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Abstract

Present value calculations require predictions of cash flows both at near and distant future
points in time. Such predictions are generally surrounded by considerable uncertainty and may
critically depend on assumptions about parameter values as well as the form and stability of the
data generating process underlying the cash flows. This paper presents new theoretical results
for the existence of the infinite sum of discounted expected future values under uncertainty about
the parameters characterizing the growth rate of the cash flow process. Furthermore, we explore
the consequences for present values of relaxing the stability assumption in a way that allows for
past and future breaks to the underlying cash flow process. We find that such breaks can lead

to considerable changes in present values.
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1. Introduction

Present value relations play a key role in economics and finance and are used in testing the permanent
income hypothesis, in standard inventory models and to calculate the present value of assets such
as stocks and bonds. Computing present values requires forecasting a stream of future values of the
variable of interest at horizons that can be long, but finite (as in the case of bonds) or even infinitely
long (as in the case of stocks). It is customary in such calculations to assume that the underlying
driving process follows a simple ARMA process with stable and known parameter values. This
assumption is a gross oversimplification in almost any realistic economic context and so it becomes
important both to dispense with the assumption of known parameters and to consider the possibility
of past and future breaks in the data generating process of the driving variable.

As an example of a present value relationship, we study in this paper long-lived assets such as
stocks. Stocks are claims on unknown future dividends and so the stock price at any point in time
must reflect the present value of the expected future dividends. A key question that investors are
faced with is therefore how to compute expected values of future dividends in the presence of the
considerable uncertainty surrounding not just dividends in the near future but dividends at very
distant future points in time. In particular, how high is the growth rate of future dividends likely
to be and how much does it vary through time? These are key issues that investors must answer
when pricing long-lived assets with unknown future payoffs.

We shall consider the problem of present value calculations under a variety of circumstances.
To begin with we assume that the process of the driving variable is known with stable parameters
but consider the implications of incomplete learning and parameter uncertainty that arises when
dividends or incomes are predicted into an infinite future from a finite past. In the case of geometric
random walks with normally distributed innovations we show that expected present value can be
divergent even if the parameter uncertainty is confined to the mean of the dividend process. This is
a new finding and differs from similar results by Geweke (2001) and Weitzmann (2005) who show
that the expected utility does not exist in the case of power utility functions where the consumption
growth is normally distributed but with unknown mean and variance. In their set up expected
utility is well defined when consumption growth is normally distributed with a known innovation
variance. The non-convergence of the discounted sum of expected future values arises because
parameter uncertainty increases at a faster rate than the discounting of future outcomes.

In practice, dividends or labour income processes are unlikely to remain stable and may be
subject to structural breaks. Indeed, empirical studies have increasingly found evidence of incom-
plete learning and instability in a range of macroeconomic and financial time series processes that
are likely to be related to the determinants of asset payoffs. Stock and Watson (1996) document
evidence of breaks in the univariate time-series representation of a wide variety of financial and

macroeconomic variables.! Similarly, Clements and Hendry (1998, 1999) emphasize the importance

! Other studies finding evidence of breaks in such time series include Alogoskoufis and Smith (1991), Banerjee et al
(1992), Garcia and Perron (1996), Koop and Potter (2004a,b), Pastor and Stambaugh (2001), Paye and Timmermann

(2005), Pesaran and Timmermann (2002), Pesaran, Pettenuzzo and Timmermann (2005) and Timmermann (2001).



of breaks to forecasting performance.

Such evidence opens up the possibility that the dividend process underlying common stock
portfolios is also subject to breaks, a point verified by Timmermann (2001). Our paper presents
new evidence of breaks in US dividends over the period 1872 - 2003. We find evidence of five breaks,
three of which cluster over the period 1911-1930 (before the Great Depression), with the other two
occurring in 1952 (around the Korean War), and in 1960 (the start of the Golden Age). The
parameter estimates in the associated regimes differ significantly both in economic and statistical
terms in a way that suggests that the dividend process has become less volatile but also more
persistent through time.

Building on this evidence, we next explore how to forecast future dividends and compute the
present value of dividends in the context of a model where the dividend growth process is subject
to occasional structural breaks. Such breaks give rise to considerable uncertainty about the stock
price when compared to a model that ignores breaks although the latter, as we argue in this paper,
is clearly mis-specified. Our analysis uses the hierarchical hidden Markov chain model introduced
in Pesaran, Pettenuzzo and Timmermann (2005) for the purpose of forecasting time-series that
are subject to multiple breaks. Building on work by Chib (1998), this approach introduces a
meta distribution that characterizes the distribution from which parameters within each dividend
growth regime are drawn following a new break. Without this approach, forecasting future values
of dividends is infeasible unless, of course, the possibility of future breaks to the parameters of the
dividend process is ruled out. Using Gibbs sampling techniques we draw values from the parameter
distribution within the regime that is in effect at the time of the forecast. To allow for possible
breaks, we next draw new values of the discrete state indicator that characterizes how future states
evolve. In the event that a future break occurs, new values of the parameters of the subsequent
regime are drawn from the meta distribution.

Using the parameter estimates for the break point process fitted to US dividends, we find that the
present value stock price is very sensitive to the underlying modeling assumptions for the dividend
process. In particular, it depends on whether the possibility of past breaks during the historical
sample is considered and also whether future breaks are allowed for. Since the regimes identified
for the dividend process are typically quite persistent, there is no particular ranking of the present
value stock price computed under no (historical or future) breaks, under historical breaks only or
under past and future break scenarios. Instead, the ranking will reflect the value of the dividend
growth rate in the current state relative to its historical average computed across different regimes.

The outline of the paper is as follows. Section 2 presents new theoretical results on the existence
of present values under parameter estimation uncertainty. Section 3 discusses the role of structural
breaks and presents empirical results for a model with multiple break points fitted to US dividend
data. Section 4 shows how the present value stock price can be computed under different assump-
tions concerning parameter instability and reports empirical results for US data. Finally, Section 5

concludes.



