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Summary

This thesis is in the broad area of random conformal geometry, combining tools from prob-
ability and complex analysis.

We mainly consider Lionville quantum gravity (LQG), a model introduced in the physics
literature in the 1980s by Polyakov in order to provide a canonical example of a random
surface with conformal symmetries and formally given by the Riemannian metric tensor
“e¥"(dx? + dy?)” where h is a Gaussian free field (GFF) on a planar domain and y € (0,2).
Duplantier and Shefheld constructed the y-LQG area and boundary length measures, which
fall under the framework of Kahane’s Gaussian multiplicative chaos. Later, a conformally
covariant distance metric associated to y-LQG was constructed for whole-plane and zero-
boundary GFFs.

In this thesis we describe the y-LQG metric corresponding to a free-boundary GFF
and derive basic properties and estimates for the boundary behaviour of the metric using
GFF techniques. We use these to show that when one uses a conformal welding to glue
together boundary segments of two appropriate independent LQG surfaces to get another
LQG surface decorated by a Schramm-Loewner evolution (SLE) curve, the LQG metric on
the resulting surface can be obtained as a natural metric space quotient of those on the two
original surfaces. This generalizes results of Gwynne and Miller in the special case y = /8/3
(for which the LQG metric can be explicitly described in terms of Brownian motion) to
the entire subcritical range y € (0,2). Moreover, we show that LQG metrics are infinite-
dimensional (in the sense of Assouad) and thus that their embeddings into the plane cannot
be quasisymmetric.

We also consider chemical distance metrics associated to conformal loop ensembles, the loop
version of SLE, using the imaginary geometry coupling to the GFF to bound the exponent

governing the conformal symmetries of such a metric.






Preface

Chapter 1 introduces the topics covered in this thesis and describes the main results of Chapters
3-5.

Chapter 2 gives preliminary results required for the proofs in Chapters 3-5.

Chapter 3 is based on [HM22], a work in collaboration with Jason Miller (University of
Cambridge) that has been submitted for publication.

Chapter 4 is my own work.

Chapter 5 is based on joint work in progress with Valeria Ambrosio and Jason Miller (both

University of Cambridge).
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Chapter 1

Introduction

1.1 Liouville quantum gravity

1.1.1 Quantum surfaces

A y-Lionville quantum gravity (LQG) surface is a random surface parametrized by a domain

D ¢ C given, in a formal sense, by the random metric tensor
e (dx? + dy?) (1.1.1)

where y is a parameter in (0,2), 4 is some form of the Gaussian free field (GFF) on the
domain D and dx? + dy? is the Euclidean metric. These surfaces have been shown to arise
as scaling limits of several random planar map models ([She16b, KMSW19, LSW17, GM21b,
GM21d, GKMW18]; see also [GHS23] and the references therein).

Since 4 is not sufficiently regular to be a random function on D (it is only a distribution
on D, in the sense of Schwartz), the expression (1.1.1) for the LQG metric tensor does not
make literal sense; in order to rigorously define an LQG surface one must take a limit of
regularized versions of e?”(*)dz. This was done for the volume form in [DS11], resulting
in the y-LQG measure pj,, a random measure on D, and the y-LQG boundary length v, a
random measure on dD, each of which fall under the general framework of Kahane’s Gaussian
multiplicative chaos, as introduced in [Kah85]. These measures are conformally covariant in

the following sense: given a conformal map ¥ : D — D, if we set

Q==+% h=hoy+Qlogly|, (1.1.2)

RN
N[
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14 CHAPTER 1. INTRODUCTION

then by [DS11, Prop. 2.1], almost surely we have p = uj, o ¢ and (provided ¢ extends to a

homeomorphism between the closures of D and D in the Riemann sphere) vz = v; o y.

We can then consider various types of guantum surfaces, random surfaces which can be
parametrized by (D, ) with D a domain in C and /4 some form of the GFF on D, with
(random) quantum area and boundary length measures given by uy, and vj, and which are
defined as equivalence classes of pairs (D, ) that are related by conformal reparametrizations
as described by (1.1.2). A particular one-parameter family of such surfaces are the a-quantum
wedges for & < Q. An a-quantum wedge is parametrized by H with marked points at 0 and eo,
and is given by 4 — a log| - | where 4 is a variant of the free-boundary GFF on H chosen so
that the law of the resulting surface is invariant under the operation of replacing 4 with 4+ ¢
for ¢ € R. For any a € (—00,Q), this surface is homeomorphic to H, and is referred to
as a thick quantum wedge, as in [DMS21, §4.2]. The starting point for an alternative but

equivalent definition [DMS21, Def. 4.15] is a Bessel process of dimension

0: =2+ M;
Y

this can be used to extend the definition to include @ € (Q,Q + y/2). For such «, the

Bessel process has dimension in (1,2) and thus hits zero, and one no longer obtains a single

surface homeomorphic to H; for each excursion of the Bessel process away from 0 one obtains

a surface with the topology of the disc, and concatenating all these surfaces (the beads of

the wedge) gives a thin quantum wedge, as seen in [DMS21, §4.4]. Instead of using the

parameters @ or &, it is often more convenient to consider the value
Y
W=7y (5 +Q-«a,

called the weight of the wedge.

Different kinds of quantum surfaces include guantum cones, which are homeomorphic
to C, and guantum spheres, which are homeomorphic to the Riemann sphere (and can thus
be parametrized by the bi-infinite cylinder € given by R x [0, 2] with R x {0} and R x {27}
identified and the points —co and +co added). By [DMS21, Thm 1.5], a quantum cone of
weight w is the surface that results when the two sides (—o0,0) and (0, ) of a quantum
wedge of weight w are conformally welded together. As with wedges, there are choices of

parameter other than the weight parameter w. A quantum cone of weight w can be referred
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to as an @-quantum cone, where the parameter a corresponding to the log singularity of the
field and the weight w are related by @ = Q — w/(2y). A quantum sphere of weight w is
a compact finite-volume surface constructed so as to look like a quantum cone of weight w

near each of its endpoints —co and +co.

It was proven in [MS20, MS21a, MS21b] fory = /8/3, and later in[GM21c] fory € (0,2),
there is a unique random metric dj,, measurable w.r.t. the GFF £, that satisfies a certain list
of axioms associated with LQG (b, is required to induce the Euclidean topology and to
transform appropriately under affine coordinate changes and adding a continuous function
to h, and must also be a length metric locally determined by /). This metric arises as a
subsequential limit of Liouwville first passage percolation (LFPP), a family of random metrics
obtained from a regularized version of the GFF; existence of such subsequential limits was
established in [DDDF20], and building on [DFG*20], the article [GM21c] then showed that
the limit is unique and satisfies the requisite axioms. (More recently in [DG23] the critical
LQG metric corresponding to y = 2 was constructed and proven to be unique, as were

supercritical LQG metrics corresponding to complex values of y with |y| = 2.)

The result [She16a, Thm 1.8] (later generalized by [DMS21, Thm 1.2]) says that when a
certain quantum wedge ‘W is cut by an appropriate independent random curve 7, the regions
to the left and right of 57 (call them W=, ‘W* respectively) are independent quantum wedges;
moreover, the original wedge ‘W and curve n may be reconstructed by conformally welding
the right side of W~ to the left side of W™ according to y-LQG boundary length. The
curve 7 is a variant of Schramm’s [Sch00] SLE - more specifically it is an SLE,(p1; p2), as
first defined in [LSW03, §8.3].

Though we will not need it in this work, we briefly discuss what is meant here by
“conformal welding”. Given a homeomorphism between boundary arcs of two topological
surfaces, one can obtain a new surface by gluing along the boundary arcs; if the two original
surfaces are each endowed with a conformal structure, the problem of conformally welding
them is that of obtaining a conformal structure on the glued surface compatible with those
on the original surfaces. In the setting of the previous paragraph, it turns out [Shelé6a,
Thm 1.3] that the LQG boundary length measures on the boundaries of ‘W~ and W™ agree
for segments of n. This allows us to recover the original surface ‘W from the surfaces W~

and W*. Indeed, if W~ and ‘W™ are reparametrized by H with corresponding fields /4~
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and h*, then we can define a homeomorphism
W : [ov OO) - (—OO, O]

from the right-hand boundary arc of ‘W~ to the left-hand boundary arc of W~ via the
equation

vi- ([0, x]) = v ([¥(x),0]),  x € (0, 00).

Crucially, ¢ is uniquely determined by ‘W~ and “W* as surfaces (i.e., modulo reparametriz-
ation as in (1.1.2)). We can glue the surfaces together by identifying each point x € [0, o) C
dW~ with its corresponding point ¢ (x) € (—0,0] C dW*; then by a conformal welding
of W~ and ‘W™ along ¢ we mean a map from the resulting space into H that is conformal
on the interiors of ‘W~ and ‘W*. In this case the glued space is the original surface ‘W, so
such a map is given by a parametrization of ‘W by H. In this case, this map is in fact (up to
conformal automorphisms of H) the #nigue conformal welding of ‘W~ and ‘W* along v, so
that both the original surface ‘W and the SLE-type interface n can be recovered from W~
and ‘W™ (see [Shel6a, Thm 1.4]).

1.1.2 Metric gluing

Since these conformal welding uniqueness results do not give an explicit way to reconstruct
the original surface, for applications a more explicit way to glue surfaces together may be
required. In the case y = 4/8/3, the theorem [GM19, Thm 1.5] states that the y-LQG
metric on ‘W can be obtained by metrically gluing those on W~ and ‘W* along the conformal
welding interface 7 according to y-LQG boundary length, i.e. as a quotient of the two metric
spaces W~ and ‘W* under the identification of points given by the welding homeomorphism.
This theorem - stating that conformal welding and metric gluing give the same result -
was an essential input into the proof in [GM21b] that the self-avoiding walk (SAW) on
random quadrangulations converges to SLEg/3 on /8/3-LQG. Indeed, one can construct
a SAW-decorated random quadrangulation by performing a discrete graph gluing of two
quadrangulations with boundary, and [GM21b] shows that this construction converges to an
analogous one in the continuum using quantum wedges; the result of [GM19] then applies to
show that we get the same surface by first passing to the scaling limit of each of the two original

quadrangulations and then performing the metric gluing in the continuum. The importance
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of [GM19, Thm 1.5] here is that, whilst metric gluing and conformal welding both provide
ways to show that an LQG surface is determined by the two surfaces formed by cutting along
an independent SLE, metric gluing recovers the original surface via a construction that has a
direct discrete analogue, namely the graph gluing.

The notion of “metric gluing” here is the natural way to define the quotient space obtained

from identifying two metric spaces along a common subset; we define it below.

Definition 1.1.1 (metric gluing). Let (X,dx) and (Y, dy) be pseudometric spaces (that is, dx
satisfies all the conditions to be a metric on X except that it need not be positive definite,
and likewise for dy on Y'). Let f be a function from a subset of X to a subset of Y. Let ~
be the finest equivalence relation on X 'Y such that x ~ f(x) for each x in the domain
of f, and for each x € X LY let [x] be the equivalence class of x under ~. Define d’ on
(X xX)u(Y xY)toequal dy on X X X and dy on Y X Y. Then the metric gluing

of X and Y along f is the quotient space (X UY")/~ equipped with the gluing pseudometric d
defined by

d([x],[y]) =inf > d'(x;.7:)

=1
where the infimum is over all #» € N and all sequences x1, y1,%2,92 ..., %n, ¥, in X UY such
that x1 € [x], y, € [y], and x;41 ~ y; for each i € {1,...,n — 1}, such that the sum is
defined (so for each i we must have x; and y; either both in X or both in Y). If (X}, d;) are
pseudometric spaces for z € I, we can define the metric quotient of the X; by an equivalence
relation ~ on X := | |;; X; by defining the partial function d’ on | |;¢;(X; x X;) and the

gluing pseudometric d on X/~ in the same way as above.

Note that this d is easily verified to be a pseudometric; in fact, it is the largest pseudometric
on the quotient space which is bounded above by d’. In the case of [GM19, Thm 1.5], the
gluing function f sends a point z on the right-hand part of W~ to the point w on the left-
hand part of 9W* such that the boundary segments from 0 to z and from 0 to w have equal
y-LQG boundary length.

1.2 Conformal loop ensembles

We will also consider random metrics associated to conformal loop ensembles (CLE). The
conformal loop ensemble CLE, is a conformally invariant probability measure on countable

families of non-crossing loops in a simply connected planar domain, defined for each choice
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of the parameter « € (8/3,8) by Sheflield in [She09]. CLE, is the loop version of SLE, - one
can use SLE, to construct CLE,, and CLE has the same phases as SLE [RS05], with the loops
of a CLE, locally looking like SLE, curves. In particular, for € (8/3, 4] the loops of a CLE,
are simple and disjoint, and do not hit the boundary of the domain, whereas for « € (4, 8), the
loops can intersect (though not cross) themselves, each other, and the domain boundary. In
either regime, the set of points not surrounded by any CLE loop is a closed connected set with
zero Lebesgue measure, and is called the CLE, carper (for k € (8/3,4]) or the CLE, gasket (for
k € (4,8)), by analogy with the Sierpinski carpet and gasket, respectively. The set is fractal,
and its dimension has been shown to equal 2—(8—«) (3x—8)/(32«) [SSW09, NW11, MSW14].

Just as SLE, is the scaling limit of a single interface in many two-dimensional discrete
lattice models at criticality, CLE, is either proven or conjectured to arise as the scaling limit
of the collection of all of the interfaces in many such models. Of particular interest are
the cases k = 3,16/3, 6,8, which have respectively been shown to describe the scaling limit
(at criticality) of the Ising model, FK Ising model, percolation, and the uniform spanning
tree [BH19, CDCH" 14, KS19, Sm110, Smi01, CNO08, LSW04].

One can ask whether, for a discrete model that converges to CLE in the scaling limit, the
chemical distance metric also has a scaling limit, which should be the “natural” conformally
covariant random metric associated to the CLE carpet or gasket. In Chapter 5 we will study
the properties such a “CLE chemical distance metric” would have to have. We emphasize
that such a metric has not yet been constructed, although in the case « € (8/3,4) a sequence
of random metrics that should approximate this chemical distance metric were proven to
be tight in [Mil21]. In Chapter 5 we will consider a metric which is defined on the CLE,
carpet (for k € (8/3,4]) or gasket (for x € (4,8)) satisfying a list of natural assumptions (see
Assumption 1.3.10) which should be satisfied by the CLE chemical distance metric. Though
we conjecture that there exists a unique metric satisfying the assumptions (which we will call
the CLE, metric), we will not address the problems of existence and uniqueness here; instead

we will assume the metric exists and derive some of its properties.

1.3 Main results

1.3.1 Equivalence of metric gluing and conformal welding

In the light of the construction of the y-LQG metric for all ¥y € (0,2), the main result of

Chapter 3 extends [GM19, Thm 1.5], giving the analogous statement for the y-LQG metric
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for all values of y € (0,2). In order to state the result, we need to define what it means for a

metric defined on a subspace to extend by continuity to a larger set:

Definition 1.3.1. Let (X, 7) be a topological space and Y a subset of X. If 4 is a metricon Y’
that is continuous w.r.t. the subspace topology induced by 7 on Y and Z € X \ Y, then we
say d extends by continuity (w.r.t. 7) to Z if there exists a metric d’ on Y U Z which agrees

with d on Y and is continuous w.r.t. the subspace topology induced by r on Y U Z.

Note that if Y is dense in Y U Z then there can be at most one metric d” extending d by

continuity to Z.

Theorem 1.3.2. Lety € (0,2), w~, w* > Oand w = w™ + w*. Let (H, h,0, 00) be a quantum
wedge of weight w if w > y? /2, or a single bead of a quantum wedge of weight w with area a > 0
and left and right boundary lengths 17, 1" > 0 otherwise. Let n be an independently sampled
SLE,2(w™ — 2;w" — 2) process from 0 to oo in H with force points at 0~ and 0*. Denote the
regions to the left and right of n by W~ and W respectively, and let W* be the quantum surface
obtained by restricting h to W*. Let U* be the ordered sequence of connected components of the
interior of W*, and let dp, dy,,- and dy,,,, respectively be the y-LQG metrics induced by h, hlq-
and hl|y+. Then dy,, and dy . respectively extend by continuity (w.r.t. the Euclidean topology)
to U~ and OU* and (H,by) is obtained by metrically gluing (U-, Dy, )> and (U, D)
along n according to y-LQG boundary length.

Although we have no specific application in mind, this result is potentially useful in
proving convergence of a path-decorated lattice model in the scaling limit to y-LQG decorated
by an SLE »-type curve, as it would play the role of [GM19, Thm 1.5] in an argument along
the lines of [GM21b].

A statement weaker than Theorem 1.3.2 follows straightforwardly from a locality prop-
erty in the definition of the LQG metric, which gives that the dy,_-distance between points
in U~ coincides with the infimum of the dj-lengths of paths between the points that stay
in U™, and likewise for U*. It is important to note that this property does 7ot imply that the
metric gluing recovers (H, d); Thm 1.3.2 is stronger because it rules out certain pathologies
which can arise from metric gluings along badly behaved interfaces (note that the interfaces
along which we are gluing are SLE-type curves and thus fractal).

One such pathology can occur when the function used to identify boundary segments is

insufficiently well behaved: for instance, using a Cantor-type function can collapse the gluing
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interface to a point (see [GM19, Lemma 2.2]). This kind of behaviour does not occur in our
setting, since we know that 9y, is a pseudometric on the glued space that is bounded above by
the partial function d’ constructed from dy,,- and dy ., whereas the gluing pseudometric is
always the largest such pseudometric (and thus in this case is a bona fide metric). The main
issue for us is that the definition of the gluing metric only considers paths which cross the
gluing interface n finitely many times, whereas paths in (H, d,) which cross 7 infinitely many

times might a priori be significantly shorter.

Though both this metric gluing result and the result [DMS21, Thm 1.2] on conformal
welding for the same surfaces can be thought of as saying that we can recover the original
surface from the two pieces it is cut into by the SLE-type curve 7, the conformal welding
result is more of an abstract measurability statement, whereas the metric gluing result shows
concretely how one can reconstruct the metric on the original surface. Nevertheless, we
might intuitively expect that, since one result is true, so should the other be - so that we
avoid the pathologies that are generally liable to arise from metric gluing along fractal curves.
In our setting, we aim to rule out pathological behaviour of dj-geodesics hitting . An
analogous problem in the conformal setting is to show that a curve is conformally removable,
i.e. that any homeomorphism of C that is conformal off the image of the curve must in fact be
conformal everywhere. Indeed, the reason that the conformal welding is unique - that 17 can
be recovered from the two surfaces on either side of it - is that 1 is conformally removable.
Thus, if there were another welding along the same boundary arc homeomorphism which
produced a different interface, the two weldings would differ by a homeomorphism of H
that was conformal off the image of 1, which by removability would have to be a conformal
automorphism of H. The fact [RS05, Thm 5.2] [JS00, Cor. 2] that an SLE, curve with
k € (0,4) is conformally removable follows from the fact that it is the boundary of a Hélder
domain, 1.e. a domain which can be uniformized by a Holder-continuous map from the unit
disc. Proving conformal removability of a curve involves controlling how much a straight
line segment near the curve is distorted by such a homeomorphism, whereas as mentioned
above our task is to establish control on the extent to which an LQG geodesic is affected by
its crossings of 7. Though the two problems are similar in flavour, in the metric gluing setting
we do not have a simple sufficient criterion analogous to the Holder domain condition for

conformal removability.

We also obtain the appropriate generalizations for the other main theorems in [GM19].



1.3. MAIN RESULTS 21

wedge of weight v, > ~2/4
n

Thm 1.3.2 SLE 2(wy —25m2 —2)  Thm 1.3.3
)]y — —

————

2
whole-plane
SLE_ 2 (10 — 2)

wedge of weight 1oy > v2/4 .
wedge of weight w = 1, + vy . 5
cone of weight v > ~7/2

Figure 1.1: An illustration of Theorems 1.3.2 and 1.3.3 in the case of two thick wedges (w1,
w, > y?/4) which are glued along half their boundaries to yield a wedge of weight w =
w1 + Wy, then along the other half to yield a cone of weight w.

Our version of [GM19, Thm 1.6], concerning gluing the two boundary arcs of a quantum

wedge together to create a quantum cone, is as follows:

Theorem 1.3.3. Fixy € (0,2) and w > 0. Let (C, h,0, ) be a guantum cone of weight w and
let v, be the y-LQG metric induced by h. Let 17 be an independent whole-plane SLE 2 (w — 2)
from 0 to oo and let U = C\ 1. Then by, almost surely extends by continuity to OU (seen as
a set of prime ends), and (C,dy,) almost surely agrees with the metric quotient of (U, by, ) under
identifying the two sides of n in the obvious way (i.e., two prime ends corresponding to the same

point in C are identified).

Here the surface (U, h|y) is a quantum wedge of weight w by [DMS21, Thm 1.5], and this
result tells us that we can recover the original cone from this wedge via metric gluing. We also
generalize [GM19, Thm 1.7], which says that a quantum cone cut by a space-filling variant of
SLE into countable collection of beads of thin wedges can be recovered by metrically gluing

the beads along their boundaries:

Theorem 1.3.4. Fixy € (0,2) and let (C, h,0, ) be a y-guantum cone with associated y-LQG
metric . Let ' be an independent whole-plane space-filling SLE ;g2 from oo to co through 0, as
defined in [DMS21, Footnote 4], and reparametrize n’ by quantum time (so that y;,(n([a, b])) =
b—a), withn’(0) = 0. Then let U~ (resp. U*) be the set of connected components of the interior of
1’ ((=00,0]) (resp. n’ ([0, 00))) and for each U € U™ U U* let by, be the y-LQG metric induced
by hly. Then almost surely, each dy,, extends continnously (w.r.t. the Euclidean metric) to U,

and (C,¥y,) is the metric quotient (under the obvious identification) of

|| @)

UelU-uU+*
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By [DMS21, Thm 1.2, Thm 1.5], when y > V2 the surfaces (U, 4|/) here are single beads
of thin wedges of weight 2 — y?/2, whereas for y < V2 they are thick wedges. Finally, we
generalize [GM19, Thm 1.8], in which we recover a quantum sphere as a quotient of a set of

surfaces into which it is cut by a space-filling SLE 4,2

Theorem 1.3.5. Fix y € (0,2) and let (€, h,—o0,0) be a unit area quantum sphere with
associated y-LQG metric dy. Let i’ be an independent whole-plane space-filling SLE 2 from
+00 to +0o and reparametrize n’ by quantum time. Let T be a U [0, 1] variable independent
of everything else, and let U™ (resp. U*) be the set of connected components of the interior of
n’([0, T1) (resp. n'(IT,1])). For each U € U~ U U* let by, be the y-LQG metric induced
by hly. Then almost surely, each dy,, extends continnously (w.r.t. the Euclidean metric) to U,

and (C,dy) is the metric guotient (under the obvious identification) of

|| @)

UelU-uU+*

In [GM19] many of the preliminary results are proved using the results in [MS21a]. In
that paper, the metric by, is constructed in the case y = +/8/3 (the more general y € (0,2)
result was not established until later). It is then shown that for y = +/8/3, there almost
surely exists an isometry from the quantum sphere to another object, the Brownian map
introduced by Le Gall [LG13] (whose law intuitively describes that of a metric space chosen
“uniformly at random” from those spaces with the topology of a sphere), and further that
this isometry almost surely pushes forward the LQG measure p, to the natural measure on
the Brownian map. Similar isomorphisms of metric measure spaces are established between
other quantum and Brownian surfaces. Distances in these surfaces have explicit formulae in
terms of Brownian motion-type processes.

Since the equivalence between quantum and Brownian surfaces only holds for y = /8/3,
the techniques used in [GM19, §3.2] to establish estimates on areas, distances and boundary
lengths are not available in this more general setting. We instead obtain analogues of these
estimates largely via GFF methods, as well as the conformal welding properties of quantum
wedges, which let us transfer our understanding of the interior behaviour of our surfaces to
their boundaries (sometimes using existing results about the SLE curves that form the welding
interfaces). In fact, in the case y # 1/8/3 the existing literature only addresses LQG metrics

associated to whole-plane or zero-boundary GFFs; our work provides the first treatment of the
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metric on surfaces with free boundary conditions for the complete subcritical case y € (0,2).
In particular we establish that the LQG metric given by a free-boundary GFF actually does

extend continuously to the boundary:

Proposition 1.3.6. Fixy € (0,2). Let h be a free-boundary GFF on H with the additive constant
fixed so that the semicircle average hi(0) equals zero, and let d), be the associated y-LQG metric
on H. Then by, almost surely extends by continuity to a metric on H that induces the Euclidean

topology on H.

Some of our other results about the y-LQG metric on the boundary may be of independ-

ent interest. For one, we establish local bi-Hélder continuity w.r.t. the Euclidean metric:

Proposition 1.3.7. In the setting of Prop. 1.3.6, there are exponents a1, a2 > O such that, almost

surely, for each compact K C H, there exists C > 0 finite such that
Clz —w|™ <dy(z,w) < Clz —w|™

foreach z,w € K.

It should be noted that, although we obtain the right-hand inequality for arbitrary @, <
£(Q —2) which is the optimal exponent even away from the boundary [DFG*20, Thm 1.7],
we make no attempt to obtain the optimal exponent for the left-hand inequality, and we do
not expect that the value for @; resulting from our proof is optimal. During the proof we
establish a new regularity estimate for SLE, curves with « € (0,4). Namely, we combine the
“non-self-tracing” result in [MMQ21] for SLE, curves with k € (0, 8) with an argument based
on conformal covariance of the LQG measure that rules out large bottlenecks to establish
that, in the case that k € (0,4), the (Euclidean) diameter of an SLE, segment is at most
polynomial in the distance between its endpoints. (Recall that k < 4 is the range for which

SLE, is simple, though we do not investigate the critical value k = 4 here.)

Proposition 1.3.8. For each k € (0,4) there is an exponent { > 0 such that the following holds.
Let 1 be an SLE, in H from 0 to co (with any parametrization). For each compact K C H, there

almost surely exists C € (0, o) such that

diamn([s,t]) < Cln(s) —n()|*

whenever n(s), n(t) € K.
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1.3.2 LQG metrics are not doubling

In Chapter 4 we will study the embeddability of the LQG metric into Euclidean space. LQG
is known to describe the scaling limit of certain discrete conformal embeddings of certain
kinds of random planar map (e.g., the Tutte embedding of the mated-CRT map [GMS21]).
Given a quantum surface S and an embedding S — D into the plane (i.e., a particular choice
of parametrization (D, h)) obtained via such a scaling limit, one might therefore expect the
embedding & — D to somehow retain the conformality of the discrete embeddings. It is
meaningless to ask directly whether the embedding S — D is conformal, as the complex
structure on S comes from the embedding in the first place. However, since S is a metric
space, one could ask whether the embedding is guasisymmetric. Quasisymmetric mappings
are embeddings of metric spaces in which the distortion of the metric is uniformly controlled;
in the case where both the domain and the target space are open subsets of R”, locally
quasisymmetric mappings are equivalent to locally quasiconformal mappings.

As mentioned, in [MS21a] it is shown that, in the particular case y = 1/8/3, the quantum
sphere is almost surely isomorphic as a metric measure space to Le Gall’s [LG13] Brownian
map. The law of the Brownian map is, intuitively, that of a “uniform random element”
from the set of metric spaces that are homeomorphic to the sphere $?, and it was proven
independently by Le Gall [LG13] and Miermont [Miel3] that the Brownian map is the
scaling limit of uniform random planar quadrangulations.

The Brownian map can be constructed using a continuous process (the Brownian snake)
parametrized by the continuum random tree (CRT), a random metric space introduced by
Aldous [Ald91a, Ald91b, Ald93] that arises as the scaling limit of uniform discrete plane
trees. The CRT is constructed from the graph of a Brownian excursion by identifying points
connected by horizontal line segments that stay underneath the graph.

In [Tro21], Troscheit proved that the continuum random tree and the Brownian map
almost surely cannot be embedded quasisymmetrically into R” for any 7. The method was
to show that those spaces have the property that for every N one can find sets of N points all
roughly equidistant from each other. Any quasisymmetric image of such a space has infinite
Assounad dimension. The Assouad dimension of a metric space is defined somewhat similarly
to the upper box-counting dimension, but can be strictly greater - intuitively, this happens
when, in each covering by boxes of a given scale, disproportionately many boxes are required

to cover certain particularly thick parts of the space. Spaces of infinite Assouad dimension can
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be equivalently characterized as those that are not doubling, i.e. those in which, for every N,
there exists a metric ball that cannot be covered by N balls of half its radius; this property is
preserved by quasisymmetric mappings.

Although the equivalence with Brownian surfaces only holds for y = /8/3, we will
instead use GFF techniques to find approximately equidistant sets of points, proving that,
for all y € (0,2], no y-Liouville quantum gravity metric space (D,d;,) can be embedded
quasisymmetrically into R”, or indeed into any complete Riemannian manifold with non-

negative Riccli curvature.

Theorem 1.3.9. Let D C C be a domain and h some variant of the GFF on D. Lety € (0,2]
and let d;, be the y-LQG metric on D associated to h. Then the metric space (D, dy,) almost surely
cannot be embedded quasisymmetrically into any doubling metric space (in particular, into any

complete n-dimensional Riemannian manifold with non-negative Ricci curvature for any n € N).

1.3.3 CLE metrics

In Chapter 5 we study properties of metrics in the carpet (for k € (8/3,4]) or gasket (for
k € (4,8)) of a CLE, which satisty the following natural hypotheses (such a metric will be
called a CLE, metric).

Assumption 1.3.10. Suppose that k € (8/3,8). We assume that there exists a collection (up)
of probability measures indexed by the set of simply connected proper domains D C C such that,
foreach D, up is a measure on pairs (I, d(-, -; ")) where the marginal law of T is that of a CLE,
on D andd(-, ;1) isa metric on the carpet (resp. gasket) Y of I when k € (8/3,4] (resp. k € (4,8))

which satisfies the following additional properties.

(1) (Geodesic.) For every x,y € Y \ 0D there exists a d(-, -; T')-geodesic y from x to y.

(ii) (Localiry.) Suppose that U C D is a domain. Given U N 'Y, the internal metric induced by
(-, ) on U NY is conditionally independent of the internal metric induced by d(-,-;T)
onYN(D\U).

(iii) (Conformal covariance.) There exists a constant & > 0 so that the following is true. Suppose
that D is a simply connected domain and ¢: D — D is a conformal transformation. Then

the joint law of T = ¢(I') and the metric on Y = ¢(Y) defined by

nf / ¢ (y(1))|*dr,

y: e (x) =~y
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where the infimum is over all d(-, -; T')-finite length paths parameterized at unit speed in Y

connecting ¢~ (x) and ¢~ (y), is Hp

In order to simplify our proofs, we will consider the following additional assumption
on the regularity of a CLE metric. We expect that in fact this additional assumption can be

deduced from Assumption 1.3.10 but we will not address this in the present work.

