. The occam parallel programming language was used to expose the

parallelism to the programmer (though more-traditional languages were also compati-

ble).

The transputer saw limited commercial success, as the exponentially increasing

performance of traditional architectures meant that by the time the transputer was re-

leased, it was not significantly faster than competing sequential processors and so it

was often not worth porting programs to the parallel transputer. It was also difficult to

achieve the target cost. The design did find its niche in real-time and massively parallel

computing, however, and is still used in set-top boxes from STMicroelectronics [3].

The IBM Victor family of workstations took advantage of the transputer’s avail-

able serial links to create a two-dimensional grid structure and explore highly paral-

lel message passing hardware [119]. Up to 256 transputers could be linked together

and popular applications included parallel database management. The grid could be

partitioned into arbitrary shapes, allowing users to execute independent applications

without interfering with each other.

The structure of Raw [124, 125], one of the earliest single-chip architectures in this

field, looks a lot like that of Victor. Raw also had a two-dimensional scalar operand

network and popularised the ability for cores to send data directly to each other, in-

stead of having to go through the memory hierarchy. Each core is paired with a static

router and two dynamic routers to form a tile, and a program consists of code for

32

the core and for the static router. Static routers are used to communicate operands,

while the dynamic routers are used for unpredictable events such as cache misses.

Raw exploits instruction-level and streaming parallelism on its tightly-coupled cores

with some good results. The Raw group define a 5-tuple to allow comparison between

different networks, consisting of:

1. Number of cycles wasted by ALU sending an operand

2. Number of cycles where ALU isn’t wasted before message is sent

3. Average hop latency, in cycles, between adjacent ALUs

4. Number of cycles between operand arriving and being ready to use

5. Number of cycles wasted by ALU receiving an operand

A superscalar processor has a perfect 5-tuple of <0,0,0,0,0> as operands can be

used as soon as they have been computed. A multiprocessor typically has tuple com-

ponents which sum to hundreds of cycles, since communications must pass through

multiple levels of the memory hierarchy. Raw achieves <0,0,1,2,0> by integrating

communication into the instruction set and Loki improves this further to <0,0,1,0,0>

by connecting the network directly to the pipeline – the only communication latency

being a single cycle hop over the network. Section 6.4.6 explores the possibility of

achieving the perfect 5-tuple on Loki.

The Raw architecture was later commercialised as Tilera [127, 132]. Tilera’s Tile

processors refine Raw’s static network by adding an auxiliary processor to each tile

to aid network reconfiguration, and add further dynamic networks. The observation is

made that wiring is almost free, as it makes use of the highest metal layers on the chip,

and is therefore above most of the logic and memory. Additional networks therefore

add little overhead. An interesting feature of the Tile processors is that network buffers

behave like a cache of streams between cores: if data from a new stream arrives, one

buffer is selected to have its contents spilled to memory before being reallocated to the

new stream.

XMOS [86] refined the concept of a network channel by providing a hardware

mapping between logical and physical addresses, and allowing channel addresses to

be communicated between cores in the same way as any other data. Links are one byte

wide and it is possible to set up virtual circuits or use dynamic packet routing.

33

Like many of the above architectures, Loki attempts to reduce the overheads of

parallelism by making the network more accessible to software. In Loki’s case, this is

done at the instruction set level, with input buffers mapped to registers and most in-

structions being able to specify a network destination for their results. Loki provides a

rich interconnect structure with multiple subnetworks optimised for different purposes:

a fast, local, point-to-point network; buses capable of multicasting values and a higher-

latency network for less-frequent, longer-distance communications. All networks are

32 bits wide and are capable of transmitting instructions, data and network addresses.

2.3.2 Instruction supply

When making use of a distributed system, such as an architecture with an on-chip

network, it is often useful to assign relatively large blocks of instructions to a core

at once, to minimise communication required with shared, centralised structures. On

Loki, these are called instruction packets (IPKs), and they roughly correspond to basic

blocks in the program. This concept has been exploited in different ways by different

groups, both to improve performance and reduce power consumption.

Elm [14] is a tiled, many-core architecture optimised for low energy consump-

tion. Optimisations explored are mostly within the pipeline: deep storage hierarchies

are provided and exposed to software to allow maximum exploitation of temporal and

spatial locality. Elm also provides cheap, register-mapped communication between

groups of four cores called an ensemble. Elm’s instruction supply is completely com-

piler managed. The compiler requests a known number of instructions from a particu-

lar memory address, and places them in a fixed location in the core’s instruction store.

This allows very effective use of a small instruction cache, but can require instructions

to be pessimistically re-fetched if the compiler cannot be sure whether they are already

stored locally.

SCALE [72] introduced the concept of vector-threading, an abstraction which pro-

vides a control processor and a vector of virtual processors. Each virtual processor can

execute independently, or they can join together to create a vector processor, with in-

structions fetched by the control processor, when data-level parallelism is available.

Instructions are fetched in groups called atomic instruction blocks (corresponding to

hyperblocks) to increase the amount of work received when a fetch is issued.

TRIPS [28] is a large project which aims to create a dataflow architecture by pro-

viding a large number of functional units in each core and having instructions specify

34

destination instructions rather than destination registers, reducing the number of ac-

cesses to a large register file. Up to 128 instructions are bundled into blocks, which

are dynamically scheduled across multiple dataflow processors, each with many func-

tional units. Each block contains a hyperblock of instructions. TRIPS and a number of

other architectures have demonstrated that scheduling instructions in this way allows

locality to be exploited more effectively, which in turn allows a smaller and cheaper lo-

cal storage structure to be used frequently [30, 106]. Executing instructions in atomic

blocks means that only those values which are live before a block begins or after a

block completes may need to be shared; all intermediate values within the block can

be stored efficiently in a local structure. This simplification can also make detection

of dependencies between blocks simpler, allowing multiple blocks to be executed in

parallel.

Multiscalar [39] is able to group instructions together into tasks which range in

granularity from a single basic block to an entire function call or more. Blocks are

chosen to minimise dependencies between them, and then executed in parallel across a

number of processing elements. Any remaining control dependencies between blocks

are hidden by speculation, and data dependencies are resolved by communicating data

between adjacent processing elements using a ring network. This execution style uni-

fies a number of different ways of exploiting instruction-level parallelism, including

software pipelining, task-level pipelines and dataflow.

Loki primarily uses instruction packets to reduce the amount of communication

required between cores and memories, but is also able to distribute packets across cores

to take advantage of efficient local storage. Loki’s flexible inter-core communication

structure means it is able to emulate the vector-processing used by SCALE and the

dataflow pattern used by TRIPS. The contributions of this dissertation largely revolve

around combining cores to improve performance or reduce energy consumption, and

so are orthogonal to the pipeline optimisations of Elm.

2.3.3 Reconfiguration

Mai et al. recognised that different applications were best suited by different mem-

ory systems, and so designed Smart Memories with a degree of configurability built

in [81, 82]. Each cache line contains four bits of metadata, and each memory bank

contains a reconfigurable logic block which manipulates the metadata, and can itself

be configured using special memory operations. Physical memory can be partitioned

35

into multiple virtual memories, each with different capacities, line sizes, replacement

policies, etc. These virtual structures allow overlays to be built which provide the best

mix of resources for each individual application.

NVIDIA’s research GPU architecture, Echelon, also allows the memory hierarchy

to be configured to suit each application [65]. Each memory bank can be used either

as a cache or a scratchpad, and has a malleable pointer to its parent bank(s), allowing a

custom hierarchy to be created. Echelon is designed by many of the same people that

worked on Elm, and contains some of the same optimisations such as a hierarchy of

register files to reduce energy consumption.

ACRES [9] was an early proposal for a tiled architecture. The contents of a tile

were left unspecified, but a number of important challenges and opportunities were

identified. ACRES supported both traditional memory-based instructions and state

machines to control execution, and allowed a spectrum of execution patterns ranging

from each core processing its own instruction stream to a data streaming mechanism

where the results of one core were sent directly to the next. The authors also ex-

plored mapping virtual architectures across the homogeneous fabric, making use of

configurable memory systems and compute resources. Furthermore, these virtual ar-

chitectures could adapt dynamically to contention and available resources. Dynamic

reconfiguration is discussed further in Section 2.3.4.

AsAP [128] has 164 very simple, 16 bit cores running at a high clock frequency,

connected with a mesh network. Since each core has very limited memory resources

(128×35 bit instruction memory and 128×16 bit data memory), ways of mapping

applications in a streaming fashion are explored to reduce the need for temporary in-

termediate storage. Custom overlays are created for each program where each core has

a very specific task and communication channels are set up statically. Each core’s volt-

age and frequency can also be adjusted to match its computation requirements. Three

accelerators are included on-chip to speed up fast Fourier transforms, motion detection

and the Viterbi algorithm.

Loki allows customisation of both computation and storage at runtime. Typically

this is done statically, but dynamic changes are also possible. Computation is con-

figured by setting up a specialised communication network and optionally placing in-

structions and data on each core. Any core can communicate with any other, avoiding

the problems of some more-restrictive networks where cores need to be spent simply

to route data to its destination. The choice of instructions on each core affects which

parts of the pipeline are used: an instruction is provided which bypasses cache tag

36

checks when the location of an instruction packet is known statically, and when there

is only one instruction on a core, much of the pipeline can be clock-gated. Loki cores

are designed to be used together to exploit different forms of parallelism, depending

on what is available in the program (or phase of the program). A number of these

execution patterns are explored in Chapter 6.

Loki also has a configurable banked L1 cache in each tile; it is possible to set

each bank as either a cache or scratchpad, and change its line-size and associativity.

Multiple banks can also be grouped together to form virtual memories. Configuration

is performed by sending special messages across the network to the memory banks,

and can be done at runtime. Further details on the memory system are given in Section

3.4.

2.3.4 Dynamic configuration

It is well known that the resource requirements of an application are not always uni-

form throughout its lifetime. This can be exploited either by modifying the software

to take advantage of the hardware resources available at the time (for example, scaling

across more cores), or by reconfiguring the hardware to better match application needs.

Invasive computing is an example of the first approach [126]. Processes running

on one or more cores are able to infect new cores to increase their compute resources

or retreat to release resources. Distributions of processes across cores can change de-

pending on computation requirements, resource availability, temperature, faultiness,

permissions, etc. PPA [101] is an implementation of this. The instruction schedule

generated by the compiler is virtualised so that it can take advantage of varying num-

bers of available functional units. This works by using two bits in the encoding of each

instruction to tell which core the instruction migrates to when resource allocations

change.

Tartan also explores ways of spatially mapping programs to hardware [88]. Vir-

tualisation is used to allow the program to continue running even when resources are

limited. The problem is compared to both cache replacement (since sections of the

program are swapped in and out of the available hardware) and circuit floorplanning

(as communication costs between parts of the program should be minimised).

ARM have recently popularised their big.LITTLE technique to adapt the hardware

at runtime [44]. This involves having two (or more) architecturally identical cores on a

single chip, each targetted at different points in the performance/energy space. Appli-

37

cations are automatically moved between the cores depending on the performance they

require. The voltage and clock frequency of each core can also be scaled to provide

additional intermediate points.

Federation [25] and Core Fusion [59] both take multiple simple cores and merge

them into single larger logical processors which are capable of exploiting various forms

of parallelism. Federation starts with two in-order pipelines and focuses on forming

an out-of-order dual-issue pipeline which expoits ILP to increase single-thread per-

formance. Core Fusion starts with a dual-issue out-of-order design and focuses on

joining resources such as caches and branch predictors of up to four cores to increase

performance. Core Fusion in particular spawned much follow-up work in an attempt

to reduce overheads and bring the performance of the fused core in line with that of a

bespoke wide-issue processor [31, 91, 93, 106].

MorphCore [68] takes the opposite approach. The base architecture is a wide

out-of-order processor, and the ability to exploit thread-level parallelism across the

different lanes is added.

Rodrigues et al. instead provide a number of cores, each with a moderate capability

to execute any program, but with a particular strength (for example, improved floating

point performance) [109]. Interconnectivity between cores’ pipelines allows cores to

“trade” the weak parts of their pipelines with other cores’ strong parts to improve

performance or energy consumption, depending on application requirements. This

technique is called Dynamic Core Morphing.

Similarly, Meng et al. describe a single instruction multiple data (SIMD) architec-

ture called Robust SIMD which is able to provide a tradeoff between the width of the

SIMD array and the number of threads which execute simultaneously [87].

Determining when the architecture should be reconfigured is also an active area

of research. At one end of the spectrum are full-hardware approaches, where event

counters and/or availability of nearby resources are monitored to determine whether

reconfiguration would be beneficial. At the other end are full-software approaches

where performance is measured by an operating system or periodic profiling phases.

Software approaches have a higher overhead since they must interrupt the application’s

execution in order to perform their analysis, but are generally more flexible, and are

able to try different heuristics more easily.

38

2.3.5 Miscellaneous

This section describes some specific techniques which have been used to achieve one or

more of the goals that Loki has. In general, there is scope for applying these techniques

to the Loki architecture, but this is not explored in this thesis.

Dynamic voltage and frequency scaling (DVFS) allows the voltage (energy) and

frequency (performance) to be changed at runtime, depending on the needs of the ap-

plication and the available resources. Two main applications of this technique are to

put a core in a low-power mode when its results are not needed urgently, or to tem-

porarily boost power consumption above the TDP to compute a result quickly. Archi-

tectures such as AsAP (mentioned previously) have explored finer-grained versions of

this technique which run cores which are not on the critical path as slowly as possible,

so that the results are produced exactly when they are needed and with minimal energy

consumption [128].

Computational sprinting [107] makes the observation that many applications are

not characterised by a long sequence of sustained computation, but instead are made up

of short sequences of intense activity separated by long periods of idleness. Since these

bursts of activity are so short, it is often possible to increase the voltage and frequency

(and therefore performance) to such an extent that the heat produced greatly exceeds

the thermal and electrical capacities of the device, with the condition that there will be

a recovery period afterwards. Several techniques are discussed which could increase

the length, frequency and/or intensity of the bursts. BubbleWrap [64] takes this one

step further. A large number of identical cores are placed on a chip, and the ones

which are most power-efficient post-manufacture are selected to accelerate parallel

code regions. All other cores are used individually at an elevated supply voltage and

frequency to accelerate sequential code. The higher voltage significantly reduces each

core’s service life, and when the core fails, it is simply replaced with another. The

elevated voltage is carefully chosen to maximise performance while reaching a target

chip lifespan.

Core salvaging [105] observes that just because there is a permanent fault in a

component, it does not mean that the component is useless. It may be the case that only

a subset of functionality is lost, or that execution can still continue, but with reduced

performance. Methods for classifying and adapting to such faults are explored.

StageNet [48] and StageWeb [47] provide extra interconnect in a multicore archi-

tecture so that faults only bring down individual pipeline stages and not entire cores.

39

When a fault is found in a pipeline stage, the datapath is modified so that the same

pipeline stage from another core is used instead, if one is available. Isolating faults at

a finer granularity allows a larger number of faults to exist before the chip becomes

unusable: in the best case it is possible to have one faulty pipeline stage in each core,

but reroute the datapaths in such a way that only one pipeline is lost.

CGRA Express [103] and dynamic core morphing (DCM, mentioned previously)

provide similar links between pipelines, but for aims other than increasing fault tol-

erance. This suggests that a rich interconnect structure can be used for a wide range

of purposes. DCM’s links allow cores to “trade” parts of their pipelines to increase

performance of particular tasks or reduce power consumption. CGRA Express instead

provides direct connections between neighbouring ALUs, and allows multiple opera-

tions to execute sequentially in a single cycle, reducing the latency of a sequence of

operations.

Conservation cores [130] provides specialised yet configurable processors at de-

sign time to reduce energy consumption of frequently executed code. The specialisa-

tion inherent in these cores is used to address the utilisation wall. Since the processors

are slightly configurable, they are resilient to updates to the programs being executed,

thus extending the lifetime of the chip.

2.4 Homogeneity vs. heterogeneity

There is ongoing debate over whether the future of computer architecture will be ho-

mogeneous or heterogeneous. Advocates of homogeneity argue that a regular structure

is simple, reducing design costs and making the architecture more scalable and easy

to program. Those in favour of heterogeneity suggest that specialised hardware is the

only way to achieve the levels of performance and energy-efficiency demanded by

modern applications.

Hill and Marty show that a dynamic homogeneous architecture is better than any

static mix of performance- and throughput-targeted cores, because resources can be

reallocated at run-time to suit the task being performed [53]. This work was later

extended by Chung et al. to show that when specialised accelerators are added to the

processor mix, they are the best option, suggesting that heterogeneity may in fact be

best [32].

40

Loki lies firmly in the homogeneous camp: multiple identical cores and multiple

identical cache banks form a tile, which is replicated across the chip. As well as the

advantages of homogeneity described above, Loki uses its regular structure to imple-

ment fault tolerance: if a core does not work, execution can be re-mapped to another

core. A similar process takes place at manufacture time for many modern commercial

processors – some chips are simply marketed as having less functionality than they re-

ally have to keep yields high in the presence of faults [50]. Future work aims to allow

Loki to cope with faults dynamically.

To address the concerns of the inefficiency of general-purpose, homogeneous ar-

chitectures, Loki allows specialisation in software, bypassing unneeded functionality

whenever possible. While this will not achieve the efficiency of dedicated hardware, it

is believed to be a good compromise. Amdahl’s law is addressed by allowing multiple

cores to work together to accelerate sequential bottlenecks; Loki’s low communication

costs make this easier than in traditional architectures. Future work will also explore

the impact of adding to each Loki tile specialised logic such as a shared floating point

unit or configurable sub-graph accelerators for common operations.

2.5 Compilation

Compilation techniques are not part of this work, but a new compiler was required and

has been implemented to make use of the new instruction set (described in Appendix

A), and to take advantage of Loki’s unique features. The compiler is based on clang

and LLVM [75], so a wide range of analyses are supported.

Many of the features and optimisations described in this thesis could be utilised or

performed by the compiler; potential algorithms are suggested throughout, but imple-

mentation is left for future work.

2.6 Future developments

As researchers attempt to maintain the rate of progress of computer systems, they will

inevitably develop new technologies which will continue to change the landscape of

tradeoffs and require further architectural changes. Examples of upcoming develop-

ments include: 3D chip stacking, allowing much more logic and/or cache, and much

more efficient communication between the different layers; optical interconnect, al-

41

lowing cheap communication over longer distances; new semiconductors which could

provide a step-change in transistor switching speed or power consumption; and quan-

tum computing, which will completely change the way computations are performed,

making alternative algorithms and applications much more popular.

42

CHAPTER 3

LOKI ARCHITECTURE

In Norse mythology, Loki is a god capable of shape-shifting to suit the current sit-

uation. He is said to possess “tricks for every purpose”, and when he wasn’t causing

mischief, he was liked by the other gods for providing useful tools which allowed them

to complete their tasks more easily.

In this chapter I introduce the Loki architecture: a simple, homogeneous fabric of

many cores, designed to allow flexible use of its resources. The Loki architecture is

able to change its appearance by emulating other types of architecture which better

suit the code being executed. I present an overview of the design and justify some of

the more interesting design decisions. Energy and area models for each component are

presented in Chapter 4, and the best implementation of each component is determined

experimentally in Chapter 5.

Loki’s novelty lies in its flexibility. While many other architectures are able to

alternate between a small number of configurations, Loki’s efficient, general-purpose

communication network allows many more possibilities, and means that fewer appli-

cations have to settle for sub-optimal configurations.

Paradoxically, I believe that the difficulty of parallelising applications can be over-

come by providing orders of magnitude more cores on a single chip than is typical

today. In doing so, the cores must necessarily be very small, and so communication is

often over a very short range, making it cheap and efficient. Loki’s network is accessi-

ble directly through the instruction set to take advantage of this. Lifting the restrictions

on inter-core communication mean that it could be easier to split a program into many

tightly coupled “strands” than into a few mostly-independent threads.

Each core also consumes less energy, since the structures it accesses are smaller

and data doesn’t need to travel as far internally. This is useful in situations where

43

performance is not the primary concern; execution can proceed slowly but cheaply on a

single core. The design does not make use of long wires, which improves prospects for

future scaling – logic scales better than wires when using modern fabrication processes.

The decision to have many relatively weak cores is consistent with Pollack’s rule [23],

which states that the performance of a microprocessor is roughly proportional to the

square root of its area, suggesting that a large number of simple cores gives the best

potential performance. Loki’s individual cores are so simple that they do not perform

as well as the more complex cores of other designs, but it is possible to fit so many

more cores on a chip of the same area, that the total computation potential greatly in-

creases. The challenge is then to find ways of effectively using the many cores to make

up for the fact that each one is less powerful and address Amdahl’s law. Section 5.5

compares Loki to a commercial embedded processor, and Chapter 6 describes ways in

which the many cores can be used to realise this performance potential.

As discussed in Chapter 2, there has been much work in the area of low-power

parallel systems, but none seem to address all of the issues computer architects will

need to face in the near future.

3.1 Overview

Loki has a simple, tiled, homogeneous architecture (Figure 3.1). Each tile contains

eight complete cores, each capable of executing its own instruction stream, eight 8kB

memory banks, and various interconnect, and occupies approximately 1mm2 in a 40nm

process. (A more-detailed layout is provided in Section 5.4.) These tiles can be

stamped out repeatedly across the chip, making scaling to large numbers of cores sim-

ple. The hierarchy of connectivity is optimised for the common case of local com-

munication [43]; sending messages within a tile is cheap and efficient, and it is still

possible for any component to communicate with any other if necessary.

The design can be seen as lying somewhere between that of an FPGA and a tra-

ditional multi-core. Although it is possible to execute any program on any individual

core, we anticipate it being more common to map a program to a large number of

cores, with caches and communication patterns set up differently in different parts of

the mapping to optimise for the various features of the application. Unlike many other

architectures in this area, Loki does not require a separate control processor. The aim

44

Figure 3.1: High-level Loki architecture, with chip (left) and one of its many tiles (right).

is to be flexible enough that cores can be composed in such a way that even sequential

code can be sped up sufficiently.

In order to constrain Loki’s design, I target embedded applications: the benchmark

suite selected is for mobile devices, and I aim for a total power consumption of around

2W. Nevertheless, I expect that many of the findings in this thesis would translate to

higher-power and higher-performance microarchitectures.

Loki was designed with three themes in mind:

• Access: making various structures accessible may allow novel use cases in un-

expected situations. An inaccessible structure is one which only benefits a small

number of instructions, or cannot easily be used to help another core. This phi-

losophy also allows components to be reused more often, making the overall

design smaller and simpler. The aim is to have as few solutions as possible for

as many problems as possible – this is simply an application of the RISC philos-

ophy to a forward-looking parallel architecture.

45

• Bypass: avoid using hardware components whenever possible to save energy

(and perhaps improve performance). Examples include avoiding cache tag checks

if it is already known that the instruction is stored locally, and using persistent in-

struction packets to remove the need for a jump in a long-running loop (Section

3.2.1).

• Compose: allow multiple cores to work together and share resources to execute

a sequential thread faster. Multiple memory banks can also work together to

provide the most-suited memory system for each application.

These features make Loki a very flexible platform – the aim was to be able to ex-

ploit the widest possible range of execution patterns, allowing virtual processors to be

created which most closely match the natural structure of the programs being executed.

An execution pattern is defined as any way of using multiple cores to execute a piece

of code: this includes techniques such as using a core to prefetch or precompute data,

and distributing independent loop iterations across multiple cores. Furthermore, I did

not want the design of Loki to be constrained by the imaginations of those working on

it; I wanted to be able to take advantage of new parallelism strategies without needing

to change the hardware. This desire led to the target of making structures as general-

purpose as possible, allowing them to be used in potentially unforeseen situations.

Indeed, as the project progressed, I encountered many new ways for cores to cooperate

which mapped naturally to the existing Loki architecture. Examples include deferring

transaction code in software transactional memory systems to a helper core [80], and

techniques for parallelising loops with cross-iteration dependencies [29]. Often, the

effectiveness of these approaches is correlated with the latency of communicating be-

tween cores; I expect that they will generally perform well on Loki with its low-latency

communication.

Lots of functionality is exposed to the compiler, including the network, delay slots

and buffer contents. The architecture is sufficiently close to traditional designs that

even the most basic of compilers should be able to generate functional code, but it

should also be possible to use the extra information to optimise. For example, caches

could be pre-filled with commonly-executed instructions, making it possible to know

the relative locations of all instructions in a code section, and jump between them

without requiring any cache tag checks.

46

����� ������ ����	��

����

���

���
���

������

������

�������

������

���������

�����

��	

���������

���

�!!� �����

����"�#���

��$% �

�&��

$�$'�

��
�
��
�
$
��
%
�
�

�
�
�
�
�

�(��

���

�(��

�����

)$���$'"

��

Figure 3.2: Loki pipeline block diagram.

3.2 Core microarchitecture

Decisions in computer architecture almost always involve tradeoffs. It is often possible

to improve performance, for example, but this will likely have an adverse effect on

energy consumption or area (or both). The Pareto front of the design space often has

only a small region where a change in one metric will result in a proportional change in

another [13]. Outside of this region, a large increase in energy consumption is required

to effect a small increase in performance, and conversely, a small decrease in energy

consumption requires a large decrease in performance.

For this reason, each Loki core is very simple, but not minimal (Figure 3.2). Loki

aims to be at the energy-efficient end of the proportional region of the Pareto front.

We therefore include features such as a shallow pipeline, a 32-bit datapath, and local

storage for instructions and data, while eschewing features such as branch prediction,

out-of-order execution and multiple-issue. We attempt to build everything out of a

small number of basic building blocks, and make the various components accessible

enough that they can be used for multiple purposes, when appropriate. This makes the

cores smaller and lower-power (and in turn allowing cheaper communication and more

cores), simpler to design and validate, easier to protect against faults, and allows more

effort to be put towards optimising each component.

47

A shallow 4-stage pipeline is used. This reduces the number of pipeline registers

needed; Section 4.5 shows that pipeline registers consume a relatively large proportion

of energy and area in the pipeline. The short pipeline also reduces the need for branch

prediction. Loki instead makes use of instruction prefetching where possible, and falls

back on using a single branch delay slot (like MIPS).

In designing the Loki architecture, I tried to determine what a processor pipeline

would look like if it was designed to communicate with other components. To this end,

network connections are brought right into the pipeline and exposed to the programmer

and compiler. Data from the network can be accessed in exactly the same way as if it

were in a register, and many instructions have the option to send their result over the

network as well as storing it locally. The network logically connects every component

to every other, but physically, it is made up of multiple sub-networks, each tailored to

a particular use case. The networks are described in more detail in Section 3.3.

To increase uniformity and flexibility, L1 memory banks are also accessed over the

network. This allows cores to masquerade as memories, applying a transformation to

memory addresses before accessing the banks themselves (e.g. virtual memory), and

removes the need for an explicit pipeline stage for memory access. It also makes the

memory banks easily accessible to multiple cores for data sharing, and allows a single

core to access multiple banks, increasing available storage space. The design is not

far removed from that of other banked, shared caches, such as the level-2 cache of the

Niagara series of processors [71].

In order to reduce the impact of the network latency when accessing memory, ar-

bitration is done in advance when possible – the total time required to access the 64kB

banked L1 cache is two clock cycles. For cores, this involves requesting network re-

sources in the execute stage, so as soon as the value enters the write back stage, the

network is ready. For memory banks, network resources are requested in parallel with

the data array access.

Channels are a fundamental design feature which allow components to commu-

nicate. Each core and memory has associated with it a number of channel-ends, to

which it can read or write. Each channel connects a single source to one or more

destinations, and can be reallocated using a single instruction. In the cores, the input

channel-ends are mapped to registers – reading from one of these registers retrieves

data from a network buffer. A short code example is given later in Figure 3.5. These

network operations are also blocking: if a value has not yet arrived or the destination

of a sent message has no buffer space, the core will block until it is available. This

48

makes synchronisation simpler, and is used as a building block for a higher-level mes-

sage passing abstraction for the programmer. Message passing is used in preference to

cache-coherent shared memory to produce the necessary fine-grain control of commu-

nications to minimise overheads, although simple shared memory schemes can also be

supported.

To provide a level of abstraction to hide the network, we make use of the chan-

nel map table. This table maps logical network addresses to physical ones, and this

provides multiple benefits:

• Fewer bits are required in the instruction encoding to specify a network destina-

tion.

• Network addresses are not hard-coded into the program, so communications can

be re-mapped at runtime. This would be useful to move execution away from a

hardware fault, or towards one of the chip’s I/O pins, or for “paging” parts of the

program on and off the chip (similar to Tartan [88]).

• In the future, it may be possible to provide some sort of protection or segmenta-

tion for memory, since all memory accesses are over the network.

The pipeline has two instruction inputs: there is a cache for frequently-executed

instructions, and a FIFO queue for instructions which are expected to execute only

once. Typically, the cache is used for instructions which the core fetches for itself, and

the queue behaves like an interrupt mechanism: another core can direct instructions to

the queue, and these have priority. This feature is often used to allow cores to work

together. More information on the instruction fetch mechanism is in Section 3.2.1.

The register file has 32×32-bit entries with two read ports and one write port. Two

registers are read-only and hold special values, and a further six are mapped to input

network buffers. A larger data storage array is provided in the form of the scratchpad in

the execute stage. The scratchpad is managed by software, and has a single read/write

port. More detail can be found in Section 3.2.6.

3.2.1 Instruction fetch

Loki makes use of instruction packets (IPKs) to help decouple the memory banks from

the cores, and to fit better with the network-centric design. Instructions are grouped

49

���������	�

�����
�����

���������	�

������

���������	��

������	�

����	� �	

���	��

Figure 3.3: Loki instruction sources.

into packets which roughly correspond to basic blocks: a single instruction fetch re-

turns an entire packet, and once a packet begins execution, it is guaranteed to finish

(unless cancelled in exceptional circumstances). The final instruction of each packet

has an end of packet marker (in assembly, .eop is appended to the instruction name).

Memory banks and caches autonomously continue reading instructions sequentially

until this marker is seen.

The Loki pipeline contains two instruction inputs, as shown in Figure 3.3. One

is a small FIFO queue which is used for instructions which are not expected to be

needed again, such as requests from other cores to start executing a program, or sec-

tions of the program which do not exhibit good caching behaviour. The second is a

small level-0 cache, referred to throughout this dissertation as the L0 cache, instruc-

tion packet cache, or IPK cache. The two instruction inputs were originally provided

to allow a separate channel for cores to send instructions to each other. This is still a

useful feature, but it has since been discovered that separate inputs also allow for some

interesting optimisations (Section 5.1).

It is possible to switch between the cache and instruction buffer as the main in-

struction source at any time by sending a configuration message to the L1 cache and

telling it where it should send instructions from now on. Further details on configuring

memory are in Section 3.4.

Since Loki’s L0 caches are so small (and L1 accesses are relatively expensive), su-

perfluous instruction fetches are minimised by limiting each instruction packet to only

a single exit point. This decision trades performance for energy efficiency: less spatial

locality is exploited, but fewer unneeded instructions are fetched. The performance

50

impact is reduced by prefetching instruction packets when possible. Having a single

exit point per instruction packet means that packets correspond better to basic blocks

than hyperblocks, though it is possible to put multiple basic blocks within a single

instruction packet by making use of the in-buffer jump instruction. This instruction be-

haves like an unconditional branch to a relative position within the cache, and is used

when the cache contents can be predicted statically. This instruction further reduces

the number of tag checks required, since it is already known that the instruction is at

the specified location.

Level-0 caches have also found their uses in other architectures, and are typically

used to reduce energy consumption. The Elm architecture has a compiler-managed L0

cache to reduce the costs of instruction supply [15], and Intel’s Sandy Bridge proces-

sors contain a cache of decoded micro-operations which allows the first few pipeline

stages to be bypassed about 80% of the time [57].

The use of instruction packets allows instructions to be prefetched easily, and also

reduces the number of tag checks required in the L0 cache. Only the first instruction

of the packet needs to be looked up, and all others can be read sequentially from there

– the first instruction of each packet in the cache is automatically aligned with the next

available cache tag. The cache’s first-in-first-out replacement policy ensures that if the

first instruction of a packet is in the cache, the rest of the packet will be there as well.

If necessary, fetch requests wait in the core’s output buffer until there is space in the

L0 cache for the entire packet. This ensures that the packet currently being executed

is not overwritten, and that the source memory bank does not block part-way through

delivering the packet, which could potentially lead to deadlock. Instead of specifying

each instruction packet’s length, a maximum size is defined, and it is pessimistically

assumed that all packets are of this size. The maximum instruction packet size is

typically half the size of the L0 cache. Software can ignore this restriction if it is

known that the current packet will complete quickly enough that being overwritten is

not a problem.

The cache is fully-associative with a FIFO replacement policy. This approach is

used so that the cache stores a trace of instructions it has executed – this results in

better utilisation of the limited resource because uncommon branches are not cached.

A limitation is that if the body of a loop is larger than the available storage space,

it will all need to be re-fetched on each iteration. Section 5.1.3 explores ways of

reducing this problem. Another way of ensuring that cache space is used effectively

is to hand control over to the compiler. Since the compiler is out of the scope of

51

this work, this approach is not explored here, though instructions are provided to give

the compiler partial control – these are described below. One problem with complete

compiler control is that unpredictable control flow can result in limited knowledge of

the contents of the cache, and so instructions may need to be pessimistically fetched

from the next level of the memory hierarchy, even if they are already in the cache [102].

The instruction buffer has priority over the cache; if the core has completed execu-

tion of one instruction packet, and there are packets waiting in both the buffer and the

cache, the packet from the buffer is chosen. This allows cores to interrupt each other,

either to cancel the work they are doing, or to request a small amount of computation

before returning to the previous instruction thread. Once a packet begins execution, it

continues to completion, regardless of any other waiting instructions.

Loki offers multiple ways of managing the contents of the cache and buffer:

• Fetch instruction: request an instruction packet if it is not already cached locally.

The packet is queued up to execute as soon as the current packet finishes, which

means it can be prefetched well in advance to hide memory latency. There can be

at most one fetch in progress at any one time, to avoid the need for deinterleaving

instructions from different packets. There is a one-cycle branch delay slot when

there is a hit in the L0 instruction cache: the instruction packet’s memory address

is computed (or read from a register) in the decode pipeline stage, and the L0

lookup is performed in the following cycle in the fetch stage.

• Fill instruction: request an instruction packet if it is not already cached locally,

but do not execute it. This is useful if there are instruction packets which are

known statically to be good to store in the cache. Once the cache has been filled

with useful instructions, the contents can effectively be locked by directing all

subsequent instructions to the instruction buffer instead. This allows an imple-

mentation of cache pinning [102], and is explored further in Section 5.1.3.

• Persistent instruction packets: these are instruction packets which execute re-

peatedly until either a next instruction packet command is received over the net-

work, or a new packet is fetched. An instruction packet is made persistent by

using the fetch persistent instruction in the place of an ordinary fetch. Each iter-

ation of the instruction packet can be issued immediately after the previous one

finishes; there is no bubble in the pipeline. When the core drops out of persistent

mode, the pipeline is flushed, and any remaining instructions in the current it-

52

eration are cancelled. Persistent instruction packets are useful for implementing

very tight loops, since the branch instruction is not needed. Predicated execu-

tion can be used to introduce simple control flow to a persistent packet. In the

extreme case that the persistent packet contains a single instruction, much of the

pipeline can be clock gated, and significant energy can be saved (Section 6.4).