2. Parameter Uncertainty and Present Value Calculations

Many intertemporal optimization problems result in rational expectations models with future ex-
pectations whose solution involves calculation of the discounted value of an infinite sum of forecasts

formed at time 7', for many periods ahead into the future. A simple example is given by

H
yr = Hm {Z5hE (@140 \IT)} : (1)

h=1
where Zr is the forecaster’s information at time 7', r > 0 is the (known) discount rate so the
discount factor, § = (1 +7)~L, lies in (0,1), and E (w744 |Z7) is the conditional expectation taken
with respect to the probability distribution(s) assumed for the driving process, {z;}, over the past
m periods (t =T —m+1,T —m+2,...,T), and the future (t =T+ 1,7 +2,..,7 + h), where m is
the length of the estimation window while h is the forecast horizon. In general, the driving process
need not be known or stable. In many applications in finance and economics it is assumed that

{z} follows the geometric random walk model
Alnzip = p+oepy, (2)

where p and o are fixed constants, and €, is identically and independently distributed with zero
means and unit variances. For given (known) values of p and o, and assuming that these values

apply to the past as well as to the indefinite future, we have
B (ar [Trs p.o) = (M) Mo(o)]", (3)

where M. (o) is the moment generating function of ¢;, assuming that it exists. Under the above
assumptions the present value, yr, is convergent and is given by
de* M. (o)zr

T 1= 0erM. (o)’ )

yr

so long as A = de# M. (o) < 1. In the case of normally distributed errors M. (o) exists and is given
by exp(0.502). This yields the familiar result in the literature, A\ = 6 exp(u + 0.502).2

2.1. Unknown p with a Known o2

Consider next the case where ¢ is known but p is unknown and estimated based on the past

observations, Xy, 7 = (T7—m+1, LT—m+2, ----, &7)’, with a Gaussian prior:
2 2
pw~N(p,0r), oo >0. (5)
Assuming that £,41 ~ N(0,1), the posterior distribution of y will also be Gaussian and is given by

M |Xm,T> U?H) gi ~ N (/-_1‘7 5-/21,) 9

2Notice, however, that even when p and o are known, the present value calculations are quite fragile in the case of
geometric random walk models, where non-convergent outcomes will follow if the innovations, €, are distributed as a
Student—¢. A similar result has also been pointed out by Geweke (2001) in the case of expected utility optimization

where the consumption growth follows a geometric random walk model and the utility function is of the CRRA variety.



where (see, for example, Geweke (2005, pp. 25-27))

T

TmT = m~1 E ¢, and
t=T—-—m+1

In this case

E (x74n |Irio, p,0l) xT [E (eh“ |Zr;o, p, Qi)} [M(o)]"

1 2
= xrF (eh“ |IT;U,E,QI%) ezho”

where
h . 2 hi+1h252
E(e H‘ZT70-7H7QM) = e /j'+2 O',u,7

and the individual elements in the infinite sum, (1), exist and are given by

h
s lp2=2 1 2 salp=2,1_2
E (x| Ir; 0) = xpePraloutshe” — 40 (e“+§h”ﬂ+5” ) .

Finally, the present value, truncated at forecast horizon H, becomes
H H
at+ihe2 102" h
YT T+H = TT Z (56 2"1%uT2 ) =27 Z o (h,m)]",
h=1 h=1

where
— o+L1he2 4152
p(h,m) e In(14+r)+i+5he;+50 ]

To check if this is convergent as H — oo, we first note that

S @) @) O 8) o)

Zu

g

2 1 2 1

Gp=— | —7ay :U—+O<—z>-

m 1+%<g_2) m m
a

Using these results in (11) yields p (h,m) = 56%0269(}“”), where

o=t (2) Q] (2) )5 ()0 ).

or after some algebra

_ o2\ [K = Tmr o (h h

(10)

(11)

(12)



Typically one expects (j1—Zm,r)/(mg2) to be quite small and the present value would be dominated
by the term %2 (%) Therefore,

H

Yr:T+H =TT Z
h=1

(6_ 1n(1+r)+%¢72(1+h/m)+50m,T)h’ (13)

and even if Ay = exp(—In(1 4+ 7) + Zpr + 0.502) < 1 (the estimated certainty equivalence
convergence condition), yr.7+x will be divergent as H — 00.3

The only case where the present value convergences in the presence of the estimation uncer-
tainty will be if the limit of h/m as h — oo is bounded from above by some constant, K <
2 &y — In(1 +7)] /o? — 1. This corresponds to a thought experiment in which the length of the
estimation sample (m) somehow grows at a sufficiently fast rate with the forecast horizon, h, so
that lim (h/m) tends to k < 2 [u — In(1 +7)] /0?2 —1, as h and m tend to infinity jointly. In practice,
of course, such thought experiments have little relevance since the estimation window (often deter-
mined by the historical data set available) and the forecast horizon are separate concepts and there
is no reason why they should be linked in any particular way. Furthermore, in cases with evidence
of instability in the parameters of the dividend process, an unbiased estimator of the parameters of
the dividend generating process can only be obtained by restricting the estimation sample to the
post-break data. This provides another reason for why m is finite in practice. In the following we

shall, without loss of generality, assume m = T and suppress the m notation for simplicity.

2.2. Unknown p and o>

The non-convergence problem of the present value will be accentuated if we also assume that o is
unknown and is estimated from the past data, X,, 7. For example, using conjugate priors for ;x and
o2 the posterior distribution of ;1 will be t—distributed and E (eh“ ‘IT; i gi, o?v ) ceases to exist
for any h > 0, where ¢ and v are the parameters of the gamma prior density assumed for o2 which

can be written conveniently as

As pointed out by Geweke (2001), the use of non-conjugate priors for ;1 and o2 does help in resolving

the non-existence of E (eh“ |IT; L, gi, a2, y) However, it does not resolve the non-convergence of

the infinite sums that are involved in present value calculations.
Non-Bayesian approaches to dealing with the uncertainty of 1 and 2 are unlikely to help either.
One possible approach would be to bootstrap the present values. This involves (i) drawing u(b) and

o® from the observed empirical distribution of the estimators of x and o2 (say for, 7 and &%j),

(ii) computing present values for each choice of ;(®) and o(® denoted as yg,?), and (iii) obtaining

the bootstrap present value as B_leleyéf’), where B is the total number of bootstraps. However,

for this procedure to yield a convergent outcome it will be required that yé? ) is convergent for each

3The above analysis also shows the danger of letting m — oo first before computing the limit of the present value

with H — oo. In reality m could be quite large but still finite as H — oo.



b, which is extremely unlikely unless the empirical distribution of fi,, » and &%%T is constrained so
that all draws from that distribution satisfy the conditions ser” M_(c®) <1 for all b.