Assumption 1.3.11. If k € (8/3,4), let D be the (random) simply connected domain whose
boundary is the right side of a whole-plane two-sided SLE, process 1 from oo to oo through O.
Then, when 1 is given the natural parametrization, sup, co) D@ (0),n(2); ) is almost surely
positive and has finite expectation. If instead k € (4,8), let D be the (random) simply connected
domain whose boundary is the right side of a two-sided whole-plane SLE ¢, process 11 from oo
to oo through 0. Then, when n is given the natural parametrization, sup,¢(0.1) 2(m(0),7(2); )
is almost surely positive and has finite expectation. Moreover, if p > =2 and 11,72 < 0 are
respectively stopping times for the processes {n)(—cos): t € R} and {n||—1c): t € R}, then the
same is true with n replaced by the curve 17 obtained by first sampling 1| (—coz,] and 1|[-1y,0), then
sampling n’, an SLE(p) (if k € (8/3,4)) or SLE 14/« (p) (if k € (4,8)) from 0z, to n—r, in the

domain C\ n|(—eor]U[-rp.00)> then concatenating n|(—cor]> N’ and n|[-zy.c0)-

We conjecture that there exists a unique metric which satisfies Assumption 1.3.10 and
that, when « # 4, this metric satisfies Assumption 1.3.11. We will not consider the critical
case k = 4 in this work.

In Assumption 1.3.10 we only assume the existence of a conformal covariance exponent
@ > 0 - in particular we do not assume uniqueness (i.e., we do not assume that two different
metrics d, d’ associated to the same CLE will necessarily have the same conformal covariance
exponent), nor does the assumption describe how @ might depend on k. The main purpose

of Chapter 5 is to obtain an upper bound for any such a associated to a CLE, metric:

Theorem 1.3.12. Fix k € (8/3,8) \ {4} and suppose that d(-,-;-) satisfies Assumptions 1.3.10

and 1.3.11. Let & > 0 be the conformal covariance exponent from Assumption 1.3.10. If we set

1+«/8 kK € (8/3,4)

1+2/k Kk € (4,8)

then a < d.
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For the upper bound in Theorem 1.3.12 when « € (8/3,4), we consider a domain whose
boundary is a two-sided whole-plane SLE, and use that the law of this curve (call it 1) is

preserved [Zha21] by the scaling map

~1/(144/8)

S,:n()y > r n(r-) (1.3.1)

when 7 1s given the natural pavametrization (equivalently, when 7 is parametrized by (1+«/8)-
dimensional Minkowski content). The fact that 1+«/8 is the exponent for this scale invariance
property readily implies that we must have @ < 1+ /8. To rule out @ = 1+ «/8 we establish

ergodicity for this scaling map:

Proposition 1.3.13. Let k € (0,4) and let n be a two-sided whole-plane SLE, with the natural

parametrization. Then for r > O, the map S, defined in (1.3.1) is ergodic w.r.t. the law of n.

We then argue that if @ = 1+ «/8, this ergodicity would cause CLE metric distances
between points on 717 to be determined by 7 alone, from which we derive a contradiction. (The

same argument works for k € (4,8) except that we work with a domain whose boundary is

an SLE16/K.)

1.4 Notation

If (E(C))ces 1s a family of events indexed by a set S € R which is unbounded above, we
say that £(C) happens with superpolynomially high probability as C — oo if for any
N € N we have P[E(C)¢] = O(C™N) as C — oo. If E(C) depends on other parameters, we
say E(C) happens with superpolynomially high probability az a rate which is uniform in some
subset of those parameters if the bounds on P[ E(C)¢]C¥ can be chosen not to depend on that
subset of those parameters. Similarly, we say that a function f decays superpolynomially if
for all N we have f(x) = O(xN) as x — 0.

For z € Cand r > 0, B(z,7) and B(z,r) will always mean, respectively, the Exclidean
open and closed balls of radius » centred at z; we will define notation ad hoc for balls of
other metrics. For z € C and R, > Ry > 0, we write Ag, r,(z) for the open annulus

B(z,R,) \ B(z,Ry).






Chapter 2

Preliminaries

2.1 The Gaussian free field

The Gaussian free field (GFF) is a random process analogous to Brownian motion, where
the analogue of the time parameter ranges over a domain in the complex plane. We recall the
definition of the zero-boundary GFF from [She07, Def. 2.10], which begins with an open set
D c C with harmonically non-trivial boundary (meaning that a Brownian motion started
from z € D will almost surely hit dD). We let H;(D) be the set of smooth functions with

compact support contained in D, equipped with the Dirichlet inner product

(Foo)5 =57 [ () Vg d,

and complete this inner product space to a Hilbert space H(D). Taking an orthonormal
basis (¢,) of H(D) and letting (@) be i.i.d. N (0, 1) variables, the zero-boundary GFF in D

is then defined as a random linear combination of elements of H (D) given by
h = Z Xp P (2.1.1)
n

It can be shown (see [She07, Prop. 2.7]) that this sum converges almost surely in the space of
distributions and in the fractional Sobolev space H#(D) for each & > 0 (even though it does
not converge pointwise or in H (D) itself) and that the law of the limit / does not depend

on the choice of basis (¢,). This limiting distribution 4 is the zero-boundary Gaussian free

29
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field. Writing (-, -) for the usual L? inner product, we can define for each f € H,(D)

(h’f) = nh—r}go (Z anwnaf) .

Note that, for each f € H;(D), this sum converges almost surely as an L>-bounded martin-
gale. Indeed, the limit almost surely exists for all /' € H(D) simultaneously, and is such that

f — (h, f) is a continuous functional on H,(D).

Moreover, one can define the L? pairing of / with certain other measures. Most import-
antly for us, if /4 is a zero-boundary GFF, ¢ > 0 and B(z,€) C D, we denote by h.(z) the

circle average of / on the circle B(z, €), defined as

(h, Pze) = —27T(h, A_lpz,a)v

where p, . is the uniform probability measure on dB(z,&). In [HMP10, Prop. 2.1], it is
shown that for each fixed z € D, the process {h.-:(z): B(z,e7") c D} has the covariance
structure of a standard Brownian motion on the interval {t: B(z,e*) C D}, and that the
circle average process {h.-:(z): B(z,e™) C D} has a version that is continuous in both ¢

and z.

Given a function 4 on @D such that there exists a unique function h on D which is
continuous at all but finitely many points of D, equals 4 on dD and is harmonic in D, we
define the law of a GFF in D with (Dirichlet) boundary data 4 to be the law of 4 +§ where /4
is a zero-boundary GFF in D.

We can instead set D to be all of C. In this case, as in [MS17, §2.2.1], we define the
whole-plane Gaussian free field / in the same way, except that we consider & modulo additive
constant. This means that we consider the equivalence relation ~ on the space of distributions
defined by the condition that 41 ~ h; if and only if 4y — /; 1s a constant distribution, 1.e. if
and only if there exists a € R such that (hy, /) — (ha, f) = a fcf(z) dz for all f € H,(C).
We take (¢,) to be a fixed orthonormal basis for H (C) and sample 1.i.d. N (0, 1) variables a,,
and define / as the equivalence class of ~ containing Y., @,¢,. Equivalently, for f € H;(C),
we only consider (4, f) to be defined if / € H;p, the subspace of those functions in H;(C)
whose integral over C is zero. Observe that the circle average process (he-:(2) — h1(2));er 1s

well-defined, since A« (2) — h1(z) = (h, pet — p2.1) and fc d(pzet — pz1) = 0. It turns out
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that the process (h.-:(z) — h1(z))rer has a version which is a standard two-sided Brownian

motion starting from O.

We can also fix the additive constant, i.e. choose a representative of the equivalence class
under ~. For example, we can stipulate that /4;(0) = 0, obtaining a random distribution
not modulo additive constant. Note that we consider two random distributions (on the
same probability space) to be the same modulo additive constant if their difference is almost
surely a constant distribution, i.e. constant in the spatial variable z; this constant need not
be deterministic. Thus, if we have two ways of fixing the additive constant of a whole-plane
GFF - say, the normalizations /1(0) = 0 and 4.(0) = O - their difference need not be a
deterministic constant (indeed, in this case it is a standard Gaussian). We say that a random
distribution / on C (r20t modulo additive constant) is a whole-plane Gaussian free field plus
a continuous function if there exists a coupling of h with a whole-plane GFF / (with the
additive constant fixed in some way) such that h - h is almost surely a continuous function;

note that this definition does not depend on how the additive constant for /4 is fixed.

Instead of fixing the additive constant, we can consider the whole-plane GFF modulo
r > 0 by changing the equivalence relation to only identify distributions that differ by a
constant a € rZ. Fixing ¢g € H;(C) with fc @0 = 1, an instance /4 of the whole-plane GFF
modulo 7 is constructed by first sampling /4 a whole-plane GFF modulo additive constant,
and independently choosing U € [0, ) uniformly at random and requiring that (%, o) €
U+ rZ.

We will also need the notion of the free-boundary Gaussian free field on a domain D
with harmonically non-trivial boundary, as defined in [Shel6a, §3.2]. The free-boundary
GFF is defined in the same way as the zero-boundary GFF but with H (D) replaced by the
Hilbert space closure H (D) of the space of smooth functions whose gradients are in L?(D),
considered modulo additive constant (these functions need not be compactly supported).
Note that we have to consider functions only modulo additive constant in order for the
Dirichlet inner product to be positive definite on this space. Note also that, since it is
constructed as a limit (in a Sobolev space or space of distributions) of functions modulo

additive constant, the free-boundary GFF is a distribution modulo additive constant.

We note for later reference some key properties of the GFF. Firstly, it is straightforward
to check that the Dirichlet inner product is conformally invariant in two dimensions, from

which it follows that the GFF is also conformally invariant. In particular the whole-plane
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GFF, and the free-boundary GFF on H, are invariant under scalings and translations (when
considered modulo additive constant). Secondly, one has the domain Markov property [She07,
§2.6]; for a zero-boundary GFF in D, this states that if U € D is open, then we can write
h = hi + hy where hy is a zero-boundary GFF on U and A, is a random harmonic function
independent of /;. This holds because H (D) is the orthogonal direct sum of the space H (U)
and the subspace H},, (U) of H(D) given by functions that are harmonic in U, so that
one can define A1 and A, as the orthogonal projections of / onto, respectively, H(U) and
Hyim (U). Independence of 4y and h; follows by taking the basis for H (D) in (2.1.1) to be a
union of bases for H (U) and Hy,.y (U). Note that the domain Markov property also holds
if / is instead a whole-plane GFF, or if / is a free-boundary GFF on H and U = H. In these
cases hy will only be defined modulo additive constant - this will be discussed further at the

beginning of §3.1.

If 4 is a free-boundary GFF on H, x € 0H and & > 0, we denote by /. (x) the semicircle
average of /1 on the semicircular arc dB(x, &) N H, defined as (h, pt,) = =2x(h, A p} ,)v
where p}, is the uniform probability measure on dB(x,&) N H. Note that we are using
the same notation for semicircle and circle averages, since for fields defined on H we will
usually consider semicircle averages and for fields defined on C we will usually consider circle
averages. If /i is defined on D, we can simply define 4.(z) to mean the average of s on
0B(z,&) N D, which covers both these cases. However, for a field /4 defined on H, we will
make it clear when we are considering circle averages as opposed to semicircle averages by

writing A5 (z) for the average of / over the circle B(z, €) (when B(z, &) c H).

By [DMS21, Lemma 4.9], another orthogonal decomposition of H(C) is given by the
radial-lateral decomposition into the space H,,q(C) of radially symmetric functions and
the space H,;(C) of functions with mean zero on all circles centred at 0. We define the radial
part h 5 of a whole-plane GFF 2P, given by the projection of 2™ onto Hy,4(C), as the
function hmp (0) whose value on each circle centred at 0 is simply given the average of 4 on
that circle (and is only defined modulo additive constant). We also define the lateral part h)'*
of AP as the projection of A™P onto Hi,(C), which is given by AVP — hr’lp (0) and 1s well-
defined not just modulo additive constant. Then the radial-lateral decomposition implies

that 4" and A, ¥ are independent.
rad lat

One also has a radial-lateral decomposition for the free-boundary GFF on H. Indeed,

HYT (H) is the orthogonal sum of the space H i 4(H) of functions that are radially symmetric
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about 0 and Hli (H) of functions that have the same average on all semicircles centred at 0
(recall that elements of H* (H) are only defined modulo additive constant). Note that the
radial part, i.e. the projection 44 of 4 onto H I |(H), whose values are given by the semicircle
average process centred at O, is only defined modulo additive constant, but we can consider
the lateral part 4% = h — h™d a5 a function not just modulo additive constant, whose average

is zero on every semicircle centred at 0. Again 4™ and A are independent.

Finally one can consider the radial-lateral decomposition for the free-boundary GFF h
on the bi-infinite strip . = R x [0, 7], which by conformal invariance can be obtained as
h (-) = h(exp(+)) for h afree-boundary GFF on H. In this case the orthogonal decomposition
of HY (.#) is given [DMS21, Lemma 4.3] by the space H i 4(7) ot functions that are constant
on the vertical line # + [0, i7] for each # € R and the space HI{: () of functions that have
the same average on all such vertical lines. A similar decomposition holds for the bi-infinite

cylinder € given by R x [0, 27r] with R x {0} and R X {27} identified.

We will show in Lemma 3.1.1 that, for x fixed, the process (h.-:(x) — h1(x));er has
the covariance structure of V2 times a standard two-sided Brownian motion, and that the
semicircle average process (h-t(x) — h1(x));xer has a version that is continuous (in both ¢
and x). This is a straightforward adaptation of [HMP10, Prop. 2.1], the analogous result for

circle averages of a zero-boundary GFF.

2.2 Liouville quantum gravity

Given a domain D C C and / some form of the GFF on D (with the additive constant fixed
in some way if necessary), and y € (0,2), we define the random area measure u;, on D as
a Gaussian multiplicative chaos measure in the sense of [Kah85], given by the weak limit of

the regularized measures

p = £V’ 2p7he(2) g,

as € — 0 along powers of two, where dz is Lebesgue measure on D and /.(z) is the average
of & on the circle of radius & centred at z (or on the intersection of this circle with D when
z € dD). This limit was shown to exist almost surely in [DS11]. Likewise, [DS11] shows

the almost sure existence of the corresponding weak limit vj, of the measures

VZ = gV A vhe(x)]2 g
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where dx is Lebesgue measure on a linear segment of dD.. The regularization procedure
implies the conformal coordinate change rule (1.1.2) given in the introduction, under which,
by [DS11, Prop. 2.1], almost surely we have w1, = pj o ¢ and vj, = v; o . In particular, we
can use this to define v, when 4D is not piecewise linear by conformally mapping to, for
example, the upper half-plane (provided the conformal map extends to a homeomorphism

0D — R U {o0}).

2.2.1 Quantum wedges and cones

We define a quantum surface as an equivalence class of objects of the form (D, &) where D is
a planar domain and 4 is a random distribution on D, where (D, Z) and (D, h) are considered
equivalent if and only if there exists a conformal map ¢ : D — D such that / and  satisfy
the rule (1.1.2). Often one also wants to keep track of certain marked points; to this end we
define a quantum surface with £ marked points as an equivalence class of objects of the
form (D, h,zy,...,z,) where z; € D, so that two quantum surfaces (D, h, z1, . .., z;) and
(5, Z, Z1,...,2p) such that the conformal map y : D — D satisfies the rule (1.1.2) are only
considered equivalent as surfaces with & marked points if in addition we have y/(z;) = z; for

i=1,....k

We will now define the notion of “quantum wedge”; the idea is that we would like to define
a quantum surface homeomorphic to H, whose law is invariant under scaling and under the
operation of adding a constant to the field, and thus a good candidate for infinite-volume
scaling limits. As a warm-up we will define an “unscaled quantum wedge”, for which the
field is only defined modulo additive constant, but keep in mind that the ordinary quantum
wedge does not arise by fixing this constant, since such a surface would not have the desired

invariance properties.

An unscaled a-quantum wedge is given by (H, A" — alog|-|,0,00) where A% is an
instance of the free-boundary GFF on H. (Note that this 47 is only defined modulo additive
constant, meaning that y;, and vj, are only defined modulo multiplicative constant and thus
the unscaled wedge is 7ot a quantum surface by our definition above.) The definition arises
(as does the nomenclature) by considering a free-boundary GFF on an infinite wedge Wy =
{z € C: argz € [0,9]} (viewed as a Riemann surface, so that the parametrization is not
single-valued if ¥ > 2r), and then using (1.1.2) to reparametrize by H via the conformal map

z + 277 where ® = 1(1 - a/Q).
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We can reparametrize by the infinite strip . = R x [0, 7] instead of by H. If we use
an appropriate branch of log to map H to ., so that 0 maps to —co whilst co maps to +co,
then the conformal coordinate change formula (1.1.2) gives that the mean of the resulting
field / on the vertical segment {t} x [0, 7] is given by By, + (Q — @)t, where B is a standard
two-sided Brownian motion, defined modulo additive constant. We next define an ordinary
quantum wedge [DMS21, Def. 4.5] by replacing the process By, + (Q — @)t by a related but
different process, in such a way that we fix the additive constant and thus obtain a genuine
quantum surface, whose law will nonetheless be invariant under the operation of adding a
constant to the field. Namely, define an a-quantum wedge by (.7, i;, —00, +00) where his
obtained from & by replacing the process By, + (Q — @)t by (A;).er, where for t < 0 we
define A; = B_y + (Q — a)t for B a standard Brownian motion started from 0, and for
t > 0we define A, = By, + (Q — a)t where B is a standard Brownian motion started from 0
independent of B and conditioned on the event that By + (Q-a)t >0forall z > 0.

This is called the circle average embedding since it has the property that, when we use
z > exp(z) to map from .& back to H to produce a different parametrization of the surface,

namely (H, 4,0, co) where h = ho log—Qlog| - |, we have
0 =sup{t € R: A (0) + Qt =0},

where 5, (2) is the semicircle average on dB(z, 7). One can next construct the circle average
embedding of 4 + C where C is a constant by spatially rescaling by e’“, where we define
t¢ = sup{t € R : het(0) + Qt + C = 0} - note that by (1.1.2) this corresponds to replacing
the field 4 + C by h(e'"+) + Qt€ + C. From the properties of Brownian motion with drift,
one can then check [DMS21, Prop. 4.7(1)] that a quantum wedge has the key property that
its law as a quantum surface is invariant under the operation of adding a constant to the field,
i.e. the circle average embeddings of /# and /2 + C have the same law for a constant C > 0. One
can also observe the convenient property that if (H, /4,0, o) is the circle average embedding
of an @-quantum wedge, then the restriction of 4 to HN D (where D is the unit disc) has the
same law as the restriction of 27° — alog| - | to H N D, where A7 is a free-boundary GFF
on H with the additive constant fixed so that the semicircle average hf 2(0) is 0.

Since the conditioning event has probability zero, some care is needed to define the
process B; the details, given in [DMS21, Remark 4.4], are as follows. The process can be

constructed by setting By +(Q —a)t = EZ(tH’) +(Q-a)(t+7)forallt >0, where Bisa
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standard Brownian motion started from 0 and 7 is the last time that By, + (Q — a)¢ hits 0.
Note that 7 < oo almost surely since Q > @. Then B is characterized by the property that,
for each & > 0, if 7, is the hitting time of & by B then (EZ(t+T£) +(Q—-a)(t+71¢)); has the law
of a Brownian motion with drift Q — « started from & and conditioned not to hit 0, which
makes the law of B the only sensible choice for the required conditional law. The reason this
property characterizes the law of B is that if X is another process with the same property
and, for each & > 0, 7, is the hitting time of € by X, then for each & > 0 there is a coupling
of B and X so that (Eg(tJrTg))t = (X3(147,))e> whereas 7,7, — 0as & — 0 almost surely, so
that in any subsequential limit of such couplings as £ — 0 we have B = X almost surely. In
fact, one can also define A, (see [DMS21, §1.1.2]) as the log of a Bessel process of dimension
2+2(Q — a)/y, parametrized by quadratic variation; this definition also makes sense for
@ = Q. A surface constructed as above (with @ < Q) is an a-quantum wedge; we refer to

such wedges, which are homeomorphic to H, as being thick.

The Bessel process construction generalizes further, to the case @ € (Q, Q +7v/2). In this
case the Bessel process has dimension between 1 and 2 so will hit 0; we obtain one surface
for each excursion of the Bessel process away from 0, and thus by concatenating all these
surfaces (see [DMS21, §1.1.2]) we get an infinite chain called a thin quantum wedge (in
this case, the horizontal translation is fixed by requiring the process to attain a maximum at
t = 0). More formally, we use the fact [RY99, Ch. XI, XII] that the excursions of a Bessel
process X form a Poisson point process when indexed by local time at 0. Specifically, for each
excursion e of X (say, over the time interval (ae, be)), if se is the local time at 0 accumulated
by X|[0.4], then the (se,e) form a Poisson point process with mean measure ds ® N where
ds is Lebesgue measure on [0,0) and N is an infinite measure, the so-called Ito excursion
measure corresponding to X (on the space of excursions translated back in time so as to start
at time 0). It is known that this process determines X. We thus define an @-quantum wedge
for @ € (Q,Q +7y/2) as a point process where the points are of the form (s, e, he) where
each /. is a quantum surface defined on the strip .7 as for a thick quantum wedge but using e
parametrized by quadratic variation (and, for concreteness, with the parametrization chosen
so that the maximum is attained at time 0) in place of A;, and where the lateral parts of the 4,
for different excursions e are independent. Each doubly marked surface (.7, A, —00, +o0) is a
bead of the wedge, with the two marked points referred to as the opening point (—co) and the

closing point (+00).
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Since such beaded quantum surfaces are no longer parametrized by domains in C, we need
to slightly amend the notion of equivalence for such surfaces: a beaded quantum surface
is parametrized by a closed set D such that each component of the interior of D together
with its prime-end boundary is homeomorphic to a closed disc, and we regard two surfaces
parametrized by such sets D, D as equivalent if they are related by the formula (1.1.2) for
¥: D — D a homeomorphism that is conformal on each component of the interior of D.

As mentioned in the introduction, we will often refer to an a-quantum wedge, in either
the thick or thin regimes, as a quantum wedge of weight w where the weight parameter

w > 0 is defined as
w=y (% +Q - a) .

Note that the wedge is thick when w > y?/2 and thin otherwise. We use the weight parameter
because it is additive under the operation of conformally welding two independent wedges
according to LQG boundary length to obtain another wedge. Specifically, [DMS21, Thm 1.2]
states that if wy, w, > 0 and w = wy + Wy, when a wedge ‘W of weight w is decorated by 7,
an independent SLE,2(w; — 2;w; — 2) from 0 to oo (or if w < ¥?/2, a concatenation of
independent SLE, 2 (w; —2; w, —2) curves from the opening point to the closing point of each
bead), then the region W (resp. ‘W>) to the left (resp. right) of 1 is a wedge of weight w;
(resp. wy) and ‘Wi and ‘W, are independent as quantum surfaces. Moreover, by [DMS21,
Thm 1.4] there is a unique conformal welding of the right-hand side of ‘W to the left-hand
side of ‘W according to y-LQG boundary length, which recovers ‘W and .

These results from [DMS21] build on the earlier result [She16a, Thm 1.8] that in the case
of a wedge (H, A, 0, ) of weight 4 cut by an SLE, 7 into two wedges of weight 2, for each
t > 0 the law of the pair of surfaces to the left and right of 7 is invariant under both the
operation Z_; of cutting only along 1([0,¢]) (where 1 is parametrized by LQG boundary
length) and the operation Z; of conformally welding the boundary segments (x;,0] and
[0, x}) according to LQG boundary length, where x7 are defined so that v,((x;,0]) =
v, ([0,x])) = t (in particular, [Shel6a, Thm 1.8] states that this welding is almost surely
unique). The group of transformations {Z;: t € R} is called the (length) quantum zipper:
for t > 0, Z, “zips up” the pair of surfaces by ¢ units of LQG boundary length whilst Z_;
“unzips” by ¢ units of LQG boundary length.

We next define the whole-plane analogue of the quantum wedge. An a-quantum cone

is intuitively the doubly marked quantum surface corresponding to a GFF on the surface
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homeomorphic to C obtained by gluing together the sides of Wy, where 6 = 27(1-a/Q), ac-
cording to Lebesgue measure. It is given by (C, /4,0, c0), where the field / is defined in [DMS21,
Definition 4.10] for @ < Q by taking the process A, as for an a-quantum wedge, except
with By, and By, replaced by B, and B, respectively, and then setting / to be the field on C
whose radial part is given by A, on the circle of radius e™* around 0, and whose lateral part
is that of an independent whole-plane GFF. Note that the radial part is only defined modulo
additive constant, but we generally fix the constant as we do for a wedge, 1.e. by requiring
Ao = 0. As before, the law of a quantum cone is invariant under the operation of adding a
constant to the field (i.e., the circle average of the resulting cone will have the same law as that
of the original one); analogously to the case with wedges, the restriction of the circle average
embedding of an @-quantum cone /4 to the unit disc D is equal in law to the restriction of
hP — alog| - | to D where AP is a whole-plane GFF with the additive constant chosen so
that the circle average h;VP (0) is 0.

Again, instead of using the parameter @ < Q, we will often refer to an a-quantum cone

as a quantum cone of weight w where this time the weight parameter w > 0 is given by

w=2y(Q - a).

This choice is convenient because cones of weight w are the whole-plane analogues of wedges
of weight w. Specifically, [DMS21, Thm 1.5] states that if a cone C = (C, /4,0, o) of weight w
is decorated with 77, an independent whole-plane SLE 2 (w — 2) from 0, then the surface ‘W
described by (C\ 1, 4,0, ) is a wedge of weight w, and there is a unique conformal welding
of left-hand and right-hand boundary segments of ‘W according to y-LQG boundary length,
which recovers C and 7.

In order to construct a probability measure on finite-volume surfaces, we can first consider
the “law” on finite-volume surfaces corresponding in the above constructions to that of a
single Bessel excursion. (Note that the “law” of a Bessel excursion is an infinite measure, so
the words “law” and “sample” do not have their literal meanings in this setting.) To define a
quantum sphere of weight w we first define an infinite measure Ny, on fields parametrized
by the bi-infinite cylinder ¢ with marked points at —co and +oo as follows. (Recall that €
is given by R x [0,27] with R x {0} and R x {27} identified.) A “sample” s from Ny can
be obtained by “sampling” a Bessel excursion Z of dimension 2 — 2w/y?, setting the radial

part of & (i.e., the projection of /4 onto the space of functions that are constant on vertical
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lines {r} x [0,2x]) to be given by %logZ parametrized by quadratic variation, and setting
the lateral part of 4 (i.e., the projection of / onto the space of functions that have the same
mean on all vertical lines {r} X [0, 27r]) to be given by the corresponding projection of a GFF
on % (so that the lateral part has mean zero on all vertical lines). One can show that, for
0 < a < b < o, the measure Ny, assigns finite mass to the event u;,(€¢) € [a, b], allowing us
to construct the probability measure Ny (|1, (%) = r) as a regular conditional probability
for almost every » > 0. The scaling properties of Ny, mean that in fact this measure must exist
for every r > 0, and we can thus define the law of a unit area quantum sphere as the law of a
quantum sphere of weight 472 conditioned to have unit area, i.e. as the probability measure
Ny_2(-|pp(€) = 1). (The weight 4 — ¥, corresponding to a y-quantum cone, is special
because in this case the marked points at 0 and co “look like” guantum typical points, i.e.
ones sampled according to the measure pj, — see [DMS21, Lemma A.10].) This argument for

the existence of the conditional law appears in the discussion after [DMS21, Definition 4.21].

2.2.2 The subcritical Liouville quantum gravity metric

In [GM21c, Thm 1.2] it is proven that for y € (0,2) there exists a measurable map 4 — by,
from the space of distributions on C with its usual topology to the space of metrics on C
that induce the Euclidean topology, that is characterized by satisfying the following axioms

whenever / is a whole-plane GFF plus a continuous function:

Length space Almost surely, the b,-distance between any two points of C is the infimum of

the dj-lengths of continuous paths between the two points.

Locality If U C C is deterministic and open, then the internal metric d,(-,; U) of d, on U,
defined between two points of U by taking the infimum of the dj,-lengths of continuous

paths between the two points that lie entirely in U, is almost surely determined by 4|y .
Weyl scaling Let ¢ = y/d, where d, is the fractal dimension defined in [DG20]. Then for
f: C — R continuous and z,w € C, define

length(P;d)
(e - vp) (2, ) = igf/ eSS @) gy
0

where P ranges over all continuous paths from z to w parametrized at unit dj-speed.

Then, almost surely, e/ - b, = by, 7 for all continuous f.
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Affine coordinate change For each fixed deterministic 7 > 0 and z € C we almost surely

have, for all #,v € C,

0, (14 + 2,70 +2) = Dj(r4z)4Qlogr (#: ).

This map is unique in the sense that for any two such objects d, b, there is a deterministic
constant C such that whenever 4 is a whole-plane GFF plus a continuous function, almost
surely we have bj, = Cbj,. We refer to this unique (modulo multiplicative constant) object
as the (whole-plane) y-LQG metric. Following [GM21c] we fix the constant so that the
median distance between the left and right boundaries of [0, 1]% is 1 when / is a whole-plane
GFF normalized so that 41(0) = 0. Existence is proven by constructing the metric as a

subsequential limit of the e-Liouville first passage percolation metric defined by
! h
DZ(Z,‘ZU) :1gf/ eé:( *pEZ/z)(P(f))lpl(t)ldt
0

where the infimum is over all piecewise C! paths from z to w, and p,2/; is the heat kernel
with variance £2/2 (so we are using a mollified version of /). Existence of such subsequential
limits was shown in [DDDF20]; subsequently the paper [GM21c] proved that such sub-
sequential limits are unique and characterized by the above axioms, and in [GM21a] it was
established that the resulting metric d has a conformal covariance property. Noting that we
can, for instance, use the domain Markov property to write a zero-boundary GFF hona
proper domain U cC C as the restriction of a whole-plane GFF % to U plus a continuous
function f, we can define the y-LQG metric d; on U corresponding to h as the internal
metric Dy, ¢ (-3 U), and thus also define d ivg for 4 continuous on U via Weyl scaling. We
will review this construction in more detail at the beginning of §3.1. Then, if U, V are
domains and ¢ : U — V is conformal, and /4 is a GFF on U plus a continuous function, the

conformal covariance property states that almost surely

0,0 (2, W) = Djuop-14Qlog|(s-1)| (P(2), ¢ (w))

forall z,w € U.

The reason the scaling in the axiomatic definition of d, is controlled by &, rather than v, is

that, since adding a constant C to / scales y1, by e, it should be true that by, is scaled by %€,
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where ¢ := y/d, and d, is the Hausdorff dimension of the y-LQG metric. In order to define
the metric b, a candidate d, was needed to state the scaling axiom. For each y € (0,2) there is
such a value, defined in [DG20], which describes distances in certain discrete approximations
of y-Liouville quantum gravity. A posteriori, it was shown in [GP22] that d,, is indeed the

Hausdorff dimension of the y-LQG metric.