• In-buffer jump instruction: if the contents of the cache are known statically, the

core may jump around within its cache without the need for computing a memory

address and checking all cache tags. This instruction has the advantage that it

completes one pipeline stage earlier than the others, as no address computation

needs to be performed. This means that there is no branch delay slot, and the

next instruction can be issued in the following clock cycle.

For more details on the semantics of these instructions, see Appendix A.

The supply of instructions is completely software managed; there is no fall-through

to the following instruction packet when a packet completes. This decision is made so

that instructions are only fetched when they will definitely be used; this eliminates

the energy costs of fetching unwanted instructions and prevents unnecessary evictions

from the very small L0 cache. Elm, SCALE and TRIPS, which also make use of

similar blocks of instructions, all do without fall-through and do not suffer a notable

performance degradation [15, 28, 72].

A single instruction packet can execute at most one fetch instruction, but any num-

ber of fills. This restricts the number of packets which can be queued up to one, and

makes reasoning about the execution path easier.

Loki’s ability to prefetch instruction packets means that the lack of branch predic-

tion is not much of a penalty when executing code on a single core. When attempting

to exploit instruction-level parallelism across multiple cores, however, speculation may

be required to find enough independent instructions. Future work will explore whether

it is possible to use additional cores to provide this functionality, or whether more-

traditional prediction mechanisms are required.

3.2.2 Decode

The decoder is very simple thanks to Loki’s RISC instruction set and simple encoding

(Appendix A). Figure 3.4 shows the instruction formats used. For all formats which

specify a particular field (e.g. a register index), the position and size of that field is

53

the same, making it easy to extract the value quickly. The only exception to this is

immediate values, which can be different sizes.

After the instruction has been decoded, data is gathered from all appropriate sources:

registers are read; network buffers are accessed, stalling the pipeline if data hasn’t

arrived yet; and the channel map table is accessed. Address computation for fetch

instructions is also performed in this stage.

3.2.3 Execute

The execute stage contains an ALU capable of 15 functions and a two-cycle 32-bit

multiplier. Scratchpad access and writes to the channel map table also take place in

this stage.

3.2.4 Write back

The write back stage is very simple, performing register writes and sending data onto

the network when permission is given.

3.2.5 Network integration

Each core has eight input channels and sixteen output channels. Each input channel is

associated with a separate buffer, as described in Table 3.1, so that data from different

sources can be accessed in a different order to the one in which they arrived. All

output channels are multiplexed onto a single output buffer; it would also be possible

to provide a buffer for each channel, or for each subnetwork (described in Section

3.3), but no significant advantage was observed in doing so. The final output channel

(channel 15) is reserved as the null channel. It is used by instructions which have a

space in their instruction encoding to specify an output channel, but do not want to

send their result onto the network. Output channel 0 is implicitly used by all fetch

and fill instructions to allow more bits in the instruction encoding to be allocated to an

immediate value.

Most of the input channel-ends are mapped to registers – reading from one of these

registers retrieves data from a network buffer. Reads are destructive; it is not possible to

read the same item twice, so if this behaviour is desired, the value must first be moved

to a register. Network operations are also blocking: if a value has not yet arrived or the

destination of a send has no buffer space, the core will block until it is available. This

54

FF (fetch) format:

p opcode immediate

2 7 23

0R (zero registers) format:

p opcode xxxxx channel immediate

2 7 5 4 14

0Rnc (zero registers, no channel) format:

p opcode xxxxx immediate

2 7 9 14

1R (one register) format:

p opcode reg1 channel immediate

2 7 5 4 14

1Rnc (one register, no channel) format:

p opcode reg1 xx immediate

2 7 5 2 16

2R (two registers) format:

p opcode reg1 channel reg2 immediate

2 7 5 4 5 9

2Rnc (two registers, no channel) format:

p opcode reg1 xxxx reg2 immediate

2 7 5 4 5 9

2Rs (two registers with shift amount) format:

p opcode reg1 channel reg2 xxxx immediate

2 7 5 4 5 4 5

3R (three registers) format:

p opcode reg1 channel reg2 reg3 fn

2 7 5 4 5 5 4

Figure 3.4: Loki instruction formats. p represents the predicate bits, allowing execution to be

conditional on the value of the predicate register, and marking the ends of instruction packets.

fn is the ALU function. This encoding was produced by Robert Mullins.

55

Channel index Hardware structure

0 Instruction buffer

1 Instruction packet cache

2-7 Registers 2-7

Table 3.1: Hardware components corresponding to each input channel of a Loki core.

makes synchronisation simpler, and can be used as a building block for a higher-level

message passing abstraction for the programmer.

It is possible to read from two separate input channels in a single cycle, as though

they were registers. The result of reading from the same channel twice in a single cycle

is not defined, as it is not clear whether the same result should be returned both times, or

whether two consecutive reads should be performed. Reading two consecutive values

is often the more useful option, but allowing this to happen within a single clock cycle

would greatly complicate the design of the network buffers.

To increase uniformity and flexibility, memory banks are also accessed over the

network. This allows cores to masquerade as memories, applying a transformation

to memory addresses before accessing the banks themselves. This could be useful

for implementing virtual memory, memory protection, and transactional memory, for

example. The network also makes the memory banks easily accessible to multiple

cores. In order to reduce the impact of the network latency when accessing memory,

arbitration is done in parallel with computation or memory access – the total time

required to access the 64kB banked L1 cache is two clock cycles in a zero-load system.

Each core contains a channel map table to translate between logical and physical

network addresses. The table also keeps track of any flow control information such

as the number of credits a channel has. This information can be used to determine

whether the core is allowed to send more data onto a particular channel at a given time.

The channel map table is read in the decode stage (at the same time as the register

file). If communicating with memory, the memory bank to be accessed is determined

in the first fraction of the execute stage using the lowest bits of the target memory

address, and a request for network resources is sent to the appropriate arbiter. If there

are no competing requests, a grant will be issued in the same cycle. The data is sent

onto the network at the beginning of the write back stage, and takes half a cycle to

traverse the crossbar to the memory bank. The memory bank is clocked at the negative

clock edge and has a one cycle latency, so is ready to send data back to the core on

56

the following negative clock edge. After another half-cycle to traverse the crossbar,

the data arrives at the core. Further detail about the timing of each component can be

found in Section 4.5.

Channel address encoding

Network addresses are encoded as integers, allowing them to be manipulated by the

ALU before they are stored in the channel map table, or shared between components.

It is possible to specify point-to-point addresses to any component on the chip, and

multicast addresses within a tile.

A point-to-point address is encoded as:

tile position channel

19 12 4 0

tile is the index of the tile on the chip; position is the component’s position within

the tile – cores range from 0 to 7 and memories range from 8 to 15; channel is the

component’s channel to be accessed – cores have 8 input channels and memories have

16.

Multicast addresses are encoded as:

bitmask channel

11 4 0

bitmask is an 8-bit entry with one bit for each core in the local tile. The core at

position 0 is represented by the least significant bit. Data sent to this address is to be

sent to all cores which have their bits set in the bitmask. To simplify the encoding and

reduce the amount of information required, a restriction is made that the data must be

sent to the same input channel of all target cores. This restriction did not prove to be a

limitation in any of the experiments which used multicast.

Example

Figure 3.5 lists a fragment of the kernel of the CRC benchmark. Before the kernel

begins, setchmapi (set channel map with immediate) associates the logical network

address 1 with the physical network address held in r11. The function itself begins

with an instruction fetch: the next instruction packet to be executed is known imme-

diately, and is fetched in advance. The load instruction (ldw) demonstrates the ability

57

uint32_t updateCRC32(uint8_t ch, uint32_t crc)

{

return crc_32_tab[(crc ˆ ch) & 0xff] ˆ (crc >> 8);

}

(a) C code

setchmapi 1, r11 # set up output channel 1

[...]

fetch r10 # pre-fetch next packet

xor r11, r13, r14 # r11 = arg1 ˆ arg2

lli r12, %lo(crc_32_tab) # lower 16 bits of label

lui r12, %hi(crc_32_tab) # upper 16 bits of label

andi r11, r11, 255 # r11 = r11 & 255

slli r11, r11, 2 # r11 = r11 << 2

addu r11, r12, r11 # r11 = r12 + r11

ldw 0(r11) -> 1 # request data from memory

srli r12, r14, 8 # r12 = r14 >> 8

xor.eop r11, r2, r12 # use loaded data (r2)

(b) Loki assembly code

Figure 3.5: CRC code example showing how Loki’s instruction set interacts with the on-chip

network.

to send data onto the network with the -> notation; most instructions are able to store

their results locally, send them over the network, or both. The load works by sending

a memory address over the network to the appropriate cache bank. The cache bank

also has a channel map table which has been configured to send data back to channel

2 of the core when a request is received at a particular input channel. This data is

used in the final instruction: registers 2-7 are mapped to the input buffers. The .eop

marker denotes the end of the instruction packet and triggers the start of execution of

the packet fetched earlier.

3.2.6 Data supply

Figure 3.6 shows how Loki’s register file is arranged. The register file has 32-bit entries

accessible through two read ports and one write port, all of which are visible in the

58

���

�

��

��

����

�	
��	�����	

�

���

�

�

�

�

���

�����

�����	��

�	��

����	������� �	��

�

� ���

!�	������	
��	��

Figure 3.6: Register file.

lli r10, 42

lli r11, 1000

scratchwr r10, r11

scratchrd r12, r10

Figure 3.7: Loki assembly code demonstrating use of the scratchpad.

instruction set. Register 0 is hardwired to zero; register 1 contains the address of the

current instruction packet (the closest thing Loki has to a program counter) so relative

jumps can be made; registers 2-7 are mapped to the input network buffers (excluding

instruction inputs); and registers 8-31 are normal registers.

Scratchpad access requires special instructions and is demonstrated in Figure 3.7.

The first two instructions store the constants 42 and 1000 in registers 10 and 11, re-

spectively. The third instruction (scratchwr) copies the contents of register 11 into the

scratchpad position referenced by register 10. The final instruction (scratchrd) reads

indirectly from r10 and stores the result in r12. Since register 10 still holds the value

42, scratchpad index 42 is read, and the value 1000 is stored in register 12. There also

exist immediate versions of these instructions, allowing the compiler (or programmer)

to directly access particular entries of the scratchpad, and instructions which behave in

the same way but address the input buffers (iwr and ird).

Indirect access allows better use of the input network channels when combined

with the select channel instruction (selch). Select channel stores the index of a non-

59

empty input channel to a specified register, stalling the pipeline until data arrives if all

input channels are empty. An indirect read can then be performed to read from this

channel. This behaviour is useful when many different components need to send data

to a single core, and the core may process the data in any order.

All sensible optimisations to make use of the scratchpad will reduce energy con-

sumption: it is much cheaper to access than the L1 cache, even if an extra instruction

or two are required. Not all such optimisations will improve performance, however. In

some cases, additional instructions are required to determine where in the scratchpad

the required data is (or even if it is there at all), and these may negate any performance

benefits gained by storing the data locally.

The scratchpad can be used for a variety of purposes including storing a small table

of data, storing constants and branch target addresses, storing the contents of spilled

registers, or storing a small number of stack frames.

When using the scratchpad to store a table, access through another register is most

useful; as a space for storing constants, the compiler usually knows statically which

entry is to be accessed, so using an immediate index is the better approach. One partic-

ular advantage of the scratchpad is its simplified addressing: element x of a table can

be stored at position x in the scratchpad, eliminating the need to generate a memory

address and reducing the number of instructions executed.

3.3 On-chip network

The network is central to Loki’s design: communication between cores and memory

access both take place over the network. If a cache suffers a miss, it also requests the

new data over the network. Logically, all cores and memory banks communicate over

the same network, but in practice, it is made up of multiple physical networks, each

optimised for a particular communication pattern.

Each core and each memory bank has a network address, and the network to use

is determined by very simple logic applied to the source and destination addresses. As

well as specifying the component to send data to, the input channel of that component

also needs to be given. Each input channel can have at most one writer: this simplifies

arbitration. The writing component can change an arbitrary number of times during a

program’s execution, but there can be at most one at any point. This is enforced at the

software level.

60

The network’s design also reflects an attempt to avoid the possibility of deadlock,

as deadlock recovery mechanisms are traditionally excessively complex and inele-

gant. The Raw architecture, for example, provided a duplicate, more-restricted net-

work used for draining buffer contents to memory when its first network experienced

deadlock [124]. Loki’s network makes use of end-to-end flow control, so components

only put data onto the network if it is guaranteed to be removed again. This avoids

congestion, which in turn eliminates the risk of deadlock [52]. Non-blocking networks

such as crossbars are used so that network traffic from different components doesn’t

interact in any way. (A non-blocking network is one in which an unused input to the

network can always be connected to an unused output, without disrupting any existing

communications.) Of course, deadlock is still possible if there is a cyclic dependency

in software, but this would be unavoidable for such malformed programs.

It is expected that chip I/O and memory controllers will also be accessed through

the network, as with Tilera’s chips [132].

3.3.1 Intratile networks

The networks within a tile are optimised to be low-latency and low-energy. Commu-

nication to a nearby component is more common than to a distant one [43], so the

network is optimised for this case. The cheaper network communication is, the more

often it can be used profitably, and so the more opportunities there are to use com-

munication to group multiple cores and memories together. To further reduce latency,

arbitration is carried out in the cycle before data is due to be sent. In memory banks,

this happens in parallel with accessing the SRAM, and in cores, it takes place in the

execute stage. Assuming that the required network resources can be allocated, the data

can then be sent as soon as it becomes available. If the required network resources are

in use, the information is buffered until they become available.

Figure 3.8 shows how multiple sub-networks are used for different communication

patterns. Between cores and memories there is a separate crossbar for communication

in each direction, allowing a high bandwidth and low-latency connection to multiple

memory banks. Using a non-blocking network such as a crossbar is important to pre-

vent the many components from interfering with each other and potentially causing

deadlock. After arbitration has been done, it is possible for data to traverse the cross-

bar in half a clock cycle. This helps reduce memory latency. In total, in a zero-load

system, the time required to access memory is two clock cycles: half a cycle to trans-

61

Memory banks communicate with each other over a simple ring network, allowing

streaming operations such as instruction packet reads to be handed on to the next bank

if they extend beyond the contents of the current bank. Memory banks also share

channel map table information on the ring network to facilitate this.

Finally, all components share a bus connection to the local router, which in turn is

connected to the four neighbouring tiles.

Each core is capable of sending one word and receiving two words per cycle, from

any combination of networks. In rare circumstances, a core may want to receive three

words in one cycle (two operands and an instruction), but allowing this would require

increased network complexity and be detrimental to the common case.

Memory banks are capable of sending and receiving one word per cycle to cores,

and one transaction per cycle between banks. Commands received from other memory

banks take priority as they include important operations such as updating the channel

map table.

3.3.2 Intertile network

The work in this thesis concentrates on behaviour within a tile, so a placeholder inter-

tile network is used.

It is expected that the network will be based on a simple mesh, where each tile

has direct connections to its four immediate neighbours. This design is popular in

networks-on-chip as it is scalable and keeps wire lengths low. Loki’s clock period

allows data to travel relatively large distances in a single cycle, potentially making the

addition of longer-distance multi-drop channels useful to reduce the diameter of the

network [45].

3.4 Memory hierarchy

The memory system is beyond the scope of this work, so only a brief overview is given

here.

Each Loki tile contains eight memory banks, each with separate network access

ports and command buffers. Each bank holds 8kB of data, and is accessible in a single

clock cycle.

Banks are accessed by sending commands over the network. The source compo-

nent computes which bank to access based on the lowest few bits of the address being

63

accessed – cache lines are interleaved between memory banks. A read command con-

sists of a read opcode with a 32 bit address. A write command consists of two flits

(flow control units): a write opcode with a 32 bit address, followed by a payload op-

code with 32 bits of data. Wormhole routing is used throughout the on-chip network

to ensure that these two flits can never interleave with memory commands from other

components.

Memory banks must also know where to send data back to, since their only inter-

face is to the network. Each memory bank has 16 channels, each associated with a

separate return destination held in a table (a simpler version of the channel map table

found in cores). All arriving memory commands are addressed to a particular chan-

nel, so if the memory operation produces a result, it will send it to the return address

associated with that channel. The addresses can be changed at runtime using the ta-

ble update command, allowing each core to have multiple connections to the same

memory bank. This is useful because it allows instructions to be directed to either the

L0 cache or instruction buffer of the target core, and it allows multiple data channels,

allowing multiple loads to take place simultaneously and potentially complete out of

order. Since the return address is known as soon as the operation begins, it is possible

to request network resources before data is available – this helps reduce the overall

memory access latency.

All memory banks in a tile are connected in a ring structure, as described in Section

3.3.1. If a memory bank does not contain the data requested of it, it sends a message

onto the network to the level-2 cache, and blocks until the requested cache line arrives.

The proposed memory banks have some degree of configurability: the line-size and

associativity of each bank can be configured, and it is possible to group neighbouring

banks together to form larger virtual banks. It is also possible to switch cache tags

off entirely and treat banks as software-managed scratchpads. This could be used,

for example, to arrange instructions and data in memory such that each core mainly

accesses the memory bank closest to it. This would reduce the lengths of wire toggled

in the network, saving energy, and also reduce memory contention between cores. For

all experiments in this thesis, a basic configuration was chosen with all eight banks

merged into a single direct-mapped cache with cache lines of 32 bytes.

The level-2 memory system is left undefined for this work. It is modelled as a

memory of unbounded size, with a latency of ten cycles. Experiments are chosen to

minimise the impact of any inaccuracies this may cause (Section 4.3). It is expected to

be a non-uniform cache architecture (NUCA), distributed across the chip.

64

Encoding Meaning

00 Execute if predicate = 1

01 Execute if predicate = 0

10 Always execute

11 End of packet (always execute)

Table 3.2: Predicate encodings.

Loki does not currently support hardware cache coherence; when coherence is re-

quired, it can be implemented in software using low-cost core-to-core message passing.

3.5 Programming Loki

Having a large number of cores and a high potential for computational throughput is

not enough. It must also be feasible to effectively make use of the available resources.

In Loki’s case, this involves exposing functionality to the compiler and programmer.

3.5.1 Predicated execution

The Loki architcture supports predicated execution of all instructions to make simple

control flow more efficient, and allow SIMD execution in the presence of slightly-

divergent execution paths.

Many instructions have a .p variant, which stores a one-bit value in the core’s

predicate register. This value may be the least significant bit of the result of bitwise

operations, the result itself in the case of Boolean operations, or the carry/borrow flag

for arithmetic operations (see Appendix A for full details).

All instructions may be executed conditionally, based on the value of the predicate

register. Two bits are reserved in the instruction encoding to determine when an in-

struction should execute. An ifp? prefix causes an instruction to execute only if the

predicate is true, and if!p? instructions only execute when the predicate is false. The

remaining two options are always execute (default), and end of packet (denoted with

an .eop marker in assembly). This information is summarised in Table 3.2.

65

3.5.2 Remote execution

It is possible for one core to send instructions to another core or group of cores. Fol-

lowing a rmtexecute instruction, all consecutive instructions marked with an ifp?

predicate will be sent to the specified destination, and will not be executed locally. This

can be used to execute a small amount of code in parallel with the local instructions,

or to have the remote core(s) fetch their own code sequence(s) and begin execution of

an entire program. In some cases it will be cheaper to send instructions to a remote

core which has cheaper access to the data than it would be to bring the data towards

the local core.

All instructions sent remotely have the ifp? predicate replaced with a .eop end

of packet marker, so that the remote core switches to an alternate source of instructions

as soon as they begin to arrive. For this reason, the instruction fetch must be the

final instruction sent to the remote core, otherwise the incoming individual instructions

would be indistinguishable from the packet being fetched.

3.5.3 Parallelism

The Loki architecture was designed for cores to work together to execute an applica-

tion. Although it is possible for a single core to execute any program by itself, the

common case is expected to involve a large number of cores working together in a way

which is tailored to each individual program. I call this co-operation structure an over-

lay or virtual processor as a reference to similar concepts on FPGAs and CGRAs, as

it is possible to hide the details of the underlying simple cores and only ever consider

the mechanism built on top of them.

With all of the features described above, Loki is a very flexible platform. It is

possible to rapidly set up custom communication networks which match the flow of

data within a program, and “reconfigure” the system in software as the program moves

through its different phases. It has been shown that the parallelism available in different

phases of a single program can vary massively [101]. The communication networks

allow many forms of parallelism using the same underlying hardware: Loki can exploit

instruction-level parallelism, data-level parallelism and thread-level parallelism simul-

taneously and often in multiple different ways, allowing the programmer or compiler

to choose a mix of parallelism which best suits the current application. Some of these

execution patterns are explored in Chapter 6.

66

pipeline {

int_source_init(0) @ P0; // initialise data source

while(1) {

int n = int_source() @ P0;

fifo_put(f1, n);

n = fifo_get(f1);

int_printer(n) @ P1;

}

}

Figure 3.9: Loki-C code sample of pipeline parallelism. The calls to fifo put and

fifo get mark the boundaries between pipeline stages and show how data is passed. The

@ notation places computation or data on a particular processor (which may be built out of

multiple cores).

I believe that software specialisation is a better solution than heterogeneous hard-

ware: the architecture is simpler (which brings many further benefits), and a wider

range of applications can be accelerated. Newer versions of a program can be acceler-

ated by simply compiling them for the Loki architecture.

3.5.4 Loki-C

Although programming languages are beyond the scope of this work, a brief descrip-

tion of Loki-C is given here for completeness. Loki-C is a dialect of C which in-

cludes additional annotations which allow the programmer to express parallelism. It

is strongly influenced by SoC-C (System on Chip C) [108], and includes constructs

for pipeline parallelism, fork-join parallelism and data-parallel loops. There is also

the ability to place computation on a particular core or virtual processor, and place

data in a particular memory or virtual memory. Sample code demonstrating a software

pipeline is given in Figure 3.9.

All benchmarks executed in this thesis, however, make use of standard C code,

with the addition of inline assembly code to access features of which the compiler is

not yet aware.

3.6 Limitations

As described, the Loki architecture has a number of limitations. Some of these are

due to efforts to promote simplicity, and others allow the scope of the project to be

67

constrained to make it more manageable. Some of these limitations are discussed

below:

• No branch prediction hardware. Although this is not much of a problem for a

single core because of the low penalties of cache misses and the ability to fetch

instruction packets in advance, it may be difficult to exploit large amounts of

instruction-level parallelism across multiple cores.

• No hardware cache-coherence. It is anticipated that it would be possible to use

shared memory and message passing in most cases. There exist a number of

schemes which greatly reduce the amount of required coherence information by

using additional information, such as whether data is shared or private [66, 112].

• It would be difficult to use a traditional operating system on Loki because of

its lack of software interrupts and virtual memory. These are subjects of future

work. Also in this category are issues of protection: it is possible for a rogue

program to send messages to arbitrary destinations, congesting the network and

possibly providing incorrect values to running programs. It has been suggested

that special privileges should be required to update a channel map table to avoid

this situation.

For many of these limitations, it is possible to emulate the missing functionality in

software (perhaps using additional cores), but the overheads of doing so are likely to

be prohibitively high.

3.7 Summary

Loki is a flexible, low-power, simple architecture, designed to allow cores and mem-

ory banks to cooperate to execute applications efficiently. The network is central to

the design, and is connected directly to the pipeline and exposed to the compiler and

programmer.

Functionality is accessible, bypassable and composable wherever possible to re-

duce energy and increase cooperation. It is possible to build overlays on top of groups

of components which match the natural structure of a program or phase of a program.

Chapter 4 explores the energy and area characteristics of each component of the

Loki architecture in greater detail, and Chapter 5 uses these data to choose the best

implementation.

68

CHAPTER 4

EVALUATION METHODOLOGY

In this chapter I describe the techniques used to collect all results reported in this thesis

and evaluate the base design. The chapter builds up to a collection of energy and area

models for all of the major components of the Loki architecture; Chapter 5 then aims

to use this information to determine which implementation of each component is best.

4.1 Performance modelling

I make use of a custom SystemC [98] simulator to model the architecture and execute

programs. SystemC is a library for C++ which provides an event-driven simulation

kernel. The simulator is fast enough to run real programs whilst collecting important

data: on the order of 100000 instructions can be executed per second, and this figure

is largely independent of the number of cores being simulated. Data collected include

event counts used for estimating energy (such as the number of times each register is

read, or the number of bits which toggle on a given wire), and analytical data which

can be used to pinpoint bottlenecks (such as the number of cycles each core is stalled,

and the reasons for being stalled).

I examined a number of other simulators before settling on SystemC, including

OMNeT [97], gem5 [20] and HASE [129]. I wanted more flexibility than many of them

offered, as the Loki architecture is very different to the designs which are typically

simulated, and I wanted lower-level information than most of them provided, in order

to estimate energy consumption.

Simulation is cycle-accurate apart from the modelling of system calls, which com-

plete instantaneously. For this reason, some benchmarks were lightly patched to re-

69

move system calls from inner loops, to reduce the impact on the results collected.

These modifications are described in Section 4.3.

The level 2 cache is not fully modelled: it has a latency of ten cycles (beyond the

L1), consumes no energy, and is large enough to hold all data required to execute a

benchmark. The chosen compute-intensive embedded benchmark suite (Section 4.3)

meant that this was not a major restriction.

4.2 Compiler

It was decided early on that relying on hand-coded benchmarks would not be accept-

able, as this would make it very difficult to make fair comparisons with other archi-

tectures. It would be difficult to ensure that we weren’t spending a disproportionate

amount of time optimising for one architecture, which would skew any results.

For this reason, a compiler is used. This allows standard programs to be executed

and more-direct comparisons to be made. The programs can also be larger and more

interesting, allowing more to be learned from their execution behaviour.

The LLVM-based compiler has front-ends for a number of different programming

languages, including C and Loki-C (Section 3.5.4), and outputs assembly code or bi-

nary executables for the Loki architecture.

Unfortunately, the compiler as used was not able to perform any architecture-

specific optimisations. This meant that while the emitted code was functional, it was

not of a particularly high quality. Details of how the impact of this was reduced are

given in Section 4.3.1.

4.3 Benchmarks

I examined a number of benchmark suites before choosing MiBench [49]. MiBench is

free (in both senses of the word) and has a relatively low memory footprint. The low

memory footprint is important in an evaluation which largely excludes the memory

system – having a large portion of the working set cached will make comparisons

fairer. MiBench’s programs are also relatively small and simple. This could be seen as

a disadvantage because it means that some types of program may not be seen, but it was

advantageous in this case because it reduced the amount of time required to become

70

Project Benchmarks Source

AsAP [128]
3: JPEG encode, MPEG encode, WLAN

receiver
Self-written

Conservation

cores [130]
5: mcf, JPEG encode, JPEG decode, bzip2, vpr

Various,

including

SPEC

Elm [14] 10 kernels, 6 benchmarks Self-written

Loki

10: ADPCM encode, ADPCM decode,

bitcount, CRC, dijkstra, JPEG encode, JPEG

decode, qsort, SHA, stringsearch

MiBench

PPA [101]
3: MPEG audio decode, MPEG video decode,

3D rendering
Unknown

Raw [125]

14: adpcm, aes, btrix, cholesky, fpppp, jacobi,

life, moldyn, mxm, sha, swim, tomcatv,

unstruct, vpenta

Self-

written,

various

SPECs and

Mediabench

Smart

Memories [82]
4: FFT, FIR, convolution, DCT Self-written

Table 4.1: Comparison of benchmark suites

familiar with the benchmarks, and it increased the proportion of programs which were

able to compile using the Loki toolchain.

Only integer benchmarks were used, since Loki does not yet have hardware float-

ing point support, and only those benchmarks which compile (some require libraries

which are not yet supported on Loki). This selection process left ten benchmarks which

covered all six of the MiBench categories: automotive, consumer, network, office, se-

curity and telecom. The benchmark selection is compared against that of other projects

in Table 4.1.

All benchmarks are compiled using the Loki compiler, using the settings suggested

by the MiBench Makefiles. All benchmarks are executed using the “small” inputs in

order to give reasonable simulation times. The newlib library for embedded systems

provides standard library functionality [60].

Since the compiler is not yet able to perform architecture-specific optimisations,

a second version of each benchmark is generated where the most frequently executed

71

regions of code have had their assembly code hand modified. The modifications are

expected to be within reach of a standard optimising compiler, and are described in

Section 4.3.1. This allows a more-direct comparison between Loki and other architec-

tures, for which the compilers are able to perform more aggressive optimisations. No

modifications were made to library functions, so some of the benchmarks do not see

much benefit.

The following sections give a brief overview of each benchmark.

adpcm

Adaptive differential pulse-code modulation is used in telephony as a means of signal

compression. Both the encoder (adpcmc) and the decoder (adpcmd) are used.

The encoder receives a sequence of 16-bit samples of a sound wave as input, and

converts each to a 4-bit output. A predicted value for each sample is generated using

the preceeding sample, and the difference between the predicted and actual values is

encoded using a look-up table. The decoder performs the reverse transformation.

bitcount

The bitcount benchmark consists of several different techniques for counting the num-

ber of bits set in a large number of integers. For some experiments, the different

counting methods are examined separately.

The program consists of an outer loop which traverses through the different bit

counting functions and an inner loop which goes through all of the integers whose bits

are to be counted. Some of the bit counting functions contain a further loop to check

each bit or group of bits and update the total count.

There is a huge amount of parallelism in this program – virtually all of the loop

iterations are independent. The loops are also very tight.

crc

The cyclic redundancy check is a hash function used to detect accidental changes in

data. The program consists of a tight loop where each character of an input file in turn

is hashed with the current checksum to produce a new checksum.

72

The program has been patched to remove an expensive library call from the inner

loop: data is read from the input file in blocks of 1024 bytes, rather than one character

at a time.

dijkstra

An implementation of Dijkstra’s algorithm used to find shortest paths in a graph of

connected nodes. The algorithm works by growing a tree of shortest paths out from a

source node until the destination is reached.

The program has been patched to remove expensive memory allocation operations

from the inner loops and instead statically allocate a fixed amount of space on the stack.

jpeg

JPEG is a common image compression technique. It is a relatively large and complex

program with several stages of execution. Some stages are very sequential and control-

intensive, whereas others consist of highly parallel loops.

We make use of both the compression (jpegc) and decompression (jpegd) pro-

grams.

qsort

An implementation of the quicksort algorithm, used to sort a list of 10000 strings. The

program makes use of the standard library implementation.

Quicksort works by repeatedly splitting the list in two based on whether the strings

should come before or after a chosen pivot element. Splitting stops when a list length

of zero or one is reached, as the list is trivially sorted.

sha

The secure hash algorithm produces a 160-bit message digest from a file, used to detect

data corruption or file tampering. It is used in the secure exchange of cryptographic

keys.

Contents of a file are processed in 512-bit chunks, where each chunk is repeatedly

permuted and transformed before being added to the digest.

73

stringsearch

An implementation of Pratt-Boyer-Moore string search, used to find a set of target

strings in a set of text sequences.

The algorithm starts by initialising a table of values, where each value tells how far

it is safe to skip through the text sequence if a particular character is seen. For example,

if the character “x” is observed, but “x” is not in the target string, then it is safe to skip

ahead by the length of the target string, as there can be no overlap with the target string

and the current position. The algorithm then scans through the text sequence until the

target string is found, or the end of the sequence is reached.

4.3.1 Optimisations

Hand-optimised versions of each benchmark were produced to make up for the lack

of optimisations performed by the compiler. The modifications made were simple,

applied only to the main loop bodies, and expected to be within reach of a more-mature

optimising compiler. In fact, a compiler is expected to be able to do even better, as it

would be able to perform a better register allocation after applying the optimisations.

Register allocation was deemed too large a job to be done by hand. A brief description

of each optimisation applied is given here.

• Improved support for Boolean values using Loki’s comparison operations.

• Make use of the hard-wired register 0, rather than temporarily storing 0 to an-

other register.

• Remove unnecessary no-ops.

• When a fetch instruction targets another fetch instruction, fetch the final target

directly.

• Make better use of network channels: try to read directly from the channel, rather

than first copying the data into a register, and don’t use a separate instruction to

send data.

• Fill load and branch delay slots with independent instructions, where possible.

Figure 4.1 shows the difference that these optimisations make. Averaged across all

benchmarks, dynamic instruction count is reduced by 19% and execution time drops

74

a
d

p
c
m

c

a
d

p
c
m

d

b
it
c
o

u
n

t

c
rc

d
ijk

s
tr

a

jp
e

g
c

jp
e

g
d

q
s
o

rt

s
h

a

s
tr

in
g

s
e

a
rc

h

0.0

0.2

0.4

0.6

0.8

1.0

Relative operations

Relative cycles

Figure 4.1: Effects of hand-optimisations on the MiBench suite.

by 21%. The execution time generally decreased by more than the instruction count

because filling the fetch and branch delay slots reduces the time spent idle: average

instructions per cycle improved from 0.70 to 0.72.

Some benchmarks, such as quicksort, are not affected much by the optimisations

because most of the execution time is spent in library code, which was not subject to

optimisation. Others, such as bitcount and crc, improved by much more – up to a 1.8×

speedup. This is because these benchmarks spend a lot of their time in very tight loops,

so any reductions in instruction count have a large relative effect.

Table 4.2 presents the raw instruction count and execution time for each of the

optimised benchmarks.

Benchmark Instruction count Execution time/cycles

adpcmc 56,959,692 78,732,189

adpcmd 50,411,841 77,568,713

bitcount 58,892,272 75,602,682

crc 22,388,845 25,997,605

dijkstra 50,767,703 64,411,581

jpegc 56,029,375 83,614,501

jpegd 12,336,715 18,221,286

qsort 41,409,545 70,450,895

sha 19,930,572 24,057,591

stringsearch 485,258 796,533

Table 4.2: Benchmark execution characteristics, after optimisations have been applied.

75

4.4 Energy modelling

Energy modelling has become an important part of the modern chip design process due

to the strict power limitations imposed by today’s operating environments. Computer

architects need to know early in the design process whether their architecture will meet

the constraints so that they can make any necessary modifications while the design is

still relatively flexible.

There exist many tools for high-level estimation of power consumption for com-

puter architectures. McPAT [79] and Wattch [27] are general-purpose simulators, while

Orion [61] focuses on the on-chip network and CACTI [92] models memory systems.

Once again, however, Loki’s design was found to be too unusual for any of the popular

tools to be worthwhile: the scale of the modifications required would amount to a com-

plete reimplementation of the Loki architecture. In addition, many of the tools target

designs similar to modern commercial processors, and their models break down for

structures as small as those used by Loki. I instead sought a bespoke energy-modelling

framework which did not require reimplementing the entire architecture in a low-level

HDL, and which had support for parameterised models.

In order to generate energy models for the Loki architecture, all main components

were implemented separately in SystemVerilog and a standard-cell synthesis toolflow

was used. Memories (including registers, buffers, etc.) are the main consumers of

energy, and these are all implemented fully. Commercial memory and register file

compilers and a commercial 40nm low-Vt design process were used. The width of

each component of cores and memory banks was constrained to be 125µm, so that

eight of them could sit side-by-side in a 1mm square tile. (1mm was chosen as a

sensible starting point using initial estimates of the sizes of cores and memory banks.)

All input ports to each module were forced to be on the top edge of the synthesised

block, and all output ports were on the bottom edge.

Implementing each component individually speeds the design process: when de-

signing a complete system, large amounts of time can be spent getting the different

components to work together properly. It also allows us to see a breakdown of where

the energy is being used. This allows optimisations to be targeted at the components

which consume the most energy and comparisons can be made between different im-

plementations of the same component more easily. It is also hoped that the modules

are generic enough that the results can be useful to others.