2.3. Trend Stationary Log-linear Driving Processes

The non-convergence problem continues to be present if the unit root process in (2) is replaced by

the following trend stationary process:
Allnziyr —a—pt+1)])=—(1—-p)(Inzy —a — ut) + oeeta, (14)

where |p| < 1, and as before p represents the average growth of the logarithm of the driving process,

x¢. In the case of this process

h
In (wryn/er) = —(1— p") (nzp —a— uT) + ph+ 0y pPery,
j=1

and
h
E (xrsn [Tr; a, i, p, 0 ) = e~ (=P Iner—a—uT) (ehu) HME(Upi) , (15)
j=1

which is a direct generalization of (8) and reduces to it for p = 1. It is clear that the various
issues discussed for the unit root case readily apply here. Even if £,11 has a moment generating
function, the present value is unlikely to exist if @ is not known with certainty. For example, suppose
a,p and o are known and p is estimated based on the regression of Inx; — plnz;—1 — a(l — p) on
(1 — p)t + p. Assuming, as before, that conditional on a, p and o the prior probability distribution
of 1 is Gaussian and given by (5), then the posterior distribution of p will be given by

/-L‘XTaavpvo-?vai NN(ﬂ’a-i)’

where .
__ o (& Br
w=0o, (QZ —|—6%>,
T
> na;—plnz, g —a(l—p)][(1-p)t+ p]
L =1
Hr = T ,
> I =p)t+ ol
t=1
2 -1
~2 o _2 1 1
or = —F 2,anda“_<g—i+&—%>
1 =p)t+pl
t=1
Hence
| h h . | h
E (:L’T_;’_h ’IT; a, p, o’) = e_(l—P )(Inz7—a) H Mg(O'p;) EH (e[h-i-(l—p ’)T]y,) ’

<.
Il
—

h
_ e—(l—ph)(lnxT—a)HME(O_pj) e[h—i—(l—ph)T];_H—%[h—l—(l—ph)T]?é'i

<.
Il
—



and for a fixed T its rate of expansion is governed by the term exp(.56l2Lh2). Therefore, as far as the
existence of the present value is concerned the outcomes are very similar irrespective of whether the
logarithm of the driving variable has a unit root or is trend stationary. The differences between the
two cases is a matter of degree and differs only due to the differences in the precision with which
w1 is estimated under the two cases. Under the unit root process the precision of i is of order 771,

while when Inz; is trend stationary it is given by T73/2.

2.4. Present Values with a Stochastic Discount Factor: The Lucas Tree Model

Normally the discount rate is formed as the risk-free rate plus some risk-premium to reflect the un-
certain nature of future payoffs and correct for correlations between dividend shocks and variations
in the stochastic discount factor. It is clearly of interest to relate the discount rate—taken to be
fixed and strictly exogenous so far—to the growth rate in dividends, using equilibrium consumption
based asset pricing models. In the case of consumption based asset pricing models the expression
for the present value is more complicated and depends on a stochastic discount factor that varies

with z. In the context of a representative agent model with the utility function, u(c;), we have?

yr = lim {Zah ( ct*;)xﬂmIT)}, (16)

which reduces to the present value expression (1) in the risk neutral case where u(c) is linear. But for
a general specification of u (c) the analysis of convergence of the present value depends on the form
of the utility function and the nature of the dependence of ¢;1;, and z;yj in a general equilibrium
context. Although such a general analysis is beyond the scope of the present paper, certain analytical
results can be obtained for the Lucas’s tree model (Lucas, 1978) where consumption is equal to
dividends (cp4p = zr4n) and the utility function is specified to have the power form wu(c) =
(1—7)"Yc=7 = 1) (y # 1). In this case,

H
yr = I_}E)noo {ZE (6—hln(l—i—r)—i-(l—’y)(ln:cT+h—1n:cT) |IT) } ’
h=1

and under the geometric random walk model (2) with a known mean and variance we have

E (yr|p.o*) =ar hm {ZE ( —hIn(4r)+H(1=y)ph0.5(1—7)2 0 h |1, 02,IT) } )

which is convergent for given values of 1 and 02 so long as — In(1+7) + (1 —)u+0.5(1 —7v)%02 < 0.

1See, for example, Cochrane (2005, p.24). Deriving (16) from the first order inter-temporal optimization conditions

also requires that the transversality condition

: u'(erin)
han;OE( w(er) yr+n|Zr | =0,

is satisfied.



Consider now the case where 1 is unknown and continue to assume that o2 is given (known).

Then using the above results we have

E (e(l—fy)uh+0.5(1—'y)202h |02,IT> _ e(l—*y)ﬂh+0.5(1—7)202h+0.5(1—'y)2h26i’ (17)

where i and 7 are the posterior mean and variance of p given by (6) and (7) where m = T and that
do not vary with h. Hence, the elements in the series expansion of F (yT Jxr ‘02) eventually will
be dominated by terms 60'5(1_”2}]'26!2‘, h =1,2,... and the present value expression will be divergent

unless v = 1, corresponding to the special case of log-utility.

2.5. Possible Solutions to the Non-Convergence Problem

The reason for the fragility of the present value under the geometric random walk model with
constant but unknown parameters can be illustrated using a simple discrete state process for p.
Suppose that over the forecast horizon T'+ 1,7 4 2,...,T + H, p can take any one of the values
[y s fhgs -ees fhyy, With probabilities 71, o, ..., mp, where X% m; = l,and 1 > m; > 0. To simplify the
analysis also assume that o2, y; and 7; are known at time 7". Under this example, the present value
is given by

=z { Y m; lim 3 e~ hIm(+r)h [y p (0)]h} (18)

yr T ; i H_m; €

Since 1 > m; > 0, yr exists if detiM (o) < 1 for all i. Contrast this result with the associated
certainty equivalent expression that accounts for uncertainty about the value of the underlying mean

parameter (but disregards uncertainty about future dividend innovations):

H
CE _ . —hIn(1+r)+hii, h
e _:cT{f}if;th_le " (M (o) } (19)

where fi, = X7 ;. The condition for y&F to exist is given by def= M (o) < 1. Clearly, it is
possible for the latter to be satisfied without deti M.(o) < 1 being satisfied for all i. A sufficiently
large p,;, even if it is extremely unlikely (with 7; very close to zero), can result in divergence of yp,
although for all other outcomes that are much more likely the associated infinite sums could be
convergent.

It is clear from this example that the non-convergence of the present value arises from the
particular combinations of (i) a geometric random walk driving process, (ii) an infinite horizon and
(iii) constant, but unknown parameters drawn from a Gaussian posterior distribution. One could
consider relaxing any one or all of these elements. We discuss the first two assumptions below and

then deal with the parameter stability assumption in more detail in the next section.