2.2.3 The critical and supercritical cases

As mentioned, existence and uniqueness of the y-LQG metric was extended to the critical
case y = 2 in [DG23], as well as the supercritical case corresponding to y € C with |y| = 2.
We do not treat the supercritical case here, since it has singular points that are at distance co
from all other points and thus, while lower semicontinuous, fails to induce the Euclidean
topology; however, the critical 2-LQG metric was shown to induce the Euclidean topology
in [DG21] and satisfies the same axiomatic characterization as in the subcritical case, except

with & replaced by & :=lim, y/d,.

2.3 Schramm-Loewner evolutions

2.3.1 Chordal SLE

Firstly we recall (e.g., from [Law05, Def. 6.1]) the construction of chordal SLE from 0 to oo

in H using the chordal Loewner equation

0r9:(z) = go(z) = z (2.3.1)

2
ﬁt(z) - Ut’

where U: [0,00) — R is a continuous function. Here U is the so-called (Loewner) driving
function. For each fixed z € H the Loewner flow, i.e. the solution to (2.3.1), is defined up to

7(z) = inf{t > 0 : Im(g,(2)) = O}. If we define the compact hull K, = {z e H: 7(z) < t},

then g4, is the unique conformal map from H \ K, to H that satisfies the hydrodynamic
normalization g,(z) —z — 0 as z — 0. (We also say that a conformal map f: D — D
between unbounded domains “looks like the identity at co” if it satisfies f(z) —z — 0 as
Z — ©0.)

When U, = vkB; for some multiple k > 0 of a standard Brownian motion (B;), there
almost surely exists a curve n parametrized by ¢ € [0, o) such that for each #, H \ K; is the

unbounded component of H\ 17([0, ¢]) and ¢, (n(t)) = U,; we say that n generates the family
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of hulls (K;);>0. Moreover, the curve 5 is determined by U. This was proven for « # 8
in [RS05]; the case x = 8 was proven in [LSWO03] as a consequence of the convergence of
the uniform spanning tree Peano curve, but a proof has since been given in [AM22] for the
k = 8 case which does not rely on discrete models. The law of 7 is, by definition, that of a
chordal SLE, in H from 0 to 0. The one-parameter family of SLE, laws for « > 0 has three
distinct phases. When « € (0,4), the curve 7 is almost surely simple and does not hit 0H
other than at its endpoints. When 4 < k < 8,  almost surely does hit dH infinitely often,
and has a dense set of double points, but does not cross itself [RS05]; in this phase n swallows
points, i.e. disconnects them from co without hitting them. When « > 8, 17 is almost surely

space-filling.

The Markov property of Brownian motion implies that SLE, has a conformal Markov
property [RS05, Thm 2.1(i1)]: given 77][o,], the conditional law of the image of 7|{; ) under
the map ¢; — U, is the same as the law of the whole curve 1. The scale invariance of
Brownian motion, and the fact that the only conformal automorphisms of H that fix 0 and oo
are scalings, imply that SLE is conformally invariant up to time reparametrization, so that
by applying a conformal map chordal SLE can be defined (up to time reparametrization)

between any two distinct boundary points in any simply connected proper domain.

This definition can be generalized [LSWO03, §8.3] to the SLE,(p1; p2) processes where
k > 0and p1, p2 > —2, a variant where one additionally keeps track of marked points known
as force points. The SLE,(p1; p2) process (with force points at 0~ and 0%) is defined from 0
to oo in H using (2.3.1), where this time U, satisfies the SDE

2
dU, =RdB, + =2 v P2 Ve avi=— 2 _dr dVie—2 s
U -V -, VI-U, 2

with initial conditions V! = Uy = V# = 0 and the further condition that V;! < U, < V/? for
all > 0. To motivate the equations for V,! and V2, observe that for any Loewner flow (g,)

from 0 in H driven by a continuous function Uy, if we define
x; =sup{q:(x) :x <0,x ¢ K;}, y,=inf{g;(x):x>0,x ¢ K,}

(noting that the x values quantified over are simple boundary points of H \ K, and thus ¢,
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extends continuously to them), then (2.3.1) gives

O0ix; =

which means in this case that V,! and V2 can be seen as the images of 0~ and 0* (i.e. the
left-hand and right-hand prime ends of H \ K, corresponding to 0) under ¢,. We think of
the two extra terms in the SDE for U, as providing “forces” causing the force points to either

repel (for positive p values) or attract (for negative p values) the driving function U,.

As before, the resulting family of hulls turns out to be generated by a continuous curve n,
with ¢;(n(¢)) = U; [MS16a, Thm 1.3]. This defines the law of an SLE,(p1; p2) curve. If
x1 < 0 < xR, one obtains the same result for the SLE, (p1; p2) process with force points at x1.

and x g given by replacing the initial conditions with
— Vl <Uy=0c< VZ —
XL=Vy =Up=VUZ= Vy =XR.

If p1 = O (resp. p2 = 0), the process is known as SLE, (p) where p = p; (resp. p = p1). (Note
that if p1 = p» = 0 we have an ordinary SLE,.)

The driving function U, of an SLE,(p1; p2) process still satisfies Brownian scaling, and
thus we have conformal invariance and can define SLE,(p1; p2) between any two distinct
boundary points of any simply connected proper domain. The conformal Markov property
changes slightly: given 1|0, the conditional law of the image of 77| [; c) under the map 4, - U,
is that of an SLE, (p1; p2) process with the force points at V,! — U, and V? - U,.

Although in the case k < 4 ordinary SLE, cannot intersect the boundary except at its
endpoints, force points with sufficiently negative weights can make SLE, (p1; p2) processes
hit the boundary (although they still do not self-intersect). In particular, an SLE,(p1; p2)
process from 0 to co in H almost surely hits (0, 00) if p, < «/2 — 2, but almost surely does
not hit (0, 00) if py > k/2 -2 (see [MW17, Lemma 2.1]). The analogous result holds with p,

replaced by p1 and (0, ) replaced by (—c0,0).

2.3.2 Radial, whole-plane and space-filling SLE

As well as chordal SLE, which goes from one boundary point to another, one can consider

radial SLE, which grows from a boundary point towards an interior point. First we define

radial SLE, in the unit disc D targeted at 0 [Law05, Def. 6.20] to be the set of hulls X,



44 CHAPTER 2. PRELIMINARIES
associated to the family of conformal maps (4;);>0 solving the radial Loewner equation

W: +9:(2)

W, gy P97 (232

0u9:(2) = gu(2)
driven by W, = ¢?V¥B: where B is a standard Brownian motion. This time the maps 7,: D \
K, — D are normalized by requiring 4,(0) = 0 and 4;(0) > 0, which as in the chordal case
defines a unique choice for each ¢;. As with chordal SLE, radial SLE has a generalization

with a force point; we define

W(z.w) = —zZ +w’ q’(z,w) _ Y(z,w) +‘P(1/z,w)’
Z—w 2
and let (W, O) be the solution to the equations
th = [—th + %@(Ot, Wt) dt + l\/;Wt dBt, (233)

dOt = T(Wt, Ot) dt

(this solution exists and is unique - see [MS17, §2.1.2]). We can then define a radial SLE (p)
as the process associated to the solution (g;) of (2.3.2) with this driving function W. As

before, the family of hulls (K,) is generated by a continuous curve.

Moreover, we can define a version of radial SLE, (p) in bi-infinite time: the radial SLE,(p)
equations (2.3.3) with B a two-sided Brownian motion still have a unique solution. If we
take W to be the resulting driving function, then there is a family (7;);er of conformal maps
onto C \ D that each fix oo, have positive spatial derivative at oo, and satisfy (2.3.2) (without
the initial condition) [MS17, §2.3]. If we define the hull K, as the complement of the domain
of 4, then the family (K});er is generated by a whole-plane SLE, (p) from 0 to co. Moreover,
for k € (0,8), one can define a two-sided whole-plane SLE, from co to o through 0 by
first sampling a whole-plane SLE, (2) from 0 to oo (call this 77|[0.«)) then sampling a chordal
SLE, from O to oo in an unbounded component of C \ 77|[0) (call the time-reversal of this
curve 77| (—eo,01)-

For k > 4 and p1, p2 € (=2, k/2-2), the space-filling SLE, (p1; p2) process was defined in
[MS17]. When « > 8, this coincides with ordinary SLE, (p1; p2), which as mentioned above
is almost surely space-filling. When « € (4,8) one starts with an ordinary SLE,(p1; p2) 1’

and extends it by sequentially “filling in” the regions 1" disconnects from co. Indeed, for each
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component C; of the complement of ’, there is a first time ¢; such that n’|[o,,) disconnects C;
from co. We then define the space-filling SLE, (p1; p2) to hit the points in the range of n” in the
same order that 7’ does, but so that immediately after hitting ’(¢;) it traces a C;-filling SLE,-
type loop beginning and ending at °(¢;), constructed using a coupling with the Gaussian free
field. This construction is described in [MS17, §1.2.3]. Finally, one can define a whole-plane
space-filling SLE, from oo to oo via the chordal version as explained in [DMS21, Footnote 4].
For k € (4,8), one first uses the SLE/GFF coupling to draw SLE-type curves partitioning
the plane into a countable collection of pockets, and then concatenates chordal space-filling

SLE, curves in each pocket.

2.3.3 Branchable SLE

If k € (2,8) and p € (-2,k—4), SLE,(p; k—6— p) has an additional special property, namely
that of target invariance [SWO05]. This means that, given a domain D and a point z € D, one
can construct a family of curves {y, : y € dD\{z}} such that, for every y € dD\{z}, y, isan
SLE,(p; k — 6 — p) processes from z to y, with the y, coupled in such a way that for distinct
points y and y” in 0D \ {z}, the curve y, targeted at y run until the first time y,, disconnects y
from y” almost surely coincides (up to time reparametrization) with the curve y, targeted
at ’ run until the first time v, disconnects y” from y. The family {y,: y € dD \ {z}} is
known as the SLE, (p; k—6— p) branching tree in D rooted at z and targeted at all boundary

points, or as a branchable SLE, (p) process or bSLE(p) process.

This definition can be generalized to define the process SLE,(x — 6) from 0 to co in H
when « € (8/3,4), for which we have k — 6 < =2 so that the previous definition does not

apply. Here the SDE becomes

K—6 di. dV, = 2

d
U -V, AT

dUt = \/EdBt +
with Up = Vp = 0. This suggests that Z, := (U, — V;)/V/k satisfies the SDE

=4 (2.3.4)

dZt :dBt'l' KZt .

Since —B is also a Brownian motion, (2.3.4) should also describe the evolution of |Z,| when it
is away from the origin, but |Z,| will not actually solve (2.3.4) since it has to stay non-negative

- one can think of this condition as imposing an infinitesimal upward push whenever Z hits
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the origin (compare the case of a reflected Brownian motion, whose evolution away from the

origin is described by the equation dY; = dB, but which does not solve this equation).

A Bessel process of dimension ¢ is a process X; whose law is characterized [WW13, §2.1]
by the conditions that X is almost surely non-negative and continuous, that the Lebesgue
measure of the zero set of X is zero almost surely, and that while X is away from 0 its

evolution is described by the §-dimensional Bessel SDE

014 (2.3.5)

dX[:dBt+ ZXt .

The term “dimension” is used because if § € N then the L? norm of a standard §-dimensional
Brownian motion is a Bessel process of dimension § - one can check it satisfies (2.3.5) by
applying It6’s formula and using Lévy’s characterization of Brownian motion to identify the

martingale term.

In our case, |Z| must be a Bessel process of dimension 1+ 2(x —4)/x = 3 — 8/k. More
generally, a force point of weight p corresponds to a Bessel process of dimension 1+2(p+2) /.
This is why the range of p for which SLE, (p) intersects the boundary is given by p < «x/2-2;
this range corresponds to the regime ¢ < 2 for which a Bessel process almost surely hits 0,

and the SLE hits the boundary when U, ad V; collide.

The reason k — 6 < —2 causes an issue in defining the SLE process is that it corresponds

to 6 < 1. In this case the integral of 1/|Z;| blows up, which is a problem since one wants to

define
Eods

0 VKZ; '
We therefore need to make sense of this integral. It is possible [MSW 17, §3.3.1-3.3.2] to make

Ut:\/;Zt—Z

(2.3.6)

1/(U, — V,) well-behaved by introducing side-swapping. The side-swapping SLE? (x — 6)
process, where 8 € [—1,1], is defined by making each excursion of U; — V, away from 0
positive with probability (1 + $8)/2 and negative with probability (1 — B)/2, with the sign
of each excursion chosen independently. Positive (resp. negative) excursions correspond to
the process trying to grow to the right (resp. left) of the marked point. One then uses a
compensation described in [WW13, §2.2] to make sense of the integral of 1/Z, and thus
define U; and V; via (2.3.6).

Again, this side-swapping SLE? (« — 6) has a target-invariance property which allows us
to define the SLE? (k — 6) branching tree (also known as branchable SLE?, or bSLE?).
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2.3.4 Natural parametrization

In the above constructions of chordal and radial SLE the curve is said to be parametrized by
capacity, which is a certain complex-analytic notion of size for the hull K. For instance, for
a chordal SLE from 0 to oo in H, we have hcap(K;) := lim, e 2(g:(2) — z) = 2¢, where hcap
is the so-called half-plane capacity, which has a representation in terms of Brownian motion
given by

heap(K.) = lim E;, [Im B,

where the expectation E; is w.r.t. the law of a complex Brownian motion B started from 7y
and 7 is the first exit time of B from H \ K;. The capacity time parametrization is natural
given the construction via the Loewner equation (if the ¢4, were parametrized differently
then, for instance, the 2 in the numerator of the half-plane chordal Loewner equation would
be replaced by 9, hcap(K;)). However, other time parametrizations are possible; for instance,
when an LQG surface with field 4 is decorated with an independent space-filling SLE n, one

can parametrize by quantum time, i.e. so that py,(n([a,b])) = b — a.

Another possibility is the natural parametrization, which is conjecturally the one that
arises in the scaling limit of a discrete model converging to SLE in which one parametrizes
the discrete interface by the number of edges it traverses. In the space-filling case k > 8, the
natural parametrization is simply given by m (17 ([a, b])) = b —a where m is two-dimensional
Lebesgue measure. When « < 8, and SLE, has Hausdorff dimension 1 + «/8 [Bef08],
the natural parametrization is (a constant multiple of) the 1 + x/8-dimensional Minkowski
content of the curve, as proven in [LR15] - which in particular proves the non-trivial fact
that this Minkowski content exists. The natural parametrization had earlier been constructed
indirectly, first for k < 4(7 —v/33) in [LS11] and later for all k < 8 in [LZ13], whereas it was
later shown to arise as the expectation of LQG boundary measure along the curve w.r.t. an
independent GFF in the quantum zipper construction (first for k < 4 in [Ben18], then for
k € (4,8) in [MS23b] and finally for k = 4 in [MS23a]). Note that when « > 8 the SLE,

trace has dimension 2 so the appropriate Minkowski content is just Lebesgue measure.

The natural parametrization has the appropriate conformal covariance property to be a
(1 + «/8)-dimensional Minkowski content: if i is an SLE, in D with the natural paramet-

rization and ¢ : D — D is conformal, then the amount of time the natural parametrization
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assigns to ¥ (n([a, b])) is equal to

b
/ W ()18 dr.

Another important property is that the natural parametrization makes the law of two-sided
whole-plane SLE shift-invariant. To be precise, let k € (0, 8) and let  be a two-sided whole-
plane SLE, from oo to co through 0 with the natural parametrization normalized such that

n(0) = 0. Then by [Zha21, Cor. 4.7], for each » > 0 the scaling map
573 77() — r—l/(1+K/8)n(7_')

and the translation map

Tr:n()=>n(+r)—n(r)

are measure-preserving w.r.t. the law of 5. In fact, we will show (Prop. 1.3.13) that S, is

ergodic for every r > 0.

2.4 Conformal loop ensembles

2.4.1 The branching tree construction

For k € (4,8), one definition of CLE, in a domain D (see [MSW20, §2.3]) begins with the
SLE(k — 6) branching tree in D rooted at some x € dD. Given z € D, let , be the branch
of this tree targeted at z. Let 7, be the first time at which 7, surrounds z clockwise (i.e., the
first time ¢ at which the harmonic measure of the right-hand side of 7, ([0, ¢]) seen from z
is 1). Let o, be the largest time ¢ before 7, at which the harmonic measure seen from z
of the right-hand side of 7,([0,¢]) is 0. Then we can form a loop from the exploration
tree by concatenating 7, |(s,r,] With the branch of the tree from 5,(7;) to n,(0,). These
loops, for a countable dense collection of points z € D, form a CLE, in D. It was proved
in [She09] that the loops of a CLE, correspond to continuous curves conditionally on the
continuity of the SLE, («x — 6) processes which was subsequently proved in [MS16a]. It was
also proved in [She09] that the law of the CLE, does not depend on the choice of the root x
for the exploration tree conditionally on the reversibility of SLE, for « € (4, 8) which was
subsequently proved in [MS16¢].

When k € (8/3,4), we can consider the SLE? (k—6) branching tree rooted at some x € D,



2.4. CONFORMAL LOOP ENSEMBLES 49

for some B € [—1, 1], and then define a set of continuous loops as above (again, see [MSW20,
§2.3]). Again, the law of this set of loops is independent of the choice of root x; it also turns
out to be independent of the choice of the side-swapping parameter B [WW 13, Prop. 3]. This
1s the definition of CLE, in D.

Intuitively, the loops correspond to excursions of the Bessel process used in the definition
of the SLE? (k — 6) away from 0; the times at which the Bessel process is at 0 correspond to

a “trunk” in the SLE branching tree which the loops hang off. (See [MSW 17, §4].)

2.4.2 The loop-soup construction

For k € (8/3,4) there is an alternate construction of CLE,. Given a simply connected
planar domain D, one can consider the Brownian loop-soup as defined in [LW04]. This is
obtained by sampling a Poisson point process of loops in C with intensity cu, where ¢ > 0
is a constant and yu is the Brownian loop measure, a conformally invariant infinite measure
on the set of continuous loops in the plane, and then taking those loops which lie entirely
in D. These loops can intersect, forming clusters, some of which can be contained inside (i.e.,
disconnected from oo by) other clusters. Sheflield and Werner [SW12] showed that, when
k € (8/3,4) and ¢ = (3kx — 8)(6 — k)/2k, the collection of outer boundaries of outermost
clusters forms a CLE,.

Note that the loop-soup construction satisfies a restriction property: if U € D is a simply
connected domain, then the restriction of a Brownian loop-soup in D to U (i.e., the collection
of loops of the soup that are entirely contained in U) is a Brownian loop-soup in U. Thus, by
using the same point process, we can couple CLE, processes on all simply connected planar

domains.

2.4.3 Boundary conformal loop ensembles

We will sometimes use an iterative construction of CLE, based on the so-called boundary
conformal loop ensemble processes BCLE, (p), which are constructed using bSLE, (p) pro-
cesses, and which are defined for « € (2,8) (even though CLE, is not defined everywhere in
this range) and p in a certain range depending on . These BCLE, (p) processes are supposed
to describe the scaling limits of collections of boundary-intersecting loops in certain discrete
models, where the parameter p corresponds to a kind of boundary condition.

For x € (2,4], BCLE(p) is defined when -2 < p < k — 4 as follows [MSW17, §7.1.2].

Take the domain D to be the unit disc (we can define the process for other domains by
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conformal invariance). The BCLE,(p) process will be the set of boundary-touching loops
traced by a bSLE, (p) branching tree started from a boundary point x and targeted at all other
boundary points. This tree is the union of countably many disjoint arcs from the boundary
to itself, each of which has a natural orientation (going from x towards the other boundary
points). A fixed point z € D will then almost surely be surrounded by (i.e., the boundary
of its connected component in the complement of the tree will be) a concatenation of such
arcs forming either a clockwise or a counterclockwise loop. We will refer to the collection of
all such clockwise loops as (the true loops of) a BCLEL (p) process; the collection of all the

counterclockwise loops is the set of false loops of this BCLEY (p) process.

The result of reversing the orientation of all the (true) loops of a BCLEY (p) process will
be called (the set of true loops of) a BCLEY (p) process. It follows from the definition of
bSLE,(p) that the collection of false loops of a BCLE® (x — 6 — p) also has the law of the set
of true loops of a BCLEY (p) process as just defined (note that BCLE, (p) is defined if and
only if BCLE,(x — 6 — p) is). In the light of this, reversibility for SLE,(p) implies that the
law of BCLE,(p) does not depend on the choice of the root x of the branching tree, making
it invariant under conformal automorphisms of the disc; thus the definition extends to other

simply connected domains to define a conformally invariant process.

For k € (4,8) the definition [MSW 17, §7.1.3] is similar, except that we now strengthen the
condition on p to k/2—4 < p < k/2-2, which ensures that the bSLE, (p) does not trace the
domain boundary. Note that although, as before, the true and false loops of the BCLE® (p)
process are obtained by concatenating the boundary-to-boundary arcs of the bSLE, (p), these
loops are no longer simple (since the arcs locally look like SLE, in the interior), so that the
loops can no longer be viewed as the boundaries of components of the complement of the
tree. As in the x € (2,4] case, though, it remains true that BCLE,(p) is defined if and only
if BCLE, (k — 6 — p) is, and that the set of true loops of a BCLEY (p) process has the same
law as the set of false loops of a BCLE® (x — 6 — p) process.

For «k € (8/3,4), a coupling with the GFF can be used to prove [MSW17, Thm 7.8] that
the following procedure constructs a CLE, in a simply connected domain D: set " = 16/«
and sample a BCLE® (0) in D. Then sample independent BCLEY (—«/2) processes in each
of the true (clockwise) loops of the BCLES (0). The true loops of these BCLEY (~«/2)

processes will be part of the CLE,, but there are more CLE loops to discover in the hitherto
unexplored regions: those bounded by the false loops of the BCLE® (0) and BCLE® (-«/2)
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processes. Inside each of these unexplored regions we iterate the construction, independ-
ently sampling a BCLES (0) in each region and then sampling independent BCLEY (~«/2)
processes in each of its true loops, and so on. (For a given point z € D, the number of such
iterations required to find the CLE loop surrounding z is almost surely finite - in fact it is a
geometric random variable, since by conformal invariance the probability of success at each
iteration step is independent of z.) The entire CLE, is given by all the true loops of all the

BCLE,? (—k/2) processes.

For k € (4, 8) there is a slightly simpler construction. The set of true loops of a BCLE® (0)
process in D has the same law as the set of loops of a CLE, in D that intersect the boundary,

so to generate the full CLE, we can just iteratively sample independent BCLE? (0) processes

in each of the false loops (see [MSW20, §2.3]).

2.4.4 Continuous percolation interfaces

For k € (8/3,4) the trunk in the branching tree construction corresponds to a continuous
analogue of a “critical percolation interface”, as shown in [MSW17, Prop. 4.1]. Given a
CLE, I' in D produced by the SLE? (« — 6) construction, we label a loop open (resp. closed)
if it 1s traced counterclockwise (resp. clockwise) by the SLE process. (For 8 = 1 all loops
are traced counterclockwise and for B = —1 all loops are traced clockwise.) The law of the
labelled set of loops (called a CLEP) is that of a CLE, in which each loop has been labelled
as open (resp. closed) independently with probability (1+ 8)/2 (resp. (1 - 5)/2).

Then the trunk y of the SLE? (x — 6) process is a continuous percolation interface (CPI),
meaning that y does not cross itself or intersect the interior of any loop, but keeps the open
loops on one side and the closed loops on the other, and that a certain conformal Markov
property is satisfied, which is as follows. Suppose y goes from x to y. Say we explore y ([0, ¢])
and all the loops of T it intersects, then obtain a new domain D? from D by removing
¥([0,¢]) and all these loops and their interiors. Then if we conformally map the connected
component D, of D? whose boundary contains y back to D with a map that looks like the
identity at y, the law of the image of the restriction of (I, y) to D, given the exploration so

far is simply the original law of (T, y). Moreover, given the exploration, the conditional law

of I" (with labels) in each other component D) of D? is that of a CLE? in D;.
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2.5 Imaginary geometry

In what follows we will often use the fact that SLE and CLE processes in a domain D can
be coupled with instances of the Gaussian free field in D with suitable boundary data. The
simplest of these constructions is the coupling of SLE4 as a level line of the GFF [SS13], but
we will not need that coupling here and therefore will not discuss it. What we will need is
the imaginary geometry introduced in [MS16a, MS16b, MS16c, MS17], so called because the
objects of study are (formally) the flow lines of the vector field /¥ where 4 is a GFF and

x > 0, i.e. solutions of the ODE
8, (t) = eMW/x (2.5.1)

Note that if 4 were a smooth function in a domain D and 1 were a flow line of 4 in the sense
of satisfying the above ODE, and we had a conformal map ¢ : D — D, then ¢ o would be

a flow line of the smooth function on D defined by (the complex exponential of)

how™ - yarg(y'). (2.5.2)

Since 4 is not defined pointwise, the ODE (2.5.1) does not make literal sense, but note that
if & were a smooth function and 7 a solution of (2.5.1), then 1 would determine the values
of h on the trace of , and changing the values of / off n would not change the fact that
solves (2.5.1). This is the sense in which we can couple a GFF 4 and a random curve 7 in
a domain D: we first sample 7, then sample a GFF 4 in the complement of the trace of n
in D with certain boundary conditions. For appropriate  and suitable boundary conditions,
when this / is viewed as a field on all of D, it is in fact a GFF in D with certain boundary

data, and 7 is almost surely determined by 4.

For now briefly explain the SLE/GFF couplings in the half-plane case; we will explain
the corresponding CLE/GFF couplings in Chapter 5. We will first need the notion of a local
set for the GFF as introduced in [SS13]. If (A, /) is a coupling of a GFF 4 onadomain D C C
and a random non-empty closed set A such that D € A C D, we say that A is a local set of /
if there exists a law u, supported on pairs (A, k1) of a subset of D and a distribution on D
that is harmonic in D \ A, such that one can produce a sample from the law of (4, %) by

first sampling (A, 41) from y, then sampling a zero-boundary GFF /; on D \ A and setting



2.5. IMAGINARY GEOMETRY 53

h = hi+h;. In particular, the domain Markov property of the GFF implies that deterministic
closed sets are local; indeed local sets are those random sets for which an analogous Markov
property holds.

For k € (0,4), set 1 = n/yk and ¥ = 2/+k — V«/2. Fix p1,p2 > —2. Then an
SLE(p1; p2) process n from 0 to co in H, with associated conformal maps (4;) and hulls
(K;), and driving function U, can be coupled [MS16a, Thm 1.1] with a GFF % in H with
boundary data

—A(1+ py) x € (—00,0),
bo(x) =
A(1+ p2) x € (0, ),
so that K, is local for A, and if f; = 4, — U, (so that f;(n(¢)) = 0), then the conditional law

of A on H\ n([0,¢]) given n][o,] is the same as the law of

ho fi = xarg (f)). (2.5.3)

Although it is not obvious from the definition, in this coupling, 7 is almost surely determined
by A [MS16a, Thm 1.2]. We say that 7 is a flow line of / starting from 0 and targeted at co.
Note that (2.5.3) is the coordinate change formula (2.5.2) with ¢ = £,7!, so this definition
captures the intuition that if 7 is a flow line of 4 in H, then the flow line of /4 in the domain
H\ n([0,¢]) started from n(¢) with the same angle as  should just be the continuation of 7,
and thus the flow line in H of the field (2.5.3) started from 0 should be a flow line of this field

in the same sense that 7 is a flow line of A.

This definition extends to domains other than H by using the conformal coordinate
change formula (2.5.2); this can also be used to define flow lines targeting other boundary
points. We can also consider flow lines of angle 6, which are the flow lines obtained by adding
6 x to the boundary data (i.e., a flow line of 4 of angle 0 is an ordinary flow line of /2 + 6 y).

For x € (0,4), we have k&’ = 16/k € (4,00). When p, p} > —2 we can obtain SLE,(p; p})
curves as flow lines in the same way as above; however, since x («”) = — x (), in order that we
can couple SLE and SLE,~ with the same field, we perform a sign change and use x = y(«)
for both, thus coupling SLE,(p7; p5) with —A; the boundary conditions for SLE,(p’; p})

then become
A (1+p)) x € (0, ),
Bo(x) = :
=A'(1+p)) x € (0, 00).
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The SLE (p/; p5) is then referred to as the counterflow line of / starting from 0. Again

one can define counterflow lines from other boundary points via conformal maps.

2.6 Distortion estimates for conformal maps

We now briefly recall some distortion estimates for conformal maps that will be useful in §5,

beginning with the Koebe quarter theorem [Law05, Thm 3.16]:

Lemma 2.6.1 (Koebe quarter theorem). Let D C C be a simply connected domain and let

f+ D — D be a conformal map. Then B(f(0),|f”(0)|/4) € D.

As a corollary of the Koebe quarter theorem one can deduce the following [Law05,

Cor. 3.18]:

Lemma 2.6.2. Let f: D — D be a conformal map between domains D,D C C. Fixz € D
andletZ = f(z). Then

4dist(z,6D)

dist(z, dD) 3 G205
1st(z,

m <|f'(2)] <

Combining the Koebe quarter theorem with the growth theorem [Law05, Thm 3.21] for

schlicht functions, one can obtain the following [Law05, Cor. 3.23]:

Lemma 2.6.3. Let f: D — D be a conformal map between domains D,D < C. Fixz € D
andlet Z = f(z). Then forall r € (0,1) and all |w — z| < rdist(z, dD),

4|lw - z| dist(Z, D) L4

1—72 dist(z,0D) = (1-1r)? dist(z, 0D).

|f (w) —2| <

2.7 Quasisymmetric embeddings and Assouad dimension

In preparation for Chapter 4, we discuss the notions of quasisymmetric embedding and

Assouad dimension.

Definition 2.7.1. Let (X,dx) and (Y,dy) be metric spaces and f: X — Y an inject-
ive function. Let ¥: (0,00) — (0,00) be an increasing homeomorphism. Then f is W¥-
quasisymmetric (equivalently, a W¥-quasisymmetric embedding) if for any three distinct

points x,y,z € X, we have

(2.7.1)

dy (f (%), f (%)) <y (dx(x,y))
dy (f(x),f(2)) =  \dx(x,2)]"
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We say f is quasisymmetric (equivalently, a quasisymmetric embedding) if there exists
some ¥ for which f is W-quasisymmetric.

Recall that guasiconformal maps between planar domains are intuitively those that send
infinitesimal circles to infinitesimal ellipses of bounded eccentricity. More generally, with

X,Y, f asabove,and K > 1, f is K-quasiconformal if, for all x € X,

lim sup sup{dy (f (x), f (y)) : dx(x,y) <7} “x
vo - nf{dy (f(x), f(9) sdx(x,9) =7} =

For open subsets of R” with 7 > 2, locally quasisymmetric embeddings (i.e. embeddings
for which there exists ¥ such that each point has a neighbourhood on which the embedding
is W-quasisymmetric) are equivalent to locally quasiconformal embeddings [Vii81, Cor. 2.6].
Indeed, this equivalence holds quantitatively: for » > 2 and D any domain in R”, the
following holds [V4i81, Thm 2.3]. For each ¥, if /: D — R” is a locally W-quasisymmetric
embedding, then f is in fact K-quasiconformal for some K > 1 depending only on ¥ and 7.
Conversely [Vii81, Thm 2.4], for each K > 1, if f: D — R” is K-quasiconformal, and
x € D, a > 1, r > Osuch that B(x,ar) C D, then f|p(x,) is P-quasisymmetric for some ¥

depending only on K, n and . Similar results hold for smooth connected Riemannian

manifolds [AB21, Thm 2.6].