76

This approach does, however, result in inaccuracies. The model for each individual

component is likely to overestimate energy consumption; when synthesising a whole

system, the tools are able to perform cross-boundary optimisations, which potentially

reduce communication distances and relax critical paths. Conversely, since only the

main components are modelled, there will be peripheral logic and wiring which is

not taken into account, resulting in underestimation of total energy consumption. I

believe that the impact of these unmodelled components is negligible – logic consumes

much less energy than storage structures (see the decoder’s model in Section 4.5 for an

example), and none of the unmodelled wires are believed to be of significant length.

Indeed, it has been shown that module-level models can be combined in this way to

approximate total system energy consumption [115].

In order to make satisfactory progress, little time was spent on improving compo-

nent designs: implementations are not naive, but do not involve obscure optimisations.

Throughout the evaluation of the architecture, such optimisations are explored where

it is evident that a particular component consumes resources disproportionately. All

remaining optimisations are considered orthogonal to this work and can be applied in

combination with any of the techniques presented.

All results are obtained for a commercial 40nm low-Vt design process. Only low-

Vt cells are selected, and so leakage energy is insignificant and not reported. Timing

is closed using a multi-corner PVT analysis (taking into account a range of voltages,

ambient temperatures, etc.) where the worst case is usually the corner with the lowest

voltage (0.99V) and the lowest temperature (−40◦C). Energy results are then reported

for the typical case (1.1V, 25◦C), with the tools having been instructed to target the

lowest possible dynamic energy.

For each implementation of each component, the following steps are taken:

1. Perform a thorough functional verification with Synopsys VCS.

2. Synthesise using Synopsys Design Compiler.

3. Place and route using Synopsys IC Compiler.

4. Extract parasitics using Synopsys StarRC.

5. Analyse timing (taking parasitics into account) using Synopsys PrimeTime.

6. Simulate using VCS, logging important events.

77

7. Estimate energy consumed each cycle using PrimeTime.

8. Combine the event log and energy consumption data to form an energy model

using R.

A 435MHz clock rate is targeted due to simultaneous constraints from the in-

struction packet cache, register file, and memory bank. The design is conservatively

margined at the worst case corner, taking into account foundry recommendations for

on-chip variation (OCV) and clock jitter: the longest logic paths have their timing

derated by 8%, the shortest paths have their timing derated by -10%, and clock uncer-

tainty is set to 35ps. Loki’s clock period is roughly 42 FO4 delays, which is within the

typical range of 40-60 used by modern system-on-chip designs. I anticipate that the

common target of 500MHz could be reached with the low-level tuning which is typi-

cally applied to production designs, and further improvements could be made with the

standard practice (for mobile devices) of reducing the operational temperature range

and other margins.

The timing of components is constrained such that all outputs are produced within

the 2.3ns clock period. For some components, the delay is constrained to half a cycle

so that two components can be activated in series in a single cycle. An example of this

is the L0 cache tag check in the first half of a clock cycle, followed by the data array

access in the second half. Small timing violations (less than 0.05ns) are permitted as

these are likely to be covered by the generous margins applied and could probably be

eliminated by small tweaks to the design or toolflow. For some components, such as

network buffers, the timing constraint is set to 0ns to force the tools to produce the

fastest circuit possible. In general, a faster circuit will require more redundancy and

larger transistors, and so the circuit becomes larger and more energy-hungry. Since the

very fastest circuit is rarely needed, this can result in a slight overestimation of area

and energy consumption.

In stage 6, a wide range of inputs are supplied (usually randomly, but data collected

from an execution trace can also be used), and a summary of all high-level events which

occur each cycle is printed. For example, for a register file, the following information

is collected:

• Whether there was an operation on each of the read and write ports

• The number of bits toggled on each port

78

• The number of bits which are high on each port

• Whether each of the reads resulted in a data bypass

In stage 8, an event summary (stage 6) is matched up with an energy figure (stage

7) for each clock cycle. A multiple regression analysis is performed on this data,

assuming that all events are correlated with energy. If the analysis is unable to find a

correlation with a particular event, that event is removed and the analysis is repeated.

A low intercept is targeted, as this means the events of each clock cycle make up the

majority of energy consumed; the low-leakage process used means that static power is

negligible, so the intercept should represent only the internal clocking network of each

component. If the intercept is sufficiently large, the design and the energy consumption

are inspected, in an attempt to find further events which may contribute to energy.

The residual errors of the model should be roughly normal – the Shapiro-Wilk

normality test can be used to test for this [117]. A normal distribution of errors makes

it easier to estimate the cumulative error for a large number of events. In practice, I

found it difficult to achieve distributions normal enough to pass the test, and settled for

distributions which visually looked close to normal (Figure 4.2). An obviously skewed

or multi-modal distribution showed that there was relevant information not being used

by the model, so another iteration of model generation was required. For the purposes

of error analysis, the distribution of errors was approximated by a normal distribution

with the same mean and variance as the true distribution.

For some models, such as the register file, spacer cycles are required to generate an

accurate model. This is because when writing to a register, the value is only latched on

the following clock edge, and so appears in the following cycle’s energy data. For these

models, I follow each cycle of activity with an empty cycle, sum the energy consumed

by both cycles, and halve the intercept computed by the regression analysis.

Since the events of interest are independent of each other and of when they oc-

curred, it is possible for the simulator to maintain a counter for each event and only

output a summary of all events when simulation finishes. This allows execution to be

instrumented with only a small impact on simulation time. There is no need to apply

the energy models during simulation – indeed it is preferable to have a trace which

can be analysed offline, as this allows different models to be applied to the same trace

without needing to repeat the simulation.

79

−0.4 −0.2 0.0 0.2 0.4

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

Residual/pJ

D
e

n
s
it
y

(a) A good error distribution generated for a

32-bit bus.

−0.5 0.0 0.5 1.0

0
5

1
0

1
5

Residual/pJ

D
e

n
s
it
y

(b) A mediocre error distribution generated for

the register file. Despite the slight negative

skew, the large peak around 0 gave me con-

fidence that the model was usually very accu-

rate.

−0.4 −0.2 0.0 0.2 0.4

0
1

2
3

4
5

6

Residual/pJ

D
e

n
s
it
y

(c) A poor model which needs refinement. The

extra peaks indicate that important information

is not being included in the model.

Figure 4.2: Error distribution examples. Each true distribution (solid) is compared with a

normal distribution with the same mean and variance (dashed).

80

4.5 Models

In this section, a model is presented for each of the major components on the chip.

Most implementations are expected to be generic enough to be applicable to other

architectures as well. Exceptions are modules with Loki-specific behaviour, such as

the instruction decoder. Each model consists of the following information:

• a summary of the information required to compute energy consumption;

• an energy equation, where each event is associated with an energy cost (in pico-

joules);

• an estimate of the average error of the energy model in a single cycle – the

residual standard error (RSE), which is the standard deviation of the distribution

of errors;

• the area consumed by the placed-and-routed design.

All models are produced for a 40nm low-leakage process, and target a 435MHz

clock frequency. Perfect clock gating is assumed – components are modelled as con-

suming zero energy in cycles during which they are not used. The combination of the

low-leakage process and clock gating mean that the energy of idle components is a

fraction of one percent of the total energy consumed, and is ignored in the models.

There is a trade-off between the complexity of a model and its accuracy. The more

complex a model is, the harder it is to compare it to another model, and the higher the

overhead of collecting the information during simulation. However, complex models

tend to be more accurate and provide more information about exactly where and when

energy is being consumed. Increasingly complex models have diminishing returns;

doubling the number of variables often only improves the error of the model slightly.

In this section, models trend toward the simple end of the scale, and have only a

few variables each. The law of large numbers states that as long as the average error

of each model is zero, then the expected error of many applications of that model will

tend towards zero, so a slight increase in the error of each model is not an issue.

In order to apply an energy model to an execution trace, each event count should be

multiplied by the energy cost provided by the model. The event count could be a sum

of Hamming distances (or similar) or a sum of Boolean values (with 1 representing

81

“true”). The residual standard error applies to the total energy consumption of the

events which take place in one clock cycle.

There are some parts of the design which are not modelled (e.g. the predicate reg-

ister), resulting in an underestimation of energy and area, but these parts are expected

to provide a negligible contribution. All components containing a non-trivial amount

of memory, complex logic, or long wires are modelled. The models are described indi-

vidually in the following sections, with a summary of how they combine to form entire

cores and tiles at the end.

4.5.1 ALU

The ALU receives 32-bit operands and produces 32-bit results for all operations. A list

of supported operations is given in Table 4.3.

Class Mnemonic Description

Comparison

seteq Set if equal

setne Set if not equal

setlt s Set if less than (signed)

setlt Set if less than (unsigned)

setgte s Set if greater than or equal (signed)

setgte Set if greater than or equal (unsigned)

Shift

sll Shift left logical

srl Shift right logical

sra Shift right arithmetic

Arithmetic
add Addition

sub Subtraction

Bitwise logic

nor Negated OR

and AND

or OR

xor Exclusive OR

nand Negated AND

clr Clear; AND with negated second operand

orc OR complement; OR with negated second operand

Miscellaneous
clz Count leading zeroes

lui Load upper immediate

Table 4.3: Supported ALU operations

The model has a relatively large standard error of around 15%. This is because

the ALU is a large mass of irregular logic which is difficult to simplify in a model.

82

Variable Description

op Operation occurred this cycle

hd in1 Hamming distance of first operand

hd in2 Hamming distance of second operand

hd out Hamming distance of output

same op Operation was the same as the previous one

high energy Operation was one of {add, setgte}

op hd in1 hd in2 hd out same op high energy RSE Area/µm2

0.96 0.028 0.048 0.023 −0.39 0.34 0.38 2862

Table 4.4: ALU model

Attempts were made to reduce the error by collecting information for each operation

or class of operations separately, but this only had a small effect and was not deemed

worthwhile.

Example

In order to demonstrate how these models can be used to estimate energy consumption,

a simple example is given here.

Suppose that in a particular clock cycle, the ALU performs an add operation. 8

bits change in the first operand from the value used by the previous operation, 13 bits

change in the second operand, and 10 bits change in the output. The previous operation

was not an addition. Energy can then be computed as follows:

energy/pJ = 1× 0.96 + 8× 0.028 + 13× 0.048

+ 10× 0.023 + 0×−0.39 + 1× 0.34± 0.38

= 2.38± 0.38

4.5.2 Arbiter

Arbiters are used throughout the network to decide which data should proceed in the

case of resource contention. An arbiter is required at the input of each memory, and

two arbiters are required at the input of each core, since each core can receive two

words per cycle from the network.

83

A simple 8-input matrix arbiter was chosen for its speed and simplicity. There are

many other types of arbiter to choose from, but none are expected to consume a large

portion of the total energy or area, so it is believed that the matrix implementation is

representative.

Variable Description

activity Any request or grant line is active

constant activity RSE Area/µm2

0.06 0.39 0.06 420

Table 4.5: Arbiter model

The latency of the combinational logic is 290ps, even with much more time avail-

able. It is expected that this is the most energy-efficient implementation the tools could

generate, and that it would be possible to generate a faster but higher-energy arbiter if

necessary.

4.5.3 Clock

The clock network can consume a large fraction of the total energy used by a micropro-

cessor, so generating a model for it is important [69]. Each of the models for individual

components includes the local clock network, so only the higher levels of the clock tree

need to be modelled here.

Orion 2.0 [61] was used to model the high-level clock network as an H-tree with

optimal buffering. The network spans a single tile of the Loki architecture, and the

result was validated against a 1-bit bus of comparable length, whose model is presented

in Table 4.12.

constant RSE Area/µm2

1.37 - -

Table 4.6: Clock model

Since the clock energy is a constant for each tile, it is biased towards the use of

more cores, where the clock’s energy will be a smaller fraction of the total. For this

reason, the clock energy is omitted from total energy when comparing between two

different implementations of the same benchmark running on Loki.

84

4.5.4 Crossbar

The crossbar carries 32-bit data and excludes all buffering and arbitration. Since the

crossbar spans the whole tile, the placement of its pins can have a significant impact

on the length of wires generated. The synthesis tools aim to reduce latency and energy

consumption, so will want to place the pins as close together as possible, but this is

not useful for connecting components which are physically separated. For this reason,

the pins are manually placed, with each 32-bit word clustered together in the centre of

each eighth of a millimetre.

Table 4.7 presents energy models for crossbars with different numbers of input and

output ports. The area of each crossbar is manually specified to increase wire spacing

and reduce cross-coupling capacitances, which results in better energy efficiency.

Variable Description

total dist Length of wire toggled: Hamming distance × length in mm

hd in Total Hamming distance at all inputs

hd out Total Hamming distance at all outputs

Inputs Outputs total dist hd in hd out RSE Area/µm2 Latency/cycles

4 4 0.061 -0.012 0.017 0.13 500×30 0.5

4 8 0.0006 0.042 0.007 0.07 750×30 0.5

8 4 0.034 -0.013 0.030 0.36 750×30 0.5

8 8 0.057 0.014 0.033 0.56 1000×30 0.5

8 16 0.0043 0.137 0.015 0.65 1500×60 1

16 8 0.0041 0.038 0.055 0.69 1500×60 1

16 16 0.0041 0.046 0.019 0.41 2000×60 1

Table 4.7: Crossbar model

4.5.5 FIFO buffer

FIFO buffers are used in two main situations in the Loki architecture: in the network

to tolerate bursty traffic, and in the core as a place to hold instructions and data which

do not need to be cached. The network buffers must be fast enough to allow data to

travel from one buffer, along a length of interconnect, and into another buffer, all in

half a clock cycle. In contrast, the instruction buffer does not share the critical path

with anything significant, so can be slower and more energy-efficient. Separate models

for each type of buffer are presented below.

85

Variable Description

entries Number of 32-bit spaces in the buffer

push Data was written this cycle

pop Data was read this cycle

entries constant push pop RSE Area/µm2

2 0.10 0.66 0.39 0.05 565

4 0.09 0.61 0.33 0.05 920

8 0.24 0.48 0.49 0.07 1946

16 0.25 0.58 1.01 0.12 4539

8 0.10 0.58 0.25 0.04 1454

16 0.11 0.68 0.31 0.06 2861

Table 4.8: FIFO models – the first four lines are for the fast network buffers, and the final two

lines are for the efficient instruction buffer.

Table 4.8 demonstrates the effect that timing constraints can have on a design. The

fast 16-entry FIFO is much more expensive to read from than the slow 16-entry FIFO,

and its area is 59% higher. The fast FIFO is cheaper to write to than it is to read

from, whereas the slow FIFO is cheaper to read from. The cost of writing to either

implementation is similar. It is expected that this is because the read logic is on the

critical path, so is modified by the synthesis tools in an attempt to meet the stricter

timing constraints.

Curiously, the models suggest that a buffer with four entries consumes less energy

than a buffer with two. This result was consistent across multiple syntheses, but its

cause is unknown and appears to be anomalous.

4.5.6 Instruction decoder

The decoder is capable of extracting all fields from all instruction encodings. Random

valid instructions were used to generate the model.

constant RSE Area/µm2

0.52 0.12 555

Table 4.9: Decoder model

86

The energy consumed by the instruction decoder is largely independent of the input

instruction, so a simple constant value could be used. The large relative error was

considered acceptable because the decoder uses such a small fraction of total energy.

4.5.7 Instruction packet cache

The instruction packet cache is modelled in two parts: the tags, to be checked in the

first half of the clock cycle, and the data array, to be read (if necessary) in the second

half.

Variable Description

tags Number of 30-bit tags

read Tags were checked this cycle

write Tag was written this cycle

hd Hamming distance between consecutive tags being searched for

tags constant read write hd RSE Area/µm2

1 0.00 0.02 0.58 0.006 0.04 283

2 0.01 0.02 0.59 0.014 0.04 587

4 0.05 0.03 0.57 0.027 0.04 1101

8 0.08 0.07 0.52 0.042 0.05 2056

16 0.12 0.15 0.50 0.079 0.07 4000

32 0.33 0.16 1.15 0.198 0.13 7970

64 0.54 0.35 1.94 0.426 0.27 16968

Table 4.10: Cache tag models

Cache tags consume large areas (Table 4.10), but due to their highly parallel nature,

even large numbers of tags can be accessed within half a clock cycle.

The data array was implemented using a commercial register file generator, with

one read port and one write port (Table 4.11). The tool allowed multiple configu-

rations for each size of array; these configurations were explored and only the best

implementation is shown here for each size. The 256 entry cache did not meet the

timing constraints, but is shown here for comparison.

There is a steep jump in area and energy between the 64 and 128 entry caches be-

cause a configuration parameter governing arrangement of multiplexers had to change

in order to meet timing constraints. A similar change took place between the 128 and

256 entry caches.

87

Variable Description

entries Number of 32-bit spaces in the cache

read Data was read this cycle

write Data was written this cycle

entries constant read write RSE Area/µm2

32 0.12 2.28 2.23 0.06 2583

64 0.12 2.40 2.35 0.06 3623

128 0.15 3.95 4.19 0.08 6120

256 0.14 5.33 5.90 0.12 9695

Table 4.11: Instruction packet cache models (excluding tags)

4.5.8 Interconnect

A 2mm long, 32 bit bus was modelled to explore the costs of communication in an

architecture with such an emphasis on its network. Energy and delay were then nor-

malised to a 1mm bus. This approach was used to avoid any irregularities in the model

at shorter wire lengths, allowing a linear model to be generated which can scale to

longer wires. The wire spacing was controlled by placing additional constraints on the

width of the bus.

Variable Description

target Optimisation target of synthesis tools

hd Hamming distance between successive values on the bus

target Channel width/µm hd RSE Delay/ps/mm Wire density

speed 2.5 0.093 0.026 345 45%

speed 5 0.082 0.027 325 22%

speed 10 0.078 0.027 310 11%

energy 2.5 0.070 0.024 735 45%

energy 5 0.064 0.026 710 22%

energy 10 0.057 0.019 680 11%

Table 4.12: Interconnect model

Table 4.12 shows that optimising for speed rather than energy consumption ap-

proximately doubles transmission speed and increases energy consumption by around

30%.

88

The spacing between wires also has an effect: the closer the wires are together, the

higher the cross-coupling capacitances, and the higher the energy and delay. The dens-

est buses shown here consume around 20% more energy and are around 10% slower

than the sparsest ones, but occupy one quarter of the area. The minimum possible area

for a bus is determined by the minimum wire pitch of the technology and the number

of metal layers available for sending data in a particular direction:

area =
bus width×minimum wire pitch× bus length

metal layers

=
32× 0.14µm× 1000µm

4

= 1120µm2

Double-spacing (50% wire density) is often used as a compromise between area

and energy consumption, and these figures show that further savings can be made if

extra time or area are available.

The figure for a fast, dense bus of approximately 0.1 pJ/bit/mm correlates well

with other published results [45]. Since Loki’s clock period is 2300ps, and tiles are

approximately 1mm×1mm, it may be possible for data to travel across multiple tiles

in a single clock cycle, even in the slowest case, reducing the diameter of the network.

4.5.9 L1 cache bank

Each L1 cache bank can hold 8kB of data. The cache is direct-mapped and has 32-

byte cache lines. In order to improve access time, the data array is divided into four

identical 2kB sub-banks, generated using a commercial memory compiler.

Table 4.13 shows that streaming words in an instruction packet is almost 25%

cheaper than reading words individually. This is because the cache tags only need to

be checked once for each cache line, rather than for each word, and because fewer ad-

dress bits switch internally. This suggests that a mechanism for streaming data would

also be useful; exploration of this is left for future work.

Sub-word accesses are more expensive than word accesses because of the required

masking and shifting. Sub-word writes are particularly expensive because data must

be read from the data array, updated, and written back. These expensive operations

89

Variable Description

w {rd,wr} Word (32-bit) read/write

hw {rd,wr} Halfword (16-bit) read/write

b {rd,wr} Byte (8-bit) read/write

ipk rd Read a single word from a streaming instruction packet

rep line Replace an 8-word cache line

w rd hw rd b rd ipk rd w wr hw wr b wr rep line RSE Area/µm2

9.01 9.27 9.45 6.88 12.00 19.28 19.00 60.16 0.3 52500

Table 4.13: L1 cache bank model

make up only 3.6% of all memory accesses across the benchmarks used, so are not

considered for optimisation.

4.5.10 Multicast network

The multicast network is a crossbar with 8 inputs and 8 outputs, made up of buses

described in Section 4.5.8. Pins were placed in the appropriate locations using the

same technique as the Crossbar model (Section 4.5.4), and multiplexers were placed

at all outputs to ensure that enough load was placed on the buses. Again, spacing of

the wires had a significant impact on latency and energy consumption, so the smallest

implementation where these effects were negligible was chosen, giving the results in

Table 4.14.

Variable Description

hd in Total Hamming distance at all inputs

hd out Total Hamming distance at all outputs

hd select Total Hamming distance of all multiplexer selections

constant hd in hd out hd select RSE Area/µm2

0.020 0.045 0.020 0.205 1.08 30×1000

Table 4.14: Multicast network model

90

4.5.11 Multiplier

Loki’s multiplier takes two 32-bit operands and is capable of computing either the

upper or lower word of the result in two clock cycles. Table 4.15 presents its simple

energy model.

constant RSE Area/µm2

6.43 1.70 7429

Table 4.15: Multiplier model

4.5.12 Pipeline register

Pipeline registers may be small, but there are many of them, and they are active often.

As a result, they can consume a significant portion of total energy of the chip (see

Section 5.4). Table 4.16 shows that the area and energy consumption scales linearly as

the pipeline register gets wider, as would be expected.

Variable Description

width Number of bits the register can store

write Register was written this cycle

hd Hamming distance between consecutive values in the register

width constant write hd RSE Area/µm2

32 0.01 0.22 0.004 0.002 121

48 0.02 0.32 0.003 0.002 179

64 0.04 0.41 0.003 0.003 238

80 0.04 0.51 0.003 0.003 295

96 0.06 0.60 0.003 0.003 354

Table 4.16: Pipeline register model

4.5.13 Register file

Although we have access to a commercial register file compiler, I settled on an imple-

mentation built from standard cells. This was for two reasons. First, the commercial

compiler used is only capable of generating register files with a single read port, while

91

Loki’s register file requires two read ports. Second, the compiled modules trade energy

for speed; they are much faster than standard cells, but also consume much more en-

ergy. Since Loki focuses more on energy efficiency than speed, and the slower standard

cell implementation was still fast enough, it was chosen in preference of the compiled

implementation. The energy model is presented in Table 4.17; a 16-entry register file

is included to represent the channel map table.

4.5.14 Router

Each tile contains a router which links it with its four immediate neighbours. The

router contains a buffer for each input, an arbiter for each output, and a 5×5 crossbar.

Since this work focuses on communication within a tile, the router is never used,

so no energy model is provided. Only area is given in Table 4.18 as this is required to

generate a tile floorplan.

4.5.15 Scratchpad

Models for various sizes of scratchpad are presented in Table 4.19. They are imple-

mented as memory banks with a single read/write port, which are allowed a single

clock cycle to produce their results. The 32-entry scratchpad is built using standard

cells to reduce energy costs, but larger ones proved prohibitively large and slow, so

make use of a commercial memory compiler instead. Data arrays larger than 256 en-

tries could not be accessed in a single clock cycle.

Since the standard cell implementation is so much cheaper to access than the com-

piled versions, it may be worth producing a hybrid structure to take advantage of the

low energy of the standard cells, and the high capacity of the compiled data arrays.

4.6 Summary

We are able to create energy models for each of the main components of a multi-core

RISC processor with relatively low error. These models can be applied to a simple

execution trace to get accurate figures for the whole design.

The law of large numbers states that the expected error of the sum of model ap-

plications will tend towards zero as the number of model applications increases. This

assumes that the model was generated using the same data distribution as is seen during

92

V
ar

ia
b
le

D
es

cr
ip

ti
o
n

en
tr

ie
s

N
u
m

b
er

o
f

3
2
-b

it
sp

ac
es

in
th

e
re

g
is

te
r

fi
le

p
o
rt

s
N

u
m

b
er

o
f

re
ad

an
d

w
ri

te
p
o
rt

s
av

ai
la

b
le

w
r

D
at

a
w

as
w

ri
tt

en
th

is
cy

cl
e

rd
X

D
at

a
w

as
re

ad
fr

o
m

p
o
rt
X

th
is

cy
cl

e

p
o
rt

h
d

H
am

m
in

g
d
is

ta
n
ce

b
et

w
ee

n
co

n
se

cu
ti

v
e

w
o
rd

s
o
n

p
o
rt

p
o
rt

o
c

N
u
m

b
er

o
f

“o
n
es

”
in

th
e

d
at

a
o
n

p
o
rt

b
y
X

In
p
u
t

d
at

a
w

as
b
y
p
as

se
d

to
re

ad
p
o
rt
X

en
tr

ie
s

p
o
rt

s
co

n
st

an
t

w
r

w
r

h
d

w
r

o
c

rd
1

rd
1

o
c

b
y
1

rd
2

rd
2

o
c

b
y
2

R
S

E
A

re
a/
µ

m
2

1
6

1
R

1
W

0
.0

4
0
.6

2
-

-
0
.3

7
0
.0

1
8

0
.3

5
-

-
-

0
.0

4
2
9
1
5

3
2

1
R

1
W

0
.0

4
0
.9

1
-

−
0
.0

0
9

0
.4

2
0
.0

2
7

0
.4

1
-

-
-

0
.0

8
5
5
9
7

3
2

2
R

1
W

0
.1

1
0
.7

8
0
.0

1
2

-
0
.3

9
0
.0

2
6

0
.5

1
0
.3

9
0
.0

2
6

0
.4

2
0
.1

1
6
8
1
5

T
a
b

le
4
.1

7
:

R
eg

is
te

r
fi

le
m

o
d
el

93

Area/µm2

100×100

Table 4.18: Router model

Variable Description

entries Number of 32-bit words in the data array

read Data was read this cycle

write Data was written this cycle

entries constant read write RSE Area/µm2

32 0.04 0.85 0.77 0.10 5597

64 0.12 2.68 2.46 0.11 2321

128 0.13 2.86 2.63 0.12 3271

256 0.15 3.50 3.29 0.14 5171

Table 4.19: Scratchpad model

execution. In practice, this is not the case: significant correlation is typically observed

in execution traces which is not seen in the random data used to generate the mod-

els. This correlation tends to reduce Hamming distances, and therefore energy con-

sumption, so the models are expected to represent a slightly pessimistic distribution of

energy costs.

The following chapter experimentally determines suitable implementations for each

component, and shows how all modules fit together to form the baseline Loki architec-

ture.

94

CHAPTER 5

DESIGN SPACE EXPLORATION

In this chapter, I explore the various possible implementations of the major compo-

nents of the Loki architecture, and attempt to develop a coherent overall design which

maximises performance whilst remaining as energy-efficient as possible. I explore the

design space of several components of the architecture, and also explore the perfor-

mance and energy impact of using them in different ways.

This task is made challenging because Loki cores are designed to be used together

and share resources, but all benchmarks in the MiBench suite target only a single core.

An iterative approach of evaluation and refinement is used: in this chapter, I deter-

mine the best configuration for sequential workloads, and leave open the possibility of

further tweaks when parallel workloads are explored in Chapter 6.

5.1 Instruction supply

Instruction supply makes up a large portion of energy spent in embedded processors –

as high as 40-50% [33, 77]. This is because instruction fetching happens almost every

cycle, rather than the 20-30% of the time for data loads and stores, with each fetch

requiring access to a relatively large and expensive memory structure. Loki therefore

aims to reduce these costs as much as possible. Traditionally, this is done by caching

instructions locally. Storing instructions near to where they are needed reduces both

the latency and energy costs of accessing them. Instructions typically exhibit high

spatial and temporal locality, making caches particularly effective. On a modern chip,

more than 50% of the die area can be made up of caches (for both instructions and

data) [122]. However, while modern caches succeed in keeping a large proportion

of instructions on chip, they are usually optimised for performance rather than power

95

consumption. Their large sizes mean that they are expensive to access and data must

travel a long way to get to and from the pipeline. Cache accesses typically cost at least

an order of magnitude more than ALU operations [18, 33].

Loki provides a deeper memory hierarchy than usual with a very small and cheap

L0 cache primarily aimed at reducing energy consumption. Extending the memory

hierarchy is not a new idea; filter caches and loop caches have been around for decades

to improve energy consumption of tight loops [70]. These small caches are optimised

for energy consumption rather than performance, and can struggle when the working

set is too large. For this reason, each Loki core also has an instruction buffer which al-

lows the L0 cache to be bypassed in situations where it performs poorly and consumes

more energy than it saves.

This section explores ways in which energy consumption (and to a lesser extent,

performance) can be improved by choosing the right instruction storage structure for a

particular situation.

5.1.1 Instruction packet cache

A previous study by Park et al. explored various implementations of level-0 instruction

stores [102]. It was found that compiler management was the most effective, as cache

tags could be eliminated and tight control over which instructions were in the store

was possible. A direct-mapped cache was next-best, and finally, a fully-associative

cache with FIFO replacement. FIFO replacement was a particular problem because

if the body of a loop was even one instruction larger than the cache’s capacity, the

first instructions of the loop would be overwritten, and when they were refetched, they

would overwrite further instructions which would be needed soon.

It may then come as a surprise that Loki makes use of a fully-associative L0 cache

with a FIFO replacement policy. In part, this decision is forced by Loki’s use of in-

struction packets; a FIFO replacement policy means that if the head of a packet is found

in the cache, the rest of the packet will also be there, removing the need for extra tag

checks and logic to implicitly fetch parts of packets which are no longer in the cache. It

is also possible to prevent the current instruction packet from being overwritten by one

in the process of being fetched by keeping track of how much space there is between

the cache’s read and write pointers and issuing the fetch only when there is enough

space for the largest possible packet.

96

Loki’s L0 cache has a number of features to address the concerns of Park et al., but

it is also believed that complete compiler management is a sensible avenue for future

investigation. First, tags only need to be checked once per instruction packet, rather

than for every instruction or cache line, making their overhead negligible in many

cases. Second, instructions are provided which allow partial compiler management of

the cache (fill, in-buffer jump, etc., described in Section 3.2.1). Third, the instruction

buffer allows the entire cache to be bypassed in situations in which it will not perform

well (discussed below).

Removing the tags (or accessing them in parallel with the data array) would allow

a whole cycle for data array accesses, which would allow the data array to be larger. I

avoid this for a number of reasons:

• With no tags, explicit compiler management would be required, which is beyond

the scope of this work.

• Accessing tags in parallel with the data array would not work with the fully-

associative cache structure used.

• A larger cache is more expensive to access (the memory compiler used is not

constrained by the clock period) and would raise the lower bound on energy-

per-operation in many cases, as it is used almost every time an instruction is

executed.

• There are ways of distributing a program over multiple cores to ease the pressure

on a single core’s cache. These techniques are explored in Chapter 6.

Figure 5.1 shows performance and energy consumption for caches with capacities

between 32 and 256 words, and between 1 and 64 tags, for benchmarks which use the

L0 cache exclusively. The better designs are towards the bottom-right of the graph.

Increasing cache size improves performance, as more of the working set can be stored

locally. Energy consumption also improves up to 128 words (when there are enough

tags), suggesting that this is a common working set size for these applications, and

any further cache capacity does not help much. For each cache size, increasing the

number of tags also improves performance and energy consumption because internal

fragmentation is reduced, so the cache can be better utilised. Providing more than 16

tags gives only small benefits.

The data show that there are only a small number of Pareto optimal cache designs –

designs for which there are no others which are better in both metrics. These are: 256

97

0.65 0.70 0.75 0.80

0
5

1
0

1
5

2
0

2
5

IPC

p
J
/o

p
e

ra
ti
o

n

32

64

128

256

��������	�
����

�����

������

������

������
�������

�������

�������

Figure 5.1: Normalised performance and energy consumption for different instruction packet

cache sizes and numbers of tags. Tag counts start at 1 at the left of the graph and double with

each step towards the right. The 256-word caches do not meet the timing constraints, and are

presented for comparison only.

words with 64 tags, 128 words with 64 tags, and 128 words with 32 tags. When area

is also considered, implementations with 16 tags are also attractive, since cache tags

consume relatively large areas (Table 4.10), and only a small performance reduction is

observed.

Table 5.1 shows cache hit rates for a range of configurations. This experiment

was performed later than the one in Figure 5.1 and differs in that it covers 30 MiBench

applications (rather than 10) and does not make use of hand optimisations to the bench-

marks. In this case, the smaller 64-word caches are much more competitive, despite

the lack of hand optimsations which tend to reduce the code size. This difference is

down to the larger benchmark suite – the two adpcm benchmarks exhibit a step-change

in performance when the cache size drops below the length of the main loop body, but

almost all others degrade gracefully. Experiments in Chapter 6 demonstrate that appli-

cations can be distributed across multiple caches, allowing such cases to be eliminated.

A cache capable of holding 64 instructions and 16 tags was selected: even a slight

reduction in either of these values results in at least a 3% drop in instruction hit rate,

while doubling either of them provides only marginal improvements. With this config-

uration, an average tag look-up costs 0.66pJ, a cache read costs 2.5pJ and a write costs

2.4pJ.

98

Tag count Cache size/words Packet hit rate Instruction hit rate

8 32 48.74% 41.82%

8 48 56.10% 50.57%

8 64 57.60% 53.51%

12 32 51.17% 43.66%

12 48 58.66% 52.50%

12 64 60.41% 55.79%

16 32 58.74% 49.30%

16 48 66.32% 58.21%

16 64 68.10% 61.52%

16 128 68.54% 62.43%

32 64 70.12% 62.94%

32 128 70.56% 63.85%

256 256 71.57% 67.98%

Table 5.1: Hit rates for instruction packets and individual instructions for a range of cache

configurations. Data was kindly provided by Andreas Koltes and shows averages across thirty

MiBench applications with no hand optimisations applied.1

5.1.2 Instruction buffer

The instruction buffer is a small instruction store used for instructions which will only

be needed once. It was originally included as a way for cores to send commands to

each other (and is still used for this purpose), but was also found to be a useful structure

for other reasons.

When the active code section is small, the L0 cache reduces energy costs by re-

ducing the number of L1 accesses required. However, when the L0 cache performs

poorly (the active code section is large), the L0 itself adds a relatively large overhead

– every instruction gets written to the L0 and read once before being overwritten. In

these cases it is preferable to use the buffer as its access costs are much lower.

This section examines performance when the buffer is used exclusively; the next

section explores switching between the cache and buffer to minimise energy. The

largest available instruction buffer is selected as it is only marginally more expensive

to access than one half its size, and the extra capacity will be useful in more situations.

The buffer has 16 entries, with an average write costing around 0.75pJ and an average

read costing around 0.35pJ.

1More benchmarks were available for this experiment than in my own evaluations as more time had

been spent on improving compiler compatibility, and because floating point applications were included.

99

a
d

p
c
m

c

a
d

p
c
m

d

b
it
c
o

u
n

t

c
rc

d
ijk

s
tr

a

jp
e

g
c

jp
e

g
d

q
s
o

rt

s
h

a

s
tr

in
g

s
e

a
rc

h

0.0

0.5

1.0

1.5

2.0

Relative cycles

Relative energy

Figure 5.2: Behaviour of instruction buffer relative to L0 cache.