2.5.1. Use of Linear Driving Processes

The non-convergence problem can be avoided altogether if the geometric random walk model is

abandoned in favour of a linear driving process. Consider for example the simple random walk



model with drift
Ty = [+ xp—1 + 08¢ (20)

Then E (xpyp |Zr) = 1 + ph, and
H
yr = I}Enoo {hz_:l 5hE (xT—|—h |IT )}

_ T 1 sh
= 1_5+u;h5,

or
Ty o

- + ]
yr 1-5 (1—6)2

Uncertainty surrounding p can easily be dealt with in a way that does not cause non-convergence

(21)

problems. Generalizing the process to higher order models with possible serial correlation in the

innovations, &;, would not alter the main conclusion. For example, for the p* order driving process
Ty = (1 - Z?lej) u+ E?:lpjxt—j + o€y,

conditional on p = (py, pa, ..., p,)" We have

Eﬁé%@)ﬂ—j op(l — Z?:Wj)

yr|p = + ; 22
R N R ) [ (RN 6)) )
where
¢;(0) = Ef:ijidi_j, for j=0,1,....,p— 1.
Under parameter uncertainty
P
 ep—1 $;(9) A 0 p(l — Ej:lpj)
yT—Ej:(]E |:1_¢0(5) |XT $T—]+ 1_5E 1—¢0(5) |XT ) (23)

where expectations are taken with respect to the posterior distribution of u and p. These expecta-
tions are likely to exist for a sufficiently large 7', and do not depend on the forecast horizon.

The problem with this approach is, as pointed out by Campbell, Lo and MacKinlay (1997, p.
258), that linear models for real dividends, consumption or labour income do not fit the data well
since these series tend to grow exponentially over time. This means that linear models are usually

dominated by log-linear specifications.

2.5.2. Use of Finite Horizons

A simple, but rather ad hoc, solution would be to define the present values over a given finite future,

say H , and then write the solution as

H
yr(H) =Y 6"E (e |Ir), (24)
h=1



which is finite so long as E (zp4p, |Z7) exists for h =1, ..., H. In practice the choice of H could be
problematic. In the case of the life cycle consumption model, H can be viewed as the life of the
household and treated as a truncated random variable. For example, we could assume that (for
0<f<1)

~ — s —
Pr(H = s):w,fors:l,z...,f-[

9(1—9H)

= 0, for s> H, (25)

where H is an arbitrarily large but finite value. The non-truncated case where H — oo yields the
familiar geometric distribution used by Yaari (1965), Cass and Yaari (1967) and Blanchard and
Fischer (1989) to model uncertain life times in models of household consumption. Integrating out
the uncertainty of H we have
] = (10 n g
Eg [yT(H)} = Y > 6°6"E (wryn|Tr),
9<1—9 ) s=1 h=1

which can be written more compactly as

By [yr ()| = S L G B o ). (26)
0 (1-0")

s=1

In this set up the choice of H is of secondary importance. However, it is worth noting that for
H — oo the uncertain life time present value problem reduces to

[ee)

lim Eg [yT(H)} =0 Z (00)° E (x4 |Zr), (27)

H—o0 1

which is the infinite horizon problem with a lower discount factor given by 60. By increasing the
discount rate the stochastic life time assumption will help towards achieving convergence, but does

not resolve the problem altogether. A finite H would still be required in general.

3. Present Value Models with Structural Breaks

Perhaps a more appealing way to handle the non-convergence problem is to relax the assumption
that the parameters of the underlying growth process are constant through time. This assumption
clearly goes to the root of the non-convergence: As long as there is even an infinitesimal probability
of drawing a set of parameters for which the (constant) growth rate exceeds the discount rate,
the present value will not exist. Conversely, if the parameters of the growth rate are subject to
structural breaks, there are cases where the growth rate temporarily exceeds the discount rate, yet
the present value continues to exist. This happens provided that the underlying driving process
most of the time grows at a slower rate than the discount rate. The condition for the existence of

the present value is now the rather weaker one that paths leading to an unbounded present value

10



have zero probability. This will trivially hold if the distribution of the maximum growth rate is
truncated so that it always falls below the discount rate, but can also hold in the absence of this
assumption.

Breaks to the cash flow process will not, however, in and of itself, resolve the problem. This
can easily be seen as follows. Suppose that the mean of the increment to the logarithm of the
first-differenced future dividend process falls in different regimes during the period 7'+ 1,...7 + h.
Denote the number of these regimes by N}, and let their duration be hi, ..., Ay, , so that Zf\i’l h; = h.
Equivalently, the fraction of the time spent in regime 4 is given by m; = h;/h, 0 < m; < 1. Suppose
that u; ~ N(g, O'Z). We then get the present value as follows:

H Ny, h
yr = Er :cTZexp —ln(l—i—r)h—i—thui—i-aZsj
h=1

- i=1 j=1
H ] ) N,

_ . 2 2,2 2

= or hg_l exp |—In(1+7)h + h(n+ 29 )+ §U#h ;_1 - (28)

Notice that the last term is not convergent as H — oo. Hence while the possibility of breaks adds
some flexibility to the model, one has to be careful to ensure convergence of the present value either
by using a finite H, by truncating the distribution from which the future growth rate is drawn, or

through some other means.

3.1. A Dividend Model with Breaks

To illustrate the above issues, we next consider the empirical evidence of breaks in the dividend
process underlying US stocks. Real dividends underlying broadly diversified stock market indices
are often assumed to follow a simple process of the form (2) with €441 ~ N(0,1). Depending on the
frequency at which dividends are modelled, autoregressive dynamics may also be present, in which

case the process can be generalized to

P
Aln(mpp1) — p =Y Bi(AIn(w11-5) — 1) + 041, (29)

i=1
where f3; (i = 1, ..., p) are autoregressive parameters and p reflects the long-run mean of the dividend
growth rate, whereas i = p(1— "2, ;) is the intercept for the AR(p) process in Aln(z¢41). Both
specifications (2) and (29) assume that the parameters of the dividend growth process remain
constant through time—an assumption that, in view of the significant shocks to economic growth
observed throughout the twentieth century, is unlikely to be satisfied over the long sample periods
typically used for estimation of the parameters of the dividend growth process, see Timmermann

(2001).

To capture the possibility of structural shifts in the parameters of the dividend growth process,

we adopt the change-point process proposed by Chib (1998).° This approach assumes that shifts to

®McCulloch and Tsay (1993) is another prominent example of breakpoint analysis in a Bayesian setting.