Definition 2.7.2. Let X be a metric space. For E € X, let N, (E) be the smallest possible

cardinality of a set of open balls of radius » that cover E. Then the Assouad dimension

dimp X of X is defined by
dimp X :=inf{e > 0:3C € (0,00) s.t. VO < r < R,Vx € X, N, (B(x,R)) < C(R/r)*}.

In [Tro21] an alternative definition of dimp is used that only quantifies over R < 1.
The Assouad dimension thus defined can be strictly smaller than the one defined in Defini-
tion 2.7.2 (for instance they assign 0 and 1 respectively to Z), though they are equal when X
is compact. Our results and proofs apply regardless of which definition is used, but we use
Definition 2.7.2 since under this definition we have the equivalence ([Fra21, Thm 13.1.1])
that dimp X < oo if and only if X is a doubling space, i.e. there exists a finite constant K
such that any open ball in X can be covered by at most K open balls of half its radius. (Under
the other definition this equivalence fails; for example, under our definition the set of points

in £? with integer coordinates, which is not doubling, has infinite dimension, but under the



56 CHAPTER 2. PRELIMINARIES

other definition it has dimension zero.)
As observed by Coifman and Weiss [CW71, Ch. III, Lemma 1.1], a sufficient condition
for a metric space X to be doubling is the existence of a doubling measure, that is a Borel

measure u on X for which there is a constant D > 0 such that, for all x € X and » > 0,

0 < u(B(x,2r)) < Du(B(x,7)) < oo.

A partial converse holds: whilst noting that Q is a doubling space for which there is no
doubling measure (since the inequality would imply each point had measure zero), Ass-
ouad [Ass80] conjectured that every complete doubling space has a doubling measure, which
was proven by Luukkainen and Saksman [L.S98] building on Vol’berg and Konyagin’s [VK87]
proof for compact spaces. The Bishop-Gromov inequality ([BCO1, §11.10, Corollary 3]; see
also [Gro81, §2.1]) straightforwardly implies that, for any complete Riemannian manifold
with non-negative Ricci curvature, the measure given by the volume form is doubling, and

thus such manifolds are doubling spaces.



Chapter 3

Equivalence of metric gluing and
conformal welding in y-Liouville

quantum gravity for y € (0, 2)

This chapter is structured as follows. In §3.1 we show that the LQG metric corresponding to
a free-boundary GFF on H extends continuously to a metric on H that is locally Hélder con-
tinuous w.r.t. the Euclidean metric. In §3.2 we prove that the LQG metric on the boundary is
locally Holder continuous w.r.t. the LQG boundary measure, and that the Euclidean metric
is locally Holder continuous w.r.t. the LQG metric. In §3.3 we use an SLE/GFF coupling
to establish a bound on the amount of LQG area within an LQG-metric neighbourhood of

a boundary segment. Finally §3.4 contains the proofs of the main results.

3.1 y-LQG metric boundary estimates for the free-boundary
GFF on H

Throughout this section /4 will be a free-boundary GFF on H, though not always with the
same choice of additive constant. Indeed, although the statements of our results require the
additive constant for 4 to be fixed in some wayj, it is easily seen that all the results of this
section remain true regardless of how the constant is fixed, so we will not always specify a
choice. In this section we show that the y-LQG metric induced by / extends continuously
to a metric on H x H, and give some estimates for the regularity of this metric, showing that,

almost surely, it is locally Holder continuous with respect to the Euclidean metric on H.)

57
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Forafixedy € (0,2) we denote by dy, py, v;, respectively the y-LQG metric, area measure
and boundary length measure associated to 4 on H. As noted previously, the y-LQG metric
was constructed in [GM21c] for the whole-plane GFF, but it is explained in [GM21¢, Remark
1.5] how to adapt this to get the LQG metric on a proper domain U ¢ C associated to h+ f
where J is a zero-boundary GFF on U and f is a continuous function on U; this is done
as follows. If A"P is a whole-plane GFF, then we can write A"P|y = B+ 6 where J is a
zero-boundary GFF on U and B is a random harmonic function (modulo additive constant)
independent of h. Recall that / and § are the projections of 4 onto the spaces of functions that
are, respectively, supported in U and harmonic in U. Note that fixing the additive constant
for h corresponds to fixing that for ) but may or may not preserve the independence of h
and b; for instance, we can fix the constant by requiring §(z) = 0 for some choice of z € U, in
which case b as a bona fide (random) function is still independent of h, or we can require that
the average of /& on some circle I' ¢ U vanishes, in which case h and B are not independent,

since their averages on I are required to sum to zero.

Having fixed the additive constant in some way — whether or not b with the constant
fixed is independent of h - we can define d; on U as a Weyl scaling of the internal metric
induced by dbjw on U, 1.e.

b () = e 0 (-5 U).

(This is well-defined since the definition of the internal metric only involves paths which stay
in U, so it does not matter that §) does not extend continuously to the boundary.) Moreover
one can define d; r= et/ d ; for f continuous on U. It is easy to see that d; y thus defined is
a metric on H that satisfies the axioms in [GM21c, §1.2] and conformal covariance. Observe
also that b, y induces the Euclidean topology on H. Indeed, the internal metric djw (-, -; H)
is at least as large as djwp, so since Euclidean open sets in H are open w.r.t. d,w they must
also be open w.r.t. the internal metric. Around each point z € H the djw-metric balls of
sufficiently small radius must be contained in H, so coincide with the djwp (-, -; H)-metric balls
of the same radius. These thus contain Euclidean open discs, which shows that djw (-, -; H)
induces the Euclidean topology. Since —h+ f is a continuous function on H (and thus locally
bounded) the same has to be true for d; e
Since we can write & = h+1 for /i a zero-boundary GFF on H and b a (random) harmonic

function on H, we may define d, (as a function on H x H) similarly. Recall that 4 and

thus B are only defined modulo a global additive constant, so the above construction only
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defines d;, modulo a multiplicative constant. Once the constant is fixed, it follows (as above
ford,, f) that this by, is a metric on H that induces the Euclidean topology on H and satisfies
the axioms in [GM21c, §1.2] and conformal covariance. As noted, we will often be able to
fix the constant somewhat arbitrarily. Note however that the same caveat applies as above:
not every choice for fixing the constant makes the zero-boundary and harmonic parts of 4
independent.

We can extend the LQG metric to the boundary of H as follows. Firstly, we say that a path
P: [a,b] — H is admissible if P~1(dH) is finite, and define the Jh-length of an admissible
path P to be

dj(P) = sup {an (P (ti1), P(8)) : a<to<ty<- <ty <b P(t) € H}.
=1

P~1(H) can be written uniquely as a finite union of disjoint intervals 7, each of which is open

as a subset of [a, b]; it is straightforward to check that the length of P is the sum of the lengths

of the P|;.

We now define the d),-distance between two points of H as the infimum of the lengths
of admissible paths between them. To see that this definition actually does restrict to dj, on
H x H, note that for z,w € H we know that d;,(z, w) is finite (indeed, one can find a path
between z and w of finite d;-length L that stays in some bounded open set U at positive
distance from 9H, then we have b, (z, w) < Lsupy, b < oo ). Given & > 0, we can then take
apath P in H with Jh-length in [c?h (z,w), Jh(z, w) + &), and thus find a subdivision of that
path with

D 0p(P(4i0), P (1)) < dy(z,0) + .

1=1
We know that by, is almost surely a length metric, so for each 7 we can find a path from P (t;_)
to P(t;) in H with d,-length at most d;,(P(t;—1), P(t;)) + €/n and concatenate these to see
that v, (z, w) < Jh (z,w) +2¢&. On the other hand clearly d;, > c?h so the two must agree. We
will henceforth use by, to refer to the function extended to all of H (which we will show is a

metric on H).

3.1.1 Joint Hélder continuity of the semicircle average

Forapoint x € Rand & > 0, recall that 4. (x) denotes the average of / on the semicircular arc

dB(x,&) NH, defined as (h, pf,) = =2 (h, A" p} )y where p? is the uniform probability
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measure on dB(x, &) N H. Since 4 is only defined modulo additive constant, we have to fix
the constant in order for the /. (x) to be well defined - the results of this subsection (§3.1.1)
hold however the constant is fixed, but for concreteness, we will state and prove them using
the normalization 41(0) = 0. We can establish continuity for this semicircle average via the

same Kolmogorov—éentsov—type argument as in [HMP10, Prop. 2.1].

Lemma 3.1.1. Let h be a free-boundary GFF on H with the additive constant fixed such that
h1(0) = 0. There exist a, B > O such that, for any U C R bounded and open, { > 1/a and
y € (0, B/a), there is a modification X of the process X (z, 1) = h,(z) such that, for some random

M € (0, ),
“l(z,7) = (w,5)]”

1+8
Y a

X (z,7) - X(w,s)| < M (log 2)

-
whenever z,w € U, r,s € (0,1] and 1/2 < r/s < 2. (This is unique in that any two such

modifications are almost surely equal, by continuity.)

Proof. By the “modified Kolmogorov-Centsov” result [HMP10, Lemma C.1] it suffices to

show that there exist @, 8, C > O such that for all z,w € U and r,s € (0, 1] we have

3.1.1
Yy A\s ( )

_ 2+8
Enhy(z)—hs(w)msc('(“) (“”’S)') .

Thus we can show continuity for the semicircle average by bounding the absolute moments
of h,(z) — hs(w). In fact, since this is a centred Gaussian, we need only bound its second
moment. We can do this by considering the Green’s function for 4, given by the Neumann

Green’s function in H:

G(x,y) = —log|x — j| — log|x - y|.

This G is the Green’s function such that

1
A7) = - /H G(-y)p(») dy.

Recall that py . denotes the uniform probability measure on 0B(x, ) and pj, denotes that

on dB(x, &) N H. Since

/ G(z.y) pt o (dy) = / (~loglz = 51~ log |z — y1) p*. (dy)

= / —2log|z — y| pxe(dy) = =2logmax (|z — x|, &),
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we find that

B (h(w) — hy (2)) (hs(@) - by (2))]
. / [~2logmax (I¢ - wl,s) + 2logmax (I - 2, V)] (b, - pL,)(dE)  (3.12)
< / |-2log max (¢ ~ wl.s) + 2log max (I¢ ~ 2], 7)| (p%, + p},)(d0)

< [ 2 2wl sl e pr Ve = 4

rA\s

|z —w|+|r —s|

rA\s

Here we used (as in the proof of [HMP10, Prop. 2.1]) that |log 7| < |:;i| for a,b > 0, and
that [(aVb)—(cvd)| <|la—-c|V|b—-d|forall a,b,c,d. Since hs(w) — h,(z) is a centred

Gaussian, we now have that for every a > 0 there is C, such that

|<z,r>—<w,s>|)%

rAs

Bl (w) - by (2)]°] < ca(

concluding the proof. Observe also that when w = z and s > r the integral (3.1.2) becomes

/ 210g(max('§‘z"’)) p7 (D) - 3, (dD));

max(|{ — z|,s)

the integral w.r.t. p}  (d{) vanishes whilst the integral w.r.t. p} (d{) gives 2log(s/r). A
similar computation shows that the increments A;(z) — h,(z) and h;(z) — h,(z) have zero
covariance when 7 < s < t < #, which together with continuity implies that X (z,e™") —

X (z,1) evolves as V2 times a two-sided standard Brownian motion. |

Note that, since the boundary conditions are Neumann rather than Dirichlet, the semi-
circle average process evolves as V2 times a Brownian motion, as opposed to circle averages
which yield standard Brownian motion. This remains true for the free-boundary GFF; since
we will need it later and the calculation is similar, we will now give a corresponding estimate

for circle averages of the free-boundary GFF.

Lemma 3.1.2. Let h be a free-boundary GFF with the additive constant fixed such that h1(0) = 0.
Let K c H be compact. Then there exists a constant C = C(K) such that, for all w € K and

s € (0,1] such that B(w,s) c H, we have

var [A87 (w) — hS™(i)] < —logs + C(K).
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Proof. First we compute

'/cxzynmaiw:1/(—bgu—&|—bgu—ynpm«@o

= —logmax(|z — x|, &) — logmax(|z — x|, &).
Thus, for w,z € Hand r,s > Osuch that r <Imz,s < Imw,

E[(h§" (@) — B (2)) (B (w) = hi™(2))]

]

— logmax(|¢ — w|,s) — logmax(|{ — @], 5)

+logmax (| - z|,7) + logmax(I{ = ZI,7) | (paw,s = pz) (dy)

= /[— logmax(|{ = wl,s) +logmax(|{ = z|, )] (paws = Pz ) (dy),

where in the last line we used that |{ —®@| > s and |{ —Z| > 7 for ¢ € H, so the corresponding
integrals w.r.t. py s and p,, cancel.

Setting z = 7, r = 1, note that the term log max(|{ — |, 1) vanishes on dB(i,1) and is
bounded above (the bound depending only on K) on the closed Euclidean 1-neighbourhood
of K, whereas log max(|{ — w|, s) is equal to logs on dB(w, s) and bounded above by some

constant (depending only on K) on dB(z,1). The claimed result follows. n

3.1.2 'Thick points on the boundary

We refer to x € R as an e-thick point if

l h?’(x) _
o, log(1/r) @

Our aim in this subsection is to show that boundary points have maximum thickness 2.
This matches the maximum thickness in all of H for the zero-boundary GFF, as calculated
in [HMP10]. This is because H has Euclidean dimension half that of H, but the semicircle
averages centred at boundary points for the free-boundary GFF behave like V2 times the

circle averages of the zero-boundary GFF; these two effects cancel each other out.

Lemma 3.1.3. Let h be a free-boundary GFF with the additive constant fixed such that h1(0) = 0.
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Almost surely, for every x € R we have

) h,(x)
limsup ———— < 3.1.3
r—>0plog(1/r) ( )
The proof is an application of the argument that proves [HMP10, Lemma 3.1]
Proof. Fix a > 2, and choose e such that 0 < £ < $ A (— —1). Foreachn € Nlet r, = n~1/.
By setting U = (-1,1),¢ = % = %,B = E_ 2,y = %—ElnLemmaB 1.1 there is a random
M € R such that
[(5) = (x,9) |27
s () = hs(x)| < M (1og X ) ik — , (3.1.4)
§/271

whenever x,y € (-1,1), s,s" € (0,1] with 1/2 < s’/s < 2. Thus, for all x € (0,1) and

n> (25 =1)7! (so that r,/r,41 € (1,2)), and all log% <t <log o, we have
(rn — 7n+1)2 %

e (x) = by, (x)] < M (1og—)
)

—

- M (log2+‘1°g”) (1 _( il)l)

<2Me™ 2(10gn) (1—( 1

< QMg Wion 3t (logn) 2,

where in the last step we used that (1 - 1/(n¢))® < (1-1/((n+1)e))® <1-1/(n+1)

n/(n+1),sothat 1 — (n/(n +1))1/?¢ < 1/(ne). This shows

: hy (x) hy, (x)
lim sup W >a & h;n_)sol:p W (3.1.5)

r—0
krlte| < r1*2. Then

Given x € (0,1) we can find & € N such that k7! € (0,1) with |x

(3.1.4) gives
1

1
2\2 £)E 2\2
6= i er 71 < 3 (g )8 = g ) ot
n n

So if the right-hand side of (3.1.5) holds for some x € (0, 1), then for some § > 0 there are
-, and thus infinitely many 7 for which

infinitely many » for which 4, (x) > (a + 6) log
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some k € {1,2,..., Lr;(1+8)J} makes the event A, = {h,,(kr}**) > alog %} hold. We
can now apply a Gaussian tail bound. Indeed, for each x, (h-:(x) — hi(x)); is V2 times
a standard Brownian motion, independent of A1(x) = h1(x) — h1(0) (recall our choice of

additive constant) whose variance is at most some constant C for x € (0, 1), as follows from

(3.1.1). Thus h,, (kr}**) ~ N(0,c +2log %) for some ¢ < C. Thus for any n > 0, if 7 is

sufliciently large we have

alog L+ (a—n)logi @

Pl[A, 4] =P|Z > ——2—| <P|Z > <r, ',

1/C+210g% 1IZIOgi

where Z ~ N (0, 1). So by a union bound we have, for » sufhiciently large depending on 7,

—(1+¢)
lr, ] wn? 1+%(1_&?%ﬁ)
P L.J /1nk <7y ! =n
k=1

Since 1+ 1 (1 — “Tz) < —1, we can choose 77 so that 1+ 1 (1 - @) < —1, in which case the

Borel-Cantelli lemma gives

Thus almost surely there is no x € (0, 1) for which

. hy (x)
| — >
oot Tog (1/7)

a.

By translation invariance we can conclude that there is no such x € R; all that changes is the
bound ¢ on the variance of /;(x), but we will still locally have boundedness. Since 2 > 2 was

arbitrary we are done. n

Remark 3.1.4. In the proof of Lemma 3.1.3, we find that almost surely there is some N such
that Uy, A1, never happens for n > N, which gives a uniform bound on h,(x)/log (1/7) for
x € (0,1) and r < ry. Using this, and translation invariance, we can deduce the stronger

statement that, almost surely, for every K C R compact we have

. hy (x)
1 — <2 3.1.6
e 9 L 519
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Indeed, since we have

oo Ly;(lﬂ‘)J 2+l(1_(“_'7)2)
PIL) | Aw|=0|m 0 ")),

n=m pb=1

it in fact holds that, as r — 0,

hs(x) ] ( @2 5 )
P — =0 # ‘], 3.1.7
e s i | -0 7

where since n and & can be made arbitrarily small the exponent is arbitrary subject to being less

than a*/4 - 1.

3.1.3 Controlling pointwise distance via semicircle averages

We give an analogue of part of [DFG*20, Prop. 3.14].

Proposition 3.1.5. Fixa € Rand r > 0. Let h be a free-boundary GFF on H and let K C

H N dB(0, 1) be a closed arc consisting of more than a single point. Then we have

d,(a,a+7K)<C et (et (@)=Q1) (3.1.8)
log (1/7)

with superpolynomially high probability as C — oo, at a rate which is uniform in a and r.

Proof. Without loss of generality fix the additive constant for 4 such that /4;(a) = 0 (note
that the statement does not depend on the normalization, since adding a constant ¢ to the
field scales both sides by e%¢).

Couple i with h™P, a whole-plane GFF with the constant fixed so that 4;* () = 0, such
that A"P|y = ho+ band h = o+ b, where his a zero-boundary GFF on H and hand b
are independent random functions harmonic in H. (Note that /;(a) is a semicircle average
whereas h, ¥ (a) is a circle average; note also that although we could choose the normalizations
differently to make h independent of  and h, we do not do so in this proof as we will not
require this independence.)

Leth = h—b; then d, = €49 djwp|» by Weyl scaling. We will prove the result by obtaining
an upper bound on b, (2 +e'™" K, a+e~'7"K) for each 7 € N. Let U be a bounded connected

open set containing eK U K U e™'K and at positive distance from dH. We can then apply
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the result [DFG*20, Prop. 3.1]! to find that, with superpolynomially high probability as

A — o0, at a rate which is uniform in 7, we have
wp(a+e K a+e 7"K;a+e"U) < Aefh(@)-Qn) (3.1.9)

(Recall that, for an openset V' c C, dw (-, -; V') is the internal metric on V induced by djwp.)
Since a + U is at positive distance from dH, b is almost surely bounded on a + U. Thus the

variables

{5(2) = [hi(a) = h{*(a)]: z € a+ U}

form an almost surely bounded Gaussian process, so by the Borell-TIS inequality (see [ATO07,
Thm 2.1.1]) the supremum has a Gaussian tail: there exist c¢1,¢2 > 0 such that for all M/

sufficiently large we have

P| sup (B(z) - [hi(a) = A P(a)]) > M| < cre=M”
z€a+U
Setting # > 0 to be the Euclidean distance between U and dH and writing A5™(z) for the

average of 4 on a circle dB(z,r) c H, we can write

sup (B(z) = [hi(a) = WP (@)]) = sup ((hi™(2) = hi(a)) = (B, (2) - P (a))),

z€a+U z€a+U

where both differences on the right hand side are independent of how the additive constants
for h and AVP are fixed, since they only depend on the fields 4 and 2VP when integrated against

mean-zero test functions). Thus, by scale invariance, with the same ¢y, ¢; we have for each n

P| sup (h(z) = [hen(a) — o (a)]) > M| < cremM?
z€a+e U

It follows that
sup  B(z) = [hen(a) — h) 5 (a)] <logA (3.1.10)

z€a+e U

Many of the results in [DFG*20] involve constants ¢, for each » > 0, which describe the scaling of LQG
distances. In [DFG*20, Thm 1.5] a “tightness” result is obtained for the ¢, in lieu of actual scale invariance,
which was established later in [GM21c]; in this work, we will thus use the subsequent result (see [GM21c,
Thm 1.8]) that we can take ¢, = 7¢<.
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with superpolynomially high probability as A — oo, at a rate which is uniform in 7. Since

b (a+e K, a+e 7"K;a+e"U)

< (WP careny b(z))bhwp (a+e' K, a+e "7"K;a+e"U)
and he-n(a) = hjif; (a) + he-n(a), we find that
by(a+e K, a+e " "Kya+e"U) < Aef e (@)-Qn) (3.1.11)

on the intersection of the events of (3.1.9) with A replaced by A2 and (3.1.10) with A
replaced by A/(%); the probability of this event is superpolynomially high as A — co.

By replacing U by a suitable bounded connected open neighbourhood U of K, again
with positive distance to H, and using compact subsets of U on either side of K, a similar
argument shows that for each » there is a path y, in eU whose intersection with U

disconnects e K and e~!"”K in U such that
length(y,;b,) < Aeéthen(@)=Qn) (3.1.12)

with superpolynomially high probability as A — oo, uniformly in #. This provides the
adaptation of [DFG*20, Prop. 3.1] that we need - namely, fixing ¢ > 0 small, as C — o
the probability is superpolynomially high that (3.1.11) holds, and there is a path y,, such
that (3.1.12) holds, with A = C whenever n < C/¢ and with A = n¢ whenever n > C!/¢,
Stringing together the paths y, with paths of near-minimal length connecting « + ¢! K and

a+ e 1""K for each n, we find that

LCY¢] oo
b,(a,a+7K) < CréQ Z et hren (0=6Qn 4 Z nf ethren (Q-£Qn, (3.1.13)
n=0 |CV/¢ |+1

We now have to bound the right-hand side by the integral in (3.1.8). The argument for this,
using Gaussian tail bounds, is exactly the same as in Steps 2-3 of the proof of [DFG*20,
Prop. 3.14].> We thus conclude that (3.1.8) holds with superpolynomially high probability.

(Uniformity in a follows by translation invariance for d;, and the fact that the result, and in

2The proof there gives their result with an added factor ¥/(¢) = o(t) in the exponent, which arises in the
proof from the fact that exact scale invariance was not then known, but ¢ can be taken to be identically zero in
light of the relation ¢, = 7¢Q.
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b+27"U’ a+2""U

Figure 3.1: An illustration of the arcs K, K’ and their neighbourhoods U, U’ from the proof
of Prop. 3.1.6.

particular the probability (3.1.8), does not depend on the choice of constant for 4.) n

Given points a, b with #» maximal such that |6 — 4| < 2!, arcs K, K’, and open sets U
and U’ at positive distance to 9H and such that eK UK Ue 'K c U,eK’UK'Ue" K’ c U’,
we can apply Prop. 3.1.5 to find paths from 4 to a + 27K and from b to b + 27"K’ that

respectively stay in a + U,,5, €U, a + U,,>, e U’ and whose lengths are respectively

bounded by

c " L@@ g, o (et ()-Q0) gy
log (|b—al™1) log (|b—a|™1)
with superpolynomially high probability as C — co. By judiciously choosing K, K’ and the
open sets U, U’ (see Figure 3.1), we can arrange that the path from 4 to 4 + 27K and that

from b to b + 277K’ cross each other, provided 2!™” > |b — 4|, giving an analogue of part

of [DFG*20, Prop. 3.15]:

Proposition 3.1.6. For h a free-boundary GFF on Hand a,b € R with0 < |b —a| < 1, we have

(o)

d,(a,b) < C [eﬂheﬁ(ﬂ)“?” 4 of her (“—Q“] di (3.1.14)
log (|b—al|™1)

with superpolynomially high probability as C — .
Remark 3.1.7. Since the choices of K, K’, U, U’ depend only on 21" /b — a|, if we assume that

|b — a| = 27" for some n € N then we get that the rate at which the probability decays is uniform
in the choice of a and b (and n).
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We now want to use Prop. 3.1.6 to find sequences of points in H that converge to a point
in R w.r.t. both d;, and the Euclidean metric; eventually we will use these to show that, almost

surely, both metrics induce the same topology.

Lemma 3.1.8. Let h be a free-boundary GFF on H and fix a € R. Almost surely, for every closed

arc K c HN AB(0, 1)) consisting of more than one point, we have
v,(a,a+2"K) >0

asn — oo. Thus, this convergence almost surely holds simultaneously for all such K and all dyadic

rationals a.

Proof. Since every such K contains an arc with endpoints at rational angles, we can assume K
is fixed. Fix also € € (0,Q — 2). Applying Prop. 3.1.5 and the Borel-Cantelli lemma for all

n € N with r =277 and C = 25¢” it almost surely holds that for 7 large enough, we have

b, (a,a+27"K) < 25" /

(£ (@-Q1) gy / T e @-(Qe)) gy
nlog2

nlog2

Moreover, for # € (0,Q — & — 2), by (3.1.6) it almost surely holds that the integrand of the
rightmost integral is bounded by e™* for 7 large enough, so the rightmost integral almost

surely tends to 0 as 7 — oo, as required. u

3.1.4 Local Holder continuity w.r.t. the Euclidean metric

We now prove that by, is almost surely locally Holder continuous w.r.t. the Euclidean metric

on H.

Proposition 3.1.9. Let h be a free-boundary GFF on H with some choice of additive constant.
Almost surely, for each n € (0,&(Q — 2)) and each compact K C H there exists C > 0 finite such

that whenever z,w € K, we have
b,(z,w) < Clz —w|f( Q27 (3.1.15)

Proof. By scale invariance it suffices to consider K = [0, 1]%. We will use the domain Markov
property to couple 4 with a zero-boundary field J and a harmonic correction § := h—/ given

respectively by the projections of /& onto the spaces of functions, respectively, supported in
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and harmonic on H. Unlike in the proof of Prop. 3.1.5, this time we will need hand § to
be independent, so we will fix the additive constant for /4 so that b(i) = 0. (Note that the
claimed result does not depend on the choice of normalization.) Fix § to be the rectangle
[0, 1] x [%, 1], and U to be a neighbourhood of § at positive distance from dH. By [DFG*20,
Prop. 3.9] we know that, for 2™P a whole-plane GFF with the additive constant fixed such
that h}?(0) =0, and for any p < 4d, /y?,

E[( sup dpw (z,w; U))?] = E[(e_ghjvp(o) sup dywe(z, w;U))F] < c0. (3.1.16)

zZ,wEeS zZ,weS
Now consider the coupling of 2"P with h and ¥ from Prop. 3.1.5 (we will not need independ-
ence here). Using that supSB has a Gaussian tail by Borell-TIS and thus E[supg e769] < oo

for all ¢ > 0, we get that
E[( sup hil(z,fw;U))p] < o0 (3.1.17)

z,weS

for each p < 4d, /y? (by applying (3.1.16) for a slightly larger value of p and using Hélder’s

inequality). Now define for each n € N, 1 <7 <21 — 1,1 < k < 2" the sets

Sujk=2"[S+k-1+ %(j - 1);‘) = [(k - 127", k27" x [j27"*D, (j + 1)27(»+1)],

n 1. :
Unjk =2 (U+/€—1+§(]—1)z.

Note that for each 7 the §,,;; divide the rectangle [0, 1] x [2-*+D 1] into rectangles of
dimensions 277 x 2=(**1)_ Then by scaling and translation invariance, for each p < 4d, /2,

there exists M, < oo such that

E[(27Q? sup d;(z,w;U, ;1)1 < My, (3.1.18)

z,weSn,/’k

Moreover, we know that

sup dy(z,w;Up,jp) < sup Di(z,w;U, k) - sup oE0(2)

Z,WES, ik Z,WES, ik z€U,jk
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Since 4 and § are independent, we have

p
E [[27Q sup dy(z,w; Uy k)
ZWES, ik
p —_~
<E |[2%Q sup o, (z,w; Uy )| |E | sup el | (3.1.19)
z,weSﬂJ’k ZeUn,jJe

Now note that sup, ., £b(z) = sup, .y £(B(2z) — h(7)) has a Gaussian tail by Borell-TIS,
since U is at positive distance from dH. By scaling and translation invariance, we can conclude
that there are o, ¢ for which, for all ¢ > 0 and all #, j, &,

<c e—t2 /20'2.

Bl sup £(5(2) - B2k~ 145G+ Di)) 2 ¢

ZEUn,j,/e

This means that for every p > 0, there is a constant K, < co such that, for all », 7, &,

E

sup epf(ﬁ(z)—’ﬁ(z-"(/e—1+%<j+1>z'>>>] <K,. (3.1.20)

ZeUﬂ,j,le

Note that h(27"(k — 1 + %( 7+ 1)1)) is a Gaussian variable; we proceed to bound its variance.

Denoting by Bﬁirc (z) the average of b on the circle B(z, r), by harmonicity we can write

B2 (k= 1+1(j+1)i)) = S (27" (b — 1+ 1(j +1)i)), using that 27 (k = 1+ 1 (j + 1)i) is at
distance at least 27" from the boundary. We now use that h is an orthogonal projection of 4,

so that there is a constant ¢ > 0 not depending on 7, 7, k such that (by Lemma 3.1.2)

_ 1 . ) ~ 1 . . —i .
varh(2 7" (k- 1+ S+ D)) =var | s (2 (b -1+ S+ D) =B )]
< var [hS(27" (b — 1+ %(j +1)i)) - hS"(i)] < nlog2 +c.

(3.1.21)

(We could also compute this variance exactly using a similar argument to [GMS18, Lemma 2.9].)
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Now fix ¢’ > g > 0; we compute

ZEU,,L]‘,/e

a'~q - w1\ 2/9
<(K,)7 (2 [efq b2 <’€—1+%<f+1>1>>]) ((3.1.20) and Hélder)
q’-

q

’

-9

S (Kg) 7 ¢&44 (nlog2+)/2 ((3.1.21) and Gaussian m.g.f.)
yies

"—q

= Clg.q)2" 172

Using these bounds (with 6 > 0, ¢ = p, ¢’ = p+6/p) in (3.1.19), we get that for p < 4d,, /v,

we have
Y4

E {27 sup v, (z,w;U,p) Sé(p,é)Z”fz(p2+5)/2

zZ,WES

nj.k

and thus, for any s € R,

P

27Q  sup (2, w; U, k) 2 2”5] < 2_”p56(p,6)2”§2(1’2+‘5)/2. (3.1.22)

Z,‘ZUES”’]‘,/?

