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Abstract

We consider the generalized gauge mediated supersymmetry breaking (GMSB)
models with the messenger fields which do not form the complete multiplets of SU(5)
GUT symmetry. Such a situation may happen in the anomalous U(1) GUT scenario
because the mass spectrum of the superheavy particle does not respect SU(5) GUT
symmetry, although the success of the gauge coupling unification can be explained.
In this paper, we assume that one pair of the messenger fields gives the dominant
contribution, and the LHC signature for the two possible messengers, X + X̄ and
Q + Q̄, are examined. We investigate the possibility to measure the deviation from
the usual GUT relation of the gaugino masses which is one of the most important
features of these scenarios.
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1 Introduction

The minimal supersymmetric (SUSY) standard model (MSSM) is one of the most promis-
ing candidates for the model beyond the standard model (SM) [1, 2, 3]. Unfortunately,
the MSSM has more than 100 parameters concerning on the SUSY breaking, and the
signatures in the large hadron collider (LHC) are strongly dependent on the parameters,
especially, the mass spectrum of SUSY particles [4, 6, 7, 8, 9, 10, 11]. Therefore, it is
important to study various possibilities for the SUSY breaking parameters and the LHC
signatures before the LHC starts to present the data. In this paper, we examine the gen-
eralized gauge mediated SUSY breaking (GMSB) scenario [12, 13] in which the messenger
fields do not form the complete grand unified theory (GUT) multiplets.

In the usual GMSB scenario [14, 15], the messenger fields are adopted as complete
multiplets under SU(5). This is mainly because the messenger fields which do not respect
SU(5) generically spoil the success of the gauge coupling unification in the MSSM. However,
it has been understood that the GUT with anomalous U(1) gauge symmetry [16, 17, 18]
can naturally explain the success of the gauge coupling unification in the MSSM although
the superheavy particles do not respect the SU(5) symmetry [19, 20]. Since some of the
superheavy particles can play the same role as the messenger fields, it is important to study
the generalized GMSB scenario with the messenger fields which do not form the complete
multiplets of SU(5).

One of the most interesting facts in this scenario is that the GUT relation for the gaug-
ino masses are spoiled although the anomalous U(1) GUT has the GUT gauge symmetry
at the GUT scale. Actually, if we assume that the SUSY is broken by some mechanism
and the resulting superpotential has a form

W = mΦΦΦ̄ + θ2FΦΦΦ̄, (1.1)

where θ2 is a superspace coordinate, the masses of gauginos and sfermions at the scale mΦ

are generated by one and two loop effects of the messenger fields Φ and Φ̄ as [14, 15]

Ma = na

(αa
4π

) FΦ

mΦ

+O
(
F 3

Φ

m5
Φ

)
, (1.2)

m2
f̃

=
3∑

a=1

naC
f̃
a

(αa
4π

)2 F 2
Φ

m2
Φ

+O
(
F 4

Φ

m6
Φ

)
, (1.3)

respectively. Here na (a = 1, 2, 3) is the Dynkin index whose normalization is chosen to

be na = 1 for 5 + 5̄ of SU(5), and C f̃
a is the quadratic Casimir invariant of sfermions. C f̃

a

are in a normalization where C f̃
1 = 3/5 · Y 2 for sfermions with hypercharge Y , C f̃

2 = 3/4

for SU(2)L doublets and C f̃
3 = 4/3 for SU(3)C triplets. na for various messenger fields are

given in Table 1. The generalized messenger scenario has a lot of possibilities in general
[12, 13]. Here, just for simplicity, we assume that one of the messenger fields in Table 1
dominates. Then only two possibilities, X + X̄ and Q + Q̄, can give the non-vanishing
masses to all the gauginos. In this paper, we examine these two possibilities.

2 Overview of the mass spectrum

As discussed in the introduction, the GUT relation for the gaugino masses is generally
spoiled in the generalized GMSB scenario. Since Maα

−1
a is one-loop renormalization group
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(SU(3)C , SU(2)L)U(1)Y n1 n2 n3

Q+ Q̄ (3,2)1/6 + (3̄,2)−1/6 1/5 3 2

U + Ū (3,1)2/3 + (3̄,1)−2/3 8/5 0 1

D + D̄ (3,1)−1/3 + (3̄,1)1/3 2/5 0 1

L+ L̄ (1,2)−1/2 + (1,2)1/2 3/5 1 0

E + Ē (1,1)−1 + (1,1)1 6/5 0 0

G (8,1)0 0 0 3

W (1,3)0 0 2 0

X + X̄ (3,2)−5/6 + (3̄,2)5/6 5 3 2

Table 1: The Dynkin indices na (a = 1, 2, 3) for various messenger fields.

invariant, the gaugino masses satisfy the relation

M1 : M2 : M3 ∼ n1α1 : n2α2 : n3α3 (2.1)

at any renormalization scale. Therefore, if we consider a model with messengers which
respect SU(5) symmetry, the ratio of gaugino masses at weak scale is given as

M1(mZ) : M2(mZ) : M3(mZ) ∼ 1 : 2 : 6. (2.2)

The relation (2.2) is often called the GUT relation of the gaugino masses. However, this
relation is spoiled if n1 = n2 = n3 is not satisfied as in the generalized GMSB scenario. In
the followings, we examine the spectra of models with X + X̄ or Q + Q̄ messengers as a
specific example of such scenarios. The parameters for the SUSY breaking sector are ΛΦ ≡
FΦ/mΦ, mΦ, tan β (the ratio of the VEVs of up-type Higgs and the down-type Higgs), and
sgn (µ) (the sign of the SUSY Higgs mass). The masses of gauginos and sfermions, and
the scalar trilinear couplings A at the mass scale of the messenger fields are given as

Ma(mΦ) ' na

(αa
4π

)
ΛΦ, m2

f̃
(mΦ) '

3∑
a=1

naC
f̃
a

(αa
4π

)2

Λ2
Φ, A(mΦ) ' 0. (2.3)

We use the renormalization group equations (RGEs) to obtain these parameters at the
weak scale. For implementing the numerical calculation, we use SOFTSUSY 2.0.18 [21]
with appropriate modification according to our purpose. In our calculation, we assume
that the contributions from messenger fields other than the selected one are relatively
small and can be neglected entirely. To specify the SUSY Higgs mass µ and the Higgs
mixing parameter b we use the relations

b =
1

2
(m2

Hu +m2
Hd

+ 2|µ|2) sin 2β (2.4)

and

|µ|2 =
m2
Hd
−m2

Hu
tan2 β

tan2 β − 1
− m2

Z

2
. (2.5)

where m2
Hu

and m2
Hd

are the SUSY breaking Higgs mass parameters at the weak scale
which are calculated by the RGEs with the boundary values given by (2.3) at the scale
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Figure 1: Allowed parameter region for X + X̄ messenger scenario. We set tan β = 10 and
sgn (µ) = +1. The circles correspond to the model points selected to analyze the LHC
signature.

mΦ.