11



the parameters of a time-series process are determined by the evolution in a discrete state variable,
S¢, initialized so that S; = 1 and increasing over time to capture the possibility of breaks. Every
time the state variable increases by one unit, the parameters of the process shift. Hence, if the
break point indicator S = K + 1, this means that there were K breaks between time 1 and time
T. For example, assuming that the dividend process can be characterized as an AR(1) model whose

parameters are subject to breaks, we have

Aln(ziy1) — py = Br(Aln(wy) — py) + 016441, To<St<T

An(zi41) — pg = Bo(Aln(zt) — po) + 028141, T1+1<t< 7 (30)

Aln(zi1) — pryr = B (AIn(zy) — pgiq) +0xp16e41, T +1<t<T

where 71, ..., T are the breakpoints and {Mst+1’65t+l’o-%t+1} are the parameters associated with
the dividend process regime that is in effect at time ¢ + 1. Our other assumptions follow Pesaran,
Pettenuzzo and Timmermann (2005) which we next briefly review. The state variable, S;41, can

either remain in the k"

regime, which happens with probability pgr or move on to the next regime,
which happens with probability py r+1 = 1 — prr. These probabilities are assumed to be drawn

independently across regimes from a beta distribution with prior parameters g and b:
pii ~ Beta (a,b), fori=1,2..., K. (31)

For the AR(1) specification the parameters determining the conditional mean of the divi-
dend growth process, 3;= (fi;,3;) for i = 1,2,..., K + 1, are drawn from a Gaussian distribution,
Bs,n ~ N (bo, Bo), while the error term precision parameters, O’Ei_l, are identically, independently
distributed (IID) draws from a Gamma distribution, aj_2 ~ G (vg,dp). At the level of the meta

distribution, we make the following distributional assumptions:

mwN@&) (32)

ByNW@%% (33)

where W (.) is a Wishart distribution. kg, Xg, vg and Vgl are hyperparameters that are specified

a priori. Finally, the error term precision, vy and dg are assumed to follow an exponential and

Gamma distribution, respectively, with hyperparameters py, co and do:

vo ~ FExp (@) (34)
do ~ Gamma (co,dp) - (35)

We refer to this specification as the composite-meta model. All prior parameters are under-scored.

3.2. Estimation Results

We use data from Shiller (2000) available at http://www.econ.yale.edu/ shiller/data.htm. This
provides monthly dividends paid by the firms included in a broad index of US firms. The data
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runs from 1871:03 to 2003:09. Nominal dividends are divided by the consumer price index to get
a time-series of real dividends. Statistics on the first-differenced values of this series are provided
in Table 1. Monthly dividend growth rates are serially correlated and left-skewed with fat tails.
Figure 1 plots the associated time-series and indicates strong evidence of instability in the underlying
process as it has evolved over the sample. Most notably, the volatility was very high in the early
parts of the sample, and around World War II, and has become much lower after this period. In
addition, the persistence of the series appears to have shifted over time as reflected in a more volatile
(less persistent) time-series plot in the early parts of the sample. These are of course only visual
impressions and must be confirmed by a more formal econometric analysis.

To this end we next document the presence of breaks in the dividend process. Table 2 shows
estimates for a variety of models with different numbers of breaks. Bayes factors based on the
ratios of the marginal likelihoods for models with different numbers of breaks suggest selecting a
model with five breaks, i.e. a break occurring roughly every 25 years. In fact, assuming equal prior
probabilities on the models with between zero and six breaks, almost all of the posterior probability
mass goes to the model with five breaks.

Based on the posterior modes for the probability of a shift in the state variable, S, the five breaks
are estimated to have occurred in 1911, 1922, 1930 (at the beginning of the Great Depression), 1952
(around the Korean War) and in 1960 (the start of the Golden Age of Capitalism). Figure 2 shows
that the date of the first break is very poorly determined with probabilities of a break in individual
months well below 6% and spread out between 1900 and 1920. The remaining break dates are more
precisely determined with modal probabilities varying from 0.15 to 0.35.

Table 3 reports parameter estimates for the model with five breaks (six regimes). As one might
expect from a sample period as heterogenous as the twentieth century, there is considerable variation
in the parameters across regimes. The intercept parameter varies from -0.02 to 0.16, while the AR(1)
parameter varies from a low point of 0.37 (between 1871 and 1911) to a high point of 0.73 between
1930 and 1952. Confirming the visual impression from Figure 1, the standard deviation of the
dividend process has varied considerably from a peak of 0.78 prior to 1911 to its value of 0.15 after
1960. Clearly the dividend process has become less volatile but also more persistent through time.
Finally, the mean value of the ‘stayer’ probability parameter that characterizes the duration of the
various states has varied from a high of 0.9997 in the regime prior to 1911 to 0.985 in the regime
over the period 1952 to 1960.

Consistent with the large variation across regimes in the parameters of the dividend growth
process, the mean value of the standard errors of the meta distribution parameters (bo(1),bo(2)) are
quite large at 0.04 and 0.08, respectively. In fact, Table 4 shows that the 95% confidence interval
for by(1), the parameter in the meta distribution characterizing the mean intercept across regimes,
goes from -0.021 to 0.104 and from 0.43 to 0.68 for by(2), the parameter in the meta distribution
characterizing the mean persistence across regimes. Following a future break, the parameters of
the dividend process will be drawn from the meta distribution so these values indicate that there is
considerable uncertainty about the process driving future dividend growth.

Figure 3 shows that parameter instability of the dividend growth process has a large effect on
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the predictive density. It shows the predictive density under three different models at horizons of
1, 12, 24, 36, 48 and 60 months. The first model is the full-sample, no-break model, while the
other two models allow for past breaks and past and future breaks. The model that allows for past
breaks effectively bases predictions of future values on the parameters from the last regime—the
regime prevailing from 1960-2003 in this case—while the model that allows for future breaks starts
off from this regime but lets new parameters following a future break be drawn from the meta
distribution. This also explains why the predictive densities are more concentrated under the break
regimes in Figure 3 since the standard deviation of innovations to dividends was very low in this
regime compared with the full-sample average value. While the dispersions of the densities are quite
different, however, in this regime the centering of the dividend growth process is not greatly affected
by the presence of breaks.

The relationship between the predictive density under breaks and under no breaks can be quite
different depending on the parameter values in the regime from which the forecast is calculated. To
see this, we plot in Figure 4 the same three graphs but now for the case where the parameters in
the last regime are based on their values in the regime prevailing during 1922-1930. It now becomes
clear that, particularly at the longer horizons, the three predictive densities are very different once
breaks are considered. In this case breaks shift the mean growth rate to the right compared with
the no-break case. The reason why the difference is largest at the longer horizons is due to the
cumulated effect of having different mean and persistence parameters under the three scenarios.
Since the forecasts from the AR(1) model are computed based on the same initial value of the
dividend process, differences in the parameters have a relatively smaller effect at short horizons.
This observation is by no means unique to the regime from 1922-1930 and—as shown in Figure
5—also holds for the regime that was in effect from 1952-1960.