Figure 5.2 shows the performance and energy consumption of benchmarks when

they use the instruction buffer, relative to when using the selected IPK cache. As ex-

pected, the energy of some benchmarks (e.g. adpcm) reduces. adpcm consists mainly

of a single loop which is too large to fit in the small L0 cache, and the buffer eliminates

most of the overheads of supplying instructions within the pipeline. Writing to and

subsequently reading from the buffer costs only 1.1pJ, compared with the L0 cache’s

4.9pJ.

The energy of other benchmarks (e.g. crc) increases because they were already

served well by the locality captured by the L0 cache. The additional costs of going

back to the L1 cache outweigh the benefits of using a cheaper storage structure in the

pipeline. For these benchmarks, the instruction buffer would not be used.

In more complex programs, the best structure to use will vary as execution moves

through different stages. In general, small loops whose most-frequent execution paths

fit in the L0 cache should use the cache, and all other code sections should use the

buffer. The following section explores how this can be extended to make the cache

profitable in more situations.

5.1.3 Cache pinning

Cache pinning (also known as cache locking) is a software-managed technique which

aims to reduce cache conflicts in situations where the active code section is larger

than the cache. This is done by the compiler pinning a block of instructions to a fixed

100

position in the cache, and using any remaining space to cycle through all other required

code. The pinned instructions never experience a conflict, and so the hit rate of the

cache is improved. The technique is particularly useful for improving determinism in

cache-limited systems such as domain-specific processors and embedded processors,

but is also seen on some x86 processors [131].

Loki is able to emulate this behaviour with its two instruction inputs and fill in-

structions. The core can configure the L1 memory to send instructions to the channel

of its instruction packet cache, and then execute a number of fill operations to populate

the cache with useful instruction packets. (Recall that the fill instruction fetches an

instruction packet to the L0, but does not execute it.) The L1 can then be reconfigured

once more to send instructions to the core’s instruction buffer so that the contents of

the L0 are not disturbed.

This approach has a number of advantages:

• All of the level-0 cache can be used to store instructions for long periods, rather

than needing to leave space to cycle through the remaining instructions.

• The instructions which are not pinned do not need to be written to the cache and

read out again every time they are executed. Instead, they pass through the much

cheaper instruction buffer which consumes less than 25% as much energy.

• In situations where it is difficult to predict which instruction packets should be

pinned, it is possible to fall back on normal caching behaviour. The compiler-

managed approach described by Park et al. [102] eliminates cache tags to save

energy, but this means that it is sometimes impossible to know what is already

in the cache, forcing pessimistic re-fetching of instructions which may already

be cached.

• Reduced compiler complexity – adding cache management to the Loki compiler

is beyond the scope of this work, so it was useful to be able to hand-modify only

frequently-executed loops.

Loki already has the instructions required to implement cache pinning: Park et al.

make use of fetch and jfetch instructions on the Elm architecture, which have the same

functionality as Loki’s fill and fetch [102]. Park et al. also describe a way in which

cache pinning can be applied automatically, using either static analysis or profile data.

For this work, profile data was used to determine which regions of code are executed

101

c
a
c
h
e
_
o
n
ly

b
u
ff
e
r_

o
n
ly

c
a
c
h
e
_
p
in

n
in

g

c
a
c
h
e
_
o
n
ly

b
u
ff
e
r_

o
n
ly

c
a
c
h
e
_
p
in

n
in

g

c
a
c
h
e
_
o
n
ly

b
u
ff
e
r_

o
n
ly

c
a
c
h
e
_
p
in

n
in

g

c
a
c
h
e
_
o
n
ly

b
u
ff
e
r_

o
n
ly

c
a
c
h
e
_
p
in

n
in

g

c
a
c
h
e
_
o
n
ly

b
u
ff
e
r_

o
n
ly

c
a
c
h
e
_
p
in

n
in

g

c
a
c
h
e
_
o
n
ly

b
u
ff
e
r_

o
n
ly

c
a
c
h
e
_
p
in

n
in

g

c
a
c
h
e
_
o
n
ly

b
u
ff
e
r_

o
n
ly

c
a
c
h
e
_
p
in

n
in

g

p
J
/o

p
e
ra

ti
o
n

0

2

4

6

8

10

12

instruction buffer

L0 cache

L1 cache

adpcmc

crc

dijkstra

jpeg_color

jpeg_dct

jpeg_huffman

sha

Figure 5.3: Energy distribution of instruction supply when using only the L0 cache, only the

buffer and switching between the two using cache pinning.

most often, and then the situation was treated as the knapsack problem: instruction

packets have a “weight” corresponding to their size (rounded up to the nearest cache

line) and a “value” corresponding to the number of L1 accesses which would be saved

by storing the packet in the L0 (size of packet × number of executions), and the goal

is to maximise the value of instructions stored in the cache.

Figure 5.3 shows how the instruction supply energy changes for a number of loops

in the MiBench suite, and Figure 5.4 shows the overall effects of cache pinning. Loops

were chosen based on their size: if they completely fit in the cache, then cache pinning

would make no difference; if they were much larger than the cache, the effects of cache

pinning would be smaller and harder to reason about.

The data show that energy spent on instruction supply decreases for all benchmarks

when using cache pinning. In some cases (crc, dijkstra, sha) the effect is small because

the fully associative cache already does a good job of caching the most common path

through the loop body. In other cases (adpcmc, jpeg color), energy is greatly reduced

as a large portion of the required instructions are now stored locally. Performance also

improves in these cases as the average instruction fetch latency is reduced, and the L1

102

a
d

p
c
m

c

c
rc

d
ijk

s
tr

a

jp
e

g
_

c
o

lo
r

jp
e

g
_

d
c
t

jp
e

g
_

h
u

ff
m

a
n

s
h

a

0.0

0.2

0.4

0.6

0.8

1.0

Relative cycles

Relative energy

Figure 5.4: Effects of cache pinning, relative to the best single instruction source.

cache is active much less, so data requests can be serviced more quickly on average.

jpeg dct and jpeg huffman lie somewhere between the two extremes.

Performance does not change by more than 1% in several cases. This is because

in such regular regions of code, it is often possible to partially or completely hide

memory latency by issuing a fetch in advance. This reduces the potential performance

improvements provided by the lower-latency instruction packet cache.

The cycle count for jpeg huffman increases by 1%. This is because the function is

executed many times, but each time the pinned code is executed only a small number

of times. Each time the function is called, it must first ensure that the cache contains

the required instructions. This process requires reconfiguring the L1 cache to alter the

instruction destination, which is relatively slow, taking tens of clock cycles.

The reconfiguration is slow in the current implementation because each memory

bank updates its channel map table before sending the reconfiguration message on to

the next bank – frequent reconfiguration was not considered when the L1 cache was

designed. Often, cache pinning is used to improve the efficiency of a long-running

loop, so these overheads become negligible. However, if the cost can be reduced,

cache pinning becomes profitable more often, perhaps allowing shorter-running loops

to be executed more efficiently.

There are two main ways these overheads could be reduced: make the memory

bank reconfiguration faster, or remove the need for reconfiguration altogether.

Reconfiguration could be made faster by sending the configuration message to all

memory banks simultaneously. This would require the addition of a new network

103

which is capable of broadcasting data to memories. This would increase the energy

and latency of the common case of point-to-point communication because additional

multiplexers would be required to select which of the networks to receive data from,

so the approach is undesirable.

Reconfiguration could be eliminated either by having the core steer all incoming

instructions to the instruction store it wants to use, or by setting up two channels to

memory at the beginning of the program, and having each one return instructions to

a different input channel of the core. Each of these methods requires adding a new

simple instruction to the instruction set. The instruction steering method needs an

instruction to toggle which of the instruction stores is to be used. This is not very

flexible because it removes the ability for a core to receive instructions from multiple

sources simultaneously – for example, storing its own instructions in its cache, and

receiving high-priority tasks from other cores at the instruction buffer. The multiple

channel method needs to break the current restriction that all fetch requests are im-

plicitly sent out on output channel 0. Adding an additional field into the instruction

encoding would reduce the number of bits available for the immediate value, so the

maximum size of relative jumps would be greatly reduced. Instead, I propose that an

additional instruction is added which changes the output channel which is implicitly

used for fetching instruction packets. This instruction would behave very similarly

to the rmtexecute instruction: a single immediate argument which specifies an output

channel to use. This similarity means that only very slight modifications need to be

made to the pipeline (specifically, the decoder), and so the impact on the energy and

latency of any modified components should be negligible.

Experiments found that the implementation of such an instruction is successful

in eliminating the described overheads. Set fetch channel was implemented, and is

described further in Appendix A.

5.1.4 Buffer pinning

Since Loki has two instruction stores which cost different amounts to access, it is

possible to take the cache pinning concept further and implement buffer pinning. This

is where as many instructions as possible are pinned in the cheaper instruction buffer,

and any remainders stay in the L0 cache. This is useful for loops which are between

the size of the buffer and the combined size of the cache and buffer; any larger and

instructions will start getting replaced and need to be re-fetched.

104

c
rc

s
h

a

0.0

0.2

0.4

0.6

0.8

1.0

Relative cycles

Relative energy

Figure 5.5: Behaviour of buffer pinning relative to cache pinning.

In order to keep the design simple, I make the restriction that only a single instruc-

tion packet can be stored in the buffer at any time. This requires the addition of a single

tag to the instruction buffer to record the address of the packet currently being stored.

From a timing perspective, this addition fits easily into existing slack in the critical

path, so does not force a more aggressive implementation for the buffer, and consumes

negligible energy itself: 0.03pJ addition to the cost of every tag look-up, plus 0.6pJ

whenever a new packet is fetched into the buffer (Table 4.10).

This technique is only beneficial if it is known that the instruction will be executed a

certain number of times, as the contents of the buffer get overwritten as soon as a new

instruction packet is fetched. Reading from the instruction buffer is approximately

2.1pJ cheaper than reading from the L0 cache, and bringing an instruction from the L1

cache into the buffer costs an average of 11pJ. Therefore, the instruction buffer will be

the more energy-efficient option if the instruction will be executed six or more times

before being evicted.

Since only a small number of benchmarks have main loops small enough to ben-

efit from buffer pinning, individual case studies were performed on the crc and sha

applications. Other benchmarks do contain loops of the right size, but they are not

executed as frequently, and so a very long simulation would be required to generate

enough data. Comparisons were made with cache pinning, as so far this was the best

instruction supply method for each benchmark. Results are shown in Figure 5.5.

105

The inner loop of the crc benchmark fits entirely in the buffer, so the outer loop

was stored in the L0 cache. There was almost no performance impact because almost

all instructions fit in the cache previously, but energy reduced by 15% due to the use

of the cheaper instruction buffer.

The sha benchmark is more complex. It consists of five tight loops (less than 30

instructions each) nested inside another loop. Each inner loop is already well-served

by the instruction packet cache, but is evicted when the next inner loop is executed.

To implement buffer pinning, each tight loop was cut into two instruction packets, if

necessary: 16 instructions which fit in the buffer, and all remaining instructions which

were stored in the L0 cache. These cuts introduced extra instructions to fetch the

second halves of the loops and slowed execution by 2%, but allowed a large fraction

of instructions (69%) to be read from the cheaper buffer, saving 57% of the pipeline’s

instruction supply energy (14% of the total energy consumed).

5.1.5 Summary

By giving each Loki core two instruction inputs, each consuming different amounts

of energy, it is possible to tailor the instruction supply to suit each part of a program.

A spectrum of approaches exist, depending on the size of the active code region. The

smallest kernels can fit entirely in the instruction buffer and be supplied very efficiently,

mid-sized kernels can use the L0 cache for additional capacity, and large code bodies

return to the buffer to minimise overheads when neither structure is able to exploit

locality.

Software management can be used to provide additional intermediate points on this

spectrum: if the kernel is slightly too large to fit in either the buffer or the L0 cache,

pinning can be used to guarantee that the most frequently executed instructions can be

accessed cheaply.

Pinning did not increase energy consumption for any of the benchmarks tested, and

gave savings of up to 40%. There was sometimes also a performance improvement

because the higher-latency L1 cache was used less often.

5.2 Scratchpad

The software-managed scratchpad in each core can be used for a variety of purposes:

it can store a frequently-accessed data structure, spilled register contents, or even a

106

Benchmark Table size/bits Description

adpcm 16× 32 Table of constants

adpcm 89× 32 Table of constants

bitcount 256× 8 Bit counts for every possible byte

bitcount 7× 32 Function pointers for various counting methods

crc 256× 32 Table of constants

dijkstra nodes2 × 32 Distances between all pairs of nodes

jpeg 64× 32 8× 8 block of pixels for processing

jpeg 64× 16 Precomputed constants used in inverse DCT

jpeg 2× 64× 8 Two quantisation tables

jpeg 2× 162× 8 Two tables used for Huffman coding

sha 23× 32 Data structure passed between loop iterations

stringsearch 256× 32 Distance to skip if each character is seen

Table 5.2: Data structures found in MiBench programs.

section of the stack. Only the first option is explored here, as the other two are best

implemented by a compiler. It is possible that this restriction results in a subopti-

mal scratchpad selection, so future work will address the other two use cases and re-

evaluate the decision.

In this section, I explore the tradeoffs of different scratchpad sizes: larger scratch-

pads are able to hold more data, but are more expensive to access. Overprovisioning

resources can therefore have negative effects on energy consumption, while underpro-

visioning results in additional instructions to determine whether the required data is in

the scratchpad or L1 cache.

Accessing the scratchpad is much cheaper than the L1 cache, both because the

structure is smaller and closer to the pipeline, and because fewer instructions are re-

quired. When an array of data is stored in the scratchpad, the array index is often

exactly the same as the scratchpad address, so data can be read directly, whereas if the

value is in memory, the array index needs to be converted into a memory address, and

followed up with instructions to load and receive the data from the L1 cache.

Table 5.2 shows a selection of the frequently-accessed tables and data structures

from the benchmarks used. Most of the benchmarks make use of at least one array

which would normally be stored in the cache hierarchy, but could be stored locally to

reduce access costs. All except one of the data structures in Table 5.2 would fit in a

core’s scratchpad memory, if the largest one available is chosen (1kB). The exception is

107

the adjacency matrix used in dijkstra whose size is data-dependent, and usually much

larger than even the largest available scratchpad memory.

Benchmark source code was modified to fill the scratchpad with data when execu-

tion first started, and the bitcount benchmark was split into its independent counting

functions. Benchmarks which do not make use of tables of data may still be able to take

advantage of the local scratchpad to reduce the number of expensive memory accesses

by using the techniques described above.

Figure 5.6 shows the execution behaviour when using various sizes of scratchpad,

compared to the baseline case of no scratchpad at all. The 256-word scratchpad can

be treated as the limit case; it is the smallest structure into which all data fit for these

benchmarks, so any larger scratchpads would only increase energy consumption.

In general, there is no improvement to either performance or energy except for

the cases where almost the entire table fits in the scratchpad. This is because extra

instructions are required to choose between the scratchpad and L1 cache, which negate

the benefits of the shorter code path when the required data is stored locally. The

reduced energy consumption of the scratchpad starts to outweigh the increased costs

of executing more instructions only when around 75% of the table is stored locally.

Converting the scratchpad into a cache would avoid the need for separate code

paths depending on if the data is stored locally or not, and so reduce the number of

instructions required when a table does not fit. However, the addition of cache tags

would add significant logic to the critical path and force a reduction in the size and

efficiency of the data array. Benefits of the scratchpad such as predictable access times

and minimal overheads would also be lost.

bc ar btbl and bc bw btbl are very similar and perform particularly poorly when

the scratchpad is too small because the extra instructions mean that the loop body no

longer fits in the cache, and must be re-fetched on every iteration. This effect could be

greatly reduced using cache pinning (Section 5.1.3), by providing a larger scratchpad,

or by packing multiple values into a single word. It was found that data-packing was

worthwhile for these benchmarks: with a 32-word scratchpad, and 8 values packed into

each word, execution time and total energy consumption both reduce by 15% over the

baseline. This can be compared to the 29% saved when the scratchpad is large enough

for data packing to be eliminated.

For those benchmarks which see improvements, performance improves by an aver-

age of 20% and overall energy consumption improves by 22%. 30-40% of the energy

108

Scratchpad size/words

R
e
la
ti
ve

e
xe
c
u
ti
o
n
ti
m
e

32 64 128 256

adpcmc

adpcmd

bc_ar_btbl

bc_bitcount

bc_bw_btbl

bc_ntbl_rec

bc_ntbl

crc

stringsearch

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

(a) Performance

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

R
e
la
ti
ve
e
n
e
rg
y

adpcmc

adpcmd

bc_ar_btbl

bc_bitcount

bc_bw_btbl

bc_ntbl_rec

bc_ntbl

crc

stringsearch

32 64 128 256

Scratchpad size/words

(b) Total energy

Figure 5.6: Behaviour of various sizes of scratchpad, relative to no scratchpad at all. All

implementations are accessible within a single clock cycle.

109

reduction is due to cheaper data access, and the remaining 60-70% is due to executing

fewer instructions.

Since the scratchpad consumes such a small fraction of energy (1.5% average for

256 words) but can have such a large impact on performance and energy consumption,

the largest possible data array which can be accessed in a single clock cycle is chosen:

256 words. This makes the scratchpad useful to as many benchmarks as possible, but

may reduce any benefits for cases in which only a small amount of extra storage is

required. The memory compiler is good at generating compact structures: the 256-

word scratchpad is smaller than the 32-word standard cell register file, and consumes

only around 10% of the total area of a core.

Scratchpads with multi-cycle access times were not explored, as the benefits over

the L1 cache diminish significantly, and because in the set of benchmarks used, there

was little need for anything larger.

The chosen scratchpad costs an average of 3.65pJ to read, and 3.44pJ to write,

compared with 0.65pJ and 0.95pJ for the register file and 16.5pJ and 16.0pJ for the L1

cache (including network costs). Values copied from the L1 cache into the scratchpad

need to be accessed an average of 1.6 times each before energy is saved compared

to accessing the L1 every time. This suggests that it may be beneficial to use the

scratchpad for even quite short-lived values. It is not beneficial to use a larger register

file for these short-lived values because of the energy impact on the common case, and

because an extra bit would be required for each register in the instruction encoding,

reducing the bits available for immediate values and other purposes.

Figure 5.7 shows how data supply energy changes when the selected scratchpad is

used, compared with no scratchpad. In all cases but one, the scratchpad reduces energy

consumption through a combination of storing data in cheaper structures, and reducing

the total amount of data which needs to be manipulated by eliminating instructions

which generate memory addresses. The outlier is bc bitcount. This function makes

use of many large literals, but storing them in the scratchpad prevented the compiler

from performing optimisations which depended on the literal values. This increased

the code size, with a corresponding increase in energy.

Data supply costs can also be reduced using optimisations to the register file. These

optimisations are not explored here, as the register file currently consumes only a small

portion of the total energy. Possible optimisations include:

110

b
a
s
e
lin

e

s
c
ra

tc
h
p
a
d

b
a
s
e
lin

e

s
c
ra

tc
h
p
a
d

b
a
s
e
lin

e

s
c
ra

tc
h
p
a
d

b
a
s
e
lin

e

s
c
ra

tc
h
p
a
d

b
a
s
e
lin

e

s
c
ra

tc
h
p
a
d

b
a
s
e
lin

e

s
c
ra

tc
h
p
a
d

b
a
s
e
lin

e

s
c
ra

tc
h
p
a
d

b
a
s
e
lin

e

s
c
ra

tc
h
p
a
d

b
a
s
e
lin

e

s
c
ra

tc
h
p
a
d

adpcmc

adpcmd

bc_ar_btbl

bc_bitcount

bc_bw_btbl

bc_ntbl_rec

bc_ntbl

crc

stringsearch

R
e
la

ti
v
e

e
n
e
rg

y

0.0

0.5

1.0

1.5

L1 cache

scratchpad

register file

Figure 5.7: Data supply energy distribution with and without use of the scratchpad.

• providing narrow register file ports, allowing the common case of small values

to be read more efficiently;

• explicit operand forwarding, where results which will be immediately consumed

are not written back to the register file [16];

• skewing the multiplexer tree or using a separate register file to create a subset of

cheaper registers for short-lived or many-access values [42, 134];

• reducing the number of ports on the register file – the addition of explicit operand

forwarding and network communication may mean that the performance impact

of removing a port is acceptable.

5.3 Network

Each tile of the Loki architecture contains a number of different networks, optimised

for different use cases. Cores and memory banks communicate via fast crossbars in

order to keep memory latency down; cores communicate with each other via slower

111

crossbars which are capable of multicast, to allow them to work together more effi-

ciently; and memory banks communicate with each other using a simple ring network.

This section explores different implementations of the networks connecting cores

and memory banks, and the number of components connected to those networks. The

core-to-core network is explored in Chapter 6, when multiple cores are used by bench-

marks and communication between them is required, and the memory-to-memory net-

work is beyond the scope of this work.

When using only a single core, network buffers do not limit execution at all, so it

would be unfair to explore different implementations at this stage. An investigation

is performed in Chapter 6, where multiple cores are active simultaneously, so buffers

experience higher activity and have a larger effect on performance and energy con-

sumption. The number of network channels available also remains constant: changing

the number of register mapped inputs would require changes to the compiler’s register

allocation, and changing the number of output channels would require changes to the

instruction encoding.

Multicast is a useful feature of a network as it can allow higher-radix communica-

tion, but its addition generally results in a slower interconnect as the long wires must be

able to drive more outputs with a higher total capacitance. The number of components

on a tile is also a factor: a larger number of memory banks allows more information to

be stored locally, and cheaper communication between more cores allows more effec-

tive parallelism. However, the complexity of crossbar networks increases quadratically

with the number of connections, suggesting that fewer components may be more effi-

cient.

Figure 5.8 presents results relative to a default crossbar network connecting 8 cores

and 8 memory banks with a half-cycle latency.

The small tile implementation connects 4 cores and 4 memory banks using a cross-

bar with a half-cycle latency. With this smaller tile, execution is an average of 1%

slower, showing that memory capacity is not a limitation for these benchmarks, and

energy is an average of 2% lower.

Conversely, a large tile with 16 cores and 16 memory banks observes a 1% in-

crease in energy consumption. This is an impressively small increase, considering the

quadratic complexity of crossbars and the frequency that the network is used. If the

crossbar is able to transfer data within half a clock cycle, keeping memory latency un-

der two cycles, a small performance improvement of less than 1% is seen due to the

112

a
d

p
c
m

c

a
d

p
c
m

d

b
it
c
o

u
n

t

c
rc

d
ijk

s
tr

a

jp
e

g
c

jp
e

g
d

q
s
o

rt

s
h

a

s
tr

in
g

s
e

a
rc

h

R
e

la
ti
ve

 e
xe

c
u

ti
o

n
 t

im
e

0.0

0.2

0.4

0.6

0.8

1.0

1.2

small_tile

default

multicast

large_tile

large_tile_realistic

(a) Relative execution time

a
d

p
c
m

c

a
d

p
c
m

d

b
it
c
o

u
n

t

c
rc

d
ijk

s
tr

a

jp
e

g
c

jp
e

g
d

q
s
o

rt

s
h

a

s
tr

in
g

s
e

a
rc

h

R
e

la
ti
ve

 e
n

e
rg

y

0.0

0.2

0.4

0.6

0.8

1.0

1.2

small_tile

default

multicast

large_tile

large_tile_realistic

(b) Relative energy consumption

Figure 5.8: Comparison between different sizes and implementations of networks between

cores and memory banks. All figures are relative to the default implementation of 8 cores and

8 memory banks connected by a fast crossbar. A small tile contains 4 cores and 4 memory

banks, and a large tile contains 16 of each. The multicast and realistic implementations have a

one-cycle latency, and all others are able to transfer data within half a clock cycle.

113

increased memory capacity. In practice, however, such a network requires at least one

full clock cycle to transfer data, resulting in a 9% increase in execution time.

Finally, a crossbar capable of multicast was explored, though none of the multicast

features were used in this experiment. The latency of the network was one clock cycle.

Energy increased by 5% as long wires which span the whole tile are used even when

communicating with a nearby component, and execution time again increased by 9%

due to the increase in memory latency.

The figures show that the default implementation is a sensible one: increasing the

size of the tile, or using a more-complex network increases the network latency, which

in turn has an impact on memory latency, and reduces performance. It seems unlikely

that the benefits of multicast from memory banks to cores will outweigh the costs; it is

proposed that when multicast behaviour is required, a single core should load a value,

and use the core-to-core multicast network to distribute it to all other destinations.

Multicasting values to memory banks (for example, to write the same value to many

locations at once) could be useful, and is the subject of future work.

There is little difference between the default tile and one half its size, so the larger

option is selected to allow more exploration of parallelism in the following chapter,

and to increase memory capacity for those applications which may require it.

5.4 Summary

Table 5.3 summarises the module implementations selected for the baseline Loki ar-

chitecture. Eight cores and eight 8kB memory banks make up each tile, and they

communicate via a fast point-to-point crossbar network. The sizes of the channel map

table and register file are fixed by Loki’s instruction encoding, and were selected as

sensible starting points. As mentioned previously, network buffers will be investigated

in Chapter 6, where multiple cores are active simultaneously, and buffers have a larger

impact on performance and energy consumption.

Table 5.4 gives a summary of typical energy consumptions for common operations.

All assumptions are based on average figures observed in execution traces.

Figure 5.9 shows a breakdown of which components consume the energy when

executing the baseline MiBench applications; the instruction buffer and scratchpad are

not used. Components are grouped as follows:

• data supply consists of the register file and the scratchpad

114

Component Entries Data width/bits

Channel map table 16 32

Instruction buffer 16 32

L0 data array 64 32

L0 tags 16 30

L1 data array 8192 32

Network buffers 4 32

Register file 32 32

Scratchpad 256 32

Table 5.3: Sizes of components in the Loki architecture.

• instruction supply consists of the instruction packet cache, the instruction buffer,

and all tags

• network consists of all networks and arbitration

• network interface consists of the channel map table and network buffers

Energy per operation ranges from 10.0pJ for bitcount to 20.6pJ for adpcmd, and is

highly dependent on the performance of the cache. In cases where the cache performs

well, less than 3pJ is spent per operation on supplying instructions, as the main action

performed is an L0 read. When the cache performs poorly, each instruction must be

read from the L1 and written to the L0 before being read, at a total cost of almost 12pJ.

Effective use of the instruction buffer as described in Section 5.1 can be used to reduce

this, as can the use of multiple cores (Chapter 6).

Figure 5.10 shows the areas of all modelled components; it is possible to fit eight

cores, 64kB memory and all required interconnect into 1mm2. Some parts of the

pipeline consume a disproportionate amount of area relative to the frequency they are

used – the cache tags make up 9% and the multiplier takes up 17% of the total core

area. Reducing the area consumed by these modules would help bring other compo-

nents closer together and reduce communication costs, but these effects are expected

to be relatively small compared to other savings, so are not explored here.

I observe that instruction supply dominates the total energy, as was found by Dally

et al. for a typical embedded processor [33]. Cache pinning (Section 5.1.3) can be used

to improve this by up to 40% in some cases, and the following chapter explores several

ways in which multiple cores can work together to reduce energy.

115

Action Assumptions Energy/pJ

IPK cache read - 2.5

IPK cache write - 2.4

Instruction buffer read - 0.35

Instruction buffer write - 0.75

Tag look-up (cache +

buffer)
5 bits toggle 0.69

L1 instruction read - 6.9

Pipeline register

write+read (32 bit)
12 bits toggle 0.28

Instruction decode - 0.52

Register file read 8 bits set 0.65

Register file write 7 bits toggle 0.93

Scratchpad read - 3.7

Scratchpad write - 3.4

L1 data read Read 32-bit value 9.0

L1 data write Write 32-bit value 12.0

32-bit bitwise operation 7 bits toggle in operand 1, 5 bits toggle in

operand 2, 7 bits toggle in output
1.6

32-bit addition 1.9

32-bit multiplication Compute lower 32 bits of result 8.9

0.5mm 32-bit bus 12 bits toggle 0.34

Crossbar interconnect 12 bits toggle, average distance is 0.5mm 1.3

Multicast interconnect 12 data bits toggle, 1 bitmask bit toggles 1.0

Network buffer read - 0.40

Network buffer write - 0.68

Arbitration - 0.45

Total cost of L1 load

(including network)

Data stops in all network buffers on the

way
16.5

Table 5.4: Average energy consumption of common operations in a 40nm low-power process.

Assumptions of bit switching are based on average figures from experimental data.

116

a
d

p
c
m

c

a
d

p
c
m

d

b
it
c
o

u
n

t

c
rc

d
ijk

s
tr

a

jp
e

g
c

jp
e

g
d

q
s
o

rt

s
h

a

s
tr

in
g

s
e

a
rc

h

p
J
/o

p
e

ra
ti
o

n

0

5

10

15

20

alu

data supply

decode

instruction supply

memory (data)

memory (inst)

network

network interface

pipeline registers

Figure 5.9: Distribution of energy consumption for the baseline Loki architecture.

I now derive an estimate of the number of Loki cores which could be active si-

multaneously in an embedded system. I assume a typical mobile phone TDP of 2W,

including communication off-chip. For a future system with 25GB/s of off-chip mem-

ory bandwidth (NVIDIA’s Tegra 3 has up to 6.4GB/s [120]), where each bit commu-

nicated costs 5pJ [17, 123], off-chip communication will cost a maximum of 1W. The

introduction of chip stacking and through-silicon vias (TSVs) will reduce these com-

munication costs by a factor of roughly 1000, though memory bandwidth will likely

increase greatly as a result [19]. This leaves 1W for the cores themselves. I assume

that each core is able to achieve on the order of 10pJ per operation at 435MHz, with

an average IPC of 0.72 (Section 4.3.1).

117

(a) Tile

������

������

	

�
��

�
�
�
��

�
�

	

�
��

�
�
�

�
�
�
��
��
��
��
��

�
�
��
�
��
��
�
��
�
��

�
�

!
�
��
�"
��
�
�

#
�
�
��
�
"

$

%
�

&
&
�
��
�

"
��

�
��

!
��
�
�
��

&
�
�
�
�

�
�
'
��
(
��

)���$��
�"���&�����������

(b) Core

Figure 5.10: Floorplans using results of synthesis. Shaded regions do not contain any modelled

components, but are retained to cover any inaccuracies.

118

power =
energy

time
=

energy

instructions
×

instructions

cycles
×

cycles

time

=
energy

instructions
× cores× single core IPC × clock frequency

1W = 10pJ × cores× 0.72× 435MHz

cores = 319

319 cores corresponds to a total of 40 tiles, consuming an area of 40mm2 with a

total of 2.5MB of cache. For comparison, the Tegra 3 system-on-chip occupies 80mm2

in a 40nm process, including additional logic such as I/O pads and memory controllers.

Of course, it would be possible to place more Loki cores on a chip, but it would not

be possible to use them all simultaneously due to the power constraints. This is not

necessarily a bad thing – it would allow further specialisation of those cores which

were in use. Alternatively, “spare” area could be used to increase cache capacity;

some tiled architectures such as Elm [14] provide tiles which contain only cache.

5.5 Comparison with other work

When so much of the infrastructure used is new (microarchitecture, instruction set,

compiler), it is difficult to form fair comparisons with other work. Many other re-

search groups developing novel architectures have also encountered this problem. For

this reason, I have provided a lot of raw numbers, along with estimates of their er-

ror. I attempt to make comparisons as fair as possible by using standard source code

for benchmarks, and making notes of various intermediate results such as dynamic

instruction count to help compare compilers and instruction sets.

A comparison was made with an ARM1176 processor, synthesised in the same

40nm technology, and running at 700MHz. Energy figures were scaled from published

results at 65nm [10] and confirmed by direct power measurements from a development

board using a power monitor [89], giving a figure of approximately 140pJ/operation.

In order to further reduce the effects of system calls, all print statements and file

accesses were removed from benchmarks and all program inputs were embedded into

the executables. Hardware performance counters on the ARM were used to measure

119

b
it
c
o
u
n
t

c
rc

s
h
a

s
tr

in
g
s
e
a
rc

h

R
e
la

ti
v
e
 t

o
 A

R
M

1
1
7
6

0.0

0.5

1.0

1.5

2.0

instructions

cycles

Figure 5.11: Comparison with ARM1176. Identical source code was used for benchmarks on

the two platforms.

instructions executed and clock cycles. Each benchmark was executed a large number

of times under Debian Wheezy, and the shortest time was selected. Executing bench-

marks bare-metal was not found to make a significant difference.

Figure 5.11 compares ARM and Loki versions of the benchmarks. When using

identical source code, only four of the benchmarks were able to compile on Loki, but

comparisons with less-modified versions of the benchmarks suggest that these results

are representative. Dynamic instruction counts are 1.4-2.2× higher on Loki at present.

There is no single dominant reason for this, but rather several smaller features in the

ARM instruction set which Loki does not offer, including:

• A barrel shifter which allows virtually all shifts and rotations to be folded into

other instructions at no cost.

• A richer set of condition codes upon which execution can be predicated.

• Instructions to extract and sign-extend subsections of data words.

• More memory addressing modes, particularly register+register.

• Load/store multiple instructions which allow multiple values to be transferred

to/from memory and are useful when working with the stack.

The final three points could be added to Loki relatively easily through the intro-

duction of new instructions. The first two would be more complicated, requiring mod-

120

ifications to the instruction set to encode the extra information. Such optimisation of

the instruction set is left for future work; for this work, it is sufficient to know that

behaviour of the Loki baseline is comparable to other architectures.

Overall execution on a single Loki core is 1-1.8× slower than the ARM core

clocked at the same frequency, showing that Loki is executing a similar number of

instructions per clock cycle as the ARM processor. (Loki has better IPC in crc be-

cause the ARM code is more efficient and has fewer instructions, but both architec-

tures are memory-bound and take the same amount of time to execute the program.)

This suggests that as the compiler and instruction set improve and reduce the number

of instructions executed, performance will get closer to that of the ARM. Meanwhile,

Loki can make use of parallelism to match the ARM core’s performance, and is able to

execute 7-14 instructions for each ARM instruction while still having a lower energy

consumption.

The ARM processor occupies approximately 1mm2 on die, including 32kB of

cache and a double-precision floating point unit. (A 128kB L2 cache is also avail-

able, but is not included in these area estimates.) With the same resources, Loki is able

to provide 8 cores, each with 50-100% the integer performance of the ARM processor,

and twice as much cache. With all eight cores operational, total power consumption

would be comparable to the ARM processor, but the work being done should be signif-

icantly greater. Loki is unlikely to be able to compete on floating point performance,

however; providing efficient support for floating point computations is a subject of

future work.

5.6 Conclusion

In this chapter, I have determined a sensible baseline implementation for a tile of the

Loki architecture. All decisions were made based on applications running on a single

core, so the next chapter combines multiple cores in a variety of different ways to

stress other parts of the design and refine it further. Additional tweaks may be required

as the architecture is used in ways not explored in these benchmarks, such as large

applications covering multiple tiles. It is expected that the selected design is a good

base upon which these modifications can be made.

The Loki architecture is able to achieve an energy efficiency of 10-20pJ per op-

eration for single-core applications, which compares very well with other embedded

121

architectures. Performance is lower, but cores are designed to work together to over-

come this handicap. There is scope to execute many Loki instructions for the same

energy as a single ARM instruction, suggesting that when parallelism is available,

Loki will be able to match or exceed the performance of other embedded processors

while still consuming significantly less energy.

Cache and buffer pinning were shown to be effective on the Loki architecture,

saving up to 40% of total energy consumed by an application. It is anticipated that

as programs are spread across an increasing number of cores, their tasks will become

increasingly specialised, and many cores will be able to make effective use of cache or

buffer pinning. This improvement in caching behaviour will increase both performance

and energy efficiency.