If s > 2¢ is sufficiently close to 2¢, setting p = s/&% we have p < 4d,,/y? since y > 2 implies
2/€ > 4/(€y) = 4d, [y?, so the right-hand side becomes é(p, )27 (=52 /204212 and if § is
sufficiently small we have —s?/(2&2%) + £25/2 < —2. Thus, using Borel-Cantelli and setting
u = s — 2&, we conclude that, almost surely, for every # > 0, there exists 7q such that for all

n>no,1<j<2" —1and 1<k <2”, we have

sup dp(z,w; Uy jp) < 27MEQ=2)=u) (3.1.23)

z,WES, ik

Fixing # > 0 and taking 7 as above, if m > no, b € (0,27], a € [0, 1], we can concatenate
near-minimal paths connecting a + 27" to a + 2~"*V% in U, | ru,7 for each n > m + 1 with

a near-minimal path connecting a +2~"*Vi to a + bi in U 112741, to find that
b, (a,a + bi) < 207EQ=2)=n) (3.1.24)

Indeed, by the same token it follows that, whenever a € [0,1] and b < 27, the dj-diameter

of the vertical line segment [a, a + bi] from a to a + bi satisfies

diam([a, a + bi];b,) < (4b)5(Q-2~*, (3.1.25)
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Now consider general w, z in K. If |w — z| < 2min{Imw,Imz}, then with 7 such that
27" < w - z| < 277V, we have min{Imw,Imz} > 2-"*V 50 we can find ji, j2, k1, k2
such that z € §,,; » and w € §,, ; ,. Moreover, |w - z| < 2-=1 implies that [j; — j»| < 5
and |ky — k2| < 3, which means that if # > no, then by applying (3.1.23) to a set of rectangles
p, and S

of the form §,, ; ;. connecting § £, we find that

7,71, 7,2,

b, (z,w) <7-277EQD1) < 71y _ 5|§(Q-D, (3.1.26)

On the other hand, suppose |w — z| > 2min{Ilm w,Imz}. Since we also have 2|w — z| >
2(max{Im w,Im z} — min{Im w,Im z}), adding these inequalities yields max{Im w,Imz} <
%lw —z|. Moreover, with 7 such that 277 < |w —z| < 2=~ we can find k1 and k; such that
Rew+|w-z|i € S,_ 14, Rez+|w—z|i € S,_1 14, and (since |[Rew—Re z| < |w—z| < 277V

|/€1 —/€2| < 1. Thus

v, (w,z) <d(w,Rew + |w — z|1) + b (Rew + |w — z[7,Re z + |w — z]2)
+d,(z,Rez +|w — z|1)
) 3 ) )
< diam([Re w,Re w + §|fw — z|i];vp) + diam(S,_1 14,305 (o 5 Up_1.18,))

) ) 3 )
+diam(S,,_114,:0, (- 3 Upy—1.18,)) + diam([Re z, Re z + zlw —z|i];dp).

Assuming now that 7 — 2 > ng we can use (3.1.25) to bound the first and fourth terms
each by (6w — z])¥(Q72~* and use (3.1.23) to bound the second and third terms each by
(2lw — z])¢Q@=2*_ Along with (3.1.26), we have just shown that (3.1.15) holds with C =
max{7,2(2¢(Q27# 4 6£(Q=2-#)} provided |w — z| < 27"*D. Since K clearly has finite dj-
diameter (e.g., combine (3.1.25) with & = 27 and (3.1.23) for all j and & with 7 = ng), the
result for general w and z in K follows by possibly increasing the constant C.

Note that our exponent matches the one in [DFG*20, Prop. 3.18] for the zero-boundary
GFF in the bulk, which is proved there to be optimal in the sense that b;w» is almost surely
not locally (£(Q — 2) + #)-Holder continuous w.r.t. the Euclidean metric on any bounded
open set for any # > 0. Since ) is continuous away from the boundary it is easy to see that
the same holds for d,. We obtain the same optimal exponent here because, as we have already

seen, for the free-boundary GFF the maximum thickness at the boundary is the same as that

in the bulk. [
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Remark 3.1.10. Note that the above argument provides near-minimal paths that do not inter-
sect OH except possibly at their endpoints. In particular, it follows that with h, u, K, C as in the

statement of Prop. 3.1.9, we have

sup inf {length(P;d;) |P: z ~ w, P7Y9H) = 2} < C(diam K)§Q=2-%  (3.1.27)

z,weKNH

3.1.5 Positive definiteness

The aim of this subsection is to prove the following:

Proposition 3.1.11. If h is a free-boundary GFF on H with some choice of additive constant, then

the function dy, is almost surely a metric on Hy; in particular it is almost surely positive definite,

Note that, since finiteness follows for instance from Lemma 3.1.8, we now have only to

establish positive definiteness. Firstly we show positive definiteness at the boundary:

Lemma 3.1.12. If h is a free-boundary GFF on H with some choice of additive constant, then

almost surely for all a,b € OH we have d;,(a,b) > 0.

Proof. We want to show that, almost surely, d,(a,5) > 0 whenever a,b € 9H are distinct.
Firstly we can consider the analogous problem for the quantum wedge. Recall that part
of [Shel6a, Thm 1.8] states that, if a (y — 2/y)-quantum wedge (H, /4,0, o) (equivalently,
a wedge of weight 4) is decorated by an independent SLE,. 7 in H from 0 to o, then the
surfaces parametrized by the left and right components (W1, h|w,, 0, o0) and (W5, Alw,, 0, o)
are independent y-quantum wedges (equivalently, wedges of weight 2).

If we take any two distinct points on 7 \ {0}, we know that they are at positive d,-distance
w.r.t. 4 in H, since they are away from the boundary dH (since 1 does not hit dH \ {0}
by [RS05, Thm 6.1]). The distance w.r.t. d;,(-, -; W;) cannot be less than that w.r.t. 4, which
means that any two distinct points on the right-hand (resp. left-hand) side of the boundary
of Wi (resp. Wh) are at positive LQG distance w.r.t. & in W, (resp. W2). (By conformal
covariance, this remains true regardless of the embedding of these wedges.) This suffices to
establish positive definiteness of b;, on (0, o) for the y-wedge. Note also that if we consider
the canonical (circle-average) embedding of the wedge given by W into H, then fix a particular
compact set K C H not containing 0, we can find L ¢ H not containing 0 such that K c

int L (i.e. the relative interior of L within H); then almost surely the LQG metric distance
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between K and 0L in H is positive, so that the positive definiteness of the LQG metric on
K N 0H is determined by the field values inside int L.

Given the result for the y-wedge, we can deduce it for the free-boundary GFF on H by
an absolute continuity argument, using the radial-lateral decomposition. Indeed, recalling
the construction of the circle average embedding from §2.2.1, when we parametrize by S,
the field average on {¢} x [0, 7] for the y-wedge can be expressed, for a standard two-sided
Brownian motion B considered modulo vertical translation, as By(;4+7)+(Q—7v)(t+7) where 7
is the last time at which By, + (Q — y)t hits 0. Translating horizontally by 7 gives a field
whose average on {¢} X [0, 7] is given by By, + (Q —y)t, and whose lateral part (i.e., the part
with mean zero on vertical line segments) has the same distribution as that of the wedge’s
lateral part (since it is independent of the radial part, with scale-invariant distribution). By
conformal covariance, we again have positive definiteness for the LQG distance defined with
respect to this field (when we map back to H, on (0, «)).

Finally the process B2, +(Q—7)t, with ¢ restricted to any compact subset of R, is mutually
absolutely continuous with the law of B,. So, considering the radial-lateral decomposition,
the result for the wedge implies that for the free-boundary GFF (at least away from 0, but

translation invariance then covers the case when 4 or 4 is 0). u

In the light of Lemma 3.1.12 it is straightforward to complete the proof of Prop. 3.1.11.

Proof of Prop. 3.1.11. It remains only to rule out the possibility that there exist some a € R,
z € H at d),-distance zero from each other. If we had 2 € R and d(4, z) = 0 for some z # a,
then by Lemma 3.1.12 we necessarily have z € H. Taking z, — a w.r.t. the Euclidean metric,
by Prop. 3.1.9 we also have z, — a w.r.t. »,. Thus z, — z w.r.t. by, but (since Im z,, — 0)
not w.r.t. the Euclidean metric. This contradicts the fact (noted in the discussion at the start

of §3.1) that d;, induces the Euclidean topology on H, concluding the proof. u

3.2 Further Holder continuity estimates for y-LQG metrics

In this section we will show that, almost surely, dj, is in fact locally b-Holder continuous
w.r.t. the Euclidean metric on H (so in particular d;, induces the Euclidean topology on H).
First, however, we will show that the dj,-distance between two points of H is almost surely

bi-Holder continuous w.r.t. the vj-measure of the interval between them. Throughout this
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subsection, 4 will always be a free-boundary GFF on H with some choice of additive constant

(in this subsection it will never be necessary to specify the choice).

3.2.1 Upper bound on distance in terms of boundary measure

For what follows we will need to adapt the version of [DS11, Lemma 4.6] for the boundary

measure vy,.

Lemma 3.2.1. There exist c1, ¢z > O such that, forall a € R, & > 0 and n < 0, we have
Plvj([a,a +&]) < "% %Psselha(@)=Qlog %)] < cremm’,

Proof. Note that this result does not depend on the choice of additive constant for A, since
adding a constant ¢ scales both sides of the inequality by e7¢/2. The original [DS11, Lemma 4.6]

gives the almost sure lower tail bound

Pvi(la - sa+s]) < e 2O Qoedl(h () 16 > )| < Cre T,

for all n < 0, with Cy,C; > 0 deterministic constants independent of 4, &, . (Actually in
[DS11] the statement and proof are given just for an analogue involving the area measure y;,
instead of the boundary measure v, but the proof is similar for the boundary measure -
see [DS11, §6.3].) We will need a lower tail bound for the conditional law of v, ([4,a + £])
given (hgs(a) : & > &), rather than for that of v,([a — &,a + €]), but this in fact follows
from the proofs of [DS11, Lemmas 4.5-4.6], which (when reformulated for the boundary

measure) proceed by partitioning [a — &, a + €] into [a — &, a] and [4, a + €] and thus actually

obtain that, almost surely (possibly changing Cy, C,):

P [Vh([d, a+eg]) < ettithe(a-Q log 1)

(he(a) : & > a)] < Cre O, (3.2.1)
Observe also that if § < &, since [a,a + 6] C [a,a + &] we have, almost surely,

P [Vh([d, a+el) < o1+3 (hs(a)=Qlog 3)

(ho'(a) : &' > 5)] < Ce O,

Moreover, if T is a stopping time for the process (/.-:(a)); such that e™? < &, then, by

continuity of this process, the usual argument considering the discrete stopping times 7}, :=
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27712771 yields that
Plvy([a,a+¢]) < e1*1(h -1 (@)-QT) (he-t(a) :t <T)| < Cre=Cor’

almost surely on the event {7 < oo}. Note that, if we set Y; = h.:(a) — Qt, then Z,, :=
sup,., Y5 —Y; is the maximum over all time of a standard Brownian motion with drift —Q/2,
and is thus an Exp(Q) random variable. (This standard result can be obtained by using the
Girsanov theorem to deduce the law of the maximum over the time interval [0, 7'] from that
for a Brownian motion without drift and then sending 77 — oo - see [Pril4, Prop. 10.4].)
Thus P[Z,, < log2] =: q is positive and independent of ¢ and a. Now, let T := inf{t >
logi : Y, > M}. Conditioning on {suptzlog% Y, > M} (equivalently, on {T¥ < oo}), the

above applied to the stopping time T gives that

2
P(v,([a,a+&]) < e+iM sup Y; > M| < Cre=Cn",
t>log 1

But since we also have

P|sup YV, <M+log2| sup Y, >M|=P|[Zu, < log2|TM <x| =g

t>log i t>log 1

(by the strong Markov property), by conditioning on which of the disjoint intervals of the

form [(n — 1) log2,nlog2) contains SUP, 5 jog 1 Y2 WE have

7]+%(Sup[210gé Y;—logZ):I < C

-1,-Con?
<Ciq e 277,

Plv,(la,a+e]) <e

from which the result follows. ]

Lemma 3.2.2. Fix a € (0,2/d,). Then there exist a constant € > 0 and a random integer N

such that whenever m € N, m > N, a € [0,1] N 27™7Z, we have
,(a,a+27") <v,([a,a+27"])" - 277, (3.2.2)

Moreover, € > O can be chosen so that the minimal such N satisfies PIN > n] = O(27"F) for

every B € (0,Q%/4 - 1).
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Proof. Recall d, = y/£. Fix £ > y/(2€). Then to prove the result for @ = ¢!, it suffices
to show that for each fixed a and m, the complement of the event in (3.2.2) has probability
O(274) (uniformly for a € [0,1]N27"Z) for some A > 1 (then we can apply Borel-Cantelli
to prove the result with 8 = A —1). Put b = a + 27", By Prop. 3.1.6 (and the subsequent

Remark 3.1.7), for any & > 0, it holds that, for every 7, we have

Plvi([a,b]) < la = b *"dy(a, b)*]

o0 ¢
< Plvy([a,b]) < |a—b|7%¢ (/ £ (2)-Q1) dt) ]
log (la—b|1)
o £
+P v ([a. b)) < |a—b| 7% (/ o~ (1)-Q1) dz) ]
log (la=&11)
+O(la-b]").

Consider the first of the probabilities on the RHS. By [DMS21, Lemma A.5], if we let the
integral be I and the supremum of its integrand be M, then for any p > 0 there is some

¢p < 0 for which we have

E[I?|M] < ¢,M?.

(Actually [DMS21, Lemma A.5] is stated for an integral with lower limit 0 and a Brownian
motion started from O, so to obtain our statement we can, say, use the lemma to bound the
expectation conditional on both /,_;(2) and sup,,. et em1a—p) (@ =D1ap (=Qu) " and use that
these have finite moments of all positive orders.) Dividing and taking expectations we find
that /M has finite moments of all positive orders, so that by Markov’s inequality, for any
k > 0 we have that I is bounded by |a—b|~* times M except on an event of superpolynomially

decaying probability (in |2 — 5|71). Thus we have, for every 7:
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® ¢
P vi([a.b]) < |a— b7 (/ o (2)-Q1) dt) ]
1

og (la=b|"")

IA

P{vy([a,b]) < |a—b|_25‘gexp ({f sup (he-t(a) — Qt) || +O(la — b|")

t=log (|a=b|1)

< P |vy(lab]) < |a—b|48exp(Z sup  (het(a) —Qt))] +O(la - bl")
| t>log (la—b|™1)
+P|2€& sup (he-:(a) — Qt) > 3elogla — b| + Y sup (he-t(a) — Qt)] .

t>log (la—b|~1) t>log (la—b|~1)
(3.2.3)

Note that the first probability on the right-hand side of (3.2.3) decays superpolynomially in
|a — b| by Lemma 3.2.1, whereas the last probability is equal to

Pl s (@) -Qnz s

t>log (Ja—b|~1) y/2

log|a - b|] ) (3.2.4)

It thus suffices to show that the union of the event in (3.2.4) overallm > n,a € [0,1]N27"Z,

b = a +27™ has probability O(27"F) for some B > 0. Setting § = T 4}//2, this union is

contained in the event
hy(x)
sup su > 0
{szn S8 Tog(1/m = @7
which by (3.1.6) has probability O (277((Q=9)*/4=1-1) for every u > 0. Since £ and therefore &

can be made arbitrarily small, this completes the proof for arbitrary 8 € (0, Q%/4 — 1) (note

that the result is non-trivial since Q > 2). u

By dyadically partitioning each boundary interval we can now establish local Holder

continuity for d; w.r.t. v.

Proposition 3.2.3. Fix @ € (0,2/d,). Then almost surely there exists C' € (0, c0) such that

whenever a, b are in [0, 1], we have
oy(a,b) < C'vy([a, b])".

Moreover P[C’ > x] decays at worst polynomially in x.
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Proof- With N as in Lemma 3.2.2, note that for m < N, for a € [0, 1] N 27Z, we have

ZN—m

bp(aa+2) < wp(a+(i-127N, a+i2N)
1=1
2N—m

<2 Ne Z vi([a+ G- 12N, g +i27N])e
1=1

< 2—N.92(N—m)(1—a')vh([ﬂ’d +2—7n])a’

using the power mean inequality (since @ < 2/d, < 1). It follows that there is a random

constant C such that whenever m € N, 4 € [0,1] N 27 Z, we have
0,(a,a+27") < Cvy(la,a+277])" - 2772,
and that, assuming ¢ < 1 - ¢,
P[C > 2"1=*=9] < P[N > n] = O(27"F),

i.e., C has polynomial decay. We now argue as in the proof of the Kolmogorov criterion:
if @ and b are dyadic rationals in [0, 1] we can partition [a,b] asa =ap < a1 <---<a;=b
where [a;_1,a;] = [27"n;,27™(n; + 1)] for non-negative integer m;, n; such that no three

of the m; are equal. Then we have

b (a, ) D dy(ai1ai) N y-ne .
m = ; Vh([di_l,dl’])a’ = 2C Zz = C". (325)

n=0

The same argument works for a, b arbitrary, using a countably infinite partition a = ag <
aj < az < --- with a, T b. In order to obtain the analogue of the first inequality in (3.2.5)

we thus have to justify that

o,(a,b) < th(ﬂi—l’di)- (3.2.6)

1=1

This follows by using the triangle inequality to obtain

v, (a,b) < ) dp(ai-1, a;) +j(an, b)

=1

and noting that d,(a,, ) — 0 by Prop. 3.1.9. n
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3.2.2 Local reverse Holder continuity

For the metric gluing proof we will need a Holder exponent for the Euclidean metric w.r.t. dy,.
We know this exists away from 0H, since this is true for the whole-plane GFF by the results
of [DFG*20], and the harmonic correction is well-behaved away from the boundary. How-
ever, we can obtain Holder continuity even at the boundary. We can establish such a reverse
Holder inequality by an argument based on [DFG*20, Lemma 3.22]. First we will need the

following lemma:

Lemma 3.2.4. Let @« < Q, and let h be either the circle average embedding into H of an a-
quantum wedge, or equal to h' —a log | -| where ht is a free-boundary GFF on Hwith ht (0) = 0.

Then, almost surely, every ;,-bounded subset of H is also Eunclidean-bounded.

Proof. First observe that since dj, is locally bounded (indeed, locally Holder continuous)

w.r.t. the Euclidean topology, as a | 0,
P |,(0B(0,7) NH,0B(0,2r) N H) > Merwm] 1

and that by conformal covariance this probability does not depend on 7. Since in (2.1.1), @,
and o (h|m\p(0.r)) are independent if supp ¢, € B(0, ), the tail o-algebra (N, .0 o (hlms(0.r))
is trivial, and from this and the fact that b, is locally determined by 4 it follows that for a

large enough there are almost surely infinitely many 4 € N for which
v, (8B(0,2%) N, 9B(0,2M*1) NH) > a2kiQeéh (@),

Since e!£Qe%t (0 — 0o as r — oo (for £ > 0 it has the law of the exponential of a Brownian
motion with positive drift Q — @, albeit started at the last time this process hits 0 in the case

of a wedge), it follows that for any compact K ¢ H, d,(K,dB(0,7)) — o0 as ¥ — oo, |

Proposition 3.2.5. Let h be a free-boundary GFF on H with some choice of additive constant.
Almost surely, for each u > 0 and K c H compact there exists C € (0, o) such that whenever a,

b e Ruwitha, a+bi € K, we have
by (a,a +bi) > C1pEQ2,

Proof- Since we know that diam (K;d) is finite, by Lemma 3.2.4 we can find a (random)
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U

j=ii

Uy

Us

Figure 3.2: The sets U, U, used in the proof of Prop. 3.2.5.

K’ 2 K compact so that b, (K,dK’\ 0H) > diam (K;b;,), so that d,(z, w) = d,(z, w;int K’)
foreach z,w € K. Thus it suffices to prove the result for b, (4, a+bi; U) and each a, a+bi € U
for each bounded U open in H.

Choose U to be an axis-parallel rectangle containing 0 with dyadic rational vertices. Let U
be another such rectangle containing U N (H+1) so that the lower vertices of U have imaginary
part greater than 1/2 and the upper vertices have imaginary part greater than 2, so that there

exists U, a union of 2" horizontal translates of 272U covering
(U N H+27"))\ (H+2""D5)).

Define 2™P and b by coupling with % as in Prop. 3.1.5. By [DFG*20, Lemma 3.22] (and
the Borel-Cantelli lemma applied to € = 27”) we know that the Euclidean metric on K is
(x")~!-Holder continuous w.r.t. dyw for each y’ > £(Q + 2). By Borell-TIS and a union

bound over the 2” translates of 277U, we find that there are ¢, ¢, for which, for each ¢ > 0,

P| inf £O@DQD) < ot | < onp pmeat®,
zeU,

Note that setting ¢t = nelog2 makes this summable. As before, we can get a similar tail

bound for §(27"7) — h(2); combining all of these we find that (with y = y’ — 2¢) we get that
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for every xy > £(Q +2) there is almost surely a finite constant C > 0 for which we have
b,(R+2"" Vi R+27",U) > C27X (3.2.7)

for all 7, from which the result follows. |
We now deduce estimates for LQG areas of Euclidean balls from the results of [RV10].

Proposition 3.2.6. Fix K c H compact; let h be a free-boundary GFF on H with the constant
fixed such that h1(0) = 0. Then whenever {1 > y(Q+2) > y(Q=2) > {2 > OQthere almost surely
exists a random &q > O, such that, for all € € (0,e0) and all z € K, if B(z, €) is the Euclidean

ball of radins & around z then
£ < up(B(z,€) NH) < 2.

Moreover, define

42+ 2V2y 2+ (8 +9?)
- (4+7%)? '

S+

If the condition on K is weakened to K C H compact (so that K is allowed to intersect 0H), then
provided {5 € (0,y(Q —2)(1 - s4)) there still almost surely exists a random & > O such that the
upper bound holds for all z € K, € € (0, &o).

Proof- We will first assume that K is at positive distance from JH, using the fact [RV10,
Prop. 3.5, Prop. 3.6] that the ujwp-area of a fixed Euclidean ball has finite p** moments for
all p € (—o0,4/y?). Fix the additive constant for 2™ so that 4,7 (0) = 0, and for each

p € (—00,4/y?) define C, := E[ ptjwe (B(0,1))?]. Then by (1.1.2), we have

d W
o (B0, 8)) 2 7k 7R (B(0,1)). (3.2.8)

If p > 0, fixing q,4" > p with 1/q + 1/q’ = 1/p and using that 4. (0) ~ N (0,log (1/¢)), we
obtain by Hélder’s inequality that

Elupm (B(0,£))?] < CH1g7Qp=rpd' 12, (3.2.9)

Likewise, since the centred Gaussian variables /. ¥ (z) — hYP (0) have variance log(1/£)+O(1)

uniformly in & and z € K, we obtain the same result up to a multiplicative constant for



84 CHAPTER 3. METRIC GLUING AND CONFORMAL WELDING IN LQG

Upwe (B(z,€)) and conclude by taking ¢’ sufficiently close to p that, for each p,# > 0, we
have

Bty (B(2,€))?] < C(p, u)e??Qp/0n

for each & > 0 and each z € K, where C(p, #) depends neither on & nor on z.

Fixing a neighbourhood U of K still at positive distance from dH, since sup;; (h — h™P)
has a Gaussian tail, a further application of Holder’s inequality gives the same result for /4
(except with a different C(p, #) and only over choices of & and z such that B(z,&) c U).
Setting p = 2/y < 4/y?, we obtain the exponent 2Q —2 — #. Now we can cover K by O(s72)

balls of radius & such that each ball B, satisfies
Pluy(Bs) > 2] < e P92E[uy(B,)P] = O(£2Q27262/v—n),

This exponent is greater than 2 whenever ¢, < y(Q — 2) and # is chosen small enough,
so applying Borel-Cantelli to covers C, with € = 277 for each 7, and noting that each ball
of radius & centred in K and such that B(z,2¢) is contained in U can be covered by an
absolute constant number of balls in C|io,,(1/s)]; We obtain the second inequality whenever

¢ < y(Q —=2). (Note that Q -2 > 0.)

The same argument for p = —2/y, considering infy; (5 — h"P) instead, produces the bound
P[u),(B,) < &1 = O(£%1/v~2Q-2-n),

giving summability whenever ¢; > y(Q + 2) and hence the first inequality.

We will again employ the result [She16a, Thm 1.8] that a (y — 2/y)-quantum wedge (a
wedge of weight 4) is cut by an independent SLE 2 (call it ) into two independent y-quantum
wedges (of weight 2). (It suffices to prove the result for a wedge, by mutual absolute continu-
ity.) Parametrize the original wedge by (H, %,0,0), so that if 7 is an independent SLE .
from O to co and W, W are respectively the left and right sides of 1, then (W=, h|w-, 0, o)

and (W, hlw+,0, o) are independent y-quantum wedges.

It follows from [RS05, Thm 5.2] that the components of the complement of an SLE,
in a smooth bounded domain for k € (0,4) are almost surely Holder domains. Therefore
(e.g. by using a Mobius map to transfer from H to the unit disc) we have a conformal map

¢: H — W that is almost surely locally Holder continuous (away from a single point on JH)
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Figure 3.3: We prove a bound on the narrowness of bottlenecks in SLE, curves for « € (0,4).
If diamn([s,¢]) > [n(s) —n(¢)|, we have a large ball B surrounded by the union of ([s, ¢])
and the line segment [17(s),7(¢)]. Since a Brownian motion started on ¢(R + 77) is unlikely
to hit B before exiting W™, a Brownian motion started on R+:7 is unlikely to hit ¢ (B) before
exiting H, making diam ¢ (B) small. This is impossible since the conformal coordinate change
preserves quantum areas, which are bounded above and below by polynomials in Euclidean
diameter, so the diameter of ¢ (B) is no smaller than a certain power of the diameter of B.

for W = W~ or W*. Moreover [GMS18, Cor. 1.8] gives that this holds with any exponent
a < 1- s, (and [GMS18, Remark 1.2] we have s, < 1). So even if K intersects 0H, if 0 ¢ K
we can use ¢ to map K Holder-continuously to a subset of W away from dH, then deduce

the upper bound for K from that for ¢(K) and y, where h=ho e '+ Qlog(l¢’I™). =

We now prove Holder continuity for the Euclidean metric w.r.t. d;,. We begin by estab-

lishing this at the boundary:

Proposition 3.2.7. Let h be a free-boundary GFF on H with the additive constant fixed in some
way. There exists B > 0 such that the following holds. Almost surely, for every u € (0, B) and each
fixed compact interval I C R there is a finite constant C > Q such that |x — y| < Cdy(x, y)(ﬁ_”)
forall x,y € I.

In order to prove this we will begin by proving Prop. 1.3.8, showing that SLE, curves for

k < 4 cannot bottleneck too much.

Proof of Prop. 1.3.8. Let h, n and W* be as in the proof of Prop. 3.2.6 (so n cuts the wedge
(H, A, 0, ) of weight 4 into independent wedges of weight 2 parametrized by W*). We will
need the result of [MMQ21, §4.2] that for k < 8, chordal SLE, curves in H from 0 to oo
almost surely satisfy the following non-tracing hypothesis: for any compact rectangle K c H
and any @ > & > 1 there exists 6o > 0 such that for any 6 € (0,60), and any ¢ such that

n(t) € K, there exists a point y with the following properties:

o B(y,éa) C B(n(t),6) \ n, and B(y,25a) intersects 1;
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e if O is the connected component of y in B(n(t),6) \ n, and a € 90 \ n(¢;8), then
every path in O U {a} from y to a exits the ball B(y, 55). (Here n(t;6)) is defined as
the SLE segment 17 ([0, 7]), where o and 7 are respectively the last time before ¢, and

the first time after ¢, that n hits B(n(z),6).)

Note that the proof in that paper can be used to find such points on either side of 17, and that
the hypothesis does not depend on the parametrization of n; indeed, the parametrization will
not matter for what follows, so we will choose to parametrize our SLE curves by capacity.
Let W be either W~ or W*, fix compact axis-parallel rectangles K/, K c H such that
K’ c int K, and fix a conformal map ¢ : W — H fixing 0 and oo, with inverse ¢. Fix r such
that Imz < r/2foreach z € (K N W). Given O < s < t such that n(s),n(t) € K, let
[7(s), ()] be the straight line segment from n(s) to n(t), and let £ = |n(s) — n(¢)|. Also
let P, be the law of a complex Brownian motion started at z. Then if B is a closed ball in H
contained in K’ and B is disconnected from ¢(R+:7) by the union of 7 and [7(s),7(¢)], the

Beurling estimate gives that there exists ¢ > 0 such that, for each z € B, a € R,
P, [hit o (R + i7) bef R el
1t + 17 ) betoren U < — )

‘ C[l/z
P<p(a+i7’) [hltBbeforen UR] < (diSt (K/’ aK))l/z

By conformal invariance of Brownian motion, applying ¥ gives

) : c 02
Py (2 [hitR + 27 before R] < (it (K. 0K )T
1/2
P,.ir [hity(B) before R] < ¢l (3.2.10)

= (dist (K, dK )12

Let o = sup,, g Imz. Then by compactness we can choose a € R so that a + i € y/(B).

Now by gambler’s ruin we have

P.vio [hitR + 27 before R] = g (3.2.11)
r

ct1?
(dist (K’,0K))1/2*

Suppose z, w € ¥(B) with [Re(z—w)| = p > 0. Without loss of generality suppose Im z >

and therefore o/r <

Imw. Set a = Re(%52). Then set Ly, Ly, L3 to be horizontal line segments of respective

lengths p/2,2p/3,2p/3 and centres a + i Imz, a, a + i Im z. Let R be the unique rectangle
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that has L, and L3 as opposite sides. If a Brownian motion from a + ir exits H + 7 Imz
through L, and after hitting L1 makes an excursion across R from L3 to L, without hitting
the vertical sides of R or hitting (R + zImz) \ L3, then it must hit ¢/ (B) before R. Since
we already have Imz, Imw = O(/'/?), the probability from a + ir of exiting H + i Im z
through L, is Z arctan 7Tz (using the Poisson kernel in H), whereas assuming p > ¢ 12
(and thus p = Q(0) = Q(Im z)) the probability from # of the latter event can be bounded
below by a constant uniformly for # € Ly, so by the second inequality in (3.2.10) we must

have p = O(£'/?). We have therefore shown that the (Fuclidean) diameter of ¢ (B) is O (£1/?).