Differences between predictive densities under the two breakpoint models can be explained with
reference to Figure 6. This figure plots the weight on the current regime (thus assuming that the
parameter values for the final regime remain in effect) as a function of the forecast horizon. This is
similar to a survival plot for the current state and shows how the probability of a break (computed
as one minus the ‘stayer’ probability plotted in Figure 6) increases to more than 50% as the forecast

horizon extends beyond five years.

4. Present Value Stock Price under Breaks

As we showed in Section 2, to compute the present value of future dividends, we need to evaluate

an expression of the form

H H
. T h IRT .
Jim yr = ngnooga Erlzrin] = ngnm;exp( hin(1 4 r))Erlzris). (36)

Notice that E7][.] is calculated not just conditional on current dividends, z7, but on the entire past
sequence {azt};f:l. Hence the complete historical track record of dividends matters when forecasting

future dividends.
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To compute the future stream of dividends, we use the Gibbs sampler to generate draws from the
predictive distribution of Aln(z741), Aln(zr42), .., Aln(zrig). To see how this works, consider
the sum of log first-differences of dividends between period 7'+ 1 and period T+ H:

H
Z Aln(zpip) =In(xrym/ze), (H > 1) (37)
h=1
SO
H
TryH =TT eXP(Z Aln(zryn)),
h=1

or, in terms of present values,

H

Mar g =ar exp(z Aln(xpyp) — HIn(d)). (38)
h=1

First assume that there are no breaks between period T and 1"+ h. When dividends follow the
AR(1) process (30), the value of Aln(xryy,) is given by

h
Aln(zpin) — ps, = B8, (Aln(er) — ps,) + Y BY ‘eriaini- (39)
i=1

Using (37), we see after some algebra that

BST(l - BZ‘T) [

In(zrin/27) = hpg, + Aln(zr) — pgy | + erprrin, (40)

where er41.745 denotes the weighted shocks to the present value of dividends between period T
and T + h, defined by

1- 5% 1- 5% 1— B4
ET+1:T+h = €ET+h T < T) ET+h—1 + ( | ersh—z... + = erya-

It is now easily seen that

By, (1-6%)  2B5,(1-B%)
ht - 1-PBg,

1—,8§T

(1-Bs,)?

Future dividends can therefore be simulated by drawing a set of parameters, {u sy, sy}, and,

Var(ery1rn) = (41)

for these parameters, compute

Tpyp = TT €Xp {h,uST + ) [A In(zr) — MST} + €T+1;T+h} , (42)

where 741745, has mean zero and variance as given in (41).
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Turning to the case that allows for breaks between periods T+ 1 and 1"+ h, and recalling that

fisp,, = :“STH(l - 55T+i), we have

Aln(rri1) = fig,,, +Bs,, , Aln(zr) +eri1
Aln(zrye) = fig,,, + Bsp oftsp,, T BsrnBsr  Aln(zr) +erye + By, 6141
A ln('rT+3) = ﬁST+3 + /BST+3'Z)'ST+2 + BST+3/BST+2 ﬂST+1 + /BST+3BST+2/BST+1A In(xT)

+erys + Bop,er+2 + By, s Bsp,,ET+1

(43)
-1 & h
Aln(zrin) = fisp,, +erin+ > | 1] Bsrws | (Bsp, Tere) + | 1] Bsrys | Aln(zr).
=1 i+ i=j+1

Comparing this expression to (39), clearly, the presence of breaks complicates calculations of future
expected dividends very considerably and numerical methods are required to compute the present

value.

4.1. Computing Present Values

In practice we calculate the present value of the stock price as follows:

"
lim yr = lim > exp(=hIn(1+7)) / rrnp(@rn|Zr)dTT 8, (44)
h=1

H—oo

where Z; is again the forecaster’s information set at time 7', which we shall assume comprises past
dividends only, i.e. Zp = {z1,....,x7}. p(xrin|Zr) is the predictive density of dividends at time
T + h conditional on Zp.

The expectation is computed under three different scenarios capturing different assumptions

about the forecaster’s beliefs:

1. A model that accounts for parameter estimation uncertainty but ignores past and future

breaks to dividends by using the predictive density:

p(xrn|Sron = 1,1I7) = /p(xT+h|@t, Stin = 1L, Zr)n(Or|STn = 1,I7)dOr, (45)

where © are the constant model parameters whose posterior distribution given the data at
time T" is 7(O| Sty = 1,Z7).

2. A model that accounts for historical breaks to the dividend process but ignores the possibility
of future breaks (and hence assumes that the last regime stays in effect forever but with

uncertain parameters) by using the predictive density:

p(@ryn|STyn = K+1,1Ir) = /p(wTJrh\ Ok+1,51+n = S = K + 1L, Ir) 1 (O k41| H, p, Ir) dOK 11,
(46)
where O 1 are the parameters in the last regime (labelled K + 1), while H is the set of hyper

parameters.
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3. A model that accounts for parameter estimation uncertainty as well as past and future breaks

to the dividend process by using the following predictive density:

/p($T+h\5T+h =K+n,+ 1,50 =K+ 1,Ir), (47)

where ny, is the maximum number of out-of-sample breaks so the predictive density can be cal-

culated (integrating out uncertainty about the dates of the breaks, 7k 11 =T+ 1, ..., TK4n, =

Jn,) a8

h—np+1 h
p(xrin| Sren =K +m+1,Sr =K+ 1,Zr)= > .. > //
A=l Gny=imgo141

P(@T4h, Ok 42, s OKtny+1, H, STn = K +np + 1,

Tke1 =T+ J1, s TKny =1 + Jn,, S7 = K +1,I7)

XT(Trke1 =T+ J1, s Tany =+ Jny | ST =K +np+ 1,57 =K +1) (48)
XT (O 42, s O inys1, H| T1) dOK 12...dOK 1y +1dH.

To get a more complete picture of the possible impact of breaks on the present value price,
we compute the stock price under the three scenarios based on different terminal regimes. One
thousand draws from the Gibbs sampler were used (after discarding the first 500 draws) to forecast
dividends and the present value of dividends. In computing the monthly dividends, we set the
forecast horizon at H = 1000 and assumed an annualized discount rate of 10%. The parameters
of the prior were as follows: p;; ~ Beta(a,b) with @ = b = 0.5. We assume an uninformative
prior for the parameters of the conditional mean of the dividend process by setting pg = O2x1,
Vs = 10001y (recall that B;= (fi;, 3;)" in the i*" regime). The hyperparameters determining the
error term precision are ¢g = 1;dg = 1/100; po = 100, while the prior for the transition probability
matrix is assumed to be drawn from a Gamma(ag, by) distribution with a¢ = 1; b, = 1/10.