122

CHAPTER 6

EXPLOITING TIGHTLY-COUPLED CORES

Virtually all applications exhibit some form of parallelism, but the type and amount

varies from application to application, and often between phases within a single pro-

gram [101]. One of the aims with Loki is to support as many different types of par-

allelism as possible, at minimum cost to sequential execution. This allows the widest

possible range of applications to be parallelised, and so avoids the need to resort to a

more-complex co-processor for executing sequential code. If a co-processor was re-

quired, it would reduce the number of Loki cores that could fit on a chip (reducing

potential performance), and it would often be difficult to achieve an energy efficiency

comparable to the Loki cores. Support for many forms of parallelism can also increase

the amount of parallelism which can be exploited within each application, particularly

for applications with parallelism which would be difficult to access with traditional ar-

chitectures. This increases performance and helps justify the provision of such a large

number of processing units.

Simply having cheap communication (in both time and energy) allows a variety of

low-level parallel building blocks to be implemented using multiple cores: some of the

possibilities and a number of optimisations are explored in this chapter. I call these

building blocks execution patterns – this is meant to imply that there is no hardware

reconfiguration involved in switching from one pattern to another, and that multiple

patterns can be combined to produce something more complex. Each pattern is just

a different way of mapping parallel software onto multiple cores. These execution

patterns allow a virtual architecture to be built for each program which most natu-

rally takes advantage of the parallelism available; there is no need to restructure the

program’s code to take advantage of the architecture, as is often necessary when writ-

ing multithreaded programs today. Having a wide range of low-level parallel building

123

� � � �
��������	
��

����

Figure 6.1: MIMD execution pattern. Each core independently issues instructions from its

local cache, with instructions potentially coming from separate applications.

blocks makes parallelisation easier, reducing the costs of parallelising a program, and

also increasing the amount of parallelism which can be extracted easily.

Loki attempts to overcome limitations imposed by Amdahl’s law by allowing mul-

tiple cores to form a single virtual processor, and work together to execute a single

thread. It is therefore possible to achieve both high parallelism and high sequential

performance. It has previously been suggested that this dynamic approach is better

than any static mix of weak and powerful processors [53].

The goal of this chapter is not to find the most efficient way of implementing each

execution pattern, but to demonstrate that a wide variety of parallel execution structures

are made effective by cheap communication. There is plenty of scope for optimising

the execution patterns, both with hardware modifications and improved software. Par-

allelism is explored only within a single tile of 8 cores, and the possibilities of extend-

ing execution patterns to use multiple tiles are discussed where appropriate.

Due to the specialisation inherent in execution patterns, only a subset of bench-

marks can effectively use each one; conversely, each benchmark is only able to take

advantage of a subset of execution patterns. There is some scope for automatically

determining when an execution pattern applies, but for the moment, programmer as-

sistance is often likely to be more fruitful. Discussion of how each type of parallelism

could be exposed to the compiler is included in each section.

6.1 MIMD

The multiple instruction, multiple data (MIMD) paradigm usually consists of running

multiple independent threads at the same time (Figure 6.1). For the purposes of this

discussion, I expand this definition to include multiple independent applications exe-

cuting concurrently.

124

This is the type of parallelism most-frequently exploited by multicore architectures

since no program analysis is required, but the amount of parallelism is often quite

low because few applications need to perform computation simultaneously. In order

to prevent the different applications from interfering with each other, a solution to the

address binding problem is required. For most modern hardware, virtual memory is

used, though it is also possible to choose memory addresses at load- or compile-time.

Loki does not yet support any of these solutions, and this thesis focuses on other, less

common forms of parallelism, so this section discusses other features which will help

once an implementation has been selected.

Loki’s configurable memory system allows each process to be given its own virtual

cache made up of a fixed number of L1 cache banks. This would help to make memory

behaviour more predictable by removing the influence of other processes. However,

providing a fixed amount of memory may be detrimental: some parts of the program

may have larger working sets, and some parts may leave much of the provisioned

resources unused. Allowing memory reconfiguration allows the best approach for each

situation to be selected.

Loki’s channel map table also gives the opportunity to transparently move threads

around the chip at runtime. This can be used, for example, to physically move com-

putation near to the off-chip memory interface when using lots of data, or away from

other threads to avoid network contention.

6.2 Data-level parallelism

The data-level parallelism (DLP) execution pattern involves multiple cores executing

the same code, but producing different parts of the result. This technique is most often

used to parallelise a loop: if the iterations of a loop are independent of each other,

they can be executed concurrently. If the iterations of a loop are not independent, DLP

often becomes more difficult to exploit because there must be communication and

synchronisation between the different iterations. With the expensive communication

mechanisms of traditional architectures, this can often mean that parallelising the loop

is no longer profitable. Speedup is limited by the length of sequential regions: parts

of the loop body which cannot execute out of order between loop iterations. There are

some techniques which transform the code to minimise the impact of inter-iteration

dependencies by shortening sequential regions [29], but there are some loops which

125

still are not worth parallelising. Loki’s very cheap communication means that DLP is

profitable more of the time.

Much of the execution time of typical programs is spent in loops [36], so if these

loops can be parallelised, large gains can be made. Data-level parallelism is often more

scalable than other forms such as instruction-level or thread-level parallelism, as it is

limited by the number of loop iterations (often a large number), rather than the low-

level data dependencies or structure of the code. Indeed, supercomputers are built to

exploit huge amounts of data-level parallelism, and 70% of 2011’s 20 “greenest” super

computers make use of architectures optimised for DLP execution such as GPUs and

the Cell processor [4].

DLP execution can either be decoupled, where different cores execute the same

code, but at their own pace, or in lockstep, where each functional unit executes the

same instruction at the same time. Architectures capable of using a single instruction

to perform many copies of the same operation simultaneously are typically referred to

as single instruction multiple data (SIMD). SIMD execution can be much more effi-

cient than decoupled data-level parallelism because each instruction only needs to be

fetched and decoded once before being issued to many functional units. This approach

can be restrictive, however, in the case of divergent control flow within a loop. If there

is divergent control flow, then different processing lanes will need to execute different

instructions, so the lockstep mechanism will no longer be appropriate. Some architec-

tures solve this problem by having a bitmask, with one bit for each lane, representing

which branch was taken by each [40]. Instructions can then be issued in lockstep to

one subset of cores and then the other. This requires that both sides of the branch are

executed sequentially, which increases the length of the critical path, and the technique

becomes increasingly complex if non-trivial control flow is required, but it does allow

the efficient lockstep mechanism to be used more of the time.

Many modern processors have some DLP capability: instructions are provided

which treat register contents as multiple independent values. This approach is called

SIMD within a register (SWAR) and allows parallelism without the need for extra

hardware; only small changes to existing functional units are required. For example,

a 32-bit value can be treated as a vector of four separate 8-bit values. In order to add

two of these vectors together, the only hardware modification required is the ability to

break the carry chain in the adder to make each addition independent. This technique

has such potential that there are now a number of instruction set extensions which spec-

ify increasingly wide registers and wide functional units, capable of large numbers of

126

� � � �
��������	
��

����

Figure 6.2: DLP execution pattern. Each core independently issues instructions from the same

application from its local cache.

simultaneous operations – an example is the Advanced Vector Extension (AVX) which

specifies 16 256-bit registers [58]. These extra features can be very useful [121], but

are often difficult to exploit, and parallelism is limited by the hardware available. Loki

provides very simple support for up to 8-way DLP groups within a tile, and it is then

possible to replicate these groups as many times as desired to increase parallelism.

Graphical processing units (GPUs) are designed to execute data parallel code quickly,

as there are many processes in graphics which perform independent computation for

each pixel or each vertex of a model. Their architectures are specialised by allowing

control costs (such as fetching instructions) to be amortised across multiple processing

elements, and by using a huge number of threads to hide memory latency and reduce

the need for on-chip caches. This specialisation makes GPUs much more energy-

efficient than more general-purpose processors, but limits the types of application that

can be executed effectively.

This section first explores mapping decoupled DLP execution to the Loki architec-

ture, as it is more flexible than SIMD and can be used in more cases, allowing more

parallelisation opportunities. I then explore reducing redundancy by extracting com-

mon tasks to a helper core in Section 6.2.3. Finally, hardware modifications to allow

the more-efficient SIMD execution are explored in Section 6.2.4.

6.2.1 DOALL and DOACROSS

When all iterations of a loop are independent (known as DOALL parallelism), exe-

cuting them in parallel is trivial; the iterations can be sliced in whichever way is most

convenient, and distributed across the available functional units.

For these experiments, data-level parallelism is implemented on Loki by telling

multiple cores to fetch the same instructions, and updating the way the iteration counter

127

is managed (Figure 6.2). The iterations are striped across the cores: if there are 8 cores,

then core 0 will execute iterations 0, 8, 16, etc. This was done for two reasons:

1. It is very simple to determine when each core should stop. Each core keeps an

iteration counter, and increments it by the number of cores after each iteration.

The core stops work when its counter is greater than or equal to the total number

of iterations to be carried out. If each core is to be given a sequential block

of iterations to execute, division operations would be required to determine the

block boundaries, which are expensive on architectures such as Loki which have

no dedicated division logic.

2. The parallelism is very fine-grained, which means minimal changes are needed

to support cross-iteration dependencies (described below). If a core executed a

larger group of sequential iterations, they would all have to complete before a

result could be passed on to the next core, allowing it to begin. This approach

would be very close to a completely sequential implementation.

In cases where there is locality between neighbouring loop iterations, it may be

preferable to instead divide the iteration space into contiguous blocks.

When there are fixed cross-iteration dependencies (DOACROSS parallelism), it is

necessary to set up communication channels before the loop begins, and modify the

loop body so that it sends and receives data over the network when appropriate. On

Loki, this can usually be done with zero performance overhead, as reading from the

network simply replaces a register read, and sending onto the network is an optional

feature of most instructions. The only time there is an overhead is when a value re-

ceived from the network is needed by multiple instructions: since reads from network

buffers are destructive, the value cannot be read twice, so must first be copied into a

register. There also needs to be a little work sending the initial live-ins before the first

iteration, and draining any superfluous values after the loop completes.

More complex dependency patterns can also be supported – these would require a

new channel to be set-up on each iteration. Careful synchronisation would be necessary

to ensure that no two senders write to the same channel at the same time and that there

is no possibility of deadlock.

128

6.2.2 Evaluation

In order to evaluate the impact of data-level parallelism, a number of benchmarks were

modified at the source code level. Modifications included initialisation of the addi-

tional cores, and production of a final result from each core’s partial result. Each core

was given its own stack space, but the heap was shared. The stacks were positioned

in memory such that they mapped to different cache banks, to minimise conflicts. The

scope of some variables was also changed depending on whether they should be shared

between all cores, or private to each core.

A number of loops exhibiting data-level parallelism were selected from MiBench,

and data was collected only while the loops were executing. The adpcmc benchmark

contains DOACROSS parallelism, while all others contain DOALL parallelism. bit-

count has multiple nested loops, so parallelism was explored at two levels.

Figure 6.3 shows how performance and energy scale as the number of cores used

increases; all benchmarks are compared to the baseline single-core implementation.

The loops display a wide range of behaviours: some, such as stringsearch scale well,

achieving a 5.4× speedup on 8 cores, and others such as jpeg dct do not scale well

because there are too few loop iterations for the execution pattern to be worthwhile.

adpcmc converges on a speedup of approximately 2 when it uses 3 cores; this is lim-

ited by the dependencies between iterations and is not helped by the addition of further

cores. For many of the benchmarks, the line in the energy graph is horizontal, showing

that energy remains constant as more cores are used. This is because the same work is

being done, but spread across more cores. The height of the line represents the over-

head of the execution pattern: bitcount inner has very tight loops, so the overhead is

proportionally higher. It is expected that this overhead could be reduced with compiler

optimisations, or by executing loop iterations in groups instead of one at a time. For

jpeg dct and jpeg huff, energy increases because there are not enough loop iterations

to overcome the overheads of filling multiple L0 caches with instructions.

The target when exploiting any form of paralellism is a perfect linear speedup,

where adding extra cores provides a proportional increase in performance. This is

typically difficult to achieve due to program dependencies and resource contention. For

several of the applications presented, Loki achieves a linear speedup, but not perfect

linear. This is due to overheads of the execution pattern:

• Extra function calls are used, which increase the code size: in order to reuse

as much code as possible in these hand-modified examples, loop iterations are

129

0
1

2
3

4
5

6

DLP cores

R
e

la
ti
ve

 p
e

rf
o

rm
a

n
c
e

1 2 3 4 5 6 7 8

adpcmc

bitcount_inner

bitcount_outer

dijkstra

jpeg_color

jpeg_dct

jpeg_huff

stringsearch

(a) Relative performance

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

DLP cores

R
e

la
ti
ve

 e
n

e
rg

y

1 2 3 4 5 6 7 8

adpcmc

bitcount_inner

bitcount_outer

dijkstra

jpeg_color

jpeg_dct

jpeg_huff

stringsearch

(b) Relative energy

Figure 6.3: Performance and energy consumption as the width of the DLP group changes, rela-

tive to the baseline (non-DLP) single-core implementation. Reported figures are for benchmark

kernels only.

130

converted to functions which take the iteration number as an argument. The

impact of this could be reduced by using cache pinning (Section 5.1.3) to keep

as many instructions as possible in the L0 cache, or by refactoring the code to

have the loop inside the function body. It is also expected that a compiler would

be able to implement a lower-overhead transformation.

• In order to share data between cores, more data is made global, and must be

loaded from the shared L1 cache every time it is accessed. This situation could

be improved by storing read-only global values (the majority) locally in each

core.

This execution pattern improves performance, but not energy. This is because much

work done by Loki when in DLP mode is redundant:

• All cores have their own iteration counter, increasing register pressure, and re-

quiring instructions on each iteration to update the counter and check whether

another iteration is required.

• All cores access the same shared data held in the L1 cache, increasing contention,

and slowing average response times.

• All cores fetch the same instructions and store them locally, meaning that the

limited L0 cache capacity is poorly utilised.

In the following sections, I explore the use of a helper core to reduce redundancies

concerning data (Section 6.2.3), and hardware modifications to improve instruction

distribution (Section 6.2.4).

6.2.3 Helper core

In order to reduce the inefficiencies involved in multiple cores accessing and comput-

ing the same data, this section explores using one core as a helper core to provide

common data required by all other cores (Figure 6.4). This process is known as scalar-

isation and can be used on any architecture capable of simultaneously exploiting DLP

and executing a sequential thread [78]. Such architectures include some vector proces-

sors which include control units and upcoming GPUs with scalar execution resources.

The use of a helper core can reduce the work done by the remaining data-parallel

131

�

� � �
��������	
��

����

Figure 6.4: DLP execution pattern with helper core. One core is removed from the DLP group

and is responsible for providing data common to all other cores.

cores and reduce contention at L1 banks, at the cost of reducing the number of cores

processing the input data.

All instructions independent of live inputs to the loop iteration are considered for

extraction to a helper core. This includes instructions which store constants in registers

and load data from the cache. Instructions are not extracted when the cost of generating

a value is the same as the cost of receiving a value from the network – this is the

case when the value needs to be used multiple times and so is stored in a dedicated

register. All computations used to determine whether to perform another iteration are

also extracted.

The behaviour of the benchmarks with helper cores is shown in Figure 6.5. dijkstra

and stringsearch are excluded as they are too control-intensive to benefit from a helper

core. adpcmc is excluded because it makes use of DOACROSS parallelism, so the

cores require more decoupling than the helper core allows. In most cases, energy

consumption decreases from the DLP baseline because less work is being done in total.

For bitcount inner, bitcount outer and jpeg color, total energy consumption drops as

the number of cores increases because the helper core is able to provide data to more

cores at once, so needs to do so fewer times. The performance impact depends on the

amount of work which can be offloaded onto the helper core and the number of cores

132

0
1

2
3

4
5

6

Cores used

R
e

la
ti
ve

 p
e

rf
o

rm
a

n
c
e

2 3 4 5 6 7 8

bitcount_inner

bitcount_outer

jpeg_color

jpeg_dct

jpeg_huff

(a) Relative performance

0
1

2
3

4

Cores used

R
e

la
ti
ve

 e
n

e
rg

y

2 3 4 5 6 7 8

bitcount_inner

bitcount_outer

jpeg_color

jpeg_dct

jpeg_huff

(b) Relative energy

Figure 6.5: Performance and energy consumption as the width of the DLP group changes,

when making use of a helper core.

133

for all paths {

// Initialise

if (startpoint == endpoint) {

distance = 0;

return;

}

else {

// Main Dijkstra algorithm

}

}

Figure 6.6: An example from dijkstra where divergent control flow blocks the use of a helper

core.

being used, and ranges from a 20% decline for jpeg dct to a 16% improvement for

jpeg color. The performance of bitcount outer suddenly rises with 8 cores because the

7 iterations of the loop now fit neatly on the 7 worker cores. Energy consumption for

8 cores is an average of 11% lower than without the helper core: data supply is 13%

cheaper, and 9% fewer instructions are executed in total.

Loki’s implementation of the helper core has the flexibility to deal with divergent

control flow if necessary, allowing the possibility for some of the excluded benchmarks

to be accelerated. Figure 6.6 shows the structure of the dijkstra benchmark. Usually,

the helper core would only be able to help in sections which are guaranteed to be

executed by all cores, so would be limited to the short initialisation phase even though

the vast majority of iterations follow the same control path. Loki, however, with its

multicast network and ability to dynamically reconfigure network communications, is

able to do better. It is possible to generate bitmasks for the cores which take each

branch, and potentially help each group separately. In the case of dijkstra, this would

allow the helper core to continue execution into the main algorithm. The overheads

of this reconfiguration are likely to be too high to benefit some applications with fine-

grained control flow, but for others, such as dijkstra, they will be absorbed by the

savings of using the helper core more of the time.

Loki’s homogeneous architecture also allows the helper core to take a variety of

forms: it could be a virtual processor composed of multiple cores to take advantage of

further parallelism.

134

� � � �
��������	
��

����

Figure 6.7: DLP execution pattern with instruction sharing. One core is responsible for issuing

instructions to all others, mimicking SIMD architectures and reducing the cost of instruction

supply. This core can change during execution to allow use of multiple L0 caches.

6.2.4 Instruction sharing

In this section, I perform a limit study on the possibility of each instruction being

cached by only a single core, and distributed to all others when necessary (Figure 6.7).

This optimisation is often used by dedicated SIMD architectures. It is simplest to make

use of this optimisation only in cases where all cores are executing the same instruc-

tions at the same time. Instructions are distributed before being decoded: Loki’s de-

code logic is inexpensive, and the existing core-to-core buses can be used, rather than

requiring an additional wider bus for decoded instructions. When sending instructions

on these buses, there is no contention with other data sent between cores because SIMD

execution requires there to be no dependences between loop iterations, so no data needs

to be transferred. Figure 6.8 shows the energy consumption of a range of benchmark

kernels for various instruction sharing mechanisms. In the limit case (Lower bound),

this will cut instruction supply costs (including L1 accesses and network activity) by

the number of cores. With no duplicate instructions in the cores’ L0 caches, the L0

cache capacity of the group scales up by the number of cores. Access costs remain

constant, however, since only a single cache is accessed at a time. Techniques for

switching between different cores’ instruction caches have been demonstrated previ-

ously by the Elm architecture [14].

A number of intermediate configurations are also presented to show where the

savings come from and demonstrate the behaviour of more-realistic implementations:

• Larger cache shows the energy impact of increasing each core’s L0 cache capac-

ity by 8 times without affecting access costs. (This is effectively what happens

when 8 cores share their instruction caches.) The extra cache capacity also im-

proves performance over the Default case by an average of 14%.

135

b
it
c
o

u
n

t_
in

n
e

r

b
it
c
o

u
n

t_
o

u
te

r

d
ijk

s
tr

a

jp
e

g
_

c
o

lo
r

jp
e

g
_

d
c
t

jp
e

g
_

h
u

ff

s
tr

in
g

s
e

a
rc

h

p
J
/o

p
e

ra
ti
o

n

0

5

10

15

20

25

30

Default

Large cache

Multicast to buffers

Multicast direct

Lower bound

Figure 6.8: Total energy consumption of various instruction sharing strategies. Results are

for 8 cores. Default: DLP with no instruction sharing; Large cache: each core has 8× the L0

cache capacity; Multicast to buffers: instruction is read from one L0 cache and distributed to

instruction buffer of all other cores; Multicast direct: instruction is read from one L0 cache and

distributed directly to decode stage of all other cores; Lower bound: instruction distribution is

instant and consumes no energy.

136

• Multicast to buffers shows the savings when only one core’s cache needs to be

read. The instruction is sent on the existing multicast network to the instruction

buffers of all other cores.

• Multicast direct shows the savings when instructions are sent directly to the

pipeline registers of other cores, bypassing the instruction buffer. A larger mul-

tiplexer in the fetch pipeline stage would be required to accommodate this extra

instruction source; the costs of this are ignored.

This technique is only suitable for DOALL parallelism, since the cores all exe-

cute the same instruction at roughly the same time (there may be some decoupling if

instructions are delivered to each core’s instruction buffer). Any significant control

flow will also make the optimisation less effective, as fewer cores will be executing

the same instructions simultaneously, though Loki’s multicast crossbar may make it

possible to have multiple independent SIMD groups executing simultaneously. It is

assumed that it is possible for data to be arranged in memory such that the effects of

additional contention at the L1 banks are negligible.

Multicast to buffers is expected to be the most realistic implementation of instruc-

tion sharing, as it requires minimal modifications to the hardware, and in most cases,

there is only a small additional improvement for the more drastic optimisations. In-

struction supply energy is reduced by an average of three quarters over the default

8-way DLP implementation (corresponding to a 35% drop in total energy consump-

tion) and performance improves by 14% due to the increased cache capacity.

In some cases, it may be desirable to distribute instructions which have already

been decoded. This was not explored here because Loki’s decoders are relatively in-

expensive compared to the extra information which would need to be communicated,

and because additional buffering in the middle of the pipeline would be required. Dis-

tributing encoded instructions allows existing buffering and communication networks

to be used.

6.2.5 Worker farm

A worker farm allows load balancing between cores, and is used when there are many

independent tasks to be performed, with a high variance in execution time. Instead of

being allocated a static subset of tasks, worker cores request new tasks from a master

137

�

� � �
��������	
��

����

Figure 6.9: Worker farm execution pattern. One core is designated the master and is removed

from the DLP group and made responsible for distributing tasks among the other cores. Work-

ers let the master know when they would like to be issued more work.

core when necessary. This allows cores which complete their work quicker to continue

being productive, while slower cores do not hold up the others.

Worker farms have very similar aims to task stealing, where cores are assigned

tasks, but can steal from other cores if they finish early. It has been shown that there

is no best implementation of task stealing for all applications, and that flexibility is

required [113] – this is possible with the software implementation that Loki provides.

Low-overhead messaging is found to be sufficient for many schedulers to operate effi-

ciently. The worker farm was chosen for this work because it is simple to implement

in software, and is not often used on general-purpose homogeneous architectures.

A worker farm, as implemented on Loki, is illustrated in Figure 6.9. One core in

the tile is reserved as the master and keeps track of which tasks have been allocated to

workers, and which tasks have been completed. Workers request new tasks by sending

a unique identifier to the master. The master waits for a new identifier (blocking until

one arrives), and sends out the next task to be performed. The implementation is

currently limited to 5 workers because the master core has only six data input channels,

one of which is reserved for data from memory, and Loki requires that each channel

has only one writer to simplify arbitration. Steps towards removing this limitation are

discussed later.

138

Loki’s worker farm implementation therefore offers a tradeoff: DLP offers higher

potential throughput by using more cores, but is vulnerable to variance in task length;

worker farms spend a core to offer better load balancing. This is a similar tradeoff

to that of scalarisation, where one core is removed from the group to fetch data and

perform computations common to the rest of the cores.

Energy for a worker farm is always going to be higher than for normal DLP - all of

the same work is being performed, plus the overheads of the master core issuing tasks.

This technique is targeted at loops with variable iteration execution times, and may be

able to improve performance in these cases.

Figure 6.10 shows how performance and energy consumption vary as the number

of cores in the worker farm changes, and Figure 6.11 shows how the largest worker

farm (5 workers and 1 master) compares with a DLP group of the same size, and with

the largest DLP group tested. Kernels which contain no control flow are excluded as

these will have very little variance in execution time, and so will not be helped by the

worker farm execution pattern.

bitcount inner and stringsearch show no improvement in performance when mov-

ing from DLP to a worker farm. Their loops are tight, so the overheads of commu-

nicating with the master core are not worthwhile. Performance losses are less than

the 1

6
which might be expected by removing one of the cores from the data-parallel

computation, indicating that load balancing is helping slightly. bitcount outer makes

more effective use of its six cores than the plain DLP implementation, but is not able

to match the total throughput of the 8 core version. dijkstra shows a large performance

improvement of 30% over 6-core DLP, and also outperforms the 8 core implementa-

tion comfortably. This indicates that there is a high variability in the execution times

of dijkstra’s loop iterations, and that in some cases, intelligent management of compu-

tation can result in lower execution times, even when far less execution resources are

available.

The number of worker cores is limited to five in the current implementation, since

the master core has only six network inputs, one of which is reserved for memory

communications, and each input can have only a single writer to eliminate the need for

arbitration. There are a number of ways in which it would be possible to go beyond

the limit of 5 worker cores. Exploring these is left for future work.

• Allow multiple writers to each network channel by using an additional arbiter at

each buffer.

139

0
1

2
3

4
5

Total cores

R
e

la
ti
ve

 p
e

rf
o

rm
a

n
c
e

1 2 3 4 5 6

bitcount_inner

bitcount_outer

dijkstra

stringsearch

(a) Relative performance

0
.0

0
.5

1
.0

1
.5

2
.0

Total cores

R
e

la
ti
ve

 e
n

e
rg

y

1 2 3 4 5 6

bitcount_inner

bitcount_outer

dijkstra

stringsearch

(b) Relative energy

Figure 6.10: Behaviour of worker farm execution pattern relative to baseline single-core

benchmark kernels.

140

b
it
c
o
u
n
t_
in
n
e
r

b
it
c
o
u
n
t_
o
u
te
r

d
ijk
s
tr
a

s
tr
in
g
s
e
a
rc
h

R
e
la
ti
ve

p
e
rf
o
rm

a
n
c
e

0

1

2

3

4

5

dlp6

dlp8

workerfarm6

Figure 6.11: Performance comparison between worker farm and DLP for a selection of bench-

mark kernels. All figures are relative to the single core base case.

• Multiplex multiple worker cores onto a single channel at the master core using

synchronisation in software.

• Provide multiple master cores, perhaps in a hierarchy. Having a hierarchy of

master cores would allow an execution pattern very similar to MapReduce [35]:

each master receives a block of work to do and splits it up among its workers,

before combining all of the partial results and reporting back.

• Treat network buffers as a cache of available communication channels, as with

the Tilera architecture [132]. When data arrives from a new source, swap out the

contents of an existing buffer to make space.

6.2.6 Parallelism extraction

Extracting data-level parallelism automatically is usually harder than expected, as the

compiler is often unable to prove that there are no loop-carried dependencies. Au-

tomated extraction techniques often rely on speculation to overcome the difficulty of

proving independence of loop iterations [136]. There has been much work in this area,

141

but there is still a long way to go before automatic techniques are able to identify all of

the available data-level parallelism.

Many parallel programming languages provide some form of a parallel for con-

struct, allowing the programmer to explicitly tell the compiler that the desired trans-

formations are safe [1, 95].

HELIX [29] is a technique used to exploit DOACROSS parallelism where further

code transformations are made to minimise the impact of the required communica-

tion and synchronisation between iterations. HELIX is also predictable enough that it

is possible to compute whether or not the transformations are effective, allowing for

fully-automated parallelisation of sequential code. It is found that cheap communica-

tion is very useful in exploiting this form of parallelism, so I expect it to map well to

Loki.

Lee et al. demonstrate a technique for automatically extracting the scalar part of

a data-parallel program to reduce redundant work performed, which can then be exe-

cuted on a helper core [78]. They observe that “temporal-SIMT is a particularly good

match for scalarization”; temporal-SIMT is a class of data-parallel architectures where

each pipeline is capable of independently fetching and executing instructions. Loki

can therefore be seen as belonging to this class.

The decision of whether to use a worker farm could be made be estimating the

variance of execution times for individual loop iterations and the number of iterations

to be performed on each core. The highest expected execution time for a single core

in a group of n cores can then be computed, and if this is greater than the time taken

by n − 1 cores to execute a balanced workload, then a worker farm is likely to be the

better choice.

6.2.7 Conclusion

It is possible to greatly increase the performance of data-parallel kernels using DLP

whilst simultaneously reducing energy consumption. Improvements can be seen even

when there are loop-carried dependencies.

A simple DLP implementation, where a number of cores independently execute the

same code with different data, is able to achieve an average 3× speeedup on 8 cores

with less than 50% extra energy consumed. It is expected that both of these metrics

can be improved further through the use of compiler optimisations to reduce the total

number of instructions executed.

142

It would be feasible to extend the DLP group across multiple tiles. This would

require an extra initialisation phase, where a master core delegates work to the master

core of each tile. Multicast is not possible across tiles, so messages would have to be

sent repeatedly, but the benefits of having more cores working on the problem would

often outweigh these costs. Future work will identify whether additional interconnect

between tiles can aid such execution patterns.

By default, there is often lots of repeated work involved with this execution pattern:

all of the cores need to fetch the same instructions and compute some of the same

values. Using a helper core can reduce redundancy in data supply, reducing energy

consumption by an average of 11% and improving performance by up to 16%. Sharing

instructions between cores can greatly improve the efficiency of instruction supply,

providing an average energy reduction of 35% and performance improvement of 14%.

These two optimisations are orthogonal and can be applied in combination to further

improve execution characteristics.

In some cases, the worker farm execution pattern offers an improvement over plain

DLP because of better load balancing across the cores. It is therefore another viable

option available to the programmer or compiler. This pattern has the potential to work

well on Loki because of its low latency communication, but is limited by the restriction

of only allowing a single writer to each network channel.

All of these modifications to the base DLP pattern were beneficial in some cases,

but not in others. Furthermore, there was no modification which was out-performed by

the others in all cases. The flexibility to choose an execution pattern and then modify

it to suit the application allows for improved performance and energy efficiency.

6.3 Task-level pipelines

The task-level pipeline execution pattern involves each core doing an independent

chunk of work on the input data, before passing the result onto the next core (Fig-

ure 6.12). The concept can be extended so that each pipeline stage consists of a virtual

processor, which may itself be made up of a number of cores. The aim is to im-

prove locality by having each core (or virtual processor) working on its own part of

the program, whilst also taking advantage of parallelism in the program by executing

multiple pipeline stages simultaneously. This technique is useful for some loops which

have cross-iteration dependencies, as the length of the loop bodies is decreased, and

143

� � �
��������	
��

����

Figure 6.12: Task-level pipeline execution pattern. Each core performs an independent pro-

cessing task on the received data, and sends the result on to the next core.

so throughput is increased. The result is that a large loop is transformed into multiple

smaller decoupled loops which can execute in parallel.

This technique has been successfully implemented on traditional multicore archi-

tectures, but there is more flexibility on Loki: there are many more cores available;

it is easier to balance the load between pipeline stages by using parallelism within

each stage; and faster and cheaper communication allows for finer-grained stages. I

also explore the use of pipelining for reasons other than improving performance: en-

ergy consumption can be reduced by making use of the increased cache and register

capacity of multiple cores.

6.3.1 Evaluation

JPEG compression and decompression are usually considered ideal examples for im-

plementing task-level pipelines: the image is split into small blocks of pixels, and each

block passes through several independent stages of processing. The implementation

in MiBench, however, has been heavily optimised to reduce the memory footprint,

and as a result is very complex. The scale of the modifications required to extract

pipeline-level parallelism were considered too large to be able to perform a worth-

while comparison afterwards. I instead make use of a number of simpler benchmarks,

which allow rapid exploration of different implementations.

In order to minimise changes made to the existing code, wrapper functions were

placed around existing functions to send and receive data in a pipeline fashion. The

wrapper functions performed any initialisation, such as setting up a network connec-

tion to the next core in the pipeline; repeatedly executed each core’s task, whilst re-

ceiving arguments and sending results over the network; and tidied up after the loop,

for example by sending a final result back to the main thread. This approach is likely

144

to have higher overheads than one which the compiler is aware of, so is expected to

underestimate any benefits of pipeline-level parallelism.

Again, since only a subset of application kernels in the benchmark suite con-

tain pipeline-level parallelism, case studies are performed on the individual programs.

Pipeline parallelism is expected to be more abundant in larger programs.

The color space transformation phase of jpeg was extracted as a loop which could

make use of pipeline-level parallelism. Each iteration consists of loading RGB values

from memory, and then computing YCbCr values from them. Loading of all input

values and computation of each output value were treated as separate tasks: four in all.

These were then distributed across 2-4 cores.

The stringsearch benchmark consists of two main phases: initialising a 256-entry

table, and then traversing the string. These tasks were placed on separate cores to form

a two-stage pipeline, and the table initialisation phase was split into up to five separate

sub-phases to extend the pipeline further.

adpcmc was mapped to a pipeline structure slightly differently. It does not possess

traditional pipeline-level parallelism as there is a loop-carried dependency between the

end of one iteration and the beginning of the next. Instead, the loop body was mapped

to a pipeline-like structure which had an additional network connection from the fi-

nal stage to the first stage. The instruction sequence was split naively at basic block

boundaries such that each pipeline stage could fit entirely within a single core’s L0

cache, and variables which were live across this split were communicated as soon as

their values were generated. A small amount of rescheduling was required to ensure

that values were sent and received in the same order. This transformation effectively

creates a virtual processor which is tailored to the application by providing sufficient

instruction cache space, and moves the computation during execution to a location

where instructions can be accessed cheaply. This is in contrast to typical execution

patterns, where instructions are fetched to the core which holds the relevant data. Fi-

nally, the standard hand-optimisations described in Section 4.3.1 were applied – with

more registers available across the pair of cores, more data could be stored locally.

These optimisations resulted in a further 15% reduction in static code size over the

assembly-optimised single-core baseline. An additional optimisation applied, which

is expected to be within reach of a standard optimising compiler, was to attempt to

send data along the pipeline as early as possible, and receive data as late as possible,

to increase the duration for which the cores can execute concurrently.

145

0
1

2
3

4
5

Pipeline stages

R
e

la
ti
ve

 p
e

rf
o

rm
a

n
c
e

1 2 3 4 5 6

adpcmc

jpeg_color

stringsearch

(a) Relative performance

0
.0

0
.5

1
.0

1
.5

Pipeline stages

R
e

la
ti
ve

 e
n

e
rg

y

1 2 3 4 5 6

adpcmc

jpeg_color

stringsearch

(b) Relative energy

Figure 6.13: Relative energy and performance of task-level pipelining for a selection of

MiBench kernels. All figures are relative to a single-core baseline implementation.

146

Figure 6.13 shows how performance and energy consumption change as the num-

ber of cores in the pipelines increase. The execution pattern adds negligible overhead

in these cases, and all implementations start roughly at parity with the single core

baseline.