First, we consider the scenario with X + X̄ messenger. In this scenario, the Dynkin
indices are given by

n1 = 5, n2 = 3, n3 = 2 (2.6)

as shown in Table 1, so gaugino masses at the weak scale satisfy the relation

M1(mZ) : M2(mZ) : M3(mZ) ∼ 5 : 6 : 12 (2.7)

at one-loop order. Since the relation (2.7) is not affected so much by the specific choice
of the parameters such as the mass scale of messenger particles, we can use this relation
to distinguish this model from others. The relation (2.7) indicates that the hierarchy
among the gaugino masses becomes milder than the usual GUT relation. One of the most
interesting features is that the mass splitting between the bino and wino is especially small.
Therefore, to check this feature is one of the promising ways to test this scenario.

Figure 1 represents the parameter space in this scenario. Here we set tan β = 10 and
sgn (µ) = +1, and we assume that the lightest SUSY particle (LSP) is the gravitino. The
experimental bound for this scenario comes mainly from the LEP2 bound on the lightest
Higgs mass mh > 114.4 GeV [22]. The mass of Higgs is, however, largely dependent on
the mass of top quark, so there remains a large uncertainty concerning this bound. We
set mt = 175 GeV for our calculation. As shown in Figure 1, there are three parameter
regions, corresponding to

1. mχ̃0
1
< mχ̃0

2
< mτ̃1
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Figure 2: Allowed parameter region for Q + Q̄ messenger scenario. We set tan β = 10
and sgn (µ) = +1. The circle corresponds to the model point selected to analyze the LHC
signature.

2. mχ̃0
1
< mτ̃1 < mχ̃0

2

3. mτ̃1 < mχ̃0
1
< mχ̃0

2
.

When the ΛΦ is comparatively small, the higgsinos are relatively heavy compared with the
gauginos, and therefore we can roughly identify the lightest neutralino χ̃0

1 with the bino
and the second lightest neutralino χ̃0

2 with the wino. Therefore, the bino-like neutralino
χ̃0

1 becomes the next to LSP (NLSP) in the regions 1 and 2, and the stau τ̃1 becomes the
NLSP in the region 3.

Another candidate of messenger fields in our scenario is the fields with quantum number
of Q+ Q̄. In this scenario, the Dynkin indices are given as

n1 =
1

5
, n2 = 3, n3 = 2 (2.8)

and gaugino masses satisfy the relation

M1(mZ) : M2(mZ) : M3(mZ) ∼ 1

5
: 6 : 12 (2.9)

at one-loop order. As can be seen from this relation, Q+Q̄ messenger scenario gives rather
small masses to sparticles which do not have quantum numbers of SU(2)L and SU(3)C
compared with the other sparticles. The allowed parameter space is presented in Figure
2. In the whole allowed region, mχ̃0

1
< mτ̃1 < mχ̃0

2
is satisfied as in the region 2 of X + X̄

messenger scenario, and therefore the NLSP is the bino-like neutralino χ̃0
1.
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Note that there are almost no bounds for the mass of the lightest neutralino χ̃0
1 if χ̃0

1

is the pure bino and does not decay inside the detector. The GUT relation is essential to
obtain the bound mχ̃0

1
> 46 GeV given by the particle data group [22] and the constraint

from the invisible decay of Z is useless because the decay width of Z → χ̃0
1 χ̃

0
1 is quite

small for the bino-like χ̃0
1 [23]. Therefore the constraint for the mass of right-handed stau

τ̃1, mτ̃ > 81.9 GeV is important in this scenario which is shown in Figure 2.

3 LHC signature

In this section, we investigate the LHC signatures of these scenarios. For this purpose,
we use ISAJET 7.79 [24] to calculate the decay width of sparticles and HERWIG 6.510
[25, 26] to generate the sparticle production events by Monte-Carlo simulation. And for
the detector simulation, we use AcerDET 1.0 [27] as a fast simulation of the search at the
LHC. We examine the LHC signatures for

√
s = 14 TeV for the whole analysis in this

paper.

We pick three model points for X + X̄ messenger scenario corresponding to the three
regions introduced above (Table 2) and one model point for Q + Q̄ messenger scenario
(Table 3) to analyze the LHC signals. Table 2 and 3 show the resulting mass spectra and
branching ratios of sparticles in these model points. In these points, the NLSP does not
decay to the LSP gravitino inside the detector.

As pointed out above, one of the most peculiar features of these scenarios can be tested
by measuring the masses of the bino and wino. For the X + X̄ messenger scenario, the
mass splitting between the bino and wino is very small. On the other hand, for the Q +
Q̄ messenger scenario, the mass of bino is much smaller than other sparticle masses. So
one of the most important tasks to distinguish these scenarios is measuring the neutralino
masses

mχ̃0
1
'M1, mχ̃0

2
'M2. (3.1)

Of course we have to measure the mass of gluino to confirm the relation among gaugino
masses predicted by our scenarios. But we do not argue the detailed reconstruction of the
decay chain for the gluino mass measurement in this paper. This is because the decay
mode of the gluino in the GMSB model is highly dependent on the parameters and it
can be very complicated. As shown later, the gluino mass can be estimated if we assume
that the gluino mass is of the same order as the squark masses, for example, by the mT2

measurement and the largeness of the cross section.

We figure out several features for three cases in X+X̄ messenger scenario and one case
in Q+ Q̄ messenger scenario.

1. mW̃ : mg̃ ∼ 1 : 2 in both scenarios. As the result, the ratio mW̃/mq̃ becomes larger
than in the usual scenario with the GUT relation. Roughly speaking, the hierarchy
between colored sparticles and wino masses becomes milder.