To shed light on the practical importance of our choice of H, the terminal value at which
dividends are computed, Figure 6 plots the present value of the expected dividend as a function
of the forecast horizon, H. The sum of expected discounted dividends stabilizes rapidly under all
three models, suggesting that, in this parameterization and for our choice of discount rate r = 10%
per annum, the present value is not very sensitive to our choice of H. Our earlier theoretical results
suggest, however, that if we were to let H — oo, the results could be quite different. Consistent
with this, when we chose a smaller value for the discount rate of r = 5% per annum, the present
value series failed to converge, blowing up in the process. These results suggest that in the presence
of parameter estimation uncertainty and model instability the present value stock price can be very

sensitive to modeling assumptions.

4.2. Empirical Results

Table 5 reports the stock price computed under these assumptions relative to the stock price from

the model that ignores model instability which we normalize at 100.% As indicated by the parameter

Since we are using a finite horizon in these calculations, normalizing the present values in this way is innocuous.
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estimates in Table 3, the mean value of the log first-differenced dividends in the regime prevailing
during 1922-1930 was unusually high. As a result, in this regime the stock price computed under
the assumption that the last regime stays in effect and no future breaks occur (the middle column in
Table 5) was nearly 40% higher than the full-sample, no-break stock price. In this regime, the stock
price computed under the composite-meta model that allows for both past and future breaks lies in
the middle of the full-sample and current regime values, 20% above the no-break price. Stock prices
under past and/or present breaks that exceed the value under the no-break assumption are also
observed under the parameters based on the regime that was in effect during the period 1952-1960.

Conversely, the stock price based on dividend growth parameter values from the regime prevailing
from 1930-1952 falls below the full-sample value by 7% since dividend growth was quite low in this
regime as indicated by the negative intercept for this state shown in Table 3. Furthermore, in this
regime the stock price computed under the composite meta distribution, at 101, is only marginally
above the full-sample value. A similar set of results is obtained on the basis of the parameters from
the last regime prevailing during 1960-2003.

The reason for these rankings is easy to understand from Figure 7: At short investment horizons,
the weight on the current state tends to be very high, but this weight declines gradually as the
horizon is expanded and the weight on draws from the meta distribution increases. Consequently,
the stock price under the current regime lies above both the full-sample value and the price computed
under the composite meta distribution whenever dividend growth is very high in the current regime,
i.e. the parameters associated with the current regime are drawn from the right tail of the meta
distribution. In this situation, the stock price under the composite-meta distribution is also likely
to be considerably higher than its full-sample counterpart, but it falls below the value conditioned
on remaining in the last regime since dividend growth after a future break is likely to be below the
growth rate in the current regime.

These results also demonstrate that, in general, the stock price under the composite meta
distribution will tend to be above the full-sample value due to the convexity of the mapping from
the dividend growth rate to the stock price implied by the present value relation (see Timmermann
(2001)). This explains why we see higher stock prices as a result of accounting for parameter
uncertainty and model instability. Furthermore, model instability generally increases the effect of
parameter uncertainty. The intuition for this finding is that under breaks fewer observations are
effectively used to estimate the model parameters in the last regime, so the standard errors of the
parameters tend to increase under breaks compared with full-sample estimates.

However, in a given regime, any ranking between stock prices under the three scenarios is in
fact possible. For example, if the current state experiences a sufficiently low dividend growth rate
and the state is highly persistent, then the effect of conditioning the stock price on the dividend
growth parameters from the current state will dominate the convexity effect and hence the stock
price under the composite meta distribution (as well as under the assumption that the current state
remains in effect) will be smaller than the full-sample, no break price.

Furthermore, stock prices under the model that accounts for breaks need not exceed prices

under a no-break assumption in models where shocks to the dividend growth process are correlated
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with a stochastic discount factor and uncertainty surrounding future dividend growth leads to a
higher risk premium. This will occur, for example, in consumption asset pricing models where
dividends have a large positive correlation with consumption growth. But our discussion of the
Lucas model in Section 2.4 suggests that taking account of possible correlations between dividends
and consumption growth might not be sufficient to resolve the non-convergence problem so long as

there are important uncertainties surrounding the future mean dividend growth rates.

5. Conclusion

This paper showed how to compute stock prices as the present value of future dividends when we
do not assume that the dividend process is stable through time and that its parameters are known.
We showed that stock prices can be quite sensitive to the nature of the assumptions concerning
uncertainty and instability of the parameters of the dividend process. These findings suggest that
our understanding of the dynamics in stock prices can be improved by focusing on the uncertainty
surrounding the underlying fundamentals process.

Our emphasis on the sensitivity of present values to uncertainty about the growth rate in dif-
ferent ‘regimes’ or states of nature is closely related to the literature on how investors’ learning
about the dividend growth process can give rise to the ‘excess volatility’ patterns observed for asset
prices, c.f. Timmermann (1993). Even with a finite horizon, present values can be very sensitive to
small changes in the estimated growth rate, particularly as this gets close to the discount rate. It
is also related to recent work on asset pricing puzzles by Weitzmann (2005) who, following earlier
insights by Geweke (2001), points out the sensitivity of equilibrium asset prices and returns to
assumptions concerning the precision of the parameters characterizing the distribution from which
fundamentals are generated, questions the ergodicity assumption made in much of the rational ex-
pectations literature and proposes modifications to this. For example, Weitzmann (2005) writes
that “the unobservable nature of structural growth parameters adds to expectation beliefs a per-
manent thick-tailed background layer of uncertainty that never converges to a stationary-ergodic
rational expectations equilibrium.”

The empirical results presented here clearly have implications for the equity premium puzzle,
although we chose not to address this issue here. Recent papers by Barro (2005), de Santis (2005)
and Weitzmann (2005) emphasize the importance of parameter uncertainty, instability and rare
events as potential explanations of the historically large equity premium. Indeed, through their
large effect on the present value stock price, persistent shifts in the dividend growth rate tend to
increase the uncertainty about future returns which may be a reason why a larger equity premium

is required compared to the standard model that ignores such effects.”

T Allowing for estimation uncertainty could also be important in resolving the so called Deaton’s paradox, namely
the excess smoothness of observed consumption growth to changes in labour income growth. See, for example, Deaton
(1992).