Energy consumption for jpeg color improves by 25% with three cores due to the

improved cache performance when each core’s task is restricted. Moving to four cores

does not improve cache behaviour any further, but does increase the number of op-

erations performed, so energy consumption increases. Performance also improves by

80%.

stringsearch does not improve much when using short pipelines because the tasks

done by each stage are so imbalanced. As the pipeline grows, performance rapidly

improves, ending at 4.2× with six cores. Energy consumption reduces slightly due to

improved caching.

adpcmc sees a 70% reduction in energy and a superlinear speedup of 2.5× on two

cores. These improvements have three sources: greatly improved cache behaviour,

with 100% of instructions now being stored in L0 caches; more aggressive optimisa-

tions made possible by the extra registers available; and concurrent execution on the

two cores. 1.56 instructions were executed per cycle, indicating that a large amount of

instruction-level parallelism was unlocked by the transformation. It may be the case

that further improvements can be made with a more careful mapping of instructions

to cores. This pipelined implementation outperforms execution on a single core with

twice the L0 cache capacity by 2.0× and reduces energy by 20%.

This technique of using pipelining to increase the available resources has similar-

ities with cache pinning as described in Section 5.1.3. Both transformations involve

making maximum use of a core’s small L0 instruction cache, since it is much cheaper

to access than an L1 memory bank. When cache pinning reaches the end of its locally

stored instructions, it moves the required instructions from the L1 memory to a local

structure. In contrast, when pipelining reaches the end of its locally stored instructions,

it moves the required data to another core, where the instructions are already cached.

This question of whether instructions should be sent to where the data is stored, or

whether data should be sent to where the instructions are stored becomes increasingly

relevant on fine-grained architectures such as Loki. Pipelining is more scalable – the

length of the pipeline can be extended almost arbitrarily in order to improve caching

behaviour, whereas cache pinning is only useful for codes which are only slightly too

large to fit in the cache.

147

The technique also bears similarities to inter-core prefetching [62]. Inter-core

prefetching allows multiple cores to cooperatively execute a single thread by having

a compute thread and one or more prefetch threads. The compute thread migrates

between cores, following the prefetch threads, and finds the data and instructions it

needs waiting in the local cache. Loki’s implementation is much more fine-grained

and light-weight: each slice of the program is very small, and instead of a complete

context switch taking thousands of clock cycles, only small number of live variables

are sent, with near-zero overhead. The pipeline-like approach also allows instruction-

level parallelism to be exploited by executing multiple pipeline stages simultaneously.

6.3.2 Parallelism extraction

Decoupled software pipelining (DSWP) [99] provides a fully-automatic mechanism

for extracting pipeline-level parallelism from programs. It breaks loop bodies into

multiple smaller sections such that data dependencies between loop iterations never

cross section boundaries, and so each section can be executed by a different thread.

This helps to decouple the threads, preventing variable execution times from slowing

down the whole pipeline. There is still some degree of coupling, determined by the

size of the communication buffers – a core will stall if it is unable to write any more

data to the buffer. DSWP claims wider applicability than DOALL parallelism, and

better performance than DOACROSS. The technique would work well on Loki and

could be combined with the optional heuristic that each pipeline stage should fit in an

instruction packet cache to reduce energy.

Huang et al subsequently found that DSWP can be used as an enabling transfor-

mation for other forms of parallelism [55]. For example, some of the loop sections

contain no dependencies, allowing DOALL parallelism to be extracted, and other loop

sections may contain only occasional dependencies, making speculation useful. This

extra parallelism can be used to balance the pipeline stages to reduce bottlenecks and

improve throughput.

In cases where it is not straightforward to automatically extract pipeline-level par-

allelism, it would be possible for the programmer to provide hints to the compiler, for

example using SoC-C’s pipeline construct [108].

Linear logic [5] has been shown to be a useful tool for code exhibiting pipeline

parallelism, with information being passed from core to core and exactly one core

148

needing access at any one time. This restriction makes memory management simpler

and can allow the optimisation of replacing memory copies with reference passing.

6.3.3 Conclusion

Pipeline-level parallelism is another possible way to improve performance and reduce

power consumption on tightly-coupled cores.

Performance can be improved by executing different parts of different loop itera-

tions simultaneously – this can allow parallelism to be exploited even when there are

dependencies between iterations. Energy can be reduced by having less code on each

core, thereby improving caching behaviour. Both performance and energy consump-

tion can be improved by eliminating function call boundaries and sending data directly

between cores. This approach may also unlock some instruction-level parallelism, as

the remote core may be able to begin execution before it has all of the function argu-

ments. Improvements are limited by the ability to balance load across multiple cores.

Loki’s inexpensive communication mechanisms allow even tightly-coupled regions of

code within a single pipeline stage to be split across multiple cores to improve load

balance.

Specialising the task done by each core generally means that its cache performs bet-

ter. Furthermore, techniques such as cache pinning become viable more often, which

are able to improve performance and energy consumption further.

Spreading a program across multiple cores effectively increases the sizes of impor-

tant structures such as caches and register files, without increasing the energy required

to access them. This allows parallelism to be exploited and more-aggressive code op-

timisations to be used, whilst also reducing the total energy cost of a program. Scaling

is not perfect, as some information usually needs to be replicated.

This ability to increase the effective sizes of fundamental structures with relatively

low overhead suggests that it may be worthwhile deliberately underprovisioning indi-

vidual cores, with the expectation that an appropriate number will be grouped together

to execute the task at hand. This would mean smaller and lower-power building blocks

for virtual architectures, and allow resources to be allocated at a finer granularity.

149

6.4 Dataflow

Dataflow is an execution paradigm where the change in the value of a variable automat-

ically forces recomputation of any variables which depend on it. Dataflow execution

graphs are similar to software pipelines, except that they are usually finer-grained.

Given enough computation resources, dataflow is capable of computing a result in the

minimum possible time, as all operations on the critical path will execute sequentially

as soon as their inputs are available. Typically, it is possible to execute tens to hundreds

of operations at once, but the challenge is in identifying these independent operations

and mapping them to the available hardware resources quickly enough [83].

Architectures designed to execute in a dataflow manner can make use of static or

dynamic dataflow. With static dataflow, each communication link can have at most

one item on it. When all operands for a function are ready, they are consumed, and

the source components are notified that the channels are available once more. Dynamic

dataflow allows channels to contain multiple operands, each associated with a different

colour or tag. Functional units wait until a pair of operands of the same colour are

available before consuming them. Colours allow concurrent execution of multiple

copies of the same code, but the matching process can be expensive.

Coarse-grained reconfigurable arrays (CGRAs), for example, typically use a static

schedule and a predictable mesh network to communicate between functional units [100].

Some CGRAs allow multiple operations to be time-multiplexed onto each functional

unit to allow larger dataflow graphs to be accelerated.

Many modern superscalar processors provide a limited form of dataflow using

out-of-order execution: instructions are marked as ready to execute as soon as their

operands have been computed. Combined with speculation, the technique allows a

steady flow of instructions to be supplied to the functional units; without speculation,

it is more difficult to find enough independent instructions to make use of the available

resources. The extent to which dataflow can be exploited is limited by the size of the

issue window and number of functional units, and lots of extra logic is required to keep

it all working (register renaming, reorder buffer, etc.).

The TRIPS architecture makes use of explicit data graph execution (EDGE) to ex-

ploit parallelism inherent in dataflow graphs [28]. Instead of specifying registers as

locations for results to be stored, EDGE operations name the instructions which di-

rectly make use of the result. Instructions are then statically grouped into hyperblocks,

150

�

�

�

�
��������	
��

����

Figure 6.14: Dataflow execution pattern. Each core is capable of receiving up to two operands

from the network, and sending its result to any subset of cores on the same tile. When executing

only a single instruction on a core, it does not need to be issued repeatedly, and the entire front

end of the pipeline can be power gated.

which are dynamically scheduled by the processor. By minimising communication be-

tween hyperblocks, resources local to the hyperblock can be used more often, which

are cheaper to access than global structures.

Dataflow can be implemented on Loki by placing a single instruction on each core,

with all inputs received from the network, and all outputs sent onto the network (Figure

6.14). This is made easier by some Loki-specific features: persistent instruction pack-

ets (Section 3.2.1) allow endless re-execution of a section of code without the need for

branches or jumps, and Loki’s blocking channel communication mechanism means a

core will wait for all of its inputs to arrive before executing an instruction, and will

stall if there is no network buffer space to send the result. Loki’s implementation lies

somewhere between static and dynamic dataflow: network buffers mean that multiple

operands can be on a single channel at any time, providing decoupling between func-

tional units, but the lack of tag-matching logic means that if there are multiple operands

to be used by a single function invocation, they must all arrive in the same order.

Loki’s implementation of dataflow has the potential to scale to hundreds of func-

tional units without incurring the overhead of complex hardware, such as that found in

superscalar processors. If the overheads of pure dataflow are ever too high, it is possi-

ble to place multiple instructions on a single core, and fetch them from the cheap local

151

storage, as CGRAs do. Instructions could be grouped using techniques similar to the

TRIPS architecture, described above, to use local resources as frequently as possible

and minimise communication between cores. Loki’s flexible communication network

provides benefits over CGRAs, which often can only communicate with their nearest

neighbours, sometimes requiring functional units to be spent on forwarding data to

the required location, rather than performing any useful computation. In contrast, any

Loki core can communicate with any subset of the eight cores in its tile, whilst also

being able to communicate off-tile if necessary. The cost of this flexibility is increased

interconnect energy consumption.

When the task given to each core is so restricted, switching activity within the

pipeline is reduced, and it may be possible to deactivate unused components to save

energy. The cost of dataflow execution is greatly increased use of the network, so

this must be compared with the expected gains before deciding whether to use the

dataflow technique. A disadvantage of Loki’s approach compared to a specialised

architecture is that although much of the pipeline is inactive and does not consume

much energy, the extra components mean that the functional units are further apart,

and so communication between them is more expensive.

6.4.1 Power gating

One of the advantages of the dataflow execution pattern is that it reduces switching

activity in each pipeline. In this section, I explore completely deactivating unneeded

parts of the pipeline in the extreme case of one instruction on each core.

If the instruction being executed does not change, the following parts of the pipeline

can be power gated after the first access:

• Fetch pipeline stage

• Pipeline register between fetch and decode pipeline stages

• Decoder

• Channel map table

• The register file is often not needed. An inexpensive comparison is required to

see if the instruction has a destination register (5 bit comparison with zero). If

the instruction reads from the register file but does not write to it, this only needs

to be performed once, as the data will never change.

152

• It may be possible to power gate sections of the pipeline register between decode

and execute stages: the operation, channel, and some operands are always the

same.

• Depending on the low-level implementation of the ALU, unused functional units

can be power gated.

Furthermore, the energy model for the ALU suggests that when the operation being

performed doesn’t change, the energy consumption drops by an average of approxi-

mately 0.4pJ per operation (Table 4.4).

Although much of the pipeline is unneeded when one instruction is executed re-

peatedly, several new components experience an increased workload. There is a large

increase in the activity of many of the network components: buffers, arbiters and the

relatively long wires of the tile network. Dataflow execution is only beneficial if these

costs are outweighed by the savings in reduced pipeline activity.

For the rest of this section, I say that a core is in dataflow mode if it is executing

a single persistent instruction, and is able to bypass much of the pipeline as described

above.

Techniques such as ∆-dataflow exist which reduce switching activity even fur-

ther [84]. If a value does not change after recomputation, a single out-of-band “no

change” bit is sent through the network in its place. This helps prevent oscillations in

situations where the same physical wires are shared by multiple separate channels, and

allows the data arrays of network buffers to be bypassed in some cases. Application of

∆-dataflow to the Loki architecture is left for future work.

6.4.2 Case studies

Since my exploration of dataflow is currently limited to a single tile of eight cores, only

very small kernels can be used. There are not many of these which run for a significant

length of time in MiBench, so I relax the dataflow concept slightly to allow a small

number of instructions on each core, and I perform case studies on the main loop of

crc and one of the bitcount implementations to determine how best to map them to

the Loki tile. Larger dataflow graphs would need to be arranged to take into account

the greatly reduced bandwidth between tiles, but due to the Rentian locality observed

in software [43], this is not expected to be a major limitation. Additional tile-to-tile

interconnect could be added to alleviate any bottlenecks; this is discussed later.

153

Inline assembly code is added to the benchmarks because the compiler is not yet

able to produce efficient communication code – there is no reason why it would not be

able to do this in the future. A small amount of preparation code is required before the

loop begins to set up the required network connections and to send the values needed

for the first iteration.

The baseline is a single Loki core running an assembly-optimised benchmark – the

same code is used in the dataflow implementation, but spread over multiple cores.

CRC

Two different dataflow mappings for crc were explored: one which emulated tradi-

tional dataflow, with as few instructions on each core as possible (Figure 6.15c); and

one where the critical path was all placed on a single core to eliminate network la-

tency and improve performance (Figure 6.15b). All cores except the first one are able

to execute their instructions out of the cheaper instruction buffer; the first core is also

responsible for executing the outer loop of the benchmark, which does not fit in the

buffer. Cache (or buffer) pinning could be used to improve instruction supply energy

in this case.

Figure 6.16 shows the energy distribution for the single core baseline and the two

dataflow mappings. It can be seen that the dataflow mappings reduce the cost of in-

struction supply (and, to a lesser extent, decoding and pipeline registers), at the cost of

increased network activity. The 8 core mapping increases network costs much more

than the 5 core implementation, but offers only a small reduction in pipeline activity,

so is not as energy efficient. The 5 core case performs 68% better than the baseline

and consumes 19% less energy, while the 8 core case is only 17% faster and consumes

11% less energy. This shows that the additional latency incurred from network com-

munication on the critical path can have a large impact on performance, and that the

overheads of the additional communication can outweigh the advantages of being able

to put more cores in the low-power dataflow mode.

Bit count

One of bitcount’s counting methods with a particularly tight loop was selected for these

experiments.

154

addui r12, r12, 1

addu r14, r30, r13

ldbu 0(r14) -> 1

stw r12, 0(r26) -> 1

andi r15, r31, 255

xor r14, r2, r15

slli r14, r14, 2

addu r14, r16, r14

ldw 0(r14) -> 1

addui r13, r13, 1

seteq.p r0, r13, r11

psel.fetch r24, r25

srli r31, r31, 8

xor.eop r31, r2, r31

(a) One core

addui r14, r14, 1 -> 2

setlt.p r0, r14, r15 -> 3

ifp?ibjmp -8

addu.eop charcnt, charcnt, r3
ldbu 0(r3) -> 1

or.eop r0, r2, r0 -> 2

xor r11, r3, crc32

andi r11, r11, 0xff

slli r11, r11, 2

addu r11, r11, crc_32_tab

ldw 0(r11) -> 1

xor.eop crc32, r3, r2 -> 2

srli.eop r0, r4, 8 -> 2

(b) Five cores

addui r14, r14, 1 -> 2

setlt.p r0, r14, r15 -> 3

ifp?ibjmp -8

addu.eop charcnt, charcnt, r3
ldbu 0(r3) -> 1

or.eop r0, r2, r0 -> 2

xor r11, r3, r4

andi.eop r0, r11, 0xff -> 2

slli r11, r3, 2

addu.eop r0, r11, crc_32_tab -> 2

srli.eop r0, r4, 8 -> 2

xor.eop crc32, r3, r4 -> 2

ldw 0(r3) -> 1

or.eop r0, r2, r0 -> 2

(c) Eight cores

Figure 6.15: Dataflow mappings of the crc kernel to multiple cores. Register indices between

2 and 7 correspond to network buffers.

155

1
c
o
re

5
c
o
re

s

8
c
o
re

s

R
e
la

ti
v
e

e
x
e
c
u
ti
o

n
ti
m

e

0.0

0.2

0.4

0.6

0.8

1.0

(a) Relative performance

1
c
o
re

5
c
o
re

s

8
c
o
re

s

p
J
/o

p
e
ra

ti
o
n

0

2

4

6

8

10

12

alu

data supply

decode

instruction supply

memory (data)

memory (inst)

network

network interface

pipeline registers

(b) Energy distribution

Figure 6.16: CRC dataflow behaviour. Instruction supply is more efficient when using the

dataflow execution pattern, at a cost of increased network (buses and arbiters) and network

interface (channel map table and network buffers) activity.

<generate number x>

while (x) {

count++

x = x & (x-1)

}

(a) One core

<generate number x>

while (x) {

x = x & (x-1)

}

count++

(b) Three cores

<generate number x>

while (x) {

x = x & y

}

count++ y = x-1

(c) Four cores

Figure 6.17: Dataflow mappings of a bitcount kernel to multiple cores.

156

1
c
o
re

3
c
o
re

s

4
c
o
re

s

R
e
la

ti
v
e

e
x
e
c
u
ti
o

n
ti
m

e

0.0

0.2

0.4

0.6

0.8

1.0

(a) Relative performance

1
c
o
re

3
c
o
re

s

4
c
o
re

s

p
J
/o

p
e
ra

ti
o
n

0

2

4

6

8

10

alu

data supply

decode

instruction supply

memory (data)

memory (inst)

network

network interface

pipeline registers

(b) Energy distribution

Figure 6.18: Bit count dataflow behaviour.

Again, two dataflow mappings were explored: one which put the critical path on

one core (Figure 6.17b), and one which spread the instructions across a larger number

of cores (Figure 6.17c).

It would be possible to extend the dataflow network to a fifth core by separating the

computation of x from the branch condition. This option was not explored, however,

as the overheads of doing so were considered prohibitive. This transformation would

extend the critical path, as additional network communication would be required. A

more subtle problem is that the computation of x becomes completely decoupled from

the decision of whether the next value of x needs to be computed. This allows x to be

computed many iterations in advance, which can often be beneficial, but it means that

the network and buffers must be drained of surplus values at the end of each iteration

of the outer loop. This requires dropping out of the persistent dataflow packet and

executing extra instructions on each core. With an inner loop as tight as the one in the

bit count benchmark, this was not considered worthwhile.

Unlike crc, bitcount observes a significant energy improvement when more cores

are used: energy increases by 9% over the baseline when three cores are used, but

decreases by 18% when four cores are used. This is because the kernel has very few

instructions, so even being able to put one extra instruction on a core in dataflow mode

can make a big difference. Performance for the two dataflow mappings is almost iden-

157

tical, at 50% faster than the baseline. Performance does not decrease when the critical

path is split across multiple cores because some of the network communication is con-

current with computation, so the length of the critical path does not change.

Summary

The dataflow execution pattern exploits instruction-level parallelism to improve perfor-

mance and a reduced variance in each core’s workload to improve energy efficiency.

The case studies above show that it is possible to use dataflow execution to improve

both performance and energy consumption, but not by as much as might be expected.

Performance improvements are due to the exploitation of instruction-level parallelism,

and are limited by the length of the critical path; spreading the critical path across mul-

tiple cores adds network latency and increases execution time. Energy improvements

are mainly due to having cores executing very small sections of code which fit entirely

in the efficient instruction buffer; executing a single instruction on each core in order

to bypass much of the pipeline did not always show clear benefits.

Upon further inspection, it was found that writing to and reading from a local regis-

ter file consumed 2.0pJ, whereas sending a value to another core cost 5.7pJ (including

buffer accesses, and assuming 50% of bits toggle). This difference of 3.7pJ is greater

than the best case of 2.7pJ saved in the pipeline when a core is in dataflow mode,

meaning that it is possible for dataflow execution to reduce energy efficiency. The cost

of sending to another core is dominated by network buffers (39%) and the core-to-core

network (43%). Section 6.4.5 explores how these overheads can be reduced to allow

the dataflow execution pattern to further reduce energy.

The situation can also be improved by allowing a core to do more work but still

bypass much of the pipeline. This can be achieved either by allowing the core to

bypass functionality even when it is assigned multiple instructions (Section 6.4.3), or

by adding or modifying instructions so that they can be used alone in the places where

multiple instructions were needed previously (Section 6.4.4).

Spreading the critical code path across multiple cores can add network latency and

reduce performance. Eliminating this additional latency by introducing more direct

communication links is explored in Section 6.4.6.

From these case studies, it appears reasonably common to have one core persis-

tently updating a value held in a register, and return the value when the loop completes.

Even though only one register is accessed, the whole register file must be kept active.

158

This could be improved by using explicit operand forwarding or a small operand regis-

ter file [16]. Some architectures also provide functionality to automatically increment

the value in a register, without the need for an additional instruction [11, 90].

6.4.3 Dataflow within a core

The costs of communicating between cores is one of the main factors which determines

how effective dataflow execution can be when using tightly-coupled cores. Putting

multiple instructions on a single core reduces the communication required, but means

that the core cannot enter the low-power dataflow mode because the pipeline needs to

alternate between the available instructions. This section explores allowing a core to

enter dataflow mode even when it is assigned multiple instructions.

Since most of the energy benefits of dataflow execution are gained from bypassing

much of the fetch and decode stages, the aim is to allow multiple instructions per core

without reactivating these components. It would be possible to have a small cache

of decoded instructions and cycle through them, but this is likely to be relatively ex-

pensive, negating the benefits of bypassing other parts of the pipeline. An alternative

is to add extra, optional, execute pipeline stages containing additional ALUs, and al-

low each ALU to be assigned a single operation for a long period. This approach is

explored here.

The cost of implementing this scheme is dominated by the additional ALUs and

pipeline registers. Each ALU has an area of 2862µm2 and each pipeline register

has an area of 295µm2 (6.4% and 0.7% of the base core area, respectively). Extra

(de)multiplexers are also required to steer data to and from the optional pipeline stages;

it is expected that the cost of these is negligible.

Benefits of this approach include the ability for more cores to enter dataflow mode

(in some cases it is impossible to reduce the workload to a single instruction; examples

are discussed below), and the reduced costs of communication between ALUs in a

single pipeline: data does not need to touch the register file or the network – only a

much-cheaper pipeline register.

In order to avoid increasing the number of ports on the register file or input buffer

array (which would have a detrimental cost to the common case when the extra ports

aren’t needed), the number of input operands which can be retrieved from each of these

sources is limited to two, and only one output is collected. A single immediate operand

can also be received from the decoder, as well as any data on the bypass network.

159

This is enough data to support several operations simultaneously, but to simplify this

study, I explore only one additional ALU and leave the exploration of more complex

arrangements to future work.

Two ALUs are enough to allow a core to enter dataflow mode even when it has

a pair of inseparable instructions, and also stops two-cycle operations such as mul-

tiplications and memory stores from being bottlenecks. (Note that some inseparable

instruction pairs, such as a comparison followed by a branch, would not be helped by

this technique because the branch completes in the decode pipeline stage and does not

make use of an ALU. The instruction set modifications explored in Section 6.4.4 would

be required for this case.)

The crc and bitcount benchmarks were mapped to an architecture capable of en-

tering dataflow mode with two instructions on each core. The cores responsible for

loading data from memory could not enter dataflow mode as they produced two out-

puts each: one message sent to the L1 cache to request data, and one message to send

the retrieved data to the appropriate core.

Placing twice as many instructions on each core means that in the best case, half as

many values need to be sent across the network, and instead can use a much-cheaper

pipeline register.

Energy consumption for crc reduces by 15% over the baseline dataflow case: 43%

of this is due to reduced network access, and 57% is due to reduced pipeline activity

where more cores are in dataflow mode. Performance is unchanged. bitcount sees no

improvement as there is no less communication than when each core can only execute

one instruction in dataflow mode.

Having multiple ALUs in a single core can provide wider-spread benefits than those

described in this section. Aside from the common approach of allowing multiple in-

structions to be issued each clock cycle, She et al. [118] add an extra ALU to a RISC

pipeline to allow acceleration of common instruction pairs. A lookup table is added

to the decoder, and a small number of opcodes are reserved to access entries of the

table. The table contains all necessary control signals for both ALUs, and can be re-

programmed at runtime to best match the instruction pairs present in the application.

For their processor, dynamic instruction count could be reduced by 25% and energy

fell by 16% on average due to fewer register file and instruction cache accesses.

Park et al. [103] describe a technique for dynamically fusing a series of up to four

low-latency operations on a CGRA so that they all complete within a single clock

cycle. It may be possible to apply a limited form of this optimisation to Loki, so that if

160

the two operations can complete in series, the intermediate pipeline register is bypassed

and both operations complete in one cycle. This would save the energy consumed by

the pipeline register, and decrease the latency of the operations. If combined with She’s

technique, this could be used to reduce the latency of longer sequences of sequential

code, which is beneficial in all cases.

6.4.4 Reducing bottlenecks

The rate at which data can move through a dataflow network is limited by the slowest

core on the critical path, and in the case of loops, the total length of the critical path.

In some cases, spreading code across multiple cores can require extra instructions or

network communications to be added, extending the length of the critical path and

reducing performance. It can also be impossible to reduce a core’s workload to a

single instruction due to dependencies between instructions, so the core becomes a

bottleneck. This section explores ways in which these bottlenecks can be reduced or

eliminated.

As well as reducing the total number of instructions executed, which saves energy

and time, these techniques allow more cores to enter a low-power dataflow mode,

further reducing energy consumed.

In the case studies above, two main bottlenecks can be identified: memory access

and control flow. These are addressed separately below.

Memory access

Loki’s decoupled memory access means that loading data from memory is a two-stage

process:

1. Send request to memory

2. Receive data from input buffer

The receipt of data can often be performed with zero overhead, since it is treated

as an ordinary register read. However, when attempting to get down to one instruction

per core, there are no other instructions which use the data, so reading from the buffer

requires a separate instruction (Figure 6.19). Further, this puts a round trip to memory

on the critical path of this dataflow node, which lengthens its runtime by at least two

cycles.

161

ldw 0(r3) -> 1

or.eop r0, r2, r0 -> 2

Figure 6.19: A bottleneck packet in the crc benchmark.

In some cases, it may be possible to completely eliminate this memory access by

instead making use of the core’s local scratchpad memory (see Section 3.2.6) – this is

the case in Figure 6.19, as the table being accessed in crc consists of 256 words.

In other cases, this may not be possible, and a different solution is required. For-

tunately, Loki’s network system provides this solution. Recall from Section 3.4 that

each L1 cache bank has multiple virtual channels which are configured to send any

requested data to a particular network address when cores first connect. This feature

can be used to tell the memory bank to send data directly to the target core, rather than

to the core which issued the request.

Care needs to be taken with this approach: if the target core stalls, it is possible

for its input buffers to fill, which in turn will result in the memory bank stalling until

there is space to send its data. This then prevents other memory operations progressing

at that memory bank, which may result in deadlock. This problem can be avoided

by ensuring that no other cores access the memory bank at the same time, and can

be implemented either through careful placement of data in memory, or by using the

memory configuration abilities mentioned in Section 3.4 to create a separate virtual

cache which only one core has access to. In this section’s evaluation, it is assumed that

there are no deadlock issues.

The baseline for crc is the 8 core mapping (Figure 6.15c). Cores enter dataflow

mode if they have been assigned only a single instruction.

Making use of these optimisations to memory access greatly improves perfor-

mance. Having memory banks send data directly to another core allows both instances

of or.eop to be removed, along with the core-to-core communication latency. This

reduces the critical path latency from 13 cycles to 11, reducing inner loop execution

time by 15% and energy by 13%.

Storing crc 32 tab in one of the core’s scratchpads provides further benefits: as well

as eliminating an expensive memory access, it allows three instructions to be removed

which were previously responsible for computing the memory address (all of which

were on the critical path). This brings the critical path latency down to six cycles: three

for computation and three for communication. Combined with the memory access

162

setnei.p r0, r3, 0 -> 3

ifp?ibjmp -4

(a) Bottleneck packet. The ibjmp instruc-

tion makes use of the predicate register,

so cannot be separated from the instruc-

tion which writes to it.

setnei.p.eop r0, r3, 0 -> 3

(b) Resolved bottleneck. By making use of the

new fetchpstp instruction, the conditional jump

instruction is not needed.

Figure 6.20: A bottleneck packet in the bitcount benchmark.

optimisation, execution time reduces by 54% and energy consumption improves by

33% over the baseline.

Placing the entire critical path on a single core reduces the critical path to three

cycles, bringing execution time down to 23% of the baseline (a speedup of 2× over the

5-core implementation optimised for performance in Figure 6.15b). Energy consump-

tion doesn’t change much (it decreases slightly), showing that the benefits of putting

more cores in low-energy dataflow mode do not outweigh the costs of increased com-

munication. Section 6.4.6 explores introducing very cheap communication links to

make it possible to have short critical paths and lots of cores in a low-energy state

simultaneously.

While the optimisations in this section have significant benefits in their own right

by reducing the amount of work required to execute a program, these benefits are am-

plified when used in used in combination with the dataflow execution pattern. Since

dataflow uses instruction-level and pipeline-level parallelism to reduce the execution

time of a loop iteration to the length of its critical path, any reduction in this has a pro-

portionally larger effect on the overall execution time than when applied to sequential

code.

Control flow

Infinite loops (via the fetch persistent instruction) are used widely in the dataflow ex-

ecution pattern to remove the need for a branch instruction. At least one core’s loop

must be finite, however, so it can determine when the loop ends. This results in a

core which has (at least) an instruction to determine whether the loop has ended, and a

branch instruction. This is illustrated in Figure 6.20a.

This situation can be addressed by providing new versions of the fetch persistent

instruction which check the value of the predicate register to determine whether the

loop body should be repeated. These are shown in Table 6.1.

163

Mnemonic Description

fetchpstp Fetch persistent while predicate is true

fetchpst!p Fetch persistent while predicate is false

Table 6.1: New fetch instructions.

Since the predicate is computed during the execute pipeline stage, but instructions

are retrieved in the fetch pipeline stage, this would introduce two pipeline bubbles

if implemented naively. Instead, it is speculated that the loop body will always be

repeated, and the pipeline is flushed when the predicate register holds the terminating

value. Since it is impossible for any of the flushed instructions to have reached a point

in the pipeline where they have changed register state or sent data on to the network,

the simple flush is sufficient. It is possible for an instruction to have performed a

destructive read from an input channel, but any data received after the loop had finished

must have been computed speculatively and can be safely discarded.

Figure 6.20b shows how the persistent instruction packet can be simplified with

the help of the new instructions. The packet now has only one instruction and so is no

longer a bottleneck, and can enter the low-power dataflow mode.

This optimisation is of little help in the crc benchmark, as the control core is not on

the critical path. Removing instructions from the code path will never hurt, however,

and energy consumption drops by a few percent. The technique is more useful in

the bitcount benchmark, where the control core is on the critical path. Removing the

branch instruction reduces the critical path from 4 cycles to 3, and this is reflected in

the execution time, which also drops by 25%.

Summary

The techniques described in this section can be used to improve performance by reduc-

ing the duration of a sequence of instructions. This can be done either by eliminating

superfluous communications over the network, or by reducing the number of instruc-

tions executed.

The optimisations are not exclusive to the dataflow execution pattern: they will be

useful in any sequence of code which can make use of them. Their advantages are

amplified when making use of dataflow, however, because dataflow graphs expose the

critical paths of code sequences, which become bottlenecks to further improvements

in performance. Since the critical path is often shorter than the whole code sequence,

164

any reduction in its length will usually have a proportionally larger impact on overall

execution time.

As well as improving performance of applications, reducing the number of in-

structions executed will result in lower energy consumption and improved caching

behaviour. When making use of the dataflow execution pattern, there are additional

energy benefits from being able to reduce cores’ workloads to a single instruction.

The instruction set is one of the main features which determines how effective

dataflow execution can be: a denser encoding allows cores to do more work while

remaining in the efficient dataflow mode. A move to a full CISC instruction set may

be excessive due to the extra logic required to decode and execute the complex in-

structions, but selectively adding more-complex instructions may be beneficial. Ex-

amples include ARM’s barrel shifter, which allows the second operand of almost any

instruction to be shifted or rotated by any amount in addition to performing the main

operation [11], and auto-incrementing registers [11, 90].

The only remaining bottlenecks are multiplication and store instructions as these

take two cycles each.

6.4.5 Reducing power

It was found that the savings from greatly reduced switching activity in pipelines when

cores entered dataflow mode did not generally make up for the costs of additional

network communication. Network communication costs are dominated by network

buffers (39%) and long wires (43%). This section explores ways in which these costs

can be reduced to make dataflow a more profitable execution pattern.

Buffer optimisations

Figure 6.21 shows how performance and network buffer energy consumption vary with

buffers of different sizes. Input and output buffer sizes were varied independently. Fig-

ures are relative to the largest buffers of 8 entries, and are averaged across all dataflow

and task-level pipeline benchmarks. There was no clear difference in behaviour be-

tween the two execution patterns.

There is a large drop in energy consumption of almost 50% when output buffers

have only a single entry – there is no need for any selection logic or multiplexers.

Unfortunately, this drop in energy consumption also comes with a drop in performance

as the single buffer space provides insufficient decoupling between communicating

165

R
e

la
ti
v
e

 b
u

ff
e

r
e

n
e

rg
y

0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

Relative performance

2i−1o

2i−2o

2i−4o

2i−8o

4i−1o

4i−2o

4i−4o

4i−8o

8i−1o

8i−2o

8i−4o

8i−8o

Figure 6.21: Network buffer design space exploration. Each point is labelled with the number

of entries in the input and output buffers of each core and memory bank. Figures are relative

to the 8i-8o implementation.

cores. Buffers with multiple entries are all much closer to each other in both energy and

performance. Interestingly, there is a performance penalty when using input buffers

with two entries, but not with output buffers of two entries. This is because when

using a task-level pipeline where multiple items need to be sent between stages, small

input buffers result in data having to wait in the output buffer of the previous stage,

which blocks any other network communications that might be required.

Overall, the best buffer implementations appear to be 4-entry input buffers and

4-entry output buffers, as they consume almost 20% less energy than their 8-entry

counterparts with a negligible performance impact of less than 0.2%. I would expect

an implementation with 2-entry output buffers to reduce energy even further without a

significant impact on performance, but the current energy models suggest that a buffer

with four entries consumes less energy than a buffer with two (Table 4.8).

The result of this exploration is that the default buffer parameters used previously

are optimal: all buffers should have space for four words. This leaves network buffers

consuming a large portion of total network energy, making fine-grained dataflow exe-

cution less viable. Optimisations which may help include: biasing the design towards

the common case of writing to an empty buffer and reading from a buffer with a sin-

gle item in it; allowing narrower values to be stored and retrieved without activating

unneeded bit lines; or bypassing buffers entirely whenever possible.

166

Interconnect

The core-to-core network is one of the main additional contributors to energy con-

sumption when using the dataflow execution pattern. This is because data needs to

be communicated frequently, and since the network is capable of sending data to all

cores simultaneously, the signal must be driven along the entire bus, wasting energy.

Reducing the overheads of communication will make dataflow execution profitable in

more situations, but will also help in non-dataflow cases. Three modifications to the

network are explored:

1. Use of intelligent repeaters in the existing network [45]. These ensure that data

is sent no further than necessary, so reduce the length of wire which switches.

They also add to the latency of the link and consume a small amount of energy

themselves, however, so there is a tradeoff between saving energy and keeping

latency low.

2. Introduce a network for point-to-point communication between cores. The net-

work used has the same design as the crossbar used between cores and memories.

The crossbar is more efficient, but is an extra option for where data can be sent

or received, so will result in larger, higher-energy multiplexers at the network

interfaces which will be detrimental to all network communications.

3. Introduce direct communication links between neighbouring cores. The restric-

tion of a single destination makes this the most efficient option, but it may not

be possible to use all of the time. Again, larger multiplexers at the network

interfaces are required to allow this option.

A summary of the energy consumption of these options is given in Table 6.2. For

this study, many of the potential restrictions are removed to show the limits of how

effective each type of network can be: it is assumed that there are enough intelligent

repeaters to ensure that signals travel the minimum possible distance; larger multiplex-

ers are no more expensive; and there are direct links between all pairs of cores. Some

of these restrictions are addressed after the initial evaluation.