Now, given s < t and @ > 1, we can apply the non-self-tracing hypothesis to the ball

B (n(u), z—tdiamn([s, t]))

for some s < # < t, so that the connected component of 77(#) in that ball is a subsegment of
1n([s,t]). This gives us a ball B of radius (%diam n([s, t]))a which is disconnected from oo by
the union of 1 and the straight line segment from 7(s) to n(t) (recalling that we can choose
the ball to be on the appropriate side of 7).

We can now compare diamn([s,t]) to £ using Prop. 3.2.6, which implies that for {;
and > as in the statement of that proposition, if B is the ball above, we have uj(B) =
Q((diamn([s,£]))@1), but if & = h o ¢ + Qlog|¢’| then h itself has the law of a quantum
wedge, so we have p;(B) = uz(¢(B)) = O(£%12). So diamn([s,t]) = O(£5/(2d)) o

required. n

We will now prove Prop. 3.2.7 from the results of [DFG*20] giving Holder continuity

away from the boundary.

Proof of Prop. 3.2.7. Continuing in the setting of the proof of Prop. 1.3.8, observe that an-
other use of the Poisson kernel in H gives that, for a = %Re (W (n(s)) +uw(n(t))),

Pir [exitHthrough[y (1 (5)), v (n ()11 = Oy (n(s)) — ¥ (n ().

But the LHS is equal to

Py(arir) lexitW throughn ([s,2])] = O((diamn ([s, £]))'"?)
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(by the Beurling estimate). Combining this with the diameter estimate we find

¥ (1(5) =¥ (n(0)] = O£ H) = O(In(s) — n(2)|2/ 4V,

In other words, ¢ is locally Holder continuous on 1. Note that for a fixed compact set K ¢ H
at positive distance from 0H, we have y ~!-Holder continuity of the Euclidean metric w.r.t. d,,
on K for any xy > £(Q + 2) (this follows from [DFG*20, Prop. 3.18] for the whole-plane
GFF h™P and the almost sure finiteness of sup ). So if n(s), n(¢) € K we have

W (n(5)) =¥ (2)] = OIn(s) = ()| H¥0) = O (), (n (s), p (£)) 2/ *x<V),

Observing finally that b, (7(5),7(2)) < d,(7(5),n(2); W) = dr(w(n(s)), ¥ ((2))) gives the
desired Prop. 3.2.7 with B = £»/ (4@ y £1). Observe that since we require @ > 1, xy > £(Q+2),
£1>y(Q+2) > y(Q—-2)(1-s4) > {2, we obtain that the result holds in the range

~ (Q-2)(1-s54)
0< B < 4§(Q+2)2 .

Proof of Prop. 1.3.7. Tt suffices to prove the left-hand inequality, since the right-hand inequal-
ity is given by Prop. 3.1.9. Let y > £(Q+2) and o < £(Q —2) be arbitrary. Fix some 8 < ,
ie. B < (Q-2)(1-s54)/(4£(Q +2)?). To recap what we have proven so far, suppose we
are on the intersection of the almost sure events of Prop. 3.2.5 and Prop. 3.2.7. Then fixing

K c H compact, there is some finite C > 0 on which we have
|(a1+ b1i) — (ap + br1)| < Cdp(ar + bii,ar + bzi)ﬁ (3.2.12)

provided a1 + b1i, as + byi € K and either by = by =0 or by =0, a1 = a5. (Note that we can
use Prop. 3.2.5 because B < (£(Q +2))71)

In order to remove this second condition and thus deduce a Holder exponent for the
Euclidean metric w.r.t. b, on a compact set K C H, we will split into cases. Fix p > 1/(80).
Note that 1/(B0) can be made arbitrarily close to 4(Q +2)?/((Q —2)*(1 - s;) and thus can
be chosen to force p > 1. Suppose Imw > Imz and Imw > 0. We will justify that, almost

surely, there exist finite constants Cy, Cy, C3, C4 > 0 such that:
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1. Firstly, if Imw > |w — z|? then

v, (w,R+ (i/4)Imw) > Ci|w — z|¥”;

2. Secondly, if 4Imz > Imw and Imw > |w — z|P then

v, (w,z;H+ (i/9)Imw) > Cylw — z|X.

3. Finally, if Imw < |w - z|? and |w - z| < 41/(17°) then:

b,(Rew,Rez) > C3lw — z|'/5;
b, (w,Rew) < Cylw — z|7F;

v,(z,Rez) < Cylw — z|7P.

89

(3.2.13)

(3.2.14)

(3.2.15)
(3.2.16)

(3.2.17)

Fixing the compact set K, we can choose U a bounded axis-parallel rectangle open in H

and containing K with the property that dist(z, JU\R) > 1forall z € K. By the local Holder

continuity of d, w.r.t. the Euclidean metric, this ensures that b, (z, U \ R) will almost surely

be bounded below by some Cx > 0 uniformly in z € K. We now bound d(w,R + ﬁIm w)

from below by the minimum of Cx and the internal metric distance d;,(w,R + %Im w;U).

By (3.2.7), there exists an almost surely finite constant C”’ such that for all w € K, we have

O, (w,R+ (/) Imw;U) > C'(Imw)X,

which together with the assumption Imw > |w — z|” establishes (3.2.13).

By [DFG*20, Prop. 3.18], for € > 0 sufficiently small the Euclidean metric is almost

surely (y — &)"1-Holder continuous on K w.r.t. Dyw (say, with the additive constant fixed

so that h?p (0) = 0), and thus also w.r.t. the larger internal metrics djwp (-, -; H + y2) for each

y > 0, with the same Holder constant. Thus there almost surely exists Cs > 0 such that

Ow(w,z;H+ (1/4) Imw) > Cs|w — z|¥7°.
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This implies that

b, (w,z;H+ (i/4) Imw) > min{Cx, Cs|w — z|¥* - inf eE ="My
UNH+(z/4) Imw)

By the proof of Prop. 3.2.5, if A™P is coupled with / so that the difference A*P—/ is a harmonic

function, we almost surely have

sup £ =h) — O(y~¢/F) (3.2.18)
Un(H+yi)

for each ¢ > 0, while the same holds for e¢*=""") In other words, Infyn (i) e€(h=h"?) —
Q(y?/?), and since Im w > |w —z|? we have (Imw)?/? > |w —z|?, which establishes (3.2.14).

Now turn to the case Imw < |w —z|?. Since the assumption |w — z| < 41/(1=p) gives that
|lw —z|P < %lw — z|, we have |Rew — Rez| > %lw — z|, and thus

b,(Rew,Rez) > C"VP|Rew — Rez|V# > 2C) VA|w — z|V/B.

We thus obtain (3.2.15) with C3 = (2C)~1/5,

The existence of C4 > 0 finite satisfying (3.2.16) and (3.2.17) follows from Prop. 3.1.9

together with the assumption that Imz < Imw < |w — z|°.

Having justified the estimates (3.2.13)~(3.2.17) we finish the proof. If Imw > |w — z|*

then either 4Im z < Im w, in which case it follows from (3.2.13) that we have
v, (w,z) = 0,(w,R+ (1/4) Imw) > C|w — z|*P,

or 4Imz > Imw. In this latter case, since p > 1 and Imw > |w — z|?, it follows from

(3.2.13) and (3.2.14) that there almost surely exists Cy > O such that

v, (w,z) = min{d,(w,R+ (1/4) Imw),d;(w, z; H+ (i/4) Imw)} > Cs|w — z|¥*.

But if Imw < |w — z|” then, since d;,(Re w,Re z) < b, (Rew, w) + 0y (w, z) +d,(z,Re z)

by the triangle inequality, it follows from (3.2.15), (3.2.16) and (3.2.17) that

b, (w,2) > C3lw — z|/P = 2C4|w — 2|7”.
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Since o-p > 1/, the last three displays imply the left-hand inequality of the proposition for

any a1 subject to
1 _(Q@-22-5
b 4Q+2p

at least when |w — z| < 4/01=°) ' but we can deduce it for general w, z by considering points

(3.2.19)

w = wo, W1, . . ., W = z along a path of finite dj-length from w to z such that |w; — w;_¢| <

41/0-p) and using a Kolmogorov criterion-type argument as in (3.2.5). n

Note that local bi-Holder continuity on H implies that by, induces the Euclidean topology
on H and not just on H, which completes the proof of Prop. 1.3.6. Finally, we show the

existence of geodesics.

Proposition 3.2.8. Let h be a free-boundary GFF on H minus a log| - | for some o < Q, with
the additive constant fixed such that h1(0) = 0. Then it is almost surely the case that for any z,

w € H there exists a b,-geodesic between z and w, which does not hit co.

Proof. Since dj-bounded subsets are also Euclidean-bounded by Lemma 3.2.4, and the two
metrics induce the same topology, the Heine-Borel theorem gives that (H, by) is almost surely
a boundedly compact space (i.e., closed bounded sets are compact), which implies that there
exists a geodesic between any two points (provided they are connected by a rectifiable curve,
which we know holds for any two points since dj, is a length metric). This is a standard result
in metric geometry [BBIO1, Cor. 2.5.20] proven by taking an infimizing sequence of paths
which by bounded compactness can be assumed to lie in a compact set, extracting a uniformly
converging subsequence by an Arzela-Ascoli-type result, and applying lower semicontinuity

of length to conclude that the limit is a geodesic. n

3.3 Bound on y-LQG area near the boundary

Our aim in the entirety of this section is to prove the following lower bound on the y-area
near a boundary segment. We will achieve this via the result [DMS21, Thm 1.2] that an
independent SLE-type curve cuts a quantum wedge into two independent wedges, but here
we will use several curves to cut out many independent surfaces that each have a positive
chance to accumulate a large p-area within a dj-neighbourhood of our boundary segment.
These surfaces can be described as contiguous portions of a space-filling SLE4/,2-type curve
similar to the one that generates the “topological mating” in [DMS21, §8], but we will not

need that description here.
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Proposition 3.3.1. Let h be a free-boundary GFF with the constant fixed so that hi(0) = 0. For
6 >0anda, b € Rwith a < b, define Bs([a, b)) to be the set of points at d),-distance < § from

the interval [a,b]. Fix I C R a compact interval and uw > 0. Then there almost surely exists

M > O such that for each [a,b] C I and & € (0,1) such that v;([a,b]) > 46%/%~*, we have
dy
up(Bs([a,bl)) = M6 vy([a,b]). (3.3.1)

Proof. As before, using the radial-lateral decomposition and mutual absolute continuity, it
is enough to prove this for a quantum wedge. In particular, we will consider a y-wedge
(H, h,0,00) (i.e., a wedge of weight 2, which is thick since 2 > y?/2 for y € (0,2)), and use
the result [She16a, Prop. 1.7] that the law of such a wedge is invariant under translating one
marked point by a fixed amount of vj-length. More precisely, if (H, /4,0, o) is a y-wedge and
we fix L > 0 and let y > 0 be defined by v, ([0,y]) = L, then the surface given by recentring
the wedge such that y becomes the origin (which can be described either by (H, A, y, o) or
by (H, A(- +y),0, 00)) is itself a y-wedge.

By the conformal welding/cutting result [DMS21, Thm 1.2], an SLE,2(~1;~-1) from 0
to oo independent of / cuts the wedge (H, 4,0, ) into two independent wedges of weight 1;
by shift invariance, for any L > 0, the same is true for an independent SLE,2(~1; ~1) from 4
to oo, where 4y is defined as the point in (0, o) for which v;,([0,ar]) = L.

We can couple SLE,2(~1; ~1) curves 17, from each x € R to co (or at least from each x in
a countable dense subset of R) using the imaginary geometry results from [MS16a]. Indeed,
by [MS16a, Thm 1.1], the flow line of a zero-boundary GFF h on H started at x € R is an
SLE,2(=1;~1) curve from x to o0, so we can simultaneously generate 17, for different values of
r > 0 by sampling such a GFF h independently of 4. By [MS16a, Thm 1.5(i1)], almost surely,
whenever any two such curves 7, 7. intersect, they merge immediately upon intersecting
and never subsequently separate. Moreover, by [MS16a, Lemma 7.7], if K is the set formed
by the initial portions of two such curves ., n,- run until they intersect, then the subsequent
merged curve stays in the unbounded component of H \ K.

Note that for ¢ < ¢’ the curves 7, 1. will merge almost surely. Indeed, if =1 < y%/2 -2,
ie.y > V2, then 7, hits (0, ) almost surely, and by scale invariance 5, will then almost
surely hit arbitrarily large x > 0. Thus 7, swallows ¢’ and then the transience of 7., implies
that the two curves merge. On the other hand, when y < V2, 1. almost surely does not

hit 9H. In this case one can map the unbounded region to the right of 7, back to H via
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Figure 3.4: We show alower bound on the ,-area near a boundary segment by using coupled
SLE,2(~1;~1) curves to cut a wedge into independent surfaces each of which have a positive
chance of accumulating some positive amount of uj-area within a small dj-distance of the

boundary.

a conformal map ¢; since 7. is a flow line, the field on H given by ho ¢! — yarg(¢ly
(the appropriate imaginary geometry coordinate change formula for ¢(7,/) to be a flow line
in H) has boundary conditions 4 = 7/y on (—o0,¢(c)) and 0 on (¢p(c), ). This means
that, by [MS16a, Thm 1.1], ¢(17+) is an SLE 2 (p) from ¢(c) with two left-hand force points
of weight —1 at ¢(c) and ¢(c¢’)” and a right-hand force point of weight —1 at ¢(c’)*. Since
the weights of the force points on the left sum to -2, the curve ¢(n.) must collide with a
left-hand force point, meaning that it merges with the left-hand boundary segment ¢(n.) -
indeed the denominator V£ —~W in [MS16a, (1.11)] evolves until hitting 0 as a Bessel process

of dimension 1, i.e. a Brownian motion, and thus will hit 0 almost surely.

Given ¢ < ¢’ denote by S, ., the quantum surface described by the restriction of the
field / to the unique connected component S, _,, of H\ (7, U n,_,) which is to the right
of 1, and to the left of 57, and whose boundary contains non-trivial segments of both 7,,
and n,,,. Almost surely, 77, 175, do not intersect on R. Indeed, since it is an SLE 2(~1; -1)
from a. to o and given 4, is conditionally independent of 4, 1, almost surely does not
hit a... On this event, 1, is an SLE 2(~1; ~1) from a4 to oo, and since given .- this curve
is conditionally independent of 4, n,_, almost surely does not hit the unique point on RN,

that is on the boundary of the unbounded component of H \ n,, to the right of n,_). Thus,
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it is almost surely the case that the intersection of dS,,_,_, with R is a bounded interval and
that, for each interior point x of this interval, there exists » > 0 such that §,_,_, contains the
Euclidean semi-disc B(x, 7) NH. Moreover, since the law of / on each deterministic open set
not containing 0 is absolutely continuous w.r.t. that of a free-boundary Gaussian free field, it
almost surely holds that for each such x and 7, the smaller semi-disc B(x, 7 /2) N'H has finite
diameter w.r.t. the internal metric dy (-, -; B(x,7) N H) (since we can find rationals q1, 42, 71
and 7 for which B(x,7/2) € B(g1.71) € B(q2,72) € B(x,7), and it is almost surely the case
that, for all g1, g2, 71, 72 such that E(ql, r1) C B(qa2,72), E(ql, r1) N H has finite diameter
w.r.t. D, (-, 5 B(q2, 72) N H)).

Notice S, 4., and S,, 4., are independent as quantum surfaces (i.e., modulo embedding)

124cz
when ¢1 < 2 £ ¢3 < ¢4. Indeed, we know from the conformal welding result [DMS21,
Thm 1.2] that the surfaces given by the restrictions of /4 to the regions to the left and right
of 1, are independent; the same holds for h since N, 1s a flow line. Moreover, 4 and h are
independent of each other. These independences together imply that S,, 4., and S, 4, are

independent.

For each k,n € N, we can consider the surfaces S, (ot with three marked points

Xkns Vkn> Zkn given by, respectively, the last point on R N § that n4,_,, hits

A(k=1)/n>%n

before merging with 7,,, , the last point on RN § that 1,4, , hits before merging

A(k=1)/n>%kn
with 74,_,,» and the point in H where the two curves merge. As explained above these
surfaces are independent. By shift invariance, these surfaces are identically distributed when

considered as triply marked surfaces modulo embedding.

Consider a point wy,, in the interval (xy,, yz.,,) (Which has positive length almost surely,
since 74,_,,, and 74, do not merge on R); for concreteness we may set wy, to be the
unique point in the interval such that v, ([xp ., wp ,1) = vy ([wp . Yp.0])- As explained earlier,

nd

that B(wy,,,7/2) N H has finite diameter w.r.t. the internal metric dj(-,; B(wy,,, ) N H).

we can almost surely find » > 0 such that B(wy,,, ) N H is contained in Saeory ity @

~2/d .. : : : :
Thus, the set 8] ™ consisting of the intersection of int § with the open ball of

2/d,

A(k=1)/n>%kn

radius »~/%7 centred on wy,, w.r.t. the internal metric d; (-, -;int § ) is non-empty

A(k=1)/n>%k|n

and open w.r.t. the Euclidean topology, and thus has positive pj-measure almost surely. Thus,

for every p € (0, 1), there exists ¢ > 0 such that

~2/dy

pe=Plup(8;,7) 2 cn?] > p. (3.3.2)
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Indeed as ¢ — 0 this probability tends to 1. Observe that by shift invariance p, does not

depend on k.

Adding a constant C to the field /4 scales vj-lengths by e?¢/? and uj-areas by e?¢, as
well as scaling d,-distances by e¢¢. By [DMS21, Prop. 4.7(i)], the circle-average embedding
of 4 + C into H has the same law as that of 4, so if we add a constant C to the field # on H
and then rescale appropriately to achieve the circle-average embedding, the resulting surface
has the same law as (H, 4,0, ). The rescaling factor is independent of h, which itself has a
scale-invariant law, so if we also apply the rescaling to the field j and 77 then the joint law is
invariant. This shows that, as a triply marked quantum surface, the law of 174, 4, is the same
as the law of 17,, ,, but with v,-lengths scaled by ¢, yj-areas scaled by 2 and dj-lengths scaled

by ¢2/4r. This implies that the probability p. in (3.3.2) does not depend on 7.

For ¢ > 0 and k, 7 € N, define the event

2/dy

Acko = (81, ") 2 en™?).

If ¢ > 0is chosen so that p > 1/2, then by a standard binomial tail estimate (see, for

example, [MQ20, Lemma 2.6]), there exists Co(p.) > 0 for each N, ng € N, we have

no+N -1

P 1a,,, < N/J2| < e PN, (3.3.3)

n=no

dy

. . =2/ .
Moreover Co(p;) — o as p. — 1, i.e. as ¢ — 0. Thus, since the By 7 are disjoint for

different k, if £, s € R are such that t —s > 1 (so that [t — 5] > %(t —5)), we have

< e=Copoli=s] < o=1Co(pe) (=),

1 o 1 -
P h(8, 00, (s acgn])) < (¢ =$)en™ < 51e =s)en™

For T,v > 0 fixed, this probability converges when summed over all choices of n = 27,
s = 2", t = (j + 1)2”° with m, ] non-negative integers such that (j + 1)277(1-%) < T,
Indeed, the sum is bounded by ¥, 27(1=9) T'¢=2C0(r)2™ wwhich converges superpolynomially
fast in 2. Thus we find that, with superpolynomially high probability in 27 as mq — oo,

whenever m > mg and j > 0 is an integer such that (j + 1)277""% < T', we have

C . _
,L[h(Bz,Zm/d},([djz—m+mv,d(]'+1)2—m+mv])) > ZZ 2m+mv- (334)
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Furthermore, by disjointness of the B/Zz/dy, on the event considered above (and thus still
with superpolynomially high probability in 270 as mg — o0) it holds that whenever j < k

are non-negative integers with k277*”? < T', we have
c._ .
llh(BZme/dy ( [d]'z—m+m'u, ﬂkz—mﬂnv])) > 12 2m+mv (k - ]) (3.3.5)

On this event, for each m > mq (3.3.1) holds for each subinterval [, 5] of [ao, ar] of

vj-length at least 277*7%+2 with § = 2727/ dy with u = dyv/2 and with M = £, since
we can find a subinterval of [4, b] of the form [a;s-mmo, apy-mims] Whose vj-measure is at
least 1/4 that of [a, £]. This gives an overall constant (i.e., one holding for all § € (0,1)) of
M = ¢27/16 (using the right-hand side of (3.3.1) with § = 27270/% a5 the lower bound
for all larger §) and holds with probability bounded by T}, ,,,, 2m(1-9) =3 Co(P)2™ | Gince
v, (I) has a finite first moment, for any @ > 0 we can set 7 = 2% and observe that the
probability that we can take M = ¢277°/16 is bounded by 27°¢ 3, 2m(1-9) g=3Co(pc)2™
plus the probability that vj, (1) is greater than 7', which 1s O (277°%). Since « is arbitrary, this

gives superpolynomial decay of the constant M. n

3.4 Proofs of main results

3.4.1 Proof of Theorem 1.3.2

We now prove Theorem 1.3.2, the extension of [GM19, Thm 1.5] to the y-LQG metric for
all y € (0,2). Suppose we are in the setup of Theorem 1.3.2. That is, fix y € (0,2) and w™,
w* > 0, and let (H, /4,0, o) be a quantum wedge of weight w := w~ +w™* if w > y?/2 (so that
the wedge is thick), or a single bead of a wedge of weight w, with specified y-LQG area a and
y-LQG boundary lengths I7, I* > 0, if w < y?/2 (corresponding to a thin wedge). Let 1 be
an independent SLE,2(w™ - 2; w* — 2) from 0 to co which we will parametrize by v;-length
as measured on either side of the curve (recall that these two boundary length measures agree
by [DMS21, Thm 1.4]). As in [GM19], we define V,, = {z € C : |z| < p,Imz > p~'} for
p > 1. Forz € Hand r > 0, write B, (z;9;) for the open dj-metric ball of radius r centred
at z.

We will replicate the argument of [GM19, §4], establishing analogues of the lemmas in

that section, beginning with an analogue of [GM19, Lemma 4.1]:
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Lemma 3.4.1. In the setting of Theorem 1.3.2, let R > 1 and let z1 and z, be independent
samples from py|v,, normalized to be a probability measure. Almost surely, there exists a d),-

geodesic from z1 to z3 that does not hit 0 or c.

Proof. First note that [GM19, Lemmas 4.2, 4.3] hold for general y just as in the y = /8/3
case, since their proofs just rely on the locality and Weyl scaling properties of the y-LQG
metric, along with (in the case of [GM19, Lemma 4.3]) calculations for the Gaussian free
field ([MS21a, Lemma 5.4]) that do not depend on y. This establishes that no d,-geodesic
between points of H hits 0. For our analogue of [GM19, Lemma 4.1], we also need to know
that for quantum typical points z1, z; (i.e. if z1 and z; are sampled independently according
to uy,) there almost surely exists a d-geodesic. For a thick wedge, existence of geodesics that
do not intersect oo follows from Prop. 3.2.8 plus absolute continuity with the free-boundary
GFF plus a log singularity. For beads of thin wedges, since (H, A, =, 0) @ (H, h,0, ), the
analogue of [GM19, Lemma 4.3] gives that paths of near-minimal d;-length between z1 and z
must stay in a set that is Euclidean-bounded and thus dj-compact (since 9y, still induces the
Euclidean topology away from 0, by absolute continuity w.r.t. the free-boundary GFF away
from 0), and thus we can still deduce the existence of a geodesic between z; and z, by the

argument of [BBIO1, Cor. 2.5.20]. ]

We will not address the question of whether geodesics are unique here, since we do not
need uniqueness for our results.

We now proceed to state and prove analogues of [GM19, Lemmas 4.5-4.9]. We begin
by using the estimates established in the previous sections to prove that a global regularity
event G¢ holds with high probability, which is analogous to [GM19, Lemma 4.5]. The
remaining lemmas (the analogues of [GM19, Lemmas 4.6-4.9]) will follow from this one in
essentially the same way as in [GM19, §4], though we will give the proofs here since there
are minor differences, since conditions (iii) and (iv) in Lemma 3.4.2 are slightly weaker than
those in [GM19, Lemma 4.5], and we have not ruled out the possibility of geodesics hitting
the boundary. Given these lemmas, the remainder of the proof of Theorem 1.3.2 will be

identical to the argument in [GM19, Thm 1.5].

Lemma 3.4.2. In the setting of Theorem 1.3.2, there exists B > 0 such that, for all u € (0,1),
o >2,p € (0,1), thereis C > p suchthat P[Gc) > 1 — p, where G is the event that all the
Jollowing hold:
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(i) Foreachz € V, and 0 < 6 < 1 such that Bs(z;d,) NR = @, we have p;,(Bs(z;d;)) <
Csdh™,

(i) ForeachU e U U U withU NV, + @, each z € Un V,, and each 0 < § < 1, we have
pa(Bs (23y,)) = C1adrte,

(ii1) ForeachU € U~ U U withU NV, # @, and each x,y € U N V,,, we have

0y, (x,7) < Cyp([x, y]aU)(Z/dy)_u'

(iv) ForeachU € U~ U U withU NV, + @, each0 < 6 < 1, and each x,y € 0U NV, with

vi([x,v]ou) 2 454?/2'”, we have

11, (Bs ([x,y]ov3 o)) = C716 D2y, ([x,9]00)-

v, F'07 eﬂCbZ S R/ dndo < 5 < 1, webd’yeBé(Z;bh) c B(Z, Cd‘ )
P
’Ui }707 EﬂCht > 5 > OS%C;] tl]ﬂtn(S) c ‘/ ﬂndlt _Sl S C 1, we}]ﬂ‘ven(t) (S b .
p/2 P

Proof. Note first that it suffices to show that for each item, there almost surely exists some
C € (p, ) for which that item holds, since this forces P[Gc] — 1 as C — oo.

With this in mind, item (1) follows from [AFS20, Thm 1.1]. Indeed, that result gives
us that, for 2™ a whole-plane GFF normalized so that the circle average 4;7(0) = 0, K a

compact set and & > 0, we almost surely have

W B ;b W] . . W] B ;b W]
sup sup Hie (Bs (23 Djr)) <oco and inf inf £ p (B; (3 Djvp)) > 0.
s€(0.1) zeK sdy—e s€(0,1) zeK sdyte

(3.4.1)

Recall that we can couple a free-boundary GFF AY on H, normalized so that the semicircle
average h1(0) is zero, with A"P, so that h = & — AP is a random harmonic function. We
thus find that (3.4.1) holds with A" in place of #™P provided K ¢ H is at positive Euclidean
distance from R (and thus positive d,r-distance, so that we need only consider s < b,z (K, R)),
and we can then deduce the same for /4 either a thick quantum wedge or a bead of a thin
quantum wedge (in the latter case with specified area and boundary lengths) by local absolute

continuity, which implies that there almost surely exists C < co for which item (i) holds.
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Item (v) follows from Prop. 1.3.7 (for a free-boundary GFF, then for a wedge or bead
thereof by absolute continuity). Just as in [GM19], item (vi) follows from the continuity
and transience of SLE from 0 to oo with force points, proved in [MS16a, Thm 1.3] (although
the parametrization by quantum length depends on 7y, observe that if (vi) holds for one
parametrization then it holds for any other parametrization, though not necessarily with
the same C). We now turn to items (ii)—(iv), which are required to hold for each of the
surfaces U cut out by 5 that intersect V,,. We can reduce to considering finitely many such
surfaces: exactly as explained in the first part of the proof of [GM19, Lemma 4.5], it suffices
to show that for each U € U~ U U* intersecting V,, there almost surely exists C € (p, o)
such that items (i1)-(iv) hold for U. We will map to H and use absolute continuity arguments;
in particular for each U we will consider the surface ¢ (U), where we define x¢7 (resp. yu)
as the first (resp. last) point on AU to be hit by 1 (with yy = oo when U is a thick wedge)
and set ¢y to be the unique conformal map U — H sending xy; to 0 and yy to co with the

property that the covariantly transformed field 2y := h o ¢! + Q log [(¢7')'| satisfies

1 up(U) =00

Mpy (DNH) = :
up(U)/2 pup(U) < o0

As in the proof of [GM19, Lemma 4.5], we can find p such that ¢/ (U N V3,) € V5 with high
probability (since the marked points xy7 and yy must be in R U o0). For the free-boundary
GFF, item (ii) follows since (3.4.1) holds with K = ¢y (U N'V,), whereas items (iii) and
(1iv) follow from Prop. 3.2.3 and Prop. 3.3.1 respectively, so it suflices to observe that the

restriction of Ay to Vj is absolutely continuous w.r.t. the same restriction of 4. u
We now proceed as in [GM19]. Our version of [GM19, Lemma 4.6] is as follows:

Lemma 3.4.3. In the setting of Theorem 1.3.2, for each v € (0, 1) there exists ug = ug(v) € (0,1)
such that whenever 0 < u < ug, p > 2,C > 1,and G¢c = Ge(u, p) is the event of Lemma 3.4.2,
there exists €0 = &o(C, u,v, p) > 0 such that the following holds almost surely on G¢. If0 < a <

b < a+egq<ocoandn([a,b]) NV, # @, then we have
diam(y ([a. b1);bp) 2 7(b — a)> 1+,

Proof. The proof is essentially the same as that of [GM19, Lemma 4.6]. Fixing v, C, #, p,
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by condition (v) in Lemma 3.4.2 we can choose &g € (0, 1) such that whenever z € V,,,, we
have ngé(m) 1y (z305) € V. In particular this ball does not intersect R.

Now suppose G¢ occursand ix0 < a < b < a+&g < coand z € n([a,b]) NV, 5. Setting
§ = (b — a)X1*9)/dy if we assume the statement of the lemma is false we have n([4,]) C
B7s(z;%,) € V,. Noting that V,, does not intersect R, we can find U € U~ such that
n([a,b]) € OU. Now, since b—a < &9 < 1andd, > 2, we have b—a = 6%/ 2+ > 454 /2~#
provided # < %(1 — (1+9)7!) (i.e. provided # is sufficiently small depending on v) and &g

is sufficiently small depending on # and v, so by condition (iv) in Lemma 3.4.2, we have

1, (Bs (1 ([a, b1); 04)) = up(Bs(n([a,b]);0p,)) 2 C7H(b - a)***.

Condition (i) in Lemma 3.4.2 gives us
11, (Bss(z30))) < 89 74C (b — a)21+0)(-n/dy),

If # is sufficiently small (depending only on v), then if &g is small enough depending on #

and C we can ensure that, whenever b — a4 < &g,
SdV_MC(b _ 4)2(1+v)(1—u/dy) < C_l(b _ 4)2”’_

Thus Bs(n([a,b]);d,,) € Bss(z;0y), so n([a, b]) cannot be contained in B7s(z;9),). |

Next we give a version of [GM19, Lemma 4.7], which bounds the number of segments

of 7 of a fixed quantum length that can intersect a dj,-metric ball.

Lemma 3.4.4. In the setting of Theorem 1.3.2, for each v € (0, 1), there exists ug = ug(v) € (0,1)
such that, whenever p > 2, C > 1,0 < u < uq, there exists 6o = 6o(C, u,v, p) > 0 such that,
almost surely on Gc = Ge(u, p), for each z € Vi p and § € (0,60, the number of k € N for
which n([(k — 1)6%/2,k6%12]) intersects Bgiw (z;0},) is at most 5.