19



References

Alogoskoufis, G.S. and R. Smith, 1991, The Phillips Curve, the Persistence of Inflation, and
the Lucas Critique: Evidence from Exchange Rate Regimes. American Economic Review 81,
1254-1275.

Banerjee, A., R. Lumsdaine and J.H. Stock, 1992, Recursive and Sequential Tests of the Unit-
Root and Trend-Break Hypotheses: Theory and International Evidence. Journal of Business
and Economic Statistics 10, 271-287.

Barro, R.J., 2005, Rare Events and the Equity Premium. Mimeo, Harvard.
Blanchard, Oliver J. and Stanley Fischer (1989), Lectures on Macroeconomics, MA: MIT Press.

Campbell, J.Y., A. Lo and C. MacKinlay, 1997, The Econometrics of Financial Markets. Prince-

ton University Press: Princeton.

Cass, David and Menahem E. Yaari (1967), "Individual Saving, Aggregate Capital Accumu-
lation, and Efficient Growth." In K. Shell (ed.), Essays on the Theory of Optimal Economic
Growth. Cambridge, MA: MIT Press.

Chib, S., 1998, Estimation and Comparison of Multiple Change Point Models, Journal of
Fconometrics, 86, 221-241.

Clements, M.P. and D.F. Hendry, 1998, Forecasting Economic Time Series, Cambridge Uni-

versity Press.

Clements, M.P. and D.F. Hendry, 1999, Forecasting Non-stationary Economic Time Series,
The MIT Press.

Cochrane, J., 2005, Asset Pricing. Revised Edition. Princeton University Press: Princeton.

de Santis, M., 2005, Movements in the Equity Premium: Evidence from Time-Varying VAR.
Unpublished manuscript.

Deaton, A., (1992), Understanding Consumption, Clarendon Press, Oxford.

Garcia, R. and P. Perron, 1996, An Analysis of the Real Interest Rate under Regime Shifts.
Review of Economics and Statistics 78, 111-125.

Geweke, J., 2001, A Note on Some Limitations of CRRA Utility. Economics Letters 71, 341-346.
Geweke, J., 2005, Contemporary Bayesian Econometrics and Statistics. New York: Wiley.

Koop, G. and S. Potter, 2004a, Forecasting and Estimating Multiple Change-point Models with
an Unknown Number of Change-points. Mimeo, University of Leicester and Federal Reserve
Bank of New York.

20



[21]

[22]

[23]

[24]

[25]

[29]

Koop, G. and S. Potter, 2004b, Prior Elicitation in Multiple Change-point Models. Mimeo,

University of Leicester and Federal Reserve Bank of New York.
Lucas, R.E., 1978, Asset Prices in an Exchange Economy. Econometrica 46, 1429-1445.

McCulloch, R.E. and R. Tsay, 1993, Bayesian Inference and Prediction for Mean and Variance
Shifts in Autoregressive Time Series. Journal of the American Statistical Association 88, 965-
978.

Pastor, L. and R.F. Stambaugh, 2001, The Equity Premium and Structural Breaks. Journal of
Finance, 56, 1207-1239.

Paye, B. and A. Timmermann, 2005, Instability of Return Prediction Models. Forthcoming in

Journal of Empirical Finance.

Pesaran, M.H., D. Pettenuzzo and A. Timmermann, 2005, Forecasting Time Series Subject to

Multiple Structural Breaks. Forthcoming in Review of Economic Studies.

Pesaran, M.H. and A. Timmermann, 2002, Market timing and return prediction under model

instability. Journal of Empirical Finance, 9, 495-510.
Shiller, R.J., 2000, Irrational Exuberance. Princeton: Princeton University Press.

Stock, J.H. and M.W. Watson, 1996, Evidence on Structural Instability in Macroeconomic

Time Series Relations. Journal of Business and Economic Statistics 14, 11-30.

Timmermann, A., 1993, How Learning in Financial Markets Generates Excess Volatility and
Predictability in Stock Prices, Quarterly Journal of Economics 108, 1135-1145.

Timmermann, A., 2001, Structural Breaks, Incomplete Information, and Stock Prices. Journal
of Business and Economic Statistics 19, 299-315.

Weitzmann, M.L., 2005, Risk, Uncertainty, and Asset Pricing ‘Puzzles’. Mimeo, Harvard Uni-

versity.

Yaari, M.E. (1965): Uncertain Lifetime, Life Insurance, and the Theory of the Consumer,
Review of Economic Studies, 32, 137-150.

21



1860 1820 1900 1920 1940 1960 190 2000 2020

Figure 1: Monthly real dividend growth rates, 1871:3 - 2003:9
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Figure 2: Posterior probability of break occurrence in the AR(1) model for the real dividend growth

rate, assuming K = 5.
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Figure 3: The graphs show the predictive distributions for the dividend series under various forecast
horizons. The solid line represents the predictive density from the composite-meta model (assuming
K =5 breaks) while the dotted line represents the predictive denstity under the last regime (1960-
2003). Finally, the dashed/dotted line represents the predictive density from the full sample/no

breaks model.
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Figure 4: The graphs show the predictive distributions for the dividend series under various forecast
horizons. The solid line represents the predictive density from the composite-meta model (assuming
K =5 breaks) while the dotted line represents the predictive denstity under regime 3 (1922-1930).
Finally, the dashed/dotted line represents the predictive density from the full sample/no breaks

model.
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model.
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Figure 6: Posterior probability of staying in regime K 4+ 1 at time T + h,
Pr(spyp = K+ 1| sy = K +1). his the forecast horizon that ranges from 1 to 60 months.
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composite-meta model (assuming K = 5 breaks) while the dotted line represents the predictive
denstity under the last regime. Finally, the dashed/dotted line represents the predictive density
from the full sample/no breaks model. The dividend is set at the end of sample value, xp = 15.12.



Alog (z;) Sample Statistics
Mean  Std. dev. Skewness Kurtosis 1st order AC  12th order AC
0.0004 0.0064 -0.5133 7.5251 0.5220 0.0480

Table 1: Sample statistics for the monthly growth rate of the real dividends, Alog(z;). The sample
period is 1871:3-2003:9.



No. of breaks Log lik.(LL) Marginal LL Break dates

0 -1298.05 -1329.4062

1 -806.482 -875.8323 Feb-52

2 -749.527 -820.8898 Sep-11  Apr-60

3 -723.086 -795.1873 May-11  Feb-52  Apr-60

4 -705.76 -778.9393 Jan-11  Nov-30 Jan-