2. mB̃ ∼ mW̃ in the X + X̄ messenger scenario. In most of the interesting parameter
region, the decay mode χ0

2 → Zχ0
1 is closed, and therefore, the branching ratios of

leptonic decay modes of χ0
2 become comparatively large. The leptonic modes are

important in obtaining meaningful information from the data in the LHC.
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Λmess mmess tan β sgn (µ) n1 n2 n3

(TeV) (GeV)
Case 1: mχ̃0

1
< mχ̃0

2
< ml̃R

60 1.0× 1014 10 + 5 3 2

Case 2: mχ̃0
1
< ml̃R

< mχ̃0
2

70 5.0× 1012 10 + 5 3 2

Case 3: ml̃R
< mχ̃0

1
< mχ̃0

2
70 1.0× 1010 10 + 5 3 2

Case 1 Case 2 Case 3
g̃ 910 1049 1054
ũL 1017 1168 1163
ũR 946 1086 1089

d̃L 1022 1173 1169

d̃R 905 1047 1063

b̃1 894 1036 1053

b̃2 929 1073 1085
t̃1 704 831 879
t̃2 957 1097 1107
ν̃l 564 621 556
ν̃τ 562 619 555
ẽL 569 626 561
ẽR 478 497 403
τ̃1 473 492 399
τ̃2 568 625 561
χ̃0

1 395 464 459
χ̃0

2 439 514 508
χ̃0

3 530 595 562
χ̃0

4 571 640 621
χ̃±1 433 506 496
χ̃±2 568 636 618
h0 114 115 114
H0 766 852 783
A0 765 851 783
H± 770 856 787

Case 1 Case 2 Case 3
ũL → g̃ u .23 .23 .20
→ χ̃+

1 d .41 .39 .34
→ χ̃0

2 u .21 .21 .18

d̃L → g̃ d .25 .24 .22

→ χ̃−1 u .41 .35 .29

→ χ̃0
2 d .21 .14 .10

ũR → g̃ u .18 .16 .14
→ χ̃0

1 u .67 .71 .63
→ χ̃0

2 u .13 .12 .22

d̃R → χ̃0
1 d .83 .84 .69

→ χ̃0
2 d .15 .14 .24

g̃ → t̃1 t̄+ t̃∗1 t .98 .98
→ χ̃+

2 b t̄+ χ̃−2 t b̄ .32
→ χ̃0

3,4 t t̄ .32

χ̃0
2 → χ̃0

1 q q̄ .42
→ χ̃0

1 b b̄ .12
→ χ̃0

1 l
+ l− .15

→ χ̃0
1 τ

+ τ− .10

χ̃0
2 → l̃±R l

∓ .54
→ τ̃±1 τ∓ .46

l̃±R → χ̃0
1 l
± 1.00

τ̃±1 → χ̃0
1 τ
± 1.00

χ̃0
2 → l̃±R l

∓ .65
→ τ̃±1 τ∓ .35

χ̃0
1 → l̃±R l

∓ .64
→ τ̃±1 τ∓ .36

l̃±R → τ̃1 l
± τ 1.00

Table 2: Mass spectra and branching ratios of sparticles for three model points correspond-
ing to three regions of X + X̄ messenger scenario. (See Figure 1.)
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Λmess mmess tan β sgn (µ) n1 n2 n3

(TeV) (GeV)
80 1.0× 1014 10 + 1/5 3 2

g̃ 1181 χ̃0
1 16

ũL 1326 χ̃0
2 586

ũR 1165 χ̃0
3 682

d̃L 1331 χ̃0
4 720

d̃R 1163 χ̃±1 586

b̃1 1150 χ̃±2 720

b̃2 1221 h0 116
t̃1 867 H0 954
t̃2 1240 A0 954
ν̃l 680 H± 958
ν̃τ 679
ẽL 684
ẽR 118
τ̃1 96
τ̃2 682

ũL → g̃ u .25
→ χ̃+

1 d .39
→ χ̃0

2 u .19

d̃L → g̃ d .26

→ χ̃+
1 u .35

→ χ̃0
2 d .18

ũR → χ̃0
1 u 1.00

d̃R → χ̃0
1 d 1.00

g̃ → t̃1 t̄+ t̃∗1 t .97

χ̃+
1 → χ̃0

1W
+ .91

χ̃0
2 → χ̃0

1 Z .30
→ χ̃0

1 h
0 .54

→ l̃±R l
∓ .04

l̃±R → χ̃0
1 l
± 1.00

Table 3: Mass spectrum and branching ratios of sparticles for a model point of Q + Q̄
messenger scenario. (See Figure 2.)

3. mB̃ � mW̃ in the Q+ Q̄ messengner scenario.

In the followings, we study how to catch these features from the LHC signals.

3.1 X + X̄ messenger scenario (Case 3: stau NLSP)

In the region 3 of X + X̄ messenger scenario, very peculiar signal is expected because the
NLSP becomes the right-handed stau. The momentum and velocity of stau which goes
out the detector can be measured, and therefore, we can know the masses of various SUSY
particles by using the invariant mass technique and the above features can be tested. We
discuss the mass measurements for this case in this subsection.

It has been studies how to catch the stau in the LHC in [31, 32, 33, 34], and we carry
out the smearing of the stau momentum and velocity to reproduce the expected resolution
in our simulation. The resolutions for the momentum and velocity are given as

σ|p|(GeV) = 0.000118 · |p|2 + 0.0002 ·
√
m2
τ̃1

+ |p|2 + 0.89 (3.2)

and
σβ = 0.028 · β2. (3.3)

Then we can obtain the stau mass

mτ̃1 =
|p|
βγ
, γ ≡ (1− β2)−1/2 (3.4)
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Figure 3: Left: NLSP stau invariant mass distribution for the case 3 of X + X̄ messenger
scenario. Center: mτ̃ l distribution. Right: Hemisphere invariant mass distribution.

from the reconstructed momentum and velocity. For the identification of stau, we use the
cuts

• 0.9 < βγ < 6.0

• |η| < 2.4

• pT > 20 GeV

in our analysis. Here η is the pseudo rapidity.

To measure the neutralino masses mχ̃0
1,2

, we use the decay chain of χ̃0
1,2 → l̃R ln →

τ̃1 ln lf τ . Since mass difference between the lighter stau τ̃1 and the first two generation of
right-handed sleptons l̃R are small in most of the cases we are interested in, we use the
following approximation:

pl̃R = pτ̃ + plf + pτ ' pτ̃1 . (3.5)

So we can measure the masses of the bino-like and wino-like neutralinos directly by taking
the invariant mass of stau and e or µ as illustrated in Figure 3. Although we can use the
decay chain χ̃0

1,2 → τ̃1 τ for the mass measurement of neutralinos, by this measurement the
events with e or µ are preferable because the momentum of e or µ is less smeared than
that of τ . And we can confirm that the measured neutralinos are not higgsino-like one
because of the large branching ratio for χ̃0

1,2 → l̃R l.

In this scenario, it is expected that we can measure the masses of any kind of sparticles
produced in each event. This is because the momentum of the arbitrary sparticle can be
reconstructed by the momenta of the stau and the SM particles. So we can measure the
mass of gluino and check the mass relation among all the gauginos in principle. Let us
consider this issue in the rest of this subsection.