In order to increase communication distances and avoid trivial communication pat-

terns, the dataflow mappings involving the most cores were selected from the case

studies: an 8-core crc mapping and a 4-core bitcount mapping.

167

Approach Energy in pJ/bit

Default 0.151

Intelligent repeaters distance× 0.151

Crossbar distance× 0.048 + 0.084

Direct links distance× 0.057

Table 6.2: Comparison of energy consumption of different communication networks. All

distances are in millimetres. The overheads of intelligent repeater logic and larger multiplexers

are ignored for this limit study.

Energy of networks with intelligent repeaters was estimated by computing the av-

erage length of wire which would be switched for each repeater layout, and scaling the

energy of the core-to-core network accordingly.

Nearest neighbour communication is not as much of a restriction as it may first

seem. The worst case is where all instructions receive two inputs and send an output

over the network. Since each core has only two neighbours, it is possible to put up to

two of these three communications on direct links. In practice, however, it is usually

possible to send more than 2

3
of point-to-point messages between neighbours. Indeed,

75% of bitcount’s communication is between neighbouring cores, and 88% for crc.

There are several reasons for this:

• Some cores need to multicast their results, so use the existing core-to-core net-

work and do not need to be placed next to the recipients of the data.

• Some cores communicate with memory instead of other cores.

• Some instructions use operands which do not need to be received over the net-

work – they are constants or forwarded internally.

• Some instructions have fewer than two inputs and one output.

These local links also have the advantage that they do not need to be limited by

tile boundaries: it would make sense to connect the last core of one tile to the first

core of the adjacent tile. This would increase intertile bandwidth, and allow dataflow

networks to span multiple tiles more easily. It would be possible to provide direct links

in four directions, forming a 2D mesh network, but the current floorplan means that

the distances between cores vary widely depending on the direction travelled. Only the

shortest links are explored here.

168

b
a

s
e

lin
e

1
re

p
e
a
te

r

3
re

p
e
a
te

rs

7
re

p
e
a
te

rs

c
ro

s
s
b
a
r

d
ir
e

c
t
to

b
u

ff
e
r

(l
im

it
)

d
ir
e

c
t
to

a
lu

 (
lim

it
)

d
ir

e
c
t
to

 b
u

ff
e

r
(n

e
ig

h
b
o

u
r)

d
ir

e
c
t
to

 a
lu

 (
n

e
ig

h
b

o
u

r)

b
a

s
e

lin
e

1
re

p
e
a
te

r

3
re

p
e
a
te

rs

7
re

p
e
a
te

rs

c
ro

s
s
b
a
r

d
ir
e

c
t
to

b
u

ff
e
r

(l
im

it
)

d
ir
e

c
t
to

a
lu

 (
lim

it
)

d
ir

e
c
t
to

 b
u

ff
e

r
(n

e
ig

h
b
o

u
r)

d
ir

e
c
t
to

 a
lu

 (
n

e
ig

h
b

o
u

r)

bit count crc

p
J
/o

p
e
ra

ti
o

n

0.0

0.5

1.0

1.5

2.0

2.5

3.0

arbitration

buffers

channel map table

interconnect

Figure 6.22: Energy comparison for different core-to-core interconnect options. limit: direct

links between arbitrary cores; neighbour: direct links between adjacent cores only.

Very cheap nearest-neighbour communication is also useful in other execution pat-

terns: DOACROSS where loop iteration i is dependent on iteration i − 1; pipeline

parallelism; and compiler-managed instruction-level parallelism.

Figure 6.22 shows how the energy consumption of network communication changes

with the different optimisations. Three implementations of a multicast network with re-

peaters are explored: one repeater splits the bus in half, so the minimum length of wire

switched is 0.5mm; more repeaters further reduce the length of wire switched. Using

repeaters has a large impact on the energy consumption of the core-to-core intercon-

nect, suggesting that most communication is between cores which are physically close

to each other. Using a dedicated point-to-point crossbar reduces energy consumption,

but not by as much as a single repeater on a multicast bus. Multiple implementations

of direct connections between cores are explored: those which deliver data directly

to a particular input buffer of the target core and those which deliver data directly

169

to the input of the ALU using an extension to each pipeline’s bypass network. The

limit implementations allow direct communication between arbitrary cores, while the

neighbour implementations restrict direct communication to cores which are next to

each other. Direct communications almost completely eliminate the energy consumed

by interconnect, and when sending data directly to an ALU, other parts of the network,

such as arbiters and buffers, are used much less.

Direct links between ALUs have been explored previously. SIMD-Morph [34] is a

SIMD architecture which allows groups of 4 functional units to forward data between

each other arbitrarily in order to accelerate dataflow subgraphs in code regions lacking

data-level parallelism. This differs from a superscalar forwarding network in that any

instruction can be executed in SIMD mode, and multiple operations can be executed

in series in a single clock cycle. It is also possible to forward data from one group to

a neighbouring group. This rich communication structure allows sequential code to be

accelerated by an average of 2.6×. Having such a large number of potential operand

sources requires a crossbar within the pipeline, which we expect to be too large, slow

and energy-hungry for Loki’s purposes, however. It is also shown that only about 1%

of dataflow subgraphs in a range of benchmarks (including MiBench) have more than

8 operations, so Loki’s tile size should be sufficient.

Summary

While the baseline dataflow implementation on Loki was able to boost performance

of application kernels, energy consumption often increased when more cores were

used, despite the reduction in pipeline activity. This was because of a great increase

in network activity. Most of the energy consumed in the network is in network buffers

and long wires, so this section explored optimisations to these. It was found that buffer

sizes were already optimal, but core-to-core interconnect energy could be reduced by

80% (crc) and 95% (bitcount) by providing direct links between neighbouring cores.

As a result, the average total cost of sending data to a neighbouring core reduces

from 5.7pJ to 3.4pJ. This is only 1.4pJ more expensive than storing and retrieving a

word from a local register file, so can be worthwhile if an additional core is able to

enter dataflow mode (up to 2.7pJ savings per instruction).

It should be noted that it is also possible to optimise cases where data is kept on the

same core, which could once again increase the overheads of dataflow execution. Such

optimisations include providing another level of data storage hierarchy which is even

170

smaller and cheaper than a typical register file [16], and providing dedicated register

ports for small values [7]. The optimisations described in this section would still be

useful on an architecture which uses the network as much as Loki.

6.4.6 Reducing latency

One of the main limiting factors of dataflow execution on the Loki architecture is that

communication between cores can add latency to the critical path, worsening perfor-

mance. This means that the best mapping of the application often involves putting the

entire critical path on a single core. While it is possible to improve performance and

reduce energy consumption in this way, the full potential of dataflow parallelism is

not being realised. This section explores the effects of zero-cycle communication be-

tween neighbouring cores. This makes use of the direct links described in the previous

section.

The latency of a channel has many determining factors, including its length, wire

spacing, voltage and metal layers used. For this experiment, I keep a constant length

of 125µm (the width of a Loki core), a voltage of 1.1V, and the metal layers used by

the synthesis tools.

When the synthesis tools are configured to minimise latency, it takes 39ps for a

signal to travel from one end of the channel to the other, at a cost of 10fJ per bit

toggled. When configured to minimise energy consumption, the latency is 85ps, at a

cost of 7fJ per bit. When compared with Loki’s clock period of 2300ps, it seems likely

that either option could be implemented without significantly extending the critical

path – I select the lower-energy option for these experiments.

Using this zero-cycle communication latency, it is possible to spread the critical

code path of an application across multiple cores without extending its execution time.

Performance for both benchmarks was found to match the implementation with the

entire critical path on one core (see Figures 6.16 and 6.18), but energy consumption

was lower since more cores were in dataflow mode (Figure 6.22).

This optimisation allows Loki to achieve the perfect 5-tuple in Taylor et al.’s net-

work taxonomy [125] (discussed in Section 2.3.1). Loki’s various components of net-

work latency are now <0,0,0,0,0>, the same as a superscalar architecture, suggesting

that instruction-level parallelism could be exploited efficiently in sequential code. Su-

perscalar architectures do still have an advantage, however: their zero-cycle latency

171

networks typically have a higher connectivity, and functional units are able to forward

data to more than just their nearest neighbours.

A further advantage of direct links between neighbouring cores, as mentioned pre-

viously, is that they can provide bridges between neighbouring tiles without needing

to go through the relatively expensive global network.

6.4.7 Parallelism extraction

Generating a dataflow graph automatically is simple. Indeed, it is commonly used

in compilers as an intermediate data structure. The main challenges in automatically

exploiting dataflow parallelism on Loki then become:

1. Determining how the dataflow graph should be mapped across multiple tiles.

Inter-tile bandwidth and latency are not as good as on the intra-tile network, so

partitioning algorithms will be needed to cut the graph at the best points. This

is a common problem for tiled architectures, and tools exist to generate sensible

mappings automatically [96].

2. Determining how many instructions to execute on each core. Going to the ex-

treme of one instruction per core can result in large energy reductions, but can

also increase the length of the critical path and degrade performance unless some

of the suggested optimisations are applied. A tradeoff will need to be made, de-

pending on the requirements of the program.

Alternatively, the instructions could be automatically distributed across cores using

a technique similar to instruction-level distributed processing [30] or TRIPS/EDGE [28],

where a program is separated into strands of dependent instructions with minimal com-

munication between strands.

6.4.8 Conclusion

Dataflow is another option available to the programmer and compiler, and has the

potential to improve both performance and energy consumption. It works in a wide

variety of situations, but is best-suited to tight loops. The dataflow execution pattern

allows an application to be optimised when no other forms of parallelism are available.

Dataflow execution can require huge numbers of cores to achieve its full potential,

172

Architecture FUs Max. issue rate Local memory
Area/mm2

Memory Total

ARM A15 [41, 74] 8 3 32+32kB 0.5* 4.5*

ADRES [24] 16 16 0.5kB 0.11 0.31

Loki 8 8 64kB 0.5 1.0

TRIPS [114] 16 16 80+32kB 3.8 8.9

* Memory area estimated using models from Section 4.5.

Table 6.3: Comparison of architectures capable of dataflow execution. All areas are for archi-

tectures scaled to a 40nm process and represent one core or tile of the architecture. L2 caches

are excluded from area figures.

but on an architecture such as Loki, where cores are abundant, its use may still be

worthwhile.

Like some CGRAs, Loki offers the ability to map multiple instructions to each

core to reduce the resources required [100]. The energy efficiency of the core degrades

gracefully as the number of instructions on it increases and more of the pipeline is re-

quired. Loki lacks the speculation hardware used by architectures such as Multiscalar

to execute multiple blocks of instructions simultaneously [39], as the overheads of

logic required to make predictions and roll back when a prediction fails were consid-

ered too high. Instead, Loki offers a more-flexible communication network, allowing

the blocks to be smaller and more-tightly coupled without impacting performance.

Some form of speculation may still be required to make the most of the Loki architec-

ture when ILP is limited; this is a subject of future work.

Table 6.3 compares a selection of architectures which are capable of dataflow ex-

ecution. The ARM core is able to use its large issue window to dynamically schedule

instructions to its limited resources, ADRES is a coarse-grained reconfigurable array

optimised to accelerate tight loops, and TRIPS makes use of an instruction set with a

dataflow representation. The ARM core’s dynamic execution means that it is not prac-

tical to issue an instruction to every functional unit each clock cycle: the overheads of

finding enough independent instructions of the right types would be too high. It is able

to achieve relatively high performance on sequential code, however. ADRES, being

an accelerator to a more-traditional processor, is able to have a very specialised design

with little memory and densely packed functional units. TRIPS’s relatively large area

reflects its focus on floating point operations and multiple copies of complex structures

such as load-store queues. Loki, with its 8 functional units per square millimetre, rep-

173

resents a compromise between the general-purpose ARM and TRIPS (2 FUs per mm2)

and the specialised ADRES (50 FUs per mm2), while still being capable of general

purpose computation and other forms of parallelism. Interestingly, the ARM A15 has

around 40 entries in its issue window; in a similar area, it would be possible to place

five Loki tiles and dedicate an entire core to each instruction in the window (and have

five times the L1 cache capacity), giving a potential for much greater parallelism.

Very fine-grained dataflow (one instruction per core) does not show a clear benefit

on the base Loki architecture: the energy and delay associated with communication,

while very small compared with other general-purpose architectures, still offset any

benefits of improved caching and reduced switching. Several optimisations were ex-

plored to reduce these overheads:

• Placing multiple functional units in each core increased the number of cores

which could enter the low-power dataflow mode and reduced communication

costs between operations on the same core.

• Memory banks were configured to send data directly to the target core.

• New variations of the fetch persistent instruction were introduced to allow tighter

loops.

• Interconnect was added or modified to reduce the length of wire which switches

when cores communicate. In the case of direct links between neighbouring

cores, it is also expected to be possible to reduce communication latency to zero

cycles.

Table 6.4 summarises the effects of these optimisations. With the assumption that

larger multiplexers have a negligible overhead, none of the optimisations result in

degradation of performance or energy efficiency for either benchmark. Furthermore,

the optimisations can be applied in combination for additional improvements – they

are all independent, but the effects of some overlap. For example, adding an extra

functional unit to each core will result in more information being kept within the core

and reduce the amount of network communication, reducing the impact of cheaper

core-to-core communication.

Although these modifications were suggested with the dataflow use case in mind,

they all have the potential to help in other situations too. It is hoped that by making the

optimisations applicable in a more general situation, they avoid becoming an overhead

to the common case.

174

Optimisation
Execution time

impact
Energy impact

Two functional units per core 0% -8%

Memory configuration -8% -7%

New instructions -12% -19%

Direct links between neighbouring ALUs -16% -24%

Table 6.4: Summary of optimisations to the dataflow execution pattern. Figures are averaged

over the two case studies, even when the optimisation only applies to one. In addition to the

energy and performance impacts, adding an extra ALU increases each core’s area by 7%.

6.5 Summary

This chapter has shown that efficient communication between processor cores and a

flexible, general-purpose architecture make it possible to exploit many different forms

of parallelism. It is possible to tailor the architecture to the program by taking ad-

vantage of the types and amounts of parallelism available. The structure of execution

patterns can be hierarchical – it is possible to set up many parallel pipelines, or exploit

dataflow within a pipeline stage, for example.

Since any core can work independently, or as a part of any of the execution patterns

explored here, a door is opened to the realm of dynamic reconfiguration. It would be

feasible to adjust the size of parallel structures at runtime, or switch from one execution

pattern to another based on performance metrics. This is left for future work.

A spectrum of approaches is available to reduce instruction supply energy. Task-

level pipelines reduce the amount of code executed on each core, potentially to a point

where the small L0 caches can hold the entire active code region. Going further, if

the code executed on each core can be reduced to 16 instructions or less, the cheaper

instruction buffer can be used instead, and the pipeline begins to look more like a

dataflow network. (Of course, an intermediate stage of some cores using their caches

and some using their buffers is also possible.) In addition, the cache pinning technique

(Section 5.1.3) can be used to bridge the gaps in this spectrum by putting as many in-

structions as possible in the cheap-to-access cache or buffer, and fetching all remaining

instructions from another source. Finally, for tight loops where it is possible to reduce

some cores’ workloads to a single instruction, the entire fetch/decode section of the

pipeline becomes inactive.

175

Orthogonal to these approaches is the data-level parallelism execution pattern,

which is able to increase performance by executing multiple copies of the same code

simultaneously. Energy can also be reduced by eliminating redundant work between

cores. It is possible to dedicate a single core to providing common data to all other

cores, and cores can share their instructions to make better use of their aggregate cache

capacity. Simple modifications to the DLP pattern can allow programs with loop-

carried dependencies and loops with highly variable iteration execution times to be

accelerated, though the instruction sharing mechanism is not possible in these cases.

Also possible are compiler-managed techniques to exploit instruction-level paral-

lelism across multiple cores. These include emulating a VLIW-like architecture, us-

ing the low-latency network for data forwarding, or assigning decoupled instruction

strands to each core [30].

Figure 6.23 presents a comparison of execution patterns for each of the nine bench-

mark kernels used in this chapter. It can be seen that there is no execution pattern which

is always the best: different patterns are useful in different situations. Indeed, there is

often a selection of configurations for a particular benchmark which lie on the Pareto

front, allowing for different energy-performance tradeoffs. This confirms that flexi-

bility is an important feature of the Loki architecture, as it allows better application

implementations than if only a subset of parallelism types were possible.

The flexibility of the hardware puts Loki in an unusual situation in terms of decid-

ing the requirements of individual components such as caches and register files. Many

potential deficiencies in the hardware, such as a lack of cache capacity, can be miti-

gated by simply making use of more cores and adding in core-to-core communication

where necessary. To this end, it may be profitable to deliberately make the hardware

structures too small to be useful by themselves (since smaller structures are cheaper to

access), knowing that many will be combined at runtime to execute the program. At

some point, the costs of additional communication are going to outweigh the benefits

of smaller and cheaper structures, but the point at which this happens is dependent on

the goals of the program. Work has been done on dynamically resizing such struc-

tures [8], and this could be useful as it would allow the programmer or compiler (or

even a run-time system) to choose where on the spectrum a particular program should

lie, instead of it being decided by the hardware designer.

176

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Relative execution time

R
e

la
ti
v
e

e
n

e
rg

y

baseline1

pipeline2

dlp1dlp2dlp3

(a) ADPCM encode

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0
.0

0
.5

1
.0

1
.5

2
.0

Relative execution time

R
e
la
ti
ve

e
n
e
rg
y

baseline1

dataflow3
dataflow4

dataflow4−network*

dlp1dlp2dlp3dlp4dlp5dlp6dlp7

dlp8

scalarise2
scalarise3scalarise4

scalarise5
scalarise6

scalarise7
scalarise8

inst−share8*

farm2farm3farm4farm5farm6

(b) Bit count inner loop

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Relative execution time

R
e

la
ti
v
e

e
n

e
rg

y

baseline1
dlp1

dlp2dlp3 dlp4dlp5 dlp6dlp7

scalarise2
scalarise3

scalarise4scalarise5
scalarise6
scalarise7

scalarise8

inst−share7*

farm2farm3farm4farm5farm6

(c) Bit count outer loop

Figure 6.23: Summary of execution patterns. All results are relative to a single-core base-

line. dlp: data-level parallelism pattern; scalarise: DLP with common work extracted to a

helper core; farm: DLP using a worker farm for load balance; inst-share: DLP with instruction

sharing; pipeline: task-level pipeline execution pattern; (continued on next page)

177

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Relative execution time

R
e
la
ti
v
e
e
n
e
rg
y

baseline1

dataflow5 dataflow7

dataflow7−network*

dataflow7−pipeline*

(d) CRC

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

Relative execution time

R
e
la
ti
ve

e
n
e
rg
y

baseline1

dlp1dlp2
dlp3

dlp4dlp5
dlp6

dlp7
dlp8

inst−share8*

farm2farm3farm4farm5farm6

(e) Dijkstra’s algorithm

0.0 0.5 1.0 1.5

0
.0

0
.5

1
.0

1
.5

Relative execution time

R
e
la
ti
v
e
e
n
e
rg
y

baseline1

pipeline2

pipeline3

pipeline4

dlp1dlp2dlp3dlp4
dlp5

dlp6dlp7
dlp8

scalarise2

scalarise3
scalarise4

scalarise5
scalarise6

scalarise7

scalarise8
inst−share8*

(f) JPEG colour conversion

Figure 6.23: (Continued) dataflow: dataflow execution pattern; dataflow-network: dataflow

with direct links between neighbouring cores; dataflow-pipeline: dataflow with two ALUs per

core; <execution-pattern>N : pattern used a total of N cores; <execution-pattern>*: results

are estimated from a limit study, rather than a simulation. (Continued on next page)

178

0.0 0.5 1.0 1.5

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

Relative execution time

R
e
la
ti
v
e
e
n
e
rg
y

baseline1

dlp1

dlp2

dlp3

dlp4

dlp5

dlp6

dlp7

dlp8

scalarise2scalarise3

scalarise4

scalarise5

scalarise6

scalarise7

scalarise8

inst−share8*

(g) JPEG DCT

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0
.0

0
.5

1
.0

1
.5

2
.0

Relative execution time

R
e
la
ti
ve

e
n
e
rg
y

baseline1

dlp1
dlp2

dlp3

dlp6
dlp7

dlp8

scalarise2

scalarise3scalarise4
scalarise5

scalarise6
scalarise7
scalarise8

inst−share8*

(h) JPEG Huffman encoding initialisation

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

Relative execution time

R
e
la
ti
ve

e
n
e
rg
y

baseline1

pipeline2

pipeline3

pipeline4
pipeline6

dlp1dlp2dlp3dlp4
dlp5dlp6dlp7

dlp8

inst−share8*

farm2farm3farm4farm5farm6

(i) String search

Figure 6.23: (Continued from previous page)

179

180

CHAPTER 7

CONCLUSION

In this dissertation, I have shown that providing an efficient and flexible communica-

tion mechanism between processor cores is sufficient to allow a wide range of parallel

structures to be supported. Many of these execution patterns are capable of simultane-

ously improving performance and reducing energy consumption.

I introduced the Loki architecture, made up of an array of simple, low-power, ho-

mogeneous cores and a flexible network, which served as a testbed for exploring these

different forms of parallelism. The streamlined processor pipeline allows energy per

operation to be reduced to around 10pJ: an order of magnitude lower than typical mo-

bile application processors.

For each of the main components of the Loki architecture, I developed a model

of its energy, performance and area. These models were used to determine when and

where energy was being consumed, allowing optimisation to be targeted at regions

which stand to benefit the most. The models allowed me to perform a basic design

space exploration to select a suitable baseline implementation of a single Loki tile. It

is likely that this implementation will need to be tuned slightly as we come to better

understand how cores are used together in practice.

Finally, I explored a range of execution patterns, each representing a different way

of using multiple cores to execute a program. I explored data-level parallelism, task-

level pipelines, and dataflow-style execution. Since these patterns are implemented in

software, it is possible to tailor them to each application: for example, data-level paral-

lelism can easily be modified to tolerate loop-carried dependencies or highly variable

task lengths. I also suggested hardware modifications to improve efficiency when im-

plementing particular execution patterns, and found that many of these optimisations

would also help other patterns, or even sequential execution on a single core.

181

Cheap communication is an enabling technology. It introduces flexibility and al-

lows for resource sharing, which can be used both to improve performance and re-

duce power consumption. Many different execution patterns can be used to exploit

the parallelism available in a program, and these patterns can be combined arbitrar-

ily and modified with little overhead. Efficient communication also opens the door

to new techniques such as software transactional memory which were previously too

expensive because of the communication overheads of traditional architectures. By

increasing the coupling between cores even further so that pipelines can communicate

directly with each other, it is possible to achieve further improvements.

Future mobile systems will be required to provide 1000GOPS at around 1pJ/opera-

tion in the presence of faulty transistors and spiralling engineering costs. This work is

a step towards many-core systems with more than 1000 cores which will, I predict, be

able to achieve this target without the need for complex heterogeneous architectures.

I suggest that design and verification effort is better spent on optimising a regular,

all-purpose architecture, rather than a wide-range of programmable processors and

fixed-function accelerators.

7.1 Future work

The design of the Loki architecture is still in its infancy, and there is still much work to

be done. The following are just some of the possible avenues for further exploration.

• Generate a design for the global network, and explore how the execution patterns

behave when mapped across multiple tiles.

• Operating system support: Loki currently lacks interrupts, virtual memory, and

protection, all of which are near-essential for running a modern operating sys-

tem. In some cases, hardware modifications will be required, but in others, it

may be possible to reserve cores to perform the tasks in software.

• Optimise each of the individual components of the architecture. When imple-

menting Loki, a deliberate decision was made to minimise the time spent opti-

mising components, in favour of exploring the design at a higher level. Decades

of work have been put into developing efficient microprocessor designs, so there

is bound to be scope for improvement.

182

• Instruction set architecture exploration: Loki’s ISA is based on that of MIPS,

with only slight changes. A thorough analysis and comparison with other em-

bedded architectures will allow any gaps to be identified and filled. Dally has

stated that “a selective return to complex instruction sets” makes sense when

optimising energy consumption [33], and from the results of this thesis, I agree.

• Revisit the design space exploration with the knowledge that cores will be used

together to execute a program. It may be the case that resources are currently

overprovisioned to allow satisfactory execution of a program on a single core,

when this use case is unusual in practice.

• Develop automated techniques for recognising which types of parallelism are

available in a program and generating the optimal virtual architecture. Auto-

matic parallelisation is extremely difficult, but Loki’s efficient core-to-core com-

munication allows even tightly-coupled code regions to be split across multiple

cores.

• Allow reconfiguration of more components, to increase the potential of software

specialisation. A potential target for this is the network: configurable network

topologies and protocols could allow optimised communication structures.

183

184

BIBLIOGRAPHY

[1] The OpenMP API specification for parallel programming. http://openmp.org.

[2] Transputer architecture. http://www.transputer.net/fbooks/tarch/tarch.pdf, July

1987.

[3] STi5100: Low-cost interactive set-top box decoder.

http://www.bdtic.com/DownLoad/ST/STi5100.pdf, May 2004.

[4] June 2011 Green500 list press release. http://www.green500.org/printpdf/105,

June 2011.

[5] S. Abramsky. Computational interpretations of linear logic. Theoretical Com-

puter Science, 111(12):3 – 57, 1993.

[6] V. Agarwal, M. S. Hrishikesh, S. W. Keckler, and D. Burger. Clock rate ver-

sus IPC: the end of the road for conventional microarchitectures. SIGARCH

Computer Architecture News, 28(2):248–259, 2000.

[7] A. Aggarwal and M. Franklin. Energy efficient asymmetrically ported register

files. In Proceedings of the 21st International Conference on Computer Design,

ICCD ’03, pages 2–, Washington, DC, USA, 2003. IEEE Computer Society.

[8] D. H. Albonesi, R. Balasubramonian, S. G. Dropsho, S. Dwarkadas, E. G. Fried-

man, M. C. Huang, V. Kursun, G. Magklis, M. L. Scott, G. Semeraro, P. Bose,

A. Buyuktosunoglu, P. W. Cook, and S. E. Schuster. Dynamically tuning pro-

cessor resources with adaptive processing. Computer, 36(12):49–58, Dec. 2003.

[9] B. S. Ang and M. Schlansker. ACRES architecture and compilation. Technical

report, Hewlett-Packard, April 2004.

185

[10] ARM Ltd. ARM1176 processor.

http://www.arm.com/products/processors/classic/arm11/arm1176.php, 2013.

[11] ARM University Program. The ARM instruction set.

http://simplemachines.it/doc/arm inst.pdf, May 2013.

[12] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands, K. Keutzer,

D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams, and K. A. Yelick.

The landscape of parallel computing research: A view from Berkeley. Techni-

cal Report UCB/EECS-2006-183, EECS Department, University of California,

Berkeley, Dec 2006.

[13] O. Azizi, A. Mahesri, B. C. Lee, S. J. Patel, and M. Horowitz. Energy-

performance tradeoffs in processor architecture and circuit design: a marginal

cost analysis. In Proceedings of the 37th annual international symposium on

Computer architecture, ISCA ’10, pages 26–36, New York, NY, USA, 2010.

ACM.

[14] J. Balfour. Efficient Embedded Computing. PhD thesis, Stanford University,

May 2010.

[15] J. Balfour, W. Dally, D. Black-Schaffer, V. Parikh, and J. Park. An energy-

efficient processor architecture for embedded systems. IEEE Computer Archi-

tecture Letters, 7:29–32, 2008.

[16] J. Balfour, R. Halting, and W. Dally. Operand registers and explicit operand

forwarding. Computer Architecture Letters, 8(2):60 –63, February 2009.

[17] C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. Holzwarth, M. Popovic,

H. Li, H. I. Smith, J. Hoyt, F. Kartner, R. Ram, V. Stojanovic, and K. Asanovic.

Building manycore processor-to-DRAM networks with monolithic silicon pho-

tonics. In High Performance Interconnects, 2008. HOTI ’08. 16th IEEE Sympo-

sium on, pages 21–30, 2008.

[18] D. U. Becker, D. B. Sheffield, and V. Parikh. Instruction compounding for

embedded microprocessors. Class project, 2008.

[19] K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally, M. Denneau,

P. Franzon, W. Harrod, J. Hiller, S. Karp, S. Keckler, D. Klein, R. Lucas,

186

M. Richards, A. Scarpelli, S. Scott, A. Snavely, T. Sterling, R. S. Williams,

and K. Yelick. Exascale computing study: Technology challenges in achieving

exascale systems, 2008. Pages 130–131.

[20] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hes-

tness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib,

N. Vaish, M. D. Hill, and D. A. Wood. The gem5 simulator. SIGARCH Comput.

Archit. News, 39(2):1–7, Aug. 2011.

[21] G. Blake, R. G. Dreslinski, T. Mudge, and K. Flautner. Evolution of thread-

level parallelism in desktop applications. In Proceedings of the 37th annual

international symposium on Computer architecture, ISCA ’10, pages 302–313,

New York, NY, USA, 2010. ACM.

[22] S. Borkar. Designing reliable systems from unreliable components: the chal-

lenges of transistor variability and degradation. Micro, IEEE, 25(6):10–16,

2005.

[23] S. Borkar. Thousand core chips: a technology perspective. In Proceedings of

the 44th annual Design Automation Conference, DAC ’07, pages 746–749, New

York, NY, USA, 2007. ACM.

[24] F. Bouwens, M. Berekovic, A. Kanstein, and G. Gaydadjiev. Architectural ex-

ploration of the ADRES coarse-grained reconfigurable array. In Proceedings

of the 3rd international conference on Reconfigurable computing: architec-

tures, tools and applications, ARC’07, pages 1–13, Berlin, Heidelberg, 2007.

Springer-Verlag.

[25] M. Boyer, D. Tarjan, and K. Skadron. Federation: Boosting per-thread per-

formance of throughput-oriented manycore architectures. ACM Trans. Archit.

Code Optim., 7:19:1–19:38, December 2010.

[26] K. Brill. The economic meltdown of Moore’s law and the green data center,

2007.

[27] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: a framework for architectural-

level power analysis and optimizations. In Computer Architecture, 2000. Pro-

ceedings of the 27th International Symposium on, pages 83–94, June 2000.

187

[28] D. Burger, S. W. Keckler, K. S. McKinley, M. Dahlin, L. K. John, C. Lin, C. R.

Moore, J. Burrill, R. G. McDonald, W. Yoder, and the TRIPS Team. Scaling to

the end of silicon with EDGE architectures. Computer, 37(7):44–55, July 2004.

[29] S. Campanoni, T. Jones, G. Holloway, V. J. Reddi, G.-Y. Wei, and D. Brooks.

HELIX: automatic parallelization of irregular programs for chip multiprocess-

ing. In Proceedings of the Tenth International Symposium on Code Generation

and Optimization, CGO ’12, pages 84–93, New York, NY, USA, 2012. ACM.

[30] I. Caulfield. Complexity-effective superscalar embedded processors using

instruction-level distributed processing. PhD thesis, University of Cambridge,

December 2007.

[31] J.-C. Chiu, Y.-L. Chou, and P.-K. Chen. Hyperscalar: A novel dynamically re-

configurable multi-core architecture. In Parallel Processing (ICPP), 2010 39th

International Conference on, pages 277 –286, September 2010.

[32] E. S. Chung, P. A. Milder, J. C. Hoe, and K. Mai. Single-chip heterogeneous

computing: Does the future include custom logic, FPGAs, and GPGPUs? In

Proceedings of the 2010 43rd Annual IEEE/ACM International Symposium on

Microarchitecture, MICRO ’43, pages 225–236, Washington, DC, USA, 2010.

IEEE Computer Society.

[33] W. Dally, J. Balfour, D. Black-Schaffer, J. Chen, R. Harting, V. Parikh, J. Park,

and D. Sheffield. Efficient embedded computing. Computer, 41(7):27 –32, July

2008.

[34] G. Dasika, M. Woh, S. Seo, N. Clark, T. Mudge, and S. Mahlke. Mighty-

morphing power-SIMD. In Proceedings of the 2010 international conference

on Compilers, architectures and synthesis for embedded systems, CASES ’10,

pages 67–76, New York, NY, USA, 2010. ACM.

[35] J. Dean and S. Ghemawat. MapReduce: simplified data processing on large

clusters. Commun. ACM, 51(1):107–113, Jan. 2008.

[36] L. Djoudi, J.-T. Acquaviva, and D. Barthou. Compositional approach applied to

loop specialization. Concurr. Comput. : Pract. Exper., 21(1):71–84, Jan. 2009.

188

[37] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and D. Burger.

Dark silicon and the end of multicore scaling. In Proceedings of the 38th annual

international symposium on Computer architecture, ISCA ’11, pages 365–376,

New York, NY, USA, 2011. ACM.

[38] A. Fog. The microarchitecture of Intel, AMD and VIA CPUs.

www.agner.org/optimize/microarchitecture.pdf, February 2012.

[39] M. Franklin. The multiscalar architecture. Technical report, University of

Wisconsin-Madison, 1993.

[40] W. W. L. Fung, I. Sham, G. Yuan, and T. M. Aamodt. Dynamic warp forma-

tion and scheduling for efficient GPU control flow. In Proceedings of the 40th

Annual IEEE/ACM International Symposium on Microarchitecture, MICRO 40,

pages 407–420, Washington, DC, USA, 2007. IEEE Computer Society.

[41] J. S. Gardner. MIPS Aptiv cores hit the mark. Microprocessor Report, May

2012, May 2012.

[42] M. Gebhart, S. W. Keckler, and W. J. Dally. A compile-time managed multi-

level register file hierarchy. In MICRO, pages 465–476, December 2011.

[43] D. Greenfield. Rentian Locality in Chip Multiprocessors. PhD thesis, University

of Cambridge, April 2010.

[44] P. Greenhalgh. Big.LITTLE processing with ARM CortexTM-A15 & Cortex-

A7. Technical report, ARM, September 2011.

[45] B. Grot, J. Hestness, S. Keckler, and O. Mutlu. Express cube topologies for on-

chip interconnects. In High Performance Computer Architecture, 2009. HPCA

2009. IEEE 15th International Symposium on, pages 163 –174, February 2009.

[46] M. Gschwind, H. Hofstee, B. Flachs, M. Hopkin, Y. Watanabe, and T. Ya-

mazaki. Synergistic processing in Cell’s multicore architecture. Micro, IEEE,

26(2):10–24, 2006.

[47] S. Gupta, A. Ansari, S. Feng, and S. Mahlke. StageWeb: Interweaving pipeline

stages into a wearout and variation tolerant CMP fabric. In Dependable Systems

and Networks (DSN), 2010 IEEE/IFIP International Conference on, pages 101–

110, June 2010.

189

[48] S. Gupta, S. Feng, A. Ansari, B. Jason, and S. Mahlke. The StageNet fabric

for constructing resilient multicore systems. In Proceedings of the 41st annual

IEEE/ACM International Symposium on Microarchitecture, MICRO 41, pages

141–151, Washington, DC, USA, 2008. IEEE Computer Society.

[49] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B.

Brown. MiBench: A free, commercially representative embedded benchmark

suite. In Proceedings of the Workload Characterization, 2001. WWC-4. 2001

IEEE International Workshop, pages 3–14, Washington, DC, USA, 2001. IEEE

Computer Society.

[50] G. Halfacree. Gigabyte leak points to Trinity-based Athlon X4. bit-tech news

article, September 2012.