Proof. Assume G¢ occurs; then for ¢ small enough depending on C and p and z € V5,
we have (using condition (v) in Lemma 3.4.2) that Bssus(2z;d;) € V,. By Lemma 3.4.3,
if # is small enough depending on v and 6 is small enough depending on C, u, v, p, we
have that forall z € V,,p and all k € N, n([(k - 1)6%/2 k5%/2]) ¢ Bysivo(2;by). Assume

that 6 and # are chosen so that the above conditions hold. Let K be the set of £ € N for
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which the segment 7([(k — 1)6%/2, k5%/2]) intersects Bgiw (z;bp); we now know that each
n([(k — 1)6%/2 k5% /2]) also intersects H \ Bysi+o(2;9;). Let V be the set of connected
components of H \ Bsi+(2;9y), and for each V' € V let Oy be the set of those connected
components of V \ n which intersect V' \ B,si+(2;d;). A topological argument given in
Step 1 of the proof of [GM19, Lemma 4.7] shows that we have |K| < 2+234,|Oy]|. This
argument relies only on the facts that 7 is continuous and transient and does not hit itself
and that b, induces the Euclidean topology, so it applies here unchanged.

Fixing V € V, O € Oy, by the definition of Oy and the fact that Bss1+(z;d,) does not

intersect R, there exists wp € dO N 7y satisfying
1
bh (’wo, aB5l+v (Z; bh)) = bh (wo, 3325“7; (Z; bh)) = 55“@.

Let Up be the connected component of H \ 77 containing O (so Up € U~ UU™), and let Bp =
B%ém (wo; bhluo)' Then by construction, n does not cross Bp, and Bo C B%ém (wo;dy,) C
Bjsiro (2;0) \ Bsio (230p). In particular Bo € O, which implies that Bp and Bo are disjoint
when O and O’ are distinct elements of /< Oy .

Since Bss1+0 (23 0) € V), each Up intersects V,, so by condition (ii) in Lemma 3.4.2, for

each O € Uy Ov we have py(Bp) > C_l(%d)(dVJr”)(l”). We thus find that

CT(5/2) @005 3T |0y < 1y (Bygies(2303) < C(26) 1)
Vev
where the second inequality is by condition (1) in Lemma 3.4.2. This, combined with the
earlier fact that |K| < 2+2 Y4 |Ov|, gives us a bound on |K| of a universal constant times

C25=2#(+9) ' which after possibly shrinking # and 6 is enough to prove the lemma. m

Next we adapt [GM19, Lemma 4.8]:

Lemma 3.4.5. In the setting of Theorem 1.3.2, let v € (0,1) and let uo = wuo(v) be as in
Lemma 3.4.4. Let u € (0,up], p > 2and C > 1, and let Gc = G (u, p). Let z1, z2 € V),
and let vy, 5, be a dj-geodesic from z1 to z, contained in V)2, all chosen in a manner that is
independent from n. For 6 € (0,1) let KY , be the set of k € N for which v,,,, intersects
n([(k = 1)6%/2, k6%12]). Then there is an exponent a > 0 depending only on y, w~, w* and

the exponent B in Lemma 3.4.2, and a deterministic constant M = M(C,u,v, p), such that for
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each 5 € (0, 1) we have
E (1K)l Toc | Byem] < M2y (21, 2). (3.4.2)

Proof- Tt suffices to prove (3.4.2) for § < 6o where 6o = 60(C, u,v, p) is as in Lemma 3.4.4,
since it can then be extended to ¢ € (0, 1) by (deterministically) increasing M. Fixing z1, 22
as in the statement, let N := | 6~*9)d, (21, 2z5) | +1. Forj € {1,...,N —1} let tj= jo1*% and
let tx = by(21,22). Now define V; = Bgiuo (¥2,2,(£;); d4), where we parametrize the path
Yzt [0, tN] = V)2 by by-distance, so that the V; cover v, ,,. Let J? ,, be the number
of jin {1,..., N} for which V; intersects . Lemma 3.4.4 gives that, on G¢, if 6 € (0, 6o]
then for each j there are at most 6™ elements of K¢ ,, for which n([(k - 1)6% 12, bsdr12])
intersects V;. This shows that

0 - 9
|KZ1522| S 5 vl.]zl,zzl'

So it suffices to show that
E [|]Z(51,22| . 1GC |h, 721,22] < Mbh(zl’ZZ)é—l—’uﬂz(Hfu)’

for appropriately chosen @ and M. On G, condition (v) in Lemma 3.4.2 ensures that V;
1s contained in the Euclidean ball (\7] = B(¥2,.2,(¢)),C §P1+)) There exists o depending

only on y, w™ and w* such that for each w € V,,;; and € > 0 we have
P[n N B(w,&) # @] < c(p,C,y,mw ,w")e?

(this is [GM19, Lemma B.1]), and since (h,7y,,,,) is independent of (the trace of) n but

determines (‘7]-, this probability bound applies here to give
Pln NV £ 2] < c(p,C,y, ", w")s?h 1),

Summing over 1 < j < N we get the result with @ = agf and M = c(p, C,y, 0™, w™"). |
We now adapt [GM19, Lemma 4.9], which states that d, is equal to the metric gluing at
quantum typical points.

Lemma 3.4.6. In the setting of Theorem 1.3.2, let d,, be the guotient metric on H obtained by

the metric gluing of (U,dy,,). Fix R > 1 and sample z1, z, independently from the probability
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measure obtained by normalizing py|v,. Then almost surely we have dj,(z1,z2) = o;,"h (21, 22).

Proof. Let v € (0,a/100) where « is as in Lemma 3.4.5 and let # € (0, uo] where ug is as in

Lemma 3.4.4. Also fix p € (0,1) and & > 0. Choose p > 2 such that the event
E, = {dy(z1,22; V,)2) — & < 1y(z1,22) < p}

has probability at least 1 — p/5. We can do this because, by definition, dj,(z1,22) is the
infimum of the d,-lengths of paths between them that only intersect R finitely often, and by
Remark 3.1.10 we can replace a small segment of such a path near each intersection point with
a path that stays in H with arbitrarily close dj-length. Since we also know by Lemma 3.4.1
that near-minimal paths from z; to z;, cannot hit oo, it follows that P[E,] — 1 as p — co.
Having chosen p and #, choose C = C(p, #) so that Gc = G¢(#, p) has probability
at least 1 — p/5. Work now on the event £, N G¢. By [Gwy21, Thm 1.7] there can only
be finitely many geodesics from z; to z, w.r.t. the internal metric d (-, -; V,/2) (which must
also be geodesics from z; to z w.r.t. dy); let v, ,, be the leftmost of these (i.e., when started
from z1, the path vy,, 5, stays to the left of all other b (-, -; V,/2)-geodesics from z; to z3). By

Lemma 3.4.5 we have

h,y21522] < M6_1—2’U+a(1+v)p’

E [lel,Zzl “16enE,

and by taking a further expectation this bound also holds for E [|K?, ,,| - 16.nE, |- So by
Markov’s inequality, there exists o = do(#, v, C, p) > 0 such that when § < o, it holds with
probability at least 1 — p/2 that £, N G¢ occurs and

K

21,22

|S 6—1—371+a(1+71) < 6—1+a/2 (343)

(the second inequality holds because v < «@/100). Now fix § € (0,80] and assume that
E, N G¢ occurs and (3.4.3) holds. We need to show that Jh (z1,22) < ¥,(21,22) (note that
the reverse inequality is clear by locality of the LQG metric, as pointed out in the discussion
after the statement of Theorem 1.3.2). To this end we construct a path from z; to z; by
concatenating finitely many paths each of which is contained in some U, for U € U~ U U*.

By condition (vi) in Lemma 3.4.2, as long as 6 < C~2/% (which we can guarantee by

possibly shrinking o), we have ([(k — 1)6%/2,k5%/?]) C V, for each k € K? ,,, and
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thus these segments are disjoint from R, so that we may choose U, € U~ such that U,
intersects V), and such that n([(k — 1)6%/2, k6%/2]) C dU,. Let 14 and o7, be respectively
the first and last times y,, ,, hits ([(k — 1)6%/2,k6%/2]). Let 7, be a bhluk -geodesic from
Y212, (Tk) O V2,.2,(0%). By condition (iii) in Lemma 3.4.2, almost surely on G¢ we have

diam(n([(k — 1)5%/2,/@6”37/2]);11;1%) < Cs1#dv/2 and thus

length (74; 0, ) < Col= 12wk e K9

Z1,22"

(3.4.4)

Pick by € K?

212, With 7, minimal, and inductively define &y, . . ., k, K| such that 7 is the

smallest 7, with & € K? , for which 7}, > Tk if this exists; if there is no such 7, let k; = co.
Let ] be the smallest j € N for which k; = co. Let ¥1 = v,z 10, 1> let ¥ = V212l (00 (21,2201
and let ¥; = ¥, [0, for 2 < j < J = 1. Thenfor 1 < j < ], the curve ¥; does not
hit 1 except at its endpoints, so that we can find lofj € U™ U U* such that y; C ZOJ_]', and by
locality we have length(y;; bh|l7]-) = length(y;; ;) for each j. We now concatenate the curves

Vs Yips V2 Vigs - - -2 V] =1 )7k]_1, 7, to get a path ¥ from z1 to z, such that

J-1

dh(zl,zz) < Z:length(y/e :bh|u )+ Zlength(y],bh| )
=1 =1
]—1

length()//e bh|U ) +dy(z1,22) + €

~.
Il
—_

C(Sa//Z—udy/Z + bh(zl,Zz) + &,

IA

where the last inequality comes from (3.4.3) to bound ] by 671**/2 and (3.4.4) to bound the
length of each ¥, . By possibly shrinking #o we can ensure that #d, < @, so that sending
§ — 0 gives Jh (z1,22) < Dj,(z1,22) + € as required. Since p and & can be made arbitrarily

small, we are done. ]

The last step to prove Theorem 1.3.2 is the same as in the proof of [GM19, Thm 1.5].
(Essentially, we now have that Jh and D, agree on a set of yy,-full measure, which is dense
since open sets have positive pj,-measure, so we can conclude quickly by an approximation

argument.)
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3.4.2 Proofs of Theorems 1.3.3, 1.3.4 and 1.3.5

We now turn to the proofs of Theorems 1.3.3, 1.3.4 and 1.3.5. In fact, as with [GM19,

Thm 1.6], in the case that w > y?/2 (so that (U, h|y) is a thick wedge), the proof of

Theorem 1.3.3 is essentially the same as that of the previous theorem, so we just need to
treat the case where cutting along 1 gives a thin wedge. The reason this case is more difficult
is that we have to approximate geodesics with paths that avoid the points at which 7 intersects

itself. However, we can still deduce this case from the previous results.

Proof of Theorem 1.3.3 in the case w € (0,9%/2). Fixz € C\ {0} and 0 < r < s <5’ < |z|.
Let 71 be the first time that n hits dB(z,r) and let oy be the first time after 7; that 5 hits
0B(z,s). Having defined 7}, o, let 7j,1 be the first time after o-; that  hits dB(z,r) and
let oj,1 be the first time after ;41 that n hits B(z,s). We will show that for each j it is
almost surely the case that the internal metric (-, ; B(z, 7)) agrees with the metric gluing
of the components of B(z,7) \ [0 along 17]j0,1- This suffices to prove the theorem, since
then the result almost surely holds for all j, all z € Q*\ {0} and all 0 < r < s < |z| rational,
so that we can split any path not hitting O into finitely many pieces each contained in a ball
B(z,r) for which the result holds. Then the length of each such piece is the same according
to D,(+,-;B(z,7)) and the metric gluing across n (which, since 7 is transient by [MS17,
Thm 1.12], is the same as the metric gluing along 7][0 ] for ; sufficiently large).

We proceed by induction on j; first we consider the case j = 1. The conditional law
of nl(r.] given N[0z is that of a radial SLE,2(w — 2) in the unbounded component Dy
of C\ oz, started from n(71), targeted at co and stopped at time o1, and thus has the
same law (up to time change) as a chordal SLE,2(w - 2) in D from 5(71) targeted at oo
and stopped upon hitting dB(z,s) [SW05, Thm 3]. Moreover, if we define the domain D,
to be the component of B(z,s’) \ [0, containing n([11,071]) (note that this component
is determined by 7([0+]), this latter law is mutually absolutely continuous with that of a
chordal SLE 2(w - 2) in Dy from 75(71) targeted at oo and stopped upon hitting dB(z,s),
and indeed the Radon-Nikodym derivatives between the two laws are bounded by [MW 17,
Lemma 2.8]. Therefore, if we now fix (in some way which is measurable w.r.t. n{jor]) a
conformal map ¢: D1 — H such that ¢1(n(71)) = 0, then the law of ¢ o n([71,071]) is
absolutely continuous up to time change w.r.t. the law of a chordal SLE 2(w — 2) from 0

to co in H stopped upon exiting ¥1(B(z,s)), and the Radon-Nikodym derivatives between
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Figure 3.5: In order to deduce Theorem 1.3.3 for thin wedges from Theorem 1.3.2, we draw
the whole-plane SLE,2(w — 2) curve n up to a stopping time then map a domain bounded
by n and a circular arc to H. The law of the image of the remaining part of n up to a later
stopping time is absolutely continuous w.r.t. that of a chordal SLE, (w — 2), so this puts us
in the setting of Theorem 1.3.2.

the two laws are bounded independently of the choice of .

Letting h¥' = hoy ' +Q log|(¥')’| be the covariantly transformed field on H, whenever
0 < 7’ < r, the law of the pair (¢1(B(z,7")), h*|(y,(B(zr"))) is absolutely continuous w.r.t.
that of (¥1(B(z,7")), h% | (4, (B(z.r))) Where AT is a free-boundary GFF on H (say, normalized
so that hf (0) = 0). This follows since y1(B(z, 7)) is at positive Euclidean distance from oH
and the laws of the two GFF variants are mutually absolutely continuous away from the
boundary (which can be seen by coupling them so that their difference is a random harmonic
function and using the Girsanov theorem to express the Radon-Nikodym derivative in terms
of this harmonic function). We can thus apply the proof of Theorem 1.3.2 to (H, ht,0, c0)
(nothing changes, since the required GFF estimates in Lemma 3.4.2 are proved for Af any-
way) and, by absolute continuity, deduce the conclusion of that theorem for 4¥!. That is to
say, almost surely, for each rational »” € (0, 7), the length of any path in B(z,7’) is the same
w.r.t. 9, (-, -; B(z, 7)) and the metric gluing along 77|[0+,]. This completes the base case.

Suppose that the result holds for j > 1; we prove that it holds also for j + 1. By the
induction hypothesis, it holds almost surely that if w1, w, are any two distinct points in
B(z,7), then for each & > 0 there is a path P in B(z,r) which crosses n[[o;) only finitely
many times whose dj, (-, -; B(z, r))-length is at most d, (w1, w2; B(z,7)) + &. We thus aim to
show that it is almost surely the case that each path P in B(z,r) which does not intersect

nl[oc;] except possibly at the endpoints of P has the same length w.r.t. b, (-, B(z,7)) as
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w.r.t. the metric gluing along 770,,,1. This implies that if @ and w; are quantum typical
points (i.e., sampled independently from 4|p(,,) normalized to be a probability measure),
then w; and w; have the same distance w.r.t. d,(-,-; B(z, 7)) and the gluing along N1 [00}]
(since we can choose an almost-minimal path P as above between w; and w, and split into
subpaths P with the same length according to each of the two metrics). We can then conclude
that these two metrics on B(z, r) are equal using the same argument as at the end of the proof
of [GM21¢, Thm 1.5].

Analogously to the base case, let Dj.; be the component of B(z,s") \ n| [0.7;,,] containing
1n([7j+1,0j41]) and, in some way which is measurable w.r.t. 77|[O,r,-+1], fix a conformal map
Yiv1: Djs — Hsuch that 4,1 (7(7j41)) = 0 and let A%+ = h o 1//]111 +Qlog |(¢//]._+11)’| be the
covariantly transformed field on H.

As before, the conditional law of 1] ] given 7[o.r;,, 1s (up to time change) that of a

Tjs1:07j41
chordal SLE 2 (w —2) in the unbounded component 5]-+1 of C\nl[or;,,], started from 17(7j41)
and stopped upon hitting dB(z,s), and thus the law of ¢;.1 o n([7j41,0j41]) is absolutely
continuous up to time change w.r.t. that of a chordal SLE, 2 (w - 2) from 0 to oo in H stopped
upon exiting ¥;,1(B(z,s)).

Moreover, for each § > 0, r’ € (0, r), the law of the pair

W1 (B(z,7) \ B (10,071),6)) A |y, Bary)

is absolutely continuous w.r.t. that of (,1(B(z,7")\B(n([0,c;]),6)), ht |21 (B(zr7))) Since
the set ¥;1(B(z,7") \ B(n([0,0;]),6)) will have positive Euclidean distance from oH. We
can thus argue as in the case j = 1 that, almost surely, for any 6 > 0 and »” € (0, r), any path
in B(z,7") \ B(n([0,07]),6) has the same length w.r.t. »,(-,-; B(z, 7)) and the gluing along
N[0, This suffices to complete the inductive step, since w.r.t. either metric we can find
the length of any path in B(z,7’) intersecting 7][0,;,,) only at its endpoints by considering

the amount of length it accumulates in B(z, ') \ B(n([0, 07;]),6) and sending § to 0. |

Theorem 1.3.4 follows by the same method as in [GM19]. The left boundary 5, of
n’((=00,0]) isan SLE» (2—y?) by [DMS21, Footnote 4] and [MS17, Thm 1.1]. Now [DMS21,
Thm 1.5] gives that (C\7z, Alc\;,, 0, o) is a wedge of weight 4—y?. We apply Theorem 1.3.3.
By [MS17, Thm 1.11], the conditional law of the right boundary ng of n’((—e0,0]) given 51
1sa SLEyz(—y2 /2;—y?/2). Thus ng cuts the wedge into two wedges of weight 2 — y?/2 and
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now we deduce Theorem 1.3.4 by applying Theorem 1.3.2. Finally, Theorem 1.3.5 follows
by the same absolute continuity argument (between quantum spheres and y-quantum cones)

as in [GM19].



Chapter 4

Liouville quantum gravity metrics are

not doubling

This chapter is devoted to the proof of Theorem 1.3.9, that LQG metrics are not doubling

and thus cannot be quasisymmetrically embedded into finite-dimensional Euclidean spaces.

4.1 Non-doubling metric spaces

We begin by giving an alternate characterization of non-doubling metric spaces (equivalently,
those with infinite Assouad dimension) that we will verify for the LQG metric in order to
rule out embeddability into R”. Namely, we observe that having infinite Assouad dimension
is equivalent to containing arbitrarily large finite sets of points that are all approximately
equidistant from each other, a characterization that does not seem to have appeared in previ-

ous literature.

Definition 4.1.1. Let (X, d) be a metric space. Given N € Nand K > 1, we say that distinct

points x1,...,xnN € X form an (N, K)-clique if

max d(x;,x;) <K min d(x;,x;).
1<i<j<N (i, ;) 1<i<j<N (xi> x;)

For K > 1 we say (X,d) is K-cliquey if it contains an (N, K)-clique for each N € N.

Instead of considering (N, K)-cliques, [ Tro21] considers “approximate N -stars” in which
the N points of a clique are also roughly equidistant from a central point that is closer to each
outer point than the outer points are to each other. The proofs in both that paper and this

one actually find approximate N -stars, but for our purposes the more simply defined (N, K)-

109
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cliques suffice, since quasisymmetric images of K-cliquey spaces must have infinite Assouad

dimension:

Proposition 4.1.2. Let (X, dx) be a K-cliquey metric space for some K > land f: (X,dx) —

(Y, dy) a quasisymmetric mapping. Then dimp Y = co.

Proof. Suppose (X,dx) is K-cliquey and f: (X,dx) — (Y,dy) is ¥-quasisymmetric. Sup-
pose also that dimp Y < oo, so that there exist @,C € (0,0) for which N, (B(y,R)) <
C(R/7)* wheneverO<r <Randy €Y.

Choose N > 49C(¥(K)?+1)® and let x1,. .., xx form an (N, K)-clique in X. Now by
(2.7.1),for 1 < 7,7,k < N distinct we have

dy (f (x;), f(x;)) (dx(xz', xj))
SV (———=| S W(K) < ¥(K)’ +1, 4.1.1
LT fo) ~ \dxtey) = =) LD
since x1,...,xxN form an (N, K)-clique and W is increasing. Applying the above twice, for

1<1i,j,k,[ < N distinct we have

dy (f (5. f () _ dy (f (5. £ () dy (f (x:), f (x)) , 2
- ‘ Y (K Y(K . (4.1.2
I (oo F )~ dr(F G (e dy (F e fepyy = K7 < HUET+L (3.12)

(4.1.1) and (4.1.2) together imply that £ (x1),..., f(xn) form an (N, ¥(K)? + 1)-clique.
Now set r = %mimsiqg\[ dy (f(x;), f(x;)) and R = 2maxi<;<j<n dy (f (x;), f (x;)). Then
B(f (x1),R) contains all the f(x;) but no open ball of radius  can contain more than one
of the £ (x;), so N, (B(f(x1),R)) = N > 4*C(¥(K)?+1)®. But R/r < 4(¥(K)?+1) since
the f(x;) form a (¥(K)? + 1)-clique, so this contradicts N, (B(y1,R)) < C(R/r)® and we

must have dimp Y = co. ]
In fact, being K-cliquey is equivalent to not being doubling (cf. [Tro21, Prop. 2.7]):
Proposition 4.1.3. Let (X, d) be a metric space. The following are equivalent:
(1) dimp (X) = oo;
(ii) X is not a doubling space;
(iii) X is K-cligney for some K > 1;

(1v) X is K-cliquey for every K > 1.
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Proof- (i) = (ii): Contrapositively, if X is a doubling space, then it is straightforward to show
that dimp (X) < oo by iterating the operation of covering a ball with a fixed number of balls
of half its radius (see [Fra21, Thm 13.1.1]).

(ii) = (iii): If X is not doubling, then given any N € N we can find x € X and R > Osuch
that B(x, R) cannot be covered by less than N balls of radius R/2. Let x1 = x and construct
x2,...,xn inductively so that x; € B(x,R) \ U/fz_ll B(x;,R/2) fork =2,..., N (possible by

choice of x and R). Now for 1 <7 <j < N we have
R/2 < d(x;,x;) <d(x;,x)+d(x,x;) <2R,

so the x; form an (N, 4)-clique. Thus X is 4-cliquey.

(iii)) = (iv): If K > 1 and X is K-cliquey, then for any N we can find an (R(N), K)-
clique x1,x2,...,xg(n) in X, where R(N) is the Nth Ramsey number, and by definition
of R(N) such a clique must contain N points whose pairwise distances are either all in
[min;; d(x;, x;), K12 min;; d(x;,x;)] orallin (K172 min; . d(x;, x;), max;; d(x;,x;)], in
either case forming an (N, K'/?)-clique. Iterating this argument, we find that X is K1/4-
cliquey, K '/3-cliquey, and so on.

(iv) = (i): Apply Prop. 4.1.2 to the identity on X. m

Remark 4.1.4. From Prop. 4.1.2 and Prop. 4.1.3 we deduce the well-known result that quasisym-
metric images of non-doubling spaces are not doubling, and conversely (since the inverse of a P-
quasisymmetric bijection is 1/ (1/-)-quasisymmetric) that quasisymmetric images of doubling

spaces are doubling,.

We briefly observe another property that contrasts spaces of infinite and finite Assouad
dimension. Given a metric space (X, dx) and 8 € (0, 1) one can define the B-snowflaking d§
of dx as the metric on X given by dg(x, y) = dx(x,y)P. The Assonad embedding theorem
[Ass83, Prop. 2.6] states that for each @ € (0,00) and B € (0, 1) there exists 7 = n(e, B) € N
such that, if (X,d) is a metric space such that dima(X) = a, then there is a bi-Lipschitz
embedding of (X, d#) into R”. (Naor and Neiman [NN12] later proved that one can choose
n = n(a) such that R” admits bi-Lipschitz embeddings of (X,d#) for all 8 € (1/2,1) and
all X with dimp (X) = @.) For spaces of infinite Assouad dimension, however, snowflaking

does not facilitate bi-Lipschitz embeddings into R”:

Remark 4.1.5. Note that, for p € (0,1), if (X,dx) is K-cliquey then (X, d;?) is KB-cliguey;
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thus, if dimpa X = co then the B-snowflaking of X cannot be embedded quasisymmetrically into
any doubling space (cf- [Tro21, Thm 2.6)).

4.2 Proof of Theorem 1.3.9

We will begin by proving the result for the whole-plane GFF and deduce it for other variants
via local absolute continuity. The main task is to show that for N, ¢ fixed, a fixed closed disc
contains an (N, 1 + §)-clique with positive probability (by scale and translation invariance,
this probability will not depend on the disc). The basic idea for this is to consider a polygonal
star with N arms and add bump functions to the field in order to force geodesics between
the arms to stay within the star, recalling that the law of the modified field will be mutually
absolutely continuous with that of the original field. The near-independence of the field in
disjoint regions then allows us to translate positive probability for a fixed disc into an almost
sure result: a Markovian exploration of the domain (we will use the annulus exploration from
[GM20, Lemma 3.1]) will almost surely find a disc containing an (N, 1+ §)-clique. Since this
holds for every N, we have that y-LQG metric spaces are (1 + 6)-cliquey, so by Prop. 4.1.2
their quasisymmetric images must have infinite Assouad dimension, which as mentioned is
equivalent to not being doubling.

Fix N >2,20€ C,r > 0,6 € (0,1) and & € (0,1/14). Let 4 be a whole-plane GFF,

normalized so that (say) the circle average 41(0) is zero. Now set z, = zo + 6re2 k/N|
z, =20+ 7re2mik/N and wp = Zo + re™@R+D/N for b =1, ... N, and let Ky be the compact

set consisting of the polygon whose sides are the line segments joining

(21, w1), (w1, 23), (25, w2), (w2, 25), . .., (), wN), (wn, 2])

together with this polygon’s interior. For g € (0,1) let Kf[ =z0+ (1 - B)(Kn — zo). Fix
£ (&) > 0 such that the Euclidean 2¢ (&)-neighbourhood of K ;[/ ? is contained in K]f[/ *. Define

the event

inf{bh(z,w) Z,w € B(zo,7r)\K;[/2,|z —w| > {(8)} >1/C;
0,(0B(z0,27),0B(20,57); int K3) < C

Ag(h) =

If / is another field, we define Alc(g) to be the event given by replacing 4 by h throughout

in the definition of Aé (h). (We will later tacitly use further definitions of this kind.)
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Figure 4.1: The points z} are chosen to be equidistant from dB(zo, 2r); we then arrange that

geodesics between them stay within Ky U B(z0,27) and that the diameter of B(zo,2r) is
small, making the z* almost equidistant from each other.
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We check that P[Alc(h)] — 1as C — oo. It suffices to observe that, almost surely,
0 < ,(0B(z0,27),0B(z0,57)) < d,(0B(z0,27),0B(z0,57); int K3;) < o0,

whilst

inf{bh(z,w) (z,w € B(z0,7r) \ K52 |2 - w| > g(g)} >0,

since if not we could find z(,,), w(,,) € B(zo, 77')\1{;[/2 foreachn € N, with |z(,)—w )| = (&)
and d,(z(,), w(»)) — 0asn — oo, and by Bolzano-Weierstrass and continuity of b, w.r.t.
the Euclidean metric, extract subsequences converging to z and w (w.r.t. both the Euclidean
metric and ) with d,(z,w) = 0 but |z — w| > {(¢), a contradiction. (For the subcritical
case, we could also use the local Holder continuity of the Euclidean metric w.r.t. dj, as proven
in [DFG*20, Prop. 3.18]; neither of the critical LQG metric and the Euclidean metric is
locally Holder continuous w.r.t. the other, but we could instead use the polylogarithmic

modulus of continuity established in [DG21, Prop. 1.8].)

Since P[Aé(h)] — 1as C — oo, we can choose C; > 0 such that P[Aél(h)] > 0. Let ¢
be a bump function supported in B(zo, 87) \ K3, such that = 1 on B(zo,77) \ K]f,/z. Let M

be such that eé# > 2C12.

For n > 0, let £, (h) be the event that

inf {12, w3 Aoy (20) \ K§/2) |2, € Aoy (20) \ K 12 = w0] 2 £ (2)

> 2 (0,(0B(z0,27),0B(z0,57)) +17) .

If we choose M depending on Cy as above, and choose < ¥ /(2C;) — Cy, then by Weyl
scaling we have Alc1 (h) € E,(h+ My). Thus, since h and h + My have mutually absolutely

continuous laws and P[AlCl (h)] > 0, we can fix 1 > 0 so that P[E,, (h)] > 0.

Observe that, almost surely, SUP,cp s a0 (20) 0,(z,0B(20,(2 — u)r)) — Oasu | O,
since otherwise we could find v > 0 and sequences z(,), #(,) such that u.,) | 0, z(,) €
A@-u,)r2r(20) and d;,(z(,), 0B(z0, (2—u(,))7)) > v, then extract a convergent subsequence
whose limit z € 0B(zo,2r) must have dj-distance > v from B(zp,2r), a contradiction

< u it must hold that

(indeed, given any # € (0,2), once 7 is large enough that #,)
L\ (z(n),g(zo, (2—u)r)) > v and, taking the subsequential limit, d;(z, B(zo, (2 - #)7)) > v).

This convergence holds almost surely and thus also in probability, so given any ¢ > 0,
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p € (0,1), we can fix # > 0 such that

P sup 0,(z,0B(z0,(2—m)r)) <t/3

z EA(Z—u)r,Zr (ZO)

> p,

then fix a bump function o supported in B(zg,2r) such that o = 1 on B(z0,(2 — u/2)7).
Since P[diam (B(zo, (2 — #)7); 0, (-, 3 B(z0, (2 — #/2)7))) < C] = 1as C — oo, given any
p € (0,1) we can fix C; = C(p) so that

SUP A 5170 (20) 0,(z,0B(z0,(2—u)r)) < t/3;

PlFoyu(M]=P| 07
diam (B(zo, (2 = )7); 04 (s B(zo, (2= #/2)7))) < C

Now for M’ large enough depending on Cs, on the event above we have
diam (B(zo, (2 = #)7);0p_p1) < t/3,
whereas d;,_y;., < b, pointwise, so

sup O 1o (2,0B(z0, (2—u)r)) < t/3,

ZGA(Z—M)T,ZY (20)

which forces diam (B(zo,27); 9_y0) < t.