Although a large number of gluino are expected to be produced by the process p p →
g̃ g̃, g̃ q̃ and the subsequent decay of squark, it is not always easy to distinguish gluino
from squark in event-by-event level. Therefore we adopt the inclusive measurement of the
invariant mass of produced sparticles. For this purpose, we use the hemisphere method
suggested in [6, 35, 36]. In this method, we sort the clusters into two hemispheres in each
event according to the following algorithm.

8



1. We pick all the jets with pT > 50 GeV, |η| < 2, leptons with pT > 15 GeV, |η| <
3 and two staus in each event. We use them as the clusters which compose two
hemispheres corresponding to the pair-produced sparticles.

2. We define the initial hemisphere axes p
(i)
hemi (i = 1, 2) by the momentum of two

clusters. p
(1)
hemi is defined as the momentum of the highest pT cluster. And p

(2)
hemi

corresponds to the momentum of the cluster which has the largest value of pT ×∆R
where ∆R ≡

√
∆η2 + ∆φ2. Here ∆η ≡ η(1) − η(2), ∆φ ≡ φ(1) − φ(2) and φ is the

azimuthal angle of the cluster.

3. The cluster with momentum p is belonging to the hemisphere 1 if it satisfies

d(p, p
(1)
hemi) < d(p, p

(2)
hemi) (3.6)

and vise versa. Here d(pj, p
(i)
hemi) is the Lund distance measure between the clusters

with momentum pj and p
(i)
hemi, and it is defined by

d(pj, p
(i)
hemi) = (E

(i)
hemi − |p

(i)
hemi| cos θij)

E
(i)
hemi

(E
(i)
hemi + Ej)2

(3.7)

where θij is the angle between pj and p
(i)
hemi.

4. We redefine the hemisphere axis p
(i)
hemi as the sum of the momenta of the clusters

which belong to the hemisphere i.

5. We repeat the step 3 and 4 until the classification of hemisphere converges.

After this algorithm, we can obtain the invariant mass distribution of each hemisphere
m2

hemi = p2
hemi. If the assignment of hemisphere agrees with the true hemisphere, mhemi

corresponds to the mass of the pair produced sparticle. Since the true hemisphere should
contain exactly one stau, we reject the event where two staus are contained in one of the
hemispheres.

Using this algorithm, we illustrate the distribution of mhemi in Figure 3. We can see
from this figure that both gluino and squark have masses around 1000 GeV and the mass
relation mW̃ : mg̃ ∼ 1 : 2 can be checked.

3.2 Low luminosity analysis

In order to catch the features in the other cases of X + X̄ messenger scenario and of Q+
Q̄ messenger scenario, we discuss the several analyses which can be done in the LHC with
comparatively low luminosity.

Since we are interested in the measurement related to the masses of the bino and wino,
we make use of the characteristic decay modes of these particles. As noted in the comment
of feature 2, for X+X̄ messenger scenario, the leptonic decay of wino-like neutralino χ̃0

2 to
the lightest bino-like neutralino χ̃0

1 through on-shell or off-shell slepton l̃R is useful, which
are illustrated in Figure 4.

First, we consider the invariant mass of a pair of leptons coming from the decay of
χ̃0

2. As can be seen from Table 2, in the X + X̄ messenger scenario, a large number of

9
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Figure 4: Decay chains which we use for the analysis in this paper. χ̃0
2 decays to χ̃0

1 via
the off-shell slepton in the case 1. In the case 2, χ̃0

2 decays to on-shell slepton and we label
the leptons which come from the decay of χ̃0

2 and l̃R as ln and lf , respectively.
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Figure 5: Dilepton invariant mass mll distributions for 10 fb−1 of each model points. The
bins illustrated by the dotted line represents the similar distribution using the opposite-sign
and different flavor dileptons (e+ µ− + µ+ e−).

χ̃0
2 is expected to be produced via the decay of left-handed squark q̃L. We use a dilepton

with opposite-sign and same-flavor (e+ e−+µ+ µ−) for making the invariant mass and the
distribution shown in Figure 5 is obtained. In this figure, the background is estimated
by taking the similar invariant mass of dilepton with opposite-sign and different-flavor
(e+ µ− + µ+ e−). Here, in order to reduce the SM background, we impose following event
cuts by using the transverse momenta pT [5]

• p(1)
T > 100 GeV and p

(2,3,4)
T > 50 GeV

• Meff ≡ p
(1)
T + p

(2)
T + p

(3)
T + p

(4)
T + Emiss

T > 400 GeV

• Emiss
T > max{100 GeV, 0.2Meff}

• Two isolated leptons with peT > 20 GeV and pµT > 5 GeV

where p
(i)
T means the i-th largest pT of the jet in each event and Emiss

T =
√

(pmiss
x )2 + (pmiss

y )2.

Since the SM background is reduced successfully after these cut, we generate only events
of sparticle production for our simulation [5].

We can see the rather small maximum value of invariant mass for both cases of the X+
X̄ scenario in Figure 5, which is caused by the feature 2, namely, mB̃ ∼ mW̃ . Actually,
the maximum value of invariant mass allowed by kinematics is given as

mmax
ll [Case 1] = mχ̃0

2
−mχ̃0

1
(3.8)

in region 1, and
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Figure 6: pT distributions of leptons emitted from sparticle decays. Each graph corresponds
to 1 fb−1 for the case 1 of X + X̄ scenario (left), 1 fb−1 for the case 2 of X + X̄ scenario
(center) and 10 fb−1 for Q+ Q̄ scenario (right).

(mmax
ll [Case 2])2 = m2

χ̃0
2

(
1−

m2
l̃R

m2
χ̃0

2

)(
1−

m2
χ̃0

1

m2
l̃R

)
(3.9)

in region 2, which result in rather small maximum value of the invariant mass calculated
as

mmax
ll [Case 1] = 44 GeV, mmax

ll [Case 2] = 47 GeV. (3.10)

Unfortunately, the smallness of mmax
ll does not always mean the smallness of the mass

splitting between the bino and wino. For the case 2, if one of the relations mB̃ ∼ ml̃ and
ml̃ ∼ mW̃ is satisfied, the maximum value of the invariant mass becomes small.

To check that the mass difference between χ̃0
1 and χ̃0

2 is small in X + X̄ scenario, we
examine the pT distribution of leptons which come from the decay shown in Figure 4. Since
the magnitude of pT of produced particles is strongly dependent on the mass difference
among the sparticles, this can be a good signal to distinguish these scenarios. We can see
from Figure 6 that these leptons have relatively small pT in the X + X̄ scenario and large
pT in the Q + Q̄ scenario. These are caused by mB̃ ∼ mW̃ in the X + X̄ scenario and
mB̃ � mW̃ in the Q+ Q̄ scenario.