[51] R. Hameed, W. Qadeer, M. Wachs, O. Azizi, A. Solomatnikov, B. C. Lee,

S. Richardson, C. Kozyrakis, and M. Horowitz. Understanding sources of ineffi-

ciency in general-purpose chips. In Proceedings of the 37th annual international

symposium on Computer architecture, ISCA ’10, pages 37–47, New York, NY,

USA, 2010. ACM.

[52] A. Hansson, K. Goossens, and A. Rdulescu. Avoiding message-dependent dead-

lock in network-based systems on chip. VLSI Design, 2007:10, 2007.

[53] M. Hill and M. Marty. Amdahl’s law in the multicore era. Computer, 41(7):33

–38, July 2008.

[54] M. Horowitz. VLSI scaling for architects.

vlsiweb.stanford.edu/papers/VLSIScaling.pdf, 2000.

[55] J. Huang, A. Raman, T. B. Jablin, Y. Zhang, T.-H. Hung, and D. I. August. De-

coupled software pipelining creates parallelization opportunities. In Proceed-

ings of the 8th annual IEEE/ACM international symposium on Code generation

and optimization, CGO ’10, pages 121–130, New York, NY, USA, 2010. ACM.

[56] INMOS Limited. Transputer instruction set: a compiler writer’s guide.

www.transputer.net/iset/pdf/tis-acwg.pdf, 1988.

[57] Intel Corporation. Intel 64 and IA-32 architectures optimization reference man-

ual. http://www.intel.com/Assets/en US/PDF/manual/248966.pdf, June 2011.

190

[58] Intel Corporation. Intel architecture instruction set extensions programming

reference. http://software.intel.com/sites/default/files/319433-014.pdf, August

2012.

[59] E. Ipek, M. Kirman, N. Kirman, and J. F. Martinez. Core Fusion: accommo-

dating software diversity in chip multiprocessors. In Proceedings of the 34th

annual International Symposium on Computer Architecture, ISCA ’07, pages

186–197, New York, NY, USA, 2007. ACM.

[60] J. Johnston and T. Fitzsimmons. The newlib homepage.

http://sourceware.org/newlib/, 2011.

[61] A. B. Kahng, B. Li, L.-S. Peh, and K. Samadi. ORION 2.0: a fast and accurate

NoC power and area model for early-stage design space exploration. In Pro-

ceedings of the Conference on Design, Automation and Test in Europe, DATE

’09, pages 423–428, 3001 Leuven, Belgium, Belgium, 2009. European Design

and Automation Association.

[62] M. Kamruzzaman, S. Swanson, and D. M. Tullsen. Inter-core prefetching for

multicore processors using migrating helper threads. In Proceedings of the six-

teenth international conference on Architectural support for programming lan-

guages and operating systems, ASPLOS ’11, pages 393–404, New York, NY,

USA, 2011. ACM.

[63] P. Kapur, G. Chandra, and K. C. Saraswat. Power estimation in global inter-

connects and its reduction using a novel repeater optimization methodology. In

Proceedings of the 39th annual Design Automation Conference, DAC ’02, pages

461–466, New York, NY, USA, 2002. ACM.

[64] U. Karpuzcu, B. Greskamp, and J. Torrellas. The BubbleWrap many-core: Pop-

ping cores for sequential acceleration. In Microarchitecture, 2009. MICRO-42.

42nd Annual IEEE/ACM International Symposium on, pages 447–458, 2009.

[65] S. Keckler, W. Dally, B. Khailany, M. Garland, and D. Glasco. GPUs and the

future of parallel computing. Micro, IEEE, 31(5):7–17, 2011.

[66] J. H. Kelm, D. R. Johnson, M. R. Johnson, N. C. Crago, W. Tuohy, A. Mahesri,

S. S. Lumetta, M. I. Frank, and S. J. Patel. Rigel: An architecture and scalable

191

programming interface for a 1000-core accelerator. In ISCA ’09: Proceedings

of the 36th annual international symposium on Computer architecture, pages

140–151, New York, NY, USA, 2009. ACM.

[67] Khronos Group. OpenCL – the open standard for parallel programming of het-

erogeneous systems. http://www.khronos.org/opencl/.

[68] Khubaib, M. A. Suleman, M. Hashemi, C. Wilkerson, and Y. N. Patt. Mor-

phCore: an energy-efficient microarchitecture for high performance ILP and

high throughput TLP. In Proceedings of the 45th International Symposium on

Microarchitecture, 2012.

[69] J. S. Kim, M. B. Taylor, J. Miller, and D. Wentzlaff. Energy characterization

of a tiled architecture processor with on-chip networks. In Proceedings of the

2003 international symposium on Low power electronics and design, ISLPED

’03, pages 424–427, New York, NY, USA, 2003. ACM.

[70] J. Kin, M. Gupta, and W. H. Mangione-Smith. The filter cache: an energy

efficient memory structure. In Proceedings of the 30th annual ACM/IEEE inter-

national symposium on Microarchitecture, MICRO 30, pages 184–193, Wash-

ington, DC, USA, 1997. IEEE Computer Society.

[71] P. Kongetira, K. Aingaran, and K. Olukotun. Niagara: a 32-way multithreaded

Sparc processor. Micro, IEEE, 25(2):21 – 29, March-April 2005.

[72] R. Krashinsky, C. Batten, M. Hampton, S. Gerding, B. Pharris, J. Casper, and

K. Asanovic. The vector-thread architecture. In Proceedings of the 31st annual

international symposium on Computer architecture, ISCA ’04, pages 52–63,

Washington, DC, USA, 2004. IEEE Computer Society.

[73] I. Kuon and J. Rose. Measuring the gap between FPGAs and ASICs. In Pro-

ceedings of the 2006 ACM/SIGDA 14th international symposium on Field pro-

grammable gate arrays, FPGA ’06, pages 21–30, New York, NY, USA, 2006.

ACM.

[74] T. Lanier. Exploring the design of the Cortex-A15 processor.

www.arm.com/files/pdf/at-exploring the design of the cortex-a15.pdf, May

2013.

192

[75] C. Lattner. The LLVM compiler infrastructure. http://llvm.org/.

[76] S. Lavington. A History of Manchester Computers. British Computer Society,

1998.

[77] L. H. Lee, B. Moyer, and J. Arends. Low-cost embedded program loop caching

- revisited. Technical report, University of Michigan, 1999.

[78] Y. Lee, R. Krashinsky, V. Grover, S. W. Keckler, and K. Asanovic. Conver-

gence and scalarization for data-parallel architectures. In Code Generation and

Optimization, Proceedings of the 2013 International Symposium on, 2013.

[79] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P. Jouppi.

McPAT: an integrated power, area, and timing modeling framework for multi-

core and manycore architectures. In Proceedings of the 42nd Annual IEEE/ACM

International Symposium on Microarchitecture, MICRO 42, pages 469–480,

New York, NY, USA, 2009. ACM.

[80] M. Luff. Communication for programmability and performance on multi-core

processors. Technical report, University of Cambridge, April 2013.

[81] K. Mai, R. Ho, E. Alon, D. Liu, Y. Kim, D. Patil, and M. Horowitz. Architecture

and circuit techniques for a 1.1-GHz 16-kB reconfigurable memory in 0.18-µm

CMOS. IEEE Journal of Solid-State Circuits, 40:261–275, January 2005.

[82] K. Mai, T. Paaske, N. Jayasena, R. Ho, W. J. Dally, and M. Horowitz. Smart

Memories: a modular reconfigurable architecture. In Proceedings of the 27th

annual international symposium on Computer architecture, ISCA ’00, pages

161–171, New York, NY, USA, 2000. ACM.

[83] J. Mak. Facilitating program parallelisation: a profiling-based approach. Tech-

nical report, University of Cambridge, March 2011.

[84] R. Manohar and K. M. Chandy. ∆-Dataflow networks for event stream process-

ing. In Proceedings of the International Conference on Parallel and Distributed

Computing and Systems, November 2004.

[85] M. Mantor and M. Houston. AMD Graphics Core Next.

amddevcentral.com/afds/assets/presentations/2620 final.pdf, June 2011.

193

[86] D. May. The XMOS architecture and XS1 chips. Micro, IEEE, 32(6):28–37,

2012.

[87] J. Meng, J. W. Sheaffer, and K. Skadron. Robust SIMD: Dynamically adapted

SIMD width and multi-threading depth. In Proceedings of the IEEE Interna-

tional Parallel & Distributed Processing Symposium (IPDPS), May 2012.

[88] M. Mishra and S. Goldstein. Virtualization on the Tartan reconfigurable ar-

chitecture. In Field Programmable Logic and Applications, 2007. FPL 2007.

International Conference on, pages 323–330, August 2007.

[89] Monsoon Solutions, Inc. Power monitor.

http://www.msoon.com/LabEquipment/PowerMonitor/.

[90] Motorola. Motorola M68000 Family Programmers Reference Manual, 1 edition,

1992.

[91] J. Mukundan, S. Ghose, R. Karmazin, E. Ípek, and J. F. Martı́nez. Overcoming

single-thread performance hurdles in the Core Fusion reconfigurable multicore

architecture. In Proceedings of the 26th ACM international conference on Su-

percomputing, ICS ’12, pages 101–110, New York, NY, USA, 2012. ACM.

[92] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi. CACTI 6.0: A tool

to model large caches, April 2009.

[93] T. Nagatsuka, Y. Sakaguchi, T. Matsumura, and K. Kise. CoreSymphony: an ef-

ficient reconfigurable multi-core architecture. SIGARCH Comput. Archit. News,

39(4):32–37, Dec. 2011.

[94] W. Najjar, W. Bohm, B. Draper, J. Hammes, R. Rinker, J. Beveridge,

M. Chawathe, and C. Ross. High-level language abstraction for reconfigurable

computing. Computer, 36(8):63 – 69, August 2003.

[95] J. Nickolls, I. Buck, M. Garland, and K. Skadron. Scalable parallel program-

ming with CUDA. Queue, 6(2):40–53, Mar. 2008.

[96] J. Oliver, R. Rao, M. Brown, J. Mankin, D. Franklin, F. T. Chong, and V. Akella.

Tile size selection for low-power tile-based architectures. In Proceedings of the

3rd conference on Computing frontiers, CF ’06, pages 83–94, New York, NY,

USA, 2006. ACM.

194

[97] OMNeT++ Community. OMNeT homepage. http://www.omnetpp.org/.

[98] Open SystemC Initiative. SystemC homepage. http://www.systemc.org/home/.

[99] G. Ottoni, R. Rangan, A. Stoler, and D. August. Automatic thread extraction

with decoupled software pipelining. In Microarchitecture, 2005. MICRO-38.

Proceedings. 38th Annual IEEE/ACM International Symposium on, page 12,

Nov. 2005.

[100] R. Panda, A. Wood, N. McVicar, C. Ebeling, and S. Hauck. Extending course-

grained reconfigurable arrays with multi-kernel dataflow. In The Second Work-

shop on the Intersections of Computer Architecture and Reconfigurable Logic

(CARL 2012), June 2012.

[101] H. Park, Y. Park, and S. Mahlke. Polymorphic pipeline array: a flexible multi-

core accelerator with virtualized execution for mobile multimedia applications.

In Proceedings of the 42nd Annual IEEE/ACM International Symposium on Mi-

croarchitecture, MICRO 42, pages 370–380, New York, NY, USA, 2009. ACM.

[102] J. Park, J. Balfour, and W. J. Dally. Maximizing the filter rate of L0 compiler-

managed instruction stores by pinning. Technical Report 126, Stanford Univer-

sity, 2009.

[103] Y. Park, H. Park, and S. Mahlke. CGRA express: accelerating execution using

dynamic operation fusion. In Proceedings of the 2009 international conference

on Compilers, architecture, and synthesis for embedded systems, CASES ’09,

pages 271–280, New York, NY, USA, 2009. ACM.

[104] D. Pham, J. Holt, and S. Deshpande. Embedded multicore systems: Design

challenges and opportunities. In Multiprocessor System-on-Chip, pages 197–

222. Springer, 2011.

[105] M. D. Powell, A. Biswas, S. Gupta, and S. S. Mukherjee. Architectural core

salvaging in a multi-core processor for hard-error tolerance. In Proceedings of

the 36th annual international symposium on Computer architecture, ISCA ’09,

pages 93–104, New York, NY, USA, 2009. ACM.

[106] M. Pricopi and T. Mitra. Bahurupi: A polymorphic heterogeneous multi-core

architecture. ACM Trans. Archit. Code Optim., 8(4):22:1–22:21, Jan. 2012.

195

[107] A. Raghavan, Y. Luo, A. Chandawalla, M. Papaefthymiou, K. P. Pipe, T. F.

Wenisch, and M. M. K. Martin. Computational sprinting. In Proceedings of the

18th Symposium on High Performance Computer Architecture (HPCA), Febru-

ary 2012.

[108] A. D. Reid, K. Flautner, E. Grimley-Evans, and Y. Lin. SoC-C: efficient pro-

gramming abstractions for heterogeneous multicore systems on chip. In Pro-

ceedings of the 2008 international conference on Compilers, architectures and

synthesis for embedded systems, CASES ’08, pages 95–104, New York, NY,

USA, 2008. ACM.

[109] R. Rodrigues, A. Annamalai, I. Koren, S. Kundu, and O. Khan. Performance per

Watt benefits of dynamic core morphing in asymmetric multicores. In Parallel

Architectures and Compilation Techniques (PACT), 2011 International Confer-

ence on, pages 121 –130, Oct. 2011.

[110] P. Rogers. The programmer’s guide to the APU galaxy.

http://developer.amd.com/afds/assets/keynotes/Phil%20Rogers%20Keynote-

FINAL.pdf, 2011.

[111] R. Ronen, A. Mendelson, K. Lai, S.-L. Lu, F. Pollack, and J. Shen. Com-

ing challenges in microarchitecture and architecture. Proceedings of the IEEE,

89(3):325–340, 2001.

[112] A. Ros and S. Kaxiras. Complexity-effective multicore coherence. In Proceed-

ings of the 21st international conference on Parallel architectures and compila-

tion techniques, PACT ’12, pages 241–252, New York, NY, USA, 2012. ACM.

[113] D. Sanchez, R. M. Yoo, and C. Kozyrakis. Flexible architectural support for

fine-grain scheduling. SIGARCH Comput. Archit. News, 38(1):311–322, Mar.

2010.

[114] K. Sankaralingam, R. Nagarajan, R. McDonald, R. Desikan, S. Drolia, M. S.

Govindan, P. Gratz, D. Gulati, H. Hanson, C. Kim, H. Liu, N. Ranganathan,

S. Sethumadhavan, S. Sharif, P. Shivakumar, S. W. Keckler, and D. Burger. Dis-

tributed microarchitectural protocols in the TRIPS prototype processor. In Pro-

ceedings of the 39th Annual IEEE/ACM International Symposium on Microar-

196

chitecture, MICRO 39, pages 480–491, Washington, DC, USA, 2006. IEEE

Computer Society.

[115] G. Sârbu. Power modelling and validation. Master’s thesis, University of Cam-

bridge, www.cl.cam.ac.uk/∼gs448/MPhil dissertation gs448.pdf, June 2012.

[116] Semico Research Corp. Complex SoC silicon and software design costs are

skyrocketing. http://www.design-reuse.com/news/27117, August 2011.

[117] S. Shapiro and M. Wilk. An analysis of variance test for normality (complete

samples). Biometrika, 52(3/4):591–611, 1965.

[118] D. She, Y. He, and H. Corporaal. Energy efficient special instruction support

in an embedded processor with compact ISA. In Proceedings of the 2012 in-

ternational conference on Compilers, architectures and synthesis for embedded

systems, CASES ’12, pages 131–140, New York, NY, USA, 2012. ACM.

[119] D. G. Shea, R. C. Booth, D. H. Brown, M. E. Giampapa, G. R. Irwin, T. T. Mu-

rakami, F. T. Tong, P. R. Varker, W. W. Wilcke, and D. J. Zukowski. Monitoring

and simulation of processing strategies for large knowledge bases on the IBM

Victor multiprocessor. In J. John A. Board, editor, Transputer Research and

Applications 2, pages 11–25. IOS, 1990.

[120] A. L. Shimpi. ASUS Transformer Pad Infinity (TF700T) review.

http://www.anandtech.com/show/6036/3, June 2012.

[121] N. Slingerland and A. J. Smith. Performance analysis of instruction set archi-

tecture extensions for multimedia. In the 3rd Workshop on Media and Stream

Processors, pages 204–217, 2001.

[122] SoC Consortium. ARM processor architecture. Lecture notes:

http://access.ee.ntu.edu.tw/course/SoC Lab 981/lecture.htm, May 2013.

[123] SPMT Consortium. SPMT homepage. www.spmt.org.

[124] M. B. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, B. Greenwald, H. Hoff-

man, P. Johnson, J.-W. Lee, W. Lee, A. Ma, A. Saraf, M. Seneski, N. Shnidman,

V. Strumpen, M. Frank, S. Amarasinghe, and A. Agarwal. The Raw micropro-

cessor: A computational fabric for software circuits and general-purpose pro-

grams. IEEE Micro, 22:25–35, March 2002.

197

[125] M. B. Taylor, W. Lee, S. P. Amarasinghe, and A. Agarwal. Scalar operand

networks. IEEE Transactions on Parallel Distributed Systems, 16(2):145–162,

2005.

[126] J. Teich, A. Weichslgartner, B. Oechslein, and W. Schroder-Preikschat. Invasive

computing - concepts and overheads. In Specification and Design Languages

(FDL), 2012 Forum on, pages 217 –224, Sept. 2012.

[127] Tilera Corporation. Tilera processors webpage.

http://www.tilera.com/products/processors.php.

[128] D. Truong, W. Cheng, T. Mohsenin, Z. Yu, A. Jacobson, G. Landge,

M. Meeuwsen, C. Watnik, A. Tran, Z. Xiao, E. Work, J. Webb, P. Mejia, and

B. Baas. A 167-processor computational platform in 65 nm CMOS. Solid-State

Circuits, IEEE Journal of, 44(4):1130 –1144, April 2009.

[129] University of Edinburgh School of Informatics. HASE userguide.

www.icsa.informatics.ed.ac.uk/research/groups/hase/manuals/hasepp/hasepp.html,

May 2010.

[130] G. Venkatesh, J. Sampson, N. Goulding, S. Garcia, V. Bryksin, J. Lugo-

Martinez, S. Swanson, and M. B. Taylor. Conservation cores: reducing the

energy of mature computations. In ASPLOS ’10: Proceedings of the fifteenth

edition of ASPLOS on Architectural support for programming languages and

operating systems, pages 205–218, New York, NY, USA, 2010. ACM.

[131] X. Vera, B. Lisper, and J. Xue. Data cache locking for tight timing calculations.

ACM Trans. Embed. Comput. Syst., 7(1):4:1–4:38, Dec. 2007.

[132] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C. Ramey, M. Mat-

tina, C.-C. Miao, J. Brown, and A. Agarwal. On-chip interconnection architec-

ture of the Tile Processor. Micro, IEEE, 27(5):15–31, 2007.

[133] N. Weste and D. Harris. CMOS VLSI Design. Addison-Wesley, 2010.

[134] M. Woh, S. Seo, S. Mahlke, T. Mudge, C. Chakrabarti, and K. Flautner. AnySP:

anytime anywhere anyway signal processing. In Proceedings of the 36th annual

international symposium on Computer architecture, ISCA ’09, pages 128–139,

New York, NY, USA, 2009. ACM.

198

[135] Xilinx. Xilinx 7 series FPGAs overview.

www.xilinx.com/support/documentation/data sheets/ds180 7Series Overview.pdf,

November 2012.

[136] H. Zhong, M. Mehrara, S. Lieberman, and S. Mahlke. Uncovering hidden loop

level parallelism in sequential applications. In In Proc. of the 14th International

Symposium on High-Performance Computer Architecture, 2008.

199

200

APPENDIX A

INSTRUCTION SET ARCHITECTURE

These tables and reference pages give an overview of the Loki instruction set archi-

tecture. Much of this information can be found elsewhere in the dissertation, and is

summarised here for convenience.

A.1 Datapath

This section describes ways in which a pipeline can store, retrieve and communicate

data.

A.1.1 Registers

Each core in the Loki architecture has a 32-entry register file accessible through two

read ports and one write port. All registers are accessible through the instruction set.

Some registers are mapped to network buffers: read operations at these positions are

destructive, removing the contents, and blocking, so the core will stall if data has not

yet arrived. The uses of registers are summarised in Table A.1.

Register Description

0 Constant 0

1 Memory address of first instruction in current instruction packet

2-7 Input network buffers

8-31 General-purpose registers

Table A.1: Register uses.

201

Encoding Meaning

00 Execute if predicate = 1

01 Execute if predicate = 0

10 Always execute

11 End of packet (always execute)

Table A.2: Predicate encodings.

A.1.2 Predicates

The Loki architcture supports predicated execution of all instructions to make sim-

ple control flow more efficient and allow SIMD execution in the presence of slightly-

divergent execution paths.

Many instructions have a .p variant, which stores a one-bit value in the core’s

predicate register at the end of the execute pipeline stage. This value may be the least

significant bit of the result of bitwise operations, the result itself in the case of Boolean

operations, or the carry/borrow flag for arithmetic operations.

All instructions may be executed conditionally, based on the value of the predicate

register. Two bits are reserved in the instruction encoding to determine when an in-

struction should execute. An ifp? prefix causes an instruction to execute only if the

predicate is true, and if!p? instructions only execute when the predicate is false. The

remaining two options are always execute (default), and end of packet (denoted with

an .eop marker in assembly). This information is summarised in Table A.2.

A.1.3 Channels

Each core has eight input channels and sixteen output channels. Each input channel is

associated with a separate buffer, as described in Table A.3, so that data from different

sources can be accessed in a different order to the one in which they arrived. All output

channels are multiplexed onto a single output buffer, and their uses are summarised in

Table A.4. Network communication is blocking: the core will stall if data has not yet

arrived on an input channel, or if the output buffer is full.

Network addresses are encoded as integers, allowing them to be manipulated by the

ALU before they are stored in the channel map table, or shared between components.

It is possible to specify point-to-point addresses to any component on the chip, and

multicast addresses within a tile.

202

Channel index Hardware structure

0 Instruction buffer

1 Instruction packet cache

2-7 Registers 2-7

Table A.3: Hardware components corresponding to each input channel of a Loki core.

Channel index Description

0 Implicitly used by fetch and fill instructions

1-14 General-purpose channels

15
Null channel mapping: used in situations where an

instruction’s result should not be sent onto the network

Table A.4: Use cases for each output channel of a Loki core.

A point-to-point address is encoded as:

tile position channel

19 12 4 0

tile is the index of the tile on the chip; position is the component’s position within

the tile – cores range from 0 to 7 and memories range from 8 to 15; channel is the

component’s channel to be accessed – cores have 8 input channels and memories have

16.

Multicast addresses are encoded as:

bitmask channel

11 4 0

bitmask is an 8-bit entry with one bit for each core in the local tile. The core at

position 0 is represented by the least significant bit. Data sent to this address is to be

sent to all cores which have their bits set in the bitmask. To simplify the encoding and

reduce the amount of information required, a restriction is made that the data must be

sent to the same input channel of all target cores. This restriction did not prove to be a

limitation in any of the experiments which used multicast.

203

A.2 Instruction formats

Loki’s simple instruction formats make decoding inexpensive: all fields except the

immediate remain in the same positions across all formats. In the formats below, p

represents the predicate bits, allowing execution to be conditional on the value of the

predicate register, and marking the ends of instruction packets. fn is the ALU function.

FF (fetch) format:

p opcode immediate

2 7 23

0R (zero registers) format:

p opcode xxxxx channel immediate

2 7 5 4 14

0Rnc (zero registers, no channel) format:

p opcode xxxxx immediate

2 7 9 14

1R (one register) format:

p opcode reg1 channel immediate

2 7 5 4 14

1Rnc (one register, no channel) format:

p opcode reg1 xx immediate

2 7 5 2 16

2R (two registers) format:

p opcode reg1 channel reg2 immediate

2 7 5 4 5 9

2Rnc (two registers, no channel) format:

p opcode reg1 xxxx reg2 immediate

2 7 5 4 5 9

2Rs (two registers with shift amount) format:

p opcode reg1 channel reg2 xxxx immediate

2 7 5 4 5 4 5

3R (three registers) format:

p opcode reg1 channel reg2 reg3 fn

2 7 5 4 5 5 4

204

A.3 Instruction summary

Table A.5 summarises all instructions in the Loki ISA. The .p field indicates whether

the instruction has a variant which writes to the predicate register, the mnemonic of

which is mnemonic.p.

Table A.5: Instruction set summary.

Mnemonic .p Name Format

ADDU X Addition 3R

ADDUI X Addition with immediate 2R

AND X Bitwise AND 3R

ANDI X Bitwise AND with immediate 2R

CLZ ✗ Count leading zeros 2R

FETCH ✗ Fetch FF

FETCHPST ✗ Fetch persistent 1Rnc

FETCHPSTR ✗ Fetch persistent relative FF

FETCHR ✗ Fetch relative FF

FILL ✗ Fill 1Rnc

FILLR ✗ Fill relative FF

IBJMP ✗ In buffer jump 0R

IRD ✗ Indirect read 2R

IWR ✗ Indrect write 2R

LDBU ✗ Load byte 1R

LDHWU ✗ Load halfword 1R

LDW ✗ Load word 1R

LLI ✗ Load lower immediate 1Rnc

LUI ✗ Load upper immediate 1Rnc

MULHW ✗ Multiply high word 3R

MULHWU ✗ Multiply high word (unsigned) 3R

MULLW ✗ Multiply low word 3R

NOR X Bitwise NOR 3R

NORI X Bitwise NOR with immediate 2R

OR X Bitwise OR 3R

Continued on next page

205

Table A.5 – Continued from previous page

Mnemonic .p Name Format

ORI X Bitwise OR with immediate 2R

PSEL ✗ Select on predicate bit 3R

PSEL.FETCH ✗ Fetch with select address on predicate 2Rnc

RMTEXECUTE ✗ Send instructions to another processor 0R

RMTNXIPK ✗ Send next instruction packet command 0R

SCRATCHRD ✗ Scratchpad read 2R

SCRATCHRDI ✗ Scratchpad read immediate 1R

SCRATCHWR ✗ Scratchpad write 2R

SCRATCHWRI ✗ Scratchpad write immediate 1R

SELCH ✗ Select a channel-end with data 1Rnc

SETCHMAP ✗ Set channel map entry 2Rnc

SETCHMAPI ✗ Set channel map entry immediate 1Rnc

SETEQ X Set if equal 3R

SETEQI X Set if equal with immediate 2R

SETFETCHCH ✗ Set fetch channel 0R

SETGTE X Set if greater than or equal 3R

SETGTEI X Set if greater than or equal to immediate 2R

SETGTEU X Set if greater than or equal (unsigned) 3R

SETGTEUI X Set if greater than or equal to immediate

(unsigned)

2R

SETLT X Set if less than 3R

SETLTI X Set if less than immediate 2R

SETLTU X Set if less than (unsigned) 3R

SETLTUI X Set if less than immediate (unsigned) 2R

SETNE X Set if not equal 3R

SETNEI X Set if not equal with immediate 2R

SLL ✗ Shift left logical 3R

SLLI ✗ Shift left logical by immediate 2Rs

SRA ✗ Shift right arithmetic 3R

SRAI ✗ Shift right arithmetic by immediate 2Rs

SRL X Shift right logical 3R

SRLI X Shift right logical by immediate 2Rs

Continued on next page

206

Table A.5 – Continued from previous page

Mnemonic .p Name Format

STB ✗ Store byte 2R

STHW ✗ Store halfword 2R

STW ✗ Store word 2R

SUBU X Subtraction 3R

SYSCALL ✗ System Call 0Rnc

TSTCH X Test input channel-end 2R

TSTCHI X Test input channel-end immediate 1R

WOCHE ✗ Wait until output channel is empty 0R

XOR X Bitwise XOR 3R

XORI X Bitwise XOR with immediate 2R

A.4 Instruction reference

A.4.1 ALU

The ALU is capable of the 20 functions presented in Table A.6. The function is pro-

vided directly by instructions which use the 3 register format, and the decoder provides

the function for all other ALU operations.

Most ALU operations have the optional ability to write to the predicate register.

The comparison operations write their 1-bit result, the bitwise and shift operations

write the least significant bits of their results, and the arithmetic operations use the

predicate register as an integer overflow flag.

A.4.2 Data

This section describes instructions which manipulate local data without using the ALU.

lli (load lower immediate) is the partner for the lui ALU function and stores a 16

bit immediate in a register.

The multiplier takes 32-bit operands and produces one word of the result in two

clock cycles. There are three multiplication instructions: mullw (low word), mulhw

(high word) and mulhwu (high word, where operands are unsigned).

207

Class Mnemonic Description

Comparison

seteq Set if equal

setne Set if not equal

setlt s Set if less than (signed)

setlt Set if less than (unsigned)

setgte s Set if greater than or equal (signed)

setgte Set if greater than or equal (unsigned)

Shift

sll Shift left logical

srl Shift right logical

sra Shift right arithmetic

Arithmetic
add Addition

sub Subtraction

Bitwise logic

nor Negated OR

and AND

or OR

xor Exclusive OR

nand Negated AND

clr Clear; AND with negated second operand

orc OR complement; OR with negated second operand

Miscellaneous
clz Count leading zeroes

lui Load upper immediate

Table A.6: ALU functions

208

Loki supports indirect access to its registers and input buffers through the indirect

read and write instructions. These allow the contents of one register to be used as the

index to be accessed. Indirect reads take two clock cycles because the two reads must

be performed sequentially. These instructions are particularly useful when combined

with selch (Section A.4.5) as they allow data to be read from whichever input buffer

currently has data.

Similar instructions are provided to access the scratchpad memory: scratchrd and

scratchwr. These access indices held in a register. Additional forms of the two instruc-

tions which take an immediate argument are also provided.

psel (predicated select) takes two register operands and selects one based on the

value of the predicate register. In the case where psel may perform a destructive read

from an input buffer, a one-cycle bubble is inserted if the previous instruction writes to

the predicate register. This allows time for the predicate to be computed and ensures

that the data is only consumed if it is required.

A.4.3 Instruction fetch

Loki offers multiple ways of managing the contents of each core’s instruction cache

and buffer.

The fetch instruction requests an instruction packet if it is not already cached lo-

cally. The packet is queued up to execute as soon as the current packet finishes, which

means it can be prefetched well in advance to hide memory latency. There can be at

most one fetch in progress at any one time, to avoid the need for deinterleaving instruc-

tions from different packets. There is a one-cycle branch delay slot when there is a hit

in the L0 instruction cache: the instruction packet’s memory address is computed (or

read from a register) in the decode pipeline stage, and the L0 lookup is performed in

the following cycle in the fetch stage. There are variants of the instruction which use

absolute addresses, relative addresses, and select between two addresses based on the

value in the predicate register.

fill requests an instruction packet if it is not already cached locally, but does not

execute it. This is useful if there are instruction packets which are known statically to

be good to store in the cache. Once the cache has been filled with useful instructions,

the contents can effectively be locked by directing all subsequent instructions to the

instruction buffer instead.

209

Persistent instruction packets are instruction packets which execute repeatedly until

either a next instruction packet command (Section A.4.6) is received over the network,

or a new packet is fetched. An instruction packet is made persistent by using the fetch

persistent instruction in the place of an ordinary fetch. Each iteration of the instruction

packet can be issued immediately after the previous one finishes; there is no bubble in

the pipeline. When the core drops out of persistent mode, the pipeline is flushed, and

any remaining instructions in the current iteration are cancelled. Persistent instruction

packets are useful for implementing very tight loops, since the branch instruction is

not needed. Predicated execution can be used to add simple control flow to a persistent

packet. Section 6.4.4 explored adding two variants of fetch persistent which continued

execution until the predicate register held a certain value.

Originally, all fetch requests were sent over the default logical channel 0. The

cache pinning experiments in Section 5.1.3 found that providing multiple channels to

the instruction memory would be useful as it would allow the core to switch between

its instruction inputs more quickly to control energy consumption. setfetchch (set fetch

channel) was proposed which takes only a logical network address as an argument and

sets it as the default channel used by fetch instructions.

The in-buffer jump instruction means that if the contents of the cache are known

statically, the core may jump around within its cache without the need for computing a

memory address and checking all cache tags. This instruction has the advantage that it

completes one pipeline stage earlier than the others, as no address computation needs

to be performed. This means that there is no branch delay slot, and the next instruction

can be issued in the following clock cycle.

A.4.4 Memory

Loki supports loading and storing bytes, halfwords and words. Since memory banks

are accessed over the network, each operation must specify a network channel over

which memory can be reached, and the memory bank must know where to send any

results back to (Section 3.4).

Sending a load request to memory and making use of the result are two separate

operations, and can be separated by any number of intermediate instructions to hide

memory latency. When there is no contention at the memory banks, latency is two

cycles, meaning that two intermediate instructions are required to keep the pipeline

full. Care must be taken if another load is used as an intermediate instruction: it is

210

possible for the two memory operations to access different banks and complete out

of order. This can be avoided by allocating multiple memory channels and switching

between them when necessary.

Store operations take two clock cycles to complete as they must generate a memory

address as well as collect the data to be stored.

A.4.5 Network

Since the network is such a major component of Loki’s design, there exist a number of

instructions to manage it.

setchmap (set channel map) associates a physical network address with a logical

address in the channel map table. Physical addresses are of the form shown in Section

A.1.3 and logical addresses are supplied either from a register or as an immediate

value.

tstch (test channel) returns a Boolean result telling whether the selected input buffer

contains any data. This allows the core to perform more work if data has not yet arrived,

instead of performing a blocking read operation.

selch (select channel) returns the register mapping of any input buffer which holds

data. If all buffers are empty, the pipeline stalls until data arrives. This is useful in

situations where data can arrive from many different sources, but can be processed in

any order.

woche (wait until output channel is empty) stalls the pipeline until all data sent on a

particular channel has reached its destination. In the case of local communication, data

is only injected into the network when it has been allocated a path to its destination,

so the instruction simply completes when all data has left the core’s output buffer. For

communication to a distant tile, a credit counter must also be checked. The instruc-

tion guarantees that it is safe to allow another core to begin sending data to the same

destination – all data has arrived so there is no possibility of interleaving.

A.4.6 Remote execution

Loki cores have the ability to send instructions over the network to other cores; a

process known as remote execution. This is useful when a core wants to offload a

small amount of work, or when it is cheaper to move the instructions to the data than

it would be to bring the data to the instructions.

211

Following a rmtexecute instruction, all consecutive instructions marked with an

ifp? predicate will be sent to the specified destination, and will not be executed lo-

cally. All instructions sent remotely have the ifp? predicate replaced with a .eop

end of packet marker, so that the remote core switches to an alternate source of in-

structions as soon as they begin to arrive. For this reason, the instruction fetch must be

the final instruction sent to the remote core – the incoming individual instructions are

indistinguishable from the packet being fetched as far as the core is concerned.

The execution of another core can be stopped using rmtnxipk (remote next instruc-

tion packet). This instruction sends a special command to the remote core, which

when received, immediately causes a pipeline flush and a switch to the next instruction

packet (if any). This is particularly useful to break cores out of infinite loops and to

reactivate them if they are stalled waiting for data which will never arrive.

A.4.7 Other

Loki has support for a system call instruction to request service from an operating

system. The only argument is an immediate which selects the service the operating

system should provide.

212