Since (0B (zo,27),0B(z0,57)) is almost surely positive, we can choose ¢ sufficiently
small and p sufficiently close to 1, then fix # and C, appropriately, such that with pos-
itive probability both E, (k) N Fc,;,(h) holds and ,(8B(zo,2r),dB(z0,57)) > t/(26)
(since the probability of the latter event tends to 1 as ¢ — 0). On this event, with M’
chosen depending on C, as above, diam (B(z0,27); dj_s+) < t, Ey,(h — M’0r) holds, and
O,_iro (0B(20,27),0B(20,57)) > t/(26). Indeed, the latter two events only depend on the
field outside B(zp,27) so are invariant under replacing 4 by h — M’o. Since hand h — M’
have mutually absolutely continuous laws, we may conclude that with positive probability,

diam (B(z0,27);p) < ¢, E,, (h) holds, and b, (B (z0,27), 0B (20,57)) > t/(26).

Since € < 1/14, we have z; € int Kzz\f for each 7,0 <7 < N, so we can almost surely find
paths y; = ¥;(h|(zsr) C int Kzz\f from zg to z; for 1 < i < N with finite d;-length (e.g.,
by [DFG*20, Prop. 3.9]), which we can fix in some manner that is measurable w.r.t. /| p(,, 8

considered modulo additive constant. (For instance, the proof of [MQ20, Thm 1.2] still
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works for the internal metric of d;, on a domain U c C, so we could take y; to be the almost

surely unique (-, -, int K;H/H)—geodesic from zg to z;.)

For1 < i < N, explore y; from zq towards z; and let z* be the first point of y; \ B(zo,27)

reached by this exploration such that
b, (27, 0B(20,27)) = 0,(0B(z0,27),B(z0,57))

(such a point exists by continuity of d, (-, dB(zo,2r)) along ;).

We argue that, on the event
Goo8r (h) = Ey (h) N {diam (B(z0,27);d;) < 260;,(0B(z0,27),0B(20,57))},

which we have just shown to have positive probability, the z* form an (N, 1+ §)-clique. On

E, (h),for1<i<j< N we have
bh(zf,z;‘) > dy(z;,0B(z0,2r)) + bh(z;,aB(zo,Zr)) = 20,(0B(z0,27),0B(z0,57)).

Indeed, this lower bound certainly holds for any path from z? to z that intersects B(zo, 27);
however, since B(zo, 2r) disconnects the prongs of the star K]f[/ * any path from zitoz; that
does not enter B(zo,2r) must have a subpath contained in Aj, 7,(zo) \ K ]‘f[/ 2 of Euclidean

diameter at least ¢ (&), which on E,, (h) must have d;-length > 20, (9B (z0,27), 0B(z0,57)).

Finally, on the event that diam (B(zo,27);d;) < 260,(8B(z0,27),dB(z0,57)), we have

oy (z;, 27) < (2], 0B(z0,27)) + by, (z;f, 0B (z0,27)) + diam (B(z0,27);d)

< 2(1+68),(8B(20,2r), dB(z0,57)).

Therefore the z; form an (N, 1+ 6)-clique. Thus, on the event G, s, (1) which we have just
shown to have positive probability, there exist points in B(zo, 87) that form an (N, 1 + 6)-
clique w.r.t. ;. Note that, since G,,,(h) only depends on ratios between distances and
thus is determined by the field modulo additive constant, the scale and translation invariance
properties of 4 imply that the analogous event G, ,(h) with zg and r replaced respectively
by z and r’ (and the necessary changes made in the definitions of y;, z¥, E;, (h)) has the

same probability for any z € C and any »’ > 0. Moreover, since G, (k) is determined
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by hlp(.sr7), it is in fact determined by (% — hr(2"))|p(.8r/) Whenever B(z,87") c B(z",R).

We can now consider a sequence of nested concentric annuli within which we have near-
independence of the field, meaning that if we take a closed disc B(z®), 87 (%)) within each
annulus then at least one of the events G, & (/) holds. Indeed we are in the setting
of [GM20, Lemma 3.1], which implies that, say, for the annuli (A)-2-1 52 (0)) ey and z®) =
3.272k2 gy (k) — p=2k3 positive proportion of the events {Gz(k)’gy(k)(h)}le hold with
probability exponentially high in K. In particular, it is almost surely the case that at least
one of the events G, ) g, (4) holds.

Since we have now shown that an (N, 1 + §)-clique almost surely exists for all N within
a fixed closed disc, the surface (C,d;) is almost surely (1 + &)-cliquey and thus cannot be
embedded quasisymmetrically into any doubling space. The fact that this argument finds all
the (N, 1+6)-cliques within the same disc also means that the local mutual absolute continuity

of GFF variants gives the same result for other LQG surfaces, and thus we conclude the proof

of Theorem 1.3.9.






Chapter 5

Upper bound on the conformal
covariance exponent for the CLE

chemical distance metric

The purpose of this chapter is to prove Theorem 1.3.12. As well as considering simple CLE,
coupled with two-sided whole-plane SLE, for k € (8/3,4), in the non-simple regime we will
denote the parameter by «’ € (4,8) and refer to CLE,.. We will couple such CLE,+ with
two-sided whole-plane SLE, where k = 16/«” € (2,4), and make the definitions 1 = 7 /+/x,
A’ = 1 /VK’. As explained in the preliminaries, in both the regimes « € (8/3,4) and «’ € (4,8)
we define y = 2/vk — k/V2.

5.1 BCLE/GFF couplings

We begin by explaining that the iterative BCLEs used to construct a CLE can be coupled

with the GFF via imaginary geometry.

Lemma 5.1.1. Fix « € (8/3,4). There exists a coupling of a CLE, and a GFF in H such that the
loops of the CLE, are all traced by flow lines of the same angle modulo 2rt. More precisely, using

the standard GEF boundary conditions for such a coupling, they all have angle 5 modulo 2.

Proof. Recall the iterative BCLE%(O)/ BCLEY (-«/2) construction of CLE,, where «’ =

16/k. We first construct a BCLEY (0). Note that the boundary conditions to couple this

119
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with a GFF on H are given by

A x € (—0,0),
fx) =
A =2rny x € (0,00),

see [MSW17, Table 1]. Inside each of the true (clockwise) loops, the boundary data is as
follows. If we map the interior of the loop to H with the first (equivalently last) point on its

boundary visited by the BCLE exploration sent to 0, then the boundary data is given by

“A'=-2+%y x € (—00,0),
2
filx) =
AV =2ny=-2-2y x e (0,0m),

see [MSW17, Table 2]. Next, we note that to couple a BCLEY (—«/2) on H with a GFF A,

we need the boundary data to be

A(1-x/2)+2 —0,0),
) = (1-«/2)+2nx x € (=,0)
A(1-«/2) x € (0, c0),

see [MSW 17, Table 1]. We note that f2(x) = fi(x) + 57")(. Thus, the loops of the CLE, that
have been discovered so far (that is, the true, counterclockwise, loops of the BCLEY (—«/2))

are flow lines at angle +2.

The iteration then starts over in each region bounded by a false (counterclockwise) loop
of the first BCLEY (0) or a false (clockwise) loop of the BCLEY (—«/2). We shall see that
the loops of the second iteration of BCLE,-(0) will all have angle +27, and hence the result

follows inductively.

When mapping the interior of the false (counterclockwise) loops of the first BCLES (0)
to H with the first (equivalently last) point on its boundary visited by the BCLE exploration

sent to O, then the resulting boundary data is

~ /l’+27r)(:/1+37”)( x € (—00,0),
f(x) =
AV=1-3x x € (0, 00),

and the boundary data needed to couple a new BCLEY (0) is f(x) = /7 (x) — 27 y, thus the
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angle of the loops in the new BCLEY(0) is —27.
Finally, if we map the interior of the false (clockwise) BCLEY (=«/2) loops back to H
with the first (equivalently last) point on its boundary visited by the BCLE exploration sent

to 0, we get boundary data

—~ /1_5771./\/ xe(_ooao)’
f(x)=
/1—97”)( x € (0,00).

This is because, by [MSW 17, Table 2], we get boundary data

A x € (—00,0),
fr(x) =
A-2ny x €(0,00),

for the field of which the BCLEY (~«/2) loops are flow lines, which as we have seen is h+57” X-
So the boundary data for 4 is ]? = f3 — 2 xy. When coupling a new BCLEY (0), we need
boundary data ]? (x) + 2m . Consequently, the angle of those loops is =27, and hence the

result follows. ]

This calculation is easier in the case of CLE - for «’ € (4, 8) since the BCLE construction is
simpler. In this case we start with a BCLE (0), and then in each of its boundary-intersecting
false (counterclockwise) loops we sample a new BCLEY(0), and so on. The corresponding

result is as follows:

Lemma 5.1.2. Fix &’ € (4,8). There exists a coupling of a CLE, and a GFF in H such that the
loops of the CLE+ are all traced by counterflow lines of the same angle modulo 2n. Indeed, using

the standard GFF boundary conditions for such a coupling, they all have angle 0 modulo 2r.

Proof. As before, to couple the initial BCLEY (0) with a GFF, the boundary data (as can be
seen in [MSW 17, Table 1]) is

i x € (—00,0),
fx) =
A'=2nxy x € (0,00).

If we map a complementary component which is bounded by a false (counterclockwise)

loop (under all the true loops that have been drawn so far) back to H with the first (resp.
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equivalently last) point on its boundary sent to 0, then the boundary data (see [MSW17,
Table 2]) is

~ A +2ny x € (—00,0),
f(x) =
A x € (0, 00),

i.e.f:f+27r)(. n

5.2 Scaling and translation for two-sided whole-plane SLE

When « € (8/3,4) we will define d := 1 + /8. Given k, we work with a fixed collection
of CLE, metric probability measures (up) as in Assumption 1.3.10. Our argument will
consider a two-sided whole-plane SLE, curve n from oo to co through 0, parametrized via
the natural parametrization (recall that this is a multiple of the d-dimensional Minkowski
content), with 17(0) = 0. We will then construct a CLE, I' in the domain D, defined to be
the component of C \  on the left-hand side of n, with associated CLE metric dr. (In other
words, the joint law of (1, ', dr) is determined by the properties that the marginal law of 1 is
that of a two-sided whole-plane SLE, curve 17 from oo to oo through 0 and that, given n, the
conditional law of (T, dr) is the joint law up, of a CLE, in D; and a CLE metric associated
to this CLE,.)

In the other case of Theorem 1.3.12 we will instead denote the parameter of the CLE by
k" € (4,8), and make the definition « := 16/«’. We will again define d := 1 + «/8, so that as
before Theorem 1.3.12 states that @ < d, and this time fix a collection (up) of CLE, s metric
probability measures. Again, we define 57 to be a two-sided whole-plane SLE, curve from oo
to co through 0, parametrized via the natural parametrization, with 7(0) = 0, and D,, to be
the component of C \ 1 on the left-hand side of 1. In this case we define (T, dr) so that
their conditional joint law given 7 is up,, which this time gives a CLE, in D;, along with
an associated CLE metric. Recall that we are making Assumption 1.3.11, which says that

sup, . dr(n(0),5(t)) is integrable in both cases.

Recall also that by [Zha21, Cor. 4.7], for each » > 0 the scaling map

-1/d

Srim() > n(r)
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and the translation map
Lrin()Hn+7)-n(r)
are measure-preserving (w.r.t. the law of 7).

Write S, () for the process in Ds,(, := 74D, obtained by scaling the loops of T

—1/d

by r~'/¢. Note that because the scaling map from D, to Ds, () is conformal, §,(T') is a

CLE in Dy, (), and by conformal covariance, if we define
ds, ) (r 4 71y = dp ()l

then the law of (§,(I'),ds,r)) given S,(n) is up, - Because S, is measure-preserving, the
map

(1,0, dr () = (S,(17), S, (D), ds, () (r =14,y 714

is measure-preserving w.r.t. the joint law of (7, I, dr). Note that our first-moment assump-

tion now gives that sup, _. dr(7(0),7(t)) is integrable for each » > 0.

Write T, (I") for the process obtained by translating the loops of I by —n (7). Then, again

by conformal covariance, if we define

dr.ay(- =n(r),- =n(r)) =dr(,-)

then the law of (T, (T), d7, (1)) given T, (1) is KDy, > SO that the map

(.T.dr(-,) = (T (), T, (D), dr, () (- =0 (r),- =0 (7))

is measure-preserving w.r.t. the joint law of (n, T, dr).

Lemma 5.2.1. In the setting of Theorem 1.3.12 we have o < d.

Proof. Assume @ > d and fix » such that » !

is an integer greater than 2. Scaling by §, and
using conformal covariance and that S, is measure-preserving, we find that dr(17(0),7(r 1))

has the same law as

ds, ) (S, (1)(0), S, () (r™1) = ds, 1y (r 45 (0), 45 (1)) = dr(n(0), n(1))r 4.



124 CHAPTER 5. THE CLE CHEMICAL DISTANCE METRIC

Therefore we have

E[dr(17(0),n(r )] = E[dr(7(0), n(1))]r /4.

Note that these expectations are finite by our first-moment assumption. However, since 7}
is measure-preserving, we know that

1

E[dr(1(0),n(r~)] < ZE[dr(n(k = 1),7(k)] = r"E[dr(n(0),7(1))].
k=1

1

This is a contradiction, since r ! > 150 r~! < =@/, ]

It remains to rule out @ = d. For this our plan is as follows. We will first show that 5
and T can be coupled with a whole-plane GFF 4 in such a way that 4 determines both n
and I'. We will use this coupling to prove that the scaling S, is ergodic w.r.t. the joint law
of 7 and I, then use that ergodicity to argue that, on the assumption o = d, conditional
expectations of dr-distances between points on 1 given both n and T are determined by T’
alone. To derive a contradiction from this, we will use the GFF coupling again to argue that
one can resample a segment of i to make it longer (in terms of natural parametrization) but
without increasing the conditional expectation given 17 and I of the dr-distance between the

segment’s endpoints.

5.3 Coupling CLE with two-sided whole-plane SLE

We will show that we can couple (17,T") with 4, a whole-plane GFF modulo 27 (y + ¢), so
that /4 determines (7,T).

The first step is to use [MS17, Thm 1.4] to couple the two-sided whole-plane SLE, n with
a whole-plane GFF. Once we have coupled  with the GFF, we will show that the boundary
conditions for the GFF in D,, are the appropriate ones to construct I" from its counterflow
lines.

We begin with the case k € (8/3,4). Fix { = v«/2 and let /& be a whole-plane GFF
modulo 27 (x +¢). Using [MS17, Thm 1.4], the flow line of angle 0 from 0 corresponding to
the field 4 — ¢ arg(+) is a whole-plane SLE, (2—k+27¢ /1), provided £ > — x = Vk/2-2/+«k.
Since ¢ = vk /2 and « > 0O, the inequality is satisfied and we get a whole-plane SLE,(2). Thus,

conditional on 77|[0 ), the boundary conditions for the field 4 — ¢ arg(-) are the so-called flow
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line boundary conditions. Specifically, if ¢ is a conformal map from C \ 1 ([0, o)) to H that
swaps 0 and oo, then the boundary conditions of the field 4 — £ arg(-) on C \ n([0, o)) are
the same as those of f o ¢ — y arg¢’ (as fields modulo 27 (y + ¢)), where f is the harmonic

function on H with boundary conditions

-1 x € (—0,0),
f(x) = (5.3.1)
A x € (0,00).

This means that [MS16a, Thm 1.1] the flow line of angle 0 from oo to 0 corresponding to
the field 4 — ¢ arg(+) in the remaining domain C \ ([0, 0)) is a chordal SLE, in that domain
from oo to 0. Indeed, this flow line corresponds to the flow line of angle 0 from 0 to oo in H

with the boundary conditions in (5.3.1).

We can thus construct 77|(—e0] to be this O-angle flow line. Again working in H with
boundary conditions (5.3.1), if we map the part of H to the left of the flow line to H via a
conformal map ¢ that fixes 0 and oo, and consider the field (h—¢ arg)oy ™' — y arg(y¥ 1)’ on H,
then the boundary conditions on dH are constantly —A. If we add A + A’ — 7 y to this field,
where k’ = 16/ and A’ = 7 /V«’, we get A’ — 7 x on the boundary, which is the appropriate
boundary data for the counterflow line from oo to 0 to be an SLE, (k" — 6) process with the
force point at co*, i.e. on the counterclockwise side of co. (This can be seen by considering
the boundary data for this process in a rectangle [—7, 7] X [0, 1], which would have boundary
data A’ =27y on (—7,0) x {1} and A" on (0, 7) X {1} - see [MS17, §4.1] - and thus constantly
A" =y on (-r,7r) x {0}, then applying a conformal map looking like the identity at 0 to

send 7 to c0.)

By translation invariance, it follows that for each x € R the counterflow line from co
to x is an SLE, (k" — 6) process from oo to x with the force point at co*, and thus that the
process given by the collection of counterflow lines from oo targeted at a countable dense
set of boundary points is an SLE,/(«” — 6) branching tree with the force point on the left-
hand side of the image of 7|(_w0]. The set of boundary-touching loops of this branching
tree is by definition a BCLEY(0). At this point, one can for instance apply (2.5.2) to swap 0
and oo, thus bringing us into the setting of the proof of Lemma 5.1.1, which shows that the
boundary conditions are the appropriate ones to construct BCLEY (—«/2) within the loops

of the BCLEY (0) and thus continue the iterative BCLE construction of a CLE, T'. So we
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have coupled (n,T’) with the field A.

The case k" € (4,8) is simpler, since we are done once we have generated the branching
tree. Indeed, we again set { = Vk/2 (remember k = 16/«’). As before we can couple n
with & — £ arg(+), yielding the appropriate boundary conditions for the process given by the
collection of counterflow lines from oo targeted at a countable dense set of boundary points
to be an SLE,/(«” — 6) branching tree with the force point on the left-hand side of the image

of 7(—x00]. We can thus define a CLE, T via the branching tree construction.

Proof of Prop. 1.3.13. The idea to complete the proof of Prop. 1.3.13 is that the o-algebras
generated by local restrictions of the field become trivial in the limit as the domains to which
we restrict shrink.

Indeed, by [HS18, Lemma 2.2], (,5¢ % is trivial. Now, if » > 1 and A is an §,-
invariant (equivalently, S,-i-invariant) event measurable w.r.t. (,T') (and thus w.r.t. /), then

the martingale convergence theorem implies that, almost surely,
PlA|F na] = 14 as n — oo
However, invariance under S,2. gives
PLAIF o] @ PLAIF, -]

almost surely, whereas backward martingale convergence gives

(7

t>0

PlA|F,-na] = P |A =P[A]

almost surely and thus also weakly. Hence P[A|F, 4] — P[A] weakly, but since we know
that P[A|F,.a] — 14 almost surely we must have 14 = P[A] almost surely and thus P[A] €
(0,1).

We have thus established that S, is ergodic w.r.t. the joint law of (n,T’), in particular
establishing Prop. 1.3.13 (ergodicity w.r.t. the marginal law of ) - note that in order to
couple just the two-sided whole-plane SLE, with the GFF, we only needed [MS17, Thm 1.4]
which holds for any whole-plane SLE,(p) curve with « € (0,4) (the inequality ¢ > —x is
equivalent to the condition p > -2 for the whole-plane SLE, (p) process to be generated by a

continuous curve, and here we have p = 0), and thus we have indeed established Prop. 1.3.13
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for the entire stated range x € (0,4), not just the range k € (8/3,4) that we need for our

present purpose. |

5.4 Concluding the proof: boundary distances are not de-

termined by the SLE

Since by the triangle inequality the process {E[dr(7(0),1(¢))|n,[']: ¢ > 0} is subadditive,
Kingman’s subadditive ergodic theorem applied to the family {7 : » > 0} shows that there

is a random variable X such that, almost surely,

E[dr(n(Q).n(e)ln.T1
t

as t — oo. (In order to apply the continuous-time version [Kin73, Thm 4] of Kingman’s
theorem, we use the assumption that sup,_, dr(7(0),77(¢)) is integrable.)

We now have

Elds, ) (S-(1)(0), S () (1)), T']

X oS, =Ilim
t—o00 t
. E 0 I|r—o/d
- lim [dr(n( ),n(zt))ln, N Y

Thus if @ = d, then X is invariant under the scaling map S, for all » > 0. Note that
X < oo almost surely since, for instance, Kingman’s theorem also gives convergence in L!
and we have assumed that sup,_, dr(17(0),7(¢)) is integrable. Thus, by ergodicity of §,, X
is almost surely equal to a finite constant ¢ > 0. It follows that with probability 1 we have

E[d(n(0),n(2))|n,T'] = ct for all ¢+ > 0; this is because, by scale invariance, the probability

{sup c| > 8}
s>t

for fixed & > 0 does not depend on ¢, but these events are nested and their intersection over

of the event
E[dr(n(0),n(s))In,T]
s

all ¢ has zero probability, so each of the events themselves has zero probability.
If ¢ = 0, we obtain a contradiction to the assumption in the statement of Thm 1.3.12 that

the CLE, metric does not vanish on the boundary of D.

Lemma 5.4.1. In the setup above, let o := inf{t € R : n(t) € dB(0,1)}. Then there exists a
coupling of 1 and T with a curve y from 1(0) to n(o) that is either a CPI in the carpet of the
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CLE, I (when k € (8/3,4)) or a strand of an exploration of the CLE, T (when k' € (4,8)) such
that, conditional on 1[0.c0)> 1|(=cor] and y, the law of the unexplored portion of n is that of an

SLE,(« — 4) in the region to the right of y between the two endpoints n(0) = 0 and (o) of the

- v 10,0
7]‘[0,%)
~
-\ A

V4 Y

explored parts of n.

”7\(—><.n]

N{e,0

7\ \ mﬁﬁﬂ

- -\

—A+2mx

Figure 5.1: In the proof of Lemma 5.4.1, we use GFF couplings to draw a CLE exploration
¥ and part of the domain boundary 7 in either order; the resulting boundary conditions tell
us the conditional laws of each curve given the other.

Proof. If k < 4, then we can construct 77|[0..0) as a whole-plane SLE (2), then (by reversibility
of SLE, for k < 4 [Zha08]) construct part of 7](—«0] as a chordal SLE, from co to 0 in the
remaining domain, but stop this process when it first hits dB(0, 1). We can then conformally
map the domain we have obtained to H, sending 17(0") to 0 and 0 to oo, so that the remaining
portion of 77 is a chordal SLE from 0 to co. We can thus construct the remaining portion of
as a flow line of angle 0 from 0 of a GFF / with boundary conditions —1 on the negative real
axis and A on the positive real axis.

If we then map the region to the left of this flow line to H, fixing 0 and oo, the boundary
conditions of the transformed field become A on the boundary, so as before, if we add g =
A+ A" — 7y to the field, the counterflow line from oo to 0 is an SLE,- (k" — 6) process, from
which we can construct a CLE, in D,,. By [MS16a, Thm 1.4], its right-hand boundary v,
which by [MSW17, §4] is a CPI in the CLE,, is therefore a flow line of 4 + 8 with angle
-1t /2, or equivalently a flow line of 4 with angle B/ x — /2.
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If we instead drew this flow line first, then conformally mapped the region to its right back
to H, fixing 0 and oo, the boundary conditions would therefore become A on the positive real
axis and A’ — B+ 7 y = =4+ 27 x on the negative real axis. With these boundary conditions,
the flow line of angle O from 0 has the law of an SLE, (k —4) from 0 to oo with the force point
at 07 [MS16a, Thm 1.1]. We have thus found that the conditional law of the remaining part
of 7 given the parts we have already sampled and the CPI y is that of an SLE, («x — 4).

If k¥’ > 4 we can use the same construction to get 17][0,«0) 7(—w0r] and /; then instead of
considering just the counterflow line of /2 + B from oo to 0, we can consider the SLE, (" — 6)
branching tree given by the collection of counterflow lines from co targeted at a countable
dense set of boundary points in order to define I'. This time, the right-hand boundary y of
the counterflow line from oo to 0 will be a strand of an exploration of the CLE, I', but since
the construction of  and y was the same as in the k < 4 case, we get the same result on the

conditional law of the remaining portion of 7. m

Now dr(0,17(07)) is bounded by the distance between 0 and 17 (0-) w.r.t. the internal metric
induced by dr on the region to the left of y. This will have finite conditional expectation
w.r.t. (17,I) almost surely by Assumption 1.3.11, since vy is a bounded portion of an SLE,-
type curve and ¢ < co. Moreover, since 7y is either a CPI or a strand of a CLE exploration,
this expectation is almost surely the same as that w.r.t. just 77](—eo.o], 7][0,00)> ¥ and the loops
of I on the left-hand side of y. In order to prove Theorem 1.3.12, it thus suffices to show
that, conditional on 7|(—w > 77|[0,) and 7, the natural length of |, o can be arbitrarily

large with positive probability.

Proof of Theorem 1.3.12. Consider a conformal map sending the domain to the right of y
to H, with 0 and 17 (o) respectively mapping to oo and 0. Since the derivative of this map will
be bounded on a fixed compact set away from the boundary, it is enough to show that the
image of 77[¢0] (Which is just an SLE, (k —4) from O to co) can attain arbitrarily high natural
length inside a fixed ball away from the boundary with positive probability.

Fix § > 0. We show that the natural length attained inside B(7, 1/2) by an SLE,(k —4) 77
from 0 to oo in H can be Q(5~1**/8) with positive probability; since this goes to co as § — 0,
this will suffice.

Fix an ordering on aset of N = Q(672) balls of radius ¢ inside B(z, 1/2) at positive distance

from each other, say By, By, . . ., with centres z1, 23, . . .. With positive probability, for all z, 77
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will enter B,.(36/4) for the first time (say at time ;) before entering any B i for j > i or
the negative real axis. (This is because an initial segment of 77 has positive probability to stay
close to a given smooth simple curve in H - see [MW17, Lemma 2.3].) We can realize 77 as
the O-angle flow line from 0 of a GFF / in H with boundary conditions —1 + 27 y on (=0, 0)
and A on (0, ).

Figure 5.2: We illustrate the argument that concludes the proof that @ < d, in which we
use auxiliary flow lines to generate domains in which we can resample the field to attain
arbitrarily high natural length for 7.

Now take the conformal map y;: H \ 7([0,0;]) — H sending x; := 7(0;) to 0 and
looking like the identity at . Let 4; be the field / o 1//1._1 — yarg (i,.//l._l)’ on H, which has the
appropriate boundary conditions for the flow line of angle 0 from 0 to be an SLE,(x — 4)

from 0 to co. We can then sample the flow lines in H of /; from O of angles 61 and 6,, where
0y —nk/(4—k) <01 <0< 0y <2rmin{l,(k —2)/(4-«)},

and the 6; are small enough for those flow lines to be simple curves, and let their images under
z//l._l be yi and yé respectively. (Note that these are the flow lines of /4 from x; of angles 6,

and 6, respectively.) The values of 61 and 6; are chosen so that, by [MS16a, Thm 1.5], there
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is a positive probability that )/i and yé bounce off each other. Indeed, letting B; = B(z,,6/2),
we will show that there is a positive probability that for all z, when run until bouncing oft
each other for the first time, yi and yé disconnect dB; and dB;, without hitting either circle.
On the event that this happens for each 7, let D; be the connected component of B; in the
complement of the traces of yi and yé run until bouncing off each other, say at y;. Our aim
is to define an exploration discovering the D; in which, with positive probability, all the D;
have “nice” geometries; we will then be able to explain why, when we resample the field inside

each D;, 17 has a positive probability of attaining an appropriately large natural length.

We begin by sampling 7 until time o71. If we fix a deterministic simple curve I'; from 0
to a point on dB(z;,36/4) that does not hit 9H except at the beginning, and some ¢ > 0
such that & < 6, then (by slightly extending the curve into B(z;,36/4)) [MW17, Lemma
2.3] guarantees that with positive probability 77 remains in the e-neighbourhood of I'y until
time 0. Likewise, if we now apply 1, we can fix another curve Fll depending only on ¢
(say, one whose image under ¢! is a semicircular arc of dB(z;,36/4)) and then with pos-
itive probability y] will get within & of the far end of I'] (say, at time o-{ for the natural

parametrization in H \ 77([0, 0;])) before leaving the &-neighbourhood of Fll.

Now by [MW17, Lemma 2.5], ¥, (which, conditionally on the exploration so far along
with the entirety of ¥/, has the law of an SLE((k —4) (1+62/(27)); (62— 61) x / 1 —2) process,
as can be checked by mapping the region to the left of | back to H - note that both weights
are greater than —2) has positive probability (conditional on ¥ up until time o) of staying

within & of the opposite semicircular arc of B(z;,36/4), call it T}, until hitting 1.
PP &1

Since the conditions on 81 and 6, are such that 77 does not cross yi or 75, 7 must exit D;
at y;; let o; be the first time after o-; that 77 hits y;. We now apply a conformal map from the
domain H\ (D1 UR([0,071])) to H and repeat this argument (again, noting that all the curves
we discover are SLE, (p%; pR) processes with p%, p® > —2 conditionally on what has already
been explored) to discover the other D;, so that, defining I and I} analogously, there is a
positive probability that ! and y respectively stay within & of them; we then work on the
positive-probability event Es that this happens for all 7.

We can condition on the portions of 77 up to time oy not contained in any D; and on
each ! and / run until they hit each other at y;. Then we can resample / inside each D;.
By [MS16a, Lemma 7.1], the law of 77](,, 7] will be that of an SLE(62x /1 —2; =61 x/A -2)

in D; from x; to y;. Moreover, by locality, these portions will be conditionally independent
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for each i. We now just have to argue that there exists ¢ > 0 independent of § and 7 such that,
for each 7, the segment 77|(, 7| has natural length at least c§**/® with positive probability.

If we fix conformal maps ¢;: D — D; mapping O to z;, then since B(z;,6/2) € D,
we can apply Lemma 2.6.2 to find that |¢’(z)| > 6/16 whenever ¢;(z) € B(z;,6/4), and
that |¢%(0)| < 46. Moreover, by the Koebe quarter theorem, we have that 901._1(3 (z;,6/4))
contains B(0, |¢%(0)|7'6/16) 2 B(0,1/64).

Note also that on Es we can bound |"0i—1 (x;)— gol._l (7i)| away from 0: it suffices to consider
a Brownian motion B started from z; and bound both the probabilities that B exits D;
through yi and through yé away from 0O, but this can be done because yi and yé are close
to I and T} respectively.

Since cpl_l(m (o.57]) 18 an SLE, (6, x /A=2; =61 x /| A-2) from gol._l(xl-) to cpl._l(yi) inD, it has
a positive chance of hitting B(0, 1/64) and accumulating a macroscopic amount of length, say
¢ > 0, inside this small ball. Certainly suchan # > Qexists for an SLE, (62 x/1-2; =61 x /1-2)
between antipodal points. On Ej, since |‘,01._1(xi) - (pi_l(yi)l is bounded away from 0, we
can uniformly bound the derivative on B(0, 1/64) of a conformal automorphism of the disc
sending gol.'l(xi) and gol.‘l(yl-) to antipodal points, and therefore (by giving up a constant) we
can choose / independently of where gol._l(xl-) and gal._l(yi) are.

We know that |¢’(z)| > 6/16 for z € gol._l(B(z,-, 5/4)), so conformal covariance implies
that the natural length attained by 7](,, 7 is at least £(6/16)1**/3, and we have proven the

result with ¢ = 16=(1+/8) g, n
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