Even in the models with the GUT relation for the gaugino masses, such a small value
of mmax

ll is possible if the gaugino mass scale is small. But such lighter gluino can be distin-
guished from heavier gluino in X + X̄ messenger scenario by measuring the cross section
and/or by the mT2 method. As a reference model, we adopt the minimal supergravity
(mSUGRA) model with parameters m1/2 = 150 GeV, m0 = 750 GeV, A0 = −100 GeV,
tan β = 10 and sgn (µ) = +1. As shown later, though the distributions of mll and pT in
the reference model are similar to those of X + X̄ messenger scenario in Figure 5 and 6,
the distribution of mT2 and the cross section become much different from those of X + X̄
messenger scenario. Let us remind the mT2 method [28, 29, 30]. When we consider the
production process of sparticle pair which decay into a pair of the NLSPs and a pair of
the SM particles, we can make use of the mT2 variable defined by

mT2(Mtest) ≡ min
pmiss
T =

∑
i

p
χ(i)
T

[
max

{
mT (−→p vis(1)

T ,−→p χ(1)
T ),mT (−→p vis(2)

T ,−→p χ(2)
T )

}]
. (3.11)

Here −→p T is a (2 + 1)-dimensional vector, −→p T ≡ (ET ,pT ), and p
vis(i)
T is the transverse
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Figure 7: mT2 distributions for Mtest = 0.

momentum for the emitted observed particles. mT is given by

m2
T (−→p vis

T ,
−→p χ

T ) ≡ (−→p vis
T +−→p χ

T )2 = m2
vis +M2

test + 2(Evis
T · Eχ

T − pvis
T · pχT ) (3.12)

where Evis
T ≡

√
m2

vis + |pvis
T |2 and Eχ

T ≡
√
M2

test + |pχT |2.

Now we consider the process p p → q̃ q̃ → χ̃0
1 q χ̃

0
1 q. In this process, m

(1)
vis ' m

(2)
vis ' 0

and the maximum value of mT2 is given by

mmax
T2 (Mtest) =

m2
q̃ −m2

χ̃0
1

2mq̃

+

√√√√(m2
q̃ −m2

χ̃0
1

2mq̃

)2

+M2
test (3.13)

as a function of the test mass Mtest. Therefore, we can obtain the rough value of the
colored sparticle masses by this analysis.

For the analysis of mT2, we use the event cuts

• Two jets with pT > 100 GeV

• Meff ≡ p
(1)
T + p

(2)
T + Emiss

T > 400 GeV

• Emiss
T > max{100 GeV, 0.2Meff}

• No lepton

instead of the usual cut for the SM events introduced above. Since (3.13) is satisfied for
any fixed value of Mtest, here we set Mtest = 0 for our analysis. Then (3.13) becomes the
following simple form:

mmax
T2 (0) =

m2
q̃ −m2

χ̃0
1

mq̃

(3.14)

for the process of squark pair production. The distribution of this quantity is shown in
Figure 7. If the mass of the LSP is very small compared with the mass of squark, we can
interpret mmax

T2 (0) as the mass scale of squark. In fact, this is the case for Q+ Q̄ messenger
scenario. However, the mass hierarchy of sparticles is small in X + X̄ messenger scenario
and the effect of mχ̃0

1
is non-negligible. The theoretical values of mmax

T2 (0) are

mmax
T2 (0)[Case 1] = 844 GeV, mmax

T2 (0)[Case 2] = 904 GeV, (3.15)

12
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Figure 8: The measurements for the mSUGRA model point, where m1/2 = 150 GeV, m0 =
750 GeV, A0 = −100 GeV, tan β = 10 and sgn (µ) = +1. Left: Dilepton invariant mass mll

distribution. The bins illustrated by the dotted line represents the similar distribution using
the opposite-sign and different flavor dileptons (e+ µ−+µ+ e−). Center: pT distribution of
leptons emitted from sparticle decays. Right: mT2 distribution for Mtest = 0.

here we approximate mq̃ = 1000 GeV for the case 1 and mq̃ = 1100 GeV for the case 2.
By this analysis, we can obtain the evidence of milder hierarchy between the masses of χ0

2

and colored sparticle if we know mχ̃0
2
' 500 GeV. Unfortunately, we do not find the scale

of mχ̃0
2

by the analysis in this subsection and it needs further detailed analysis.

In the reference model, the distributions mll, pT and mT2 are represented in Figure 8.
The distribution of mT2 is much different from those in Figure 7, although the distribution
of mll and pT is similar to those of X + X̄ messenger scenario in Figure 5 and 6. And the
cross section becomes much larger than in X + X̄ scenario. Since the distribution of mT2

and the cross section in X + X̄ messenger scenario show the much larger mass scale of the
colored particle than the gluino mass obtained by the GUT relation, it is suggested that
the GUT relation is not satisfied.

3.3 X + X̄ messenger scenario (Case 1, 2: neutralino NLSP)

In the cases 1 and 2 of X + X̄ messenger scenario, the neutralino is the NLSP and we
focus on the decay chain shown in Figure 4. Although these two cases give similar signals,
the decay modes of the wino-like neutralino χ̃0

2 are different. In the case 1, χ̃0
2 undergoes

three-body decay through off-shell slepton, while χ̃0
2 decays to the right-handed slepton

l̃R, which decays to χ̃0
1 subsequently, in the case 2. As seen in the previous section, the

small values of mmax
ll and plT indicate that mχ̃0

2
− mχ̃0

1
is small, but this may not mean

that mχ̃0
2
∼ mχ̃0

1
because the possibility may be still alive that the absolute value of the

neutralino mass scale is small. In order to reject the possibility, we try to show the relation
mχ̃0

2
∼ mχ̃0

1
by measuring the invariant mass mjl(u) of a jet emitted from the squark q̃ and

one of two leptons in the decay of χ̃0
2, although the large luminosity is required for this

analysis. Since there are two leptons in each event, we include two invariant masses mjl(u)

for each event in the distribution. In the case 1, the maximum value of mjl(u) is obtained
as

(mmax
jl(u)[Case 1])2 = m2

q̃

(
1−

m2
χ̃0

2

m2
q̃

)(
1−

m2
χ̃0

1

m2
χ̃0

2

)
, (3.16)
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which is predicted to be 392 GeV for mq̃ = 1000 GeV. Note that this predicted value is
much smaller than mmax

T2 (0) ∼ 844 GeV. This indicates that mχ̃0
2
∼ mχ̃0

1
unless mq̃ ∼ mχ̃0

2
.

Note that in the case 2, there are two kinds of leptons in the decay because there is an
on-shell slepton l̃R produced by the decay of χ̃0

2. Here we label two leptons emitted from
χ̃0

2 and l̃R as “near”-lepton ln and “far”-lepton lf , respectively, as shown in Figure 4. Since
we cannot distinguish ln with lf in event-by-event level, we consider the quantity

mjl(u) ≡ mjln ∪mjlf (3.17)

suggested by [37, 38]. mjln(mjlf ) means the invariant mass of a jet emitted from squark
q̃ and a lepton ln(lf ). Then mjl(u) gives a combined distribution of mjln and mjlf . The
important point is that the analysis is completely the same as in the case 1, and we do
not have to distinguish ln and lf at event-by-event level. The maximum value of the
distribution of mjl(u) becomes

max{mmax
jln ,m

max
jlf
}, (3.18)

where

(mmax
jln )2 = m2

q̃

(
1−

m2
χ̃0

2

m2
q̃

)(
1−

m2
l̃R

m2
χ̃0

2

)
(3.19)

and

(mmax
jlf

)2 = m2
q̃

(
1−

m2
χ̃0

2

m2
q̃

)(
1−

m2
χ̃0

1

m2
l̃R

)
. (3.20)

In the case 2, mmax
jl(u) is predicted to be 369 GeV because mmax

jln
= 262 GeV and mmax

jlf
= 369

GeV for mq̃ = 1150 GeV. Again, this predicted value is much smaller than mmax
T2 (0) ∼ 904

GeV, and it indicates that mχ̃0
2
∼ mχ̃0

1
because mmax

jln
� mmax

T2 (0) means mχ̃0
2
∼ ml̃R

and
mmax
jlf
� mmax

T2 (0) means mχ̃0
1
∼ ml̃R

unless mq̃ ∼ mχ̃0
2
. Therefore, if mmax

jl(u) is much smaller

than mmax
T2 (0), mχ̃0

2
∼ mχ̃0

1
can be shown.

In our simulation, we impose the cuts for the standard model background as in the
section 3.2 and use the dilepton whose invariant mass mll is less than 50 GeV and a jet
with pT larger than 100 GeV. There are, however, many background of jets coming from
other decays of colored sparticles, such as g̃ → t̃1 t̄→ χ̃+

2 b t̄. To reduce these background,
we impose another event cut that there is no b-tagged jet in each event. Here we assume
60% tagging efficiency of b-jet. Then we make two invariant masses mjli (i = 1, 2) for
all the possible jets in each event. And we choose a jet which minimizes max{mjl1 ,mjl2}
among these jets. In this way we can obtain the distribution of mjl(u) which consists of the
combined distribution of mjl1 and mjl2 . The above predicted values are roughly consistent
with the measured values obtained from Figure 9.

Note that in the case 1, taking account of three relations (3.8), (3.14) and (3.16)
together, we can obtain the masses of squark q̃ and neutralinos χ̃0

1,2, in principle. We will
return to this point in the end of this subsection.

In order to determine the mass spectrum of sparticles in the case 2, more measurements
are needed. As suggested by [38], min{mmax

jln
,mmax

jlf
} can be obtained from the distribution

of mjl(u) by observing the structure with the intermediate endpoints in the case 2. Actually
the predicted value roughly agrees with the measured value in Figure 9.

Although we do not know which of the two measured endpoints of mjl(u) in the case
2 corresponds to mjln (mjlf ), it is shown in [38] that we can determine the masses of
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Figure 9: mjl(u) distributions for 300 fb−1 of the case 1 (left) and case 2 (right) of X + X̄
scenario.

neutralinos without ambiguity by introducing the quantity

m2
jl(s) ≡ m2

jln +m2
jlf
. (3.21)

The maximum value of this quantity is obtained as

(mmax
jl(s)[Case 2])2 = (mmax

jln )2 +
m2
l̃R

m2
χ̃0

2

(mmax
jlf

)2

= m2
q̃

(
1−

m2
χ̃0

2

m2
q̃

)(
1−

m2
χ̃0

1

m2
χ̃0

2

)
. (3.22)

in the case 2. Then we impose a similar event selection as in the previous one and make
an invariant mass by a dilepton with mll < 50 GeV and a jet with pT > 100 GeV. Among
all the possible choice of a jet, we pick the one which minimizes mjl(s) in each events. And
the result of simulation is shown in Figure 10, whereas the theoretical value is calculated
as

mmax
jl(s)[Case 2] = 442 GeV. (3.23)

From these quantities, we can obtain the neutralino masses without any ambiguity in the
case 2 [38]. By denoting that

A ≡ mmax
ll , B ≡ max{mmax

jln ,m
max
jlf
}, C ≡ min{mmax

jln ,m
max
jlf
}, D ≡ mmax

jl(s), (3.24)

the masses of neutralinos are written as

mχ̃0
1
[Case 2] =

A
√

(D2 −B2)(D2 − C2)

B2 + C2 −D2
, mχ̃0

2
[Case 2] =

ABC

B2 + C2 −D2
. (3.25)

Moreover, the squark mass is also obtained as

mq̃[Case 2] =
BC
√
A2 +B2 + C2 −D2

B2 + C2 −D2
. (3.26)

If we take A = 50 GeV, B = 380 GeV, C = 240 GeV and D = 440 GeV, we obtain mχ̃0
1
'
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Figure 10: mjl(s) distributions for 300 fb−1 of the case 1 (left) and case 2 (right) of X + X̄
scenario.

490 GeV, mχ̃0
2
' 540 GeV and mq̃ ' 1130 GeV, which are in good agreement with the real

values in Table 3. The measured value of mmax
T2 (0) can be used to check the consistency.

We can also calculate the maximum value of mjl(s) for the case 1 as

mmax
jl(s)[Case 1] = mmax

jll [Case 1] = m2
q̃

(
1−

m2
χ̃0

2

m2
q̃

)(
1−

m2
χ̃0

1

m2
χ̃0

2

)
= mmax

jl(u)[Case 1]. (3.27)

where mjll means the invariant mass by the jet and dilepton. The first equality can be
shown by the trivial relation

m2
jl(s) = m2

jll −m2
ll (3.28)

and the fact that mjll is maximized when mll = 0 as long as mχ̃0
2
/mχ̃0

1
< mq̃/mχ̃0

2
is satisfied

[37]. Let us determine the masses of squark and neutralinos χ̃0
1,2. For example, if we take

mmax
ll = 45 GeV, mmax

T2 (0) = 800 GeV and mmax
jl(u) = mmax

jl(s) = 400 GeV, then we can obtain
mχ̃0

1
' 330 GeV, mχ̃0

2
' 370 GeV and mq̃ ' 920 GeV which are not far away from the real

values in Table 2.

3.4 Q+ Q̄ messenger scenario

In Q + Q̄ messenger scenario, we can see the dilepton signal if we collect a large number
of events. The maximum value of mll is given as

(mmax
ll )2 = m2

χ̃0
2

(
1−

m2
l̃R

m2
χ̃0

2

)(
1−

m2
χ̃0

1

m2
l̃R

)
(3.29)

and the predicted value becomes

mmax
ll = 569 GeV (3.30)

in this model point. The result of simulation corresponding to 100 fb−1 is shown in Figure
11 and the measured value is consistent with the predicted value. Since mmax

ll gives the
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Figure 11: Left: Dilepton invariant mass mll distribution for 100 fb−1 of Q+ Q̄ messenger
scenario. The bins illustrated by the dotted line represents the similar distribution using
the opposite-sign and different flavor dileptons (e+ µ− + µ+ e−). Right: leptonic mT2

distribution for 100 fb−1 of Q+ Q̄ messenger scenario.

lower bound of the mass of χ̃0
2, such a large value of mmax

ll indicates the large mχ̃0
2
. In

the section 3.2, we have already the mass scale of the heaviest colored particle, which is
predicted as 1200 GeV, by mT2 analysis for the colored sparticle pair production. These
signals mean that the mass ratio mχ̃0

2
/mg̃ is roughly larger than 1/2, and therefore, the

hierarchy between the gluino and wino masses is milder than that in the models with GUT
relation.

We can also use the mT2 analysis for the right-handed slepton pair production, because
the right-handed slepton also has a smaller mass compared with the other sparticles. Using
the two leptons emitted from a pair of sleptons, we obtain the maximum value of mT2

variable for Mtest = 0 GeV as

m
(l) max
T2 (0) =

m2
l̃R
−m2

χ̃0
1

ml̃R

(3.31)

To select the process p p→ l̃+R l̃
−
R → χ̃0

1 l
+ χ̃0

1 l
−, we impose event cuts so that

• No jet with pT > 20 GeV

• Two leptons with p
l(1,2)
T > 50 GeV and no other leptons with plT > 20 GeV

• Emiss
T > 50 GeV

• pl(1)
T + p

l(2)
T + Emiss

T > 200 GeV

• The invariant mass of two leptons is outside the region 80 GeV < mll < 100 GeV

are satisfied. Note that the last cut is imposed to suppress the SM background. Since
the expected background coming from the SM events is leptonic decay of W boson and
Z boson, we have to consider the mT2 distribution for WW , ZZ, and ZW production
processes. For the process p p→ W W → l ν l ν, it is obvious that

17



m
(l)
T2(0) ≤ mW (3.32)

and the process p p→ Z Z → l l ν ν is rejected by the above cut. For p p→ ZW → l l l ν,
this process will contribute to the mT2 distribution if one of the leptons comes from Z
boson is missed to be detected. In that case,

m
(l)
T2(0) ≤ max{mZ ,mW} = mZ . (3.33)

Therefore, the standard model background does not affect the measurement of m
(l) max
T2 (0)

if (m2
l̃R
− m2

χ̃0
2
)/ml̃R

> mZ is satisfied. We checked that these SM background can be

negligible by producing the SM background from the ZZ, WW , and ZW processes with
the above cuts.

In the model point we are considering here, the maximum value of this mT2 variable is
given as

M ≡ m
(l) max
T2 (0) = 116 GeV (3.34)

and the result is shown in Figure 11. Here we illustrate the distribution in the region
m

(l)
T2(0) ≥ mZ , because the SM background is expected to be negligible only in this region.

The important relation mχ̃0
2
� mχ̃0

1
can be obtained by the calculation as

m2
χ̃0

2

mχ̃0
1

>
m2
χ̃0

2

ml̃R

>
m2
χ̃0

2
−m2

l̃R

ml̃R

=
(mmax

ll )2

m
(l) max
T2 (0)

∼ 2.8 TeV, (3.35)

where we use the measured values of mmax
ll and m

(l) max
T2 (0).

It may be possible to measure the masses of ml̃R
and mχ0

1
by the methods discussed in

the papers [40, 41]. Here we do not discuss this issue further.

4 Discussion

Generically, multiple fields may play as the messenger fields. Actually, any vector-like
fields Φi and Φ̄i (i = 1, · · · , n) can be the messenger fields if they have an interaction with
the spurion field S like κΦiΦ̄iS. Here the F component of S has non-vanishing VEV FS
which breaks the SUSY. Naively, they have the same order of the contribution to the SUSY
breaking parameters if the coefficients κi ∼ cimΦi/Λ where Λ is the cutoff. Namely, the
scale ΛΦ ≡ FΦi/mΦi ∼ αiFS/Λ becomes independent of i except the coefficients ci of the
interactions mΦiΦiΦ̄iS/Λ. Because of the freedom of the O(1) coefficients, we have various
possibilities for the sparticle spectrum. Indeed, any gaugino mass spectrum are possible
by choosing the coefficients ci. In this paper, we consider an extreme case, in which one
of the coefficients becomes much larger than the others. This can often happen when the
coefficients are the ratio of the O(1) coefficients ci = ai/bi, where the O(1) coefficients ai
and bi are determined randomly, for example, between 0 and 1. Since it is reasonable to
expect that one of the n coefficients of the denominator, which is noted as b1, becomes
O(1/n), the coefficient c1 can be O(n). If n � 1, very large coefficient c1 is realized.
Moreover, if b1 happens to be O(1/(10n)), which requires 10% tuning, c1 ∼ O(10n), and

therefore, the messenger field Φ1 and Φ̄1 can dominate the others. If
n∑
i

ci ∼ O(100), then

since the loop suppression is almost compensated by the summation of the coefficients, the
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contributions to the SUSY breaking parameters from the gauge mediation may become of
the same order as those from the direct interactions between the spurion field and MSSM
fields, for example, Q†QS†S/Λ2 in the Kähler potential. n can be much larger than 1, for
example, in the anomalous U(1) GUT scenario, there are many vector-like fields which
have non-trivial charges under the standard gauge group and can be the messenger fields.
There are 23 vector-like pairs in the SO(10) model [16, 19], 47 pairs in the E6 model [17],
38 pairs in the simpler E6 model [18] except the MSSM Higgs doublet pair.

In this paper, we consider the several cases in which one vector-like messenger field
dominates the others. Note that although we have chosen X+X̄ or Q+Q̄ as the messenger
field in order to obtain non-vanishing gaugino masses, other choices become possible if the
small but non-zero contributions from the other vector-like fields are taken into account.

If there are multiple messengers Φi and Φ̄i (i = 1, · · · , n) which has the same quan-
tum numbers, D-term contribution of U(1)Y hypercharge to the sfermion masses becomes
important [39]. This contribution comes from one-loop Feynman graph and may not be
negligible. The explicit formula is given by

∆m2
f̃
∼ 1

2

∑
Φ

(α1

4π

)
Yf̃YΦ

∑
i,j

|FΦij |2 − |FΦji|2
max{(mΦi)

2, (mΦj)
2} , (4.1)

where FΦij is a SUSY breaking mass mixing parameters (so called B parameter) of the
messenger fields in the unit in which the mass matrix of the messenger fields is diagonalized
as

Wmess = mΦiΦiΦ̄i + θ2FΦijΦiΦ̄j. (4.2)

If the enhancement factor c� O(102), then such contribution can be negligible.

5 Summary

In this paper, we investigated the LHC signatures of the generalized GMSB models with
the messenger fields which do not respect SU(5) GUT symmetry. Such a situation can be
realized in the anomalous U(1) GUTs in which the success of the gauge coupling unifica-
tion can be explained although the mass spectrum of the vector-like fields do not respect
SU(5) GUT symmetry. The mass spectrum of sparticles become different from those in
the usual GMSB whose messenger fields respect SU(5) GUT symmetry. Especially, the
gaugino masses do not satisfy the usual GUT relation and this feature is very important
to distinguish these models by the LHC measurements. In principle, any mass pattern for
the gaugino masses is possible in this generalized GMSB scenario. In this paper, only for
simplicity, we examined the models with a pair of messenger fields which have quantum
numbers of X + X̄ or Q+ Q̄ and studied how to obtain the signatures of these models in
the LHC. The gaugino mass relation becomes mB̃ : mW̃ : mg̃ ∼ 5 : 6 : 12 for the X + X̄
messenger model and mB̃ : mW̃ : mg̃ ∼ 1/5 : 6 : 12 for the Q + Q̄ messenger model. One
of the interesting features of the both models is that the hierarchy between the colored
particle masses and weakly charged particle masses becomes milder than the usual GMSB
models because the messenger fields have bi-fundamental representation under SU(3)C ×
SU(2)L. If we catch the scale of the wino mass in the LHC, we can roughly check this
milder hierarchy by measuring mT2 by which the order of the colored particle masses can
be obtained. In X + X̄ messenger scenario, the mass hierarchy between the bino and
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wino is very small, and it leads to the relatively soft pT distribution of leptons. On the
other hand, the mass difference between the bino and wino is considerably large in Q +
Q̄ messenger scenario. Therefore very large pT distribution of leptons can be seen at the
LHC.

The NLSP of X + X̄ messenger scenario is the stau or neutralino. If the NLSP is
the stau, we can check the mass relation of gauginos at the low-luminosity stage of the
LHC and the deviation from the usual GUT relation can be obvious. If the NLSP is the
neutralino, we can determine the bino-like and wino-like neutralino masses by the use of
the end-point in the neutralino’s leptonic decay and of the mT2 measurement.

In Q + Q̄ messenger scenario, the leptonic mT2 measurement is useful because the
right-handed slepton remains light.

Since both scenarios predict very characteristic mass spectra, it is expected that we
can distinguish these models from the models which satisfy the GUT relation.
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A Two-loop RGE effects for the gaugino mass

There is a well-known feature in the softly broken SUSY models. Namely, by looking
one-loop RGEs of gauge couplings and gaugino masses, one can see that their ratio obeys
the following RGE.

d

d lnQ

(
Ma

αa

)
= 0. (A.1)

Then, the gaugino masses in the GMSB model satisfy the relation

M1 : M2 : M3 ∼ n1α1 : n2α2 : n3α3 (A.2)

at any renormalization scale. But it should be noticed that (A.1) is satisfied only up to
one-loop order, so the actual relation is deviated from (A.2) by two-loop order correction.

Let us estimate the effect of two-loop order RGE. The two-loop RGE of gauge couplings
and gaugino masses are given by

d

d lnQ
α−1
a = − ba

2π
−∑

b

Bab

8π2
αb +

ca
8π2

αt (A.3)

and

d

d lnQ
Ma =

ba
2π
αaMa +

1

8π2
αa

[∑
b

Babαb(Ma +Mb) + caαt(A−Ma)

]
, (A.4)
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neglecting the Yukawa coupling other than top quark component αt ≡ y2
t /4π

2. Here, A
is defined by A-term At ≡ Ayt. If there are no other vector-like particles below the mass
scale of messenger field, mΦ, the coefficients ba, ca and Bab are given as

(b1, b2, b3) = (33/5, 1,−3), (c1, c2, c3) = (26/5, 14/5, 18/5) (A.5)

and B11 B12 B13

B21 B22 B23

B31 B32 B33

 =

199/25 27/5 88/5
9/5 25 24
11/5 9 14

 . (A.6)

Then the deviation of RGE from (A.1) can be written as

d

d lnQ

(
Ma

αa

)
=
∑
b

Bab

8π2
αbMb +

ca
8π2

αtA. (A.7)

By using one-loop RGE for A ≡ Aty
−1
t

d

d lnQ
A =

3

π
αtA+

∑
a

da
4π
αaMa +O(α2) (A.8)

and one-loop part of (A.4), two-loop RGE (A.7) can be rewritten as

d

(
Ma

αa

)
=

1

4π

∑
b

Bab

bb
dMb +

ca
24π

(
dA−∑

b

db
2bb

dMb

)
+O(α2) (A.9)

where
(d1, d2, d3) = (26/15, 6, 32/3). (A.10)

Therefore, integrating (A.9) from messenger mass scale mΦ to mZ , we can obtain the gaug-
ino mass formula at the scale mZ including the two-loop effect. Because A(mZ) ' At(mZ),
A(mΦ) ' 0 and Ma(mZ) 'Maα

−1
a (mΦ) · αa(mZ) at one-loop order, this is expressed as

Maα
−1
a (mZ) = Maα

−1
a (mΦ) +

ca
24π

At(mZ)

− 1

4π

∑
b

(
Bab

bb
− cadb

12bb

)
Mbα

−1
b (mΦ)∆αb, (A.11)

where ∆αa ≡ αa(mΦ) − αa(mZ). If we write ΛΦ ≡ FΦ/mΦ and rt ≡ −4πAt(mZ)/ΛΦ, we
finally obtain a following result.

Maα
−1
a (mZ) =

[
na −

ca
24π

rt −
∑
b

nb
4π

(
Bab

bb
− cadb

12bb

)
∆αb

]
ΛΦ

4π
. (A.12)

Since the order of rt and ∆αa are O(0.1) at most, two-loop contribution cannot become
so large in the typical case, although it can becomes important if na � 1.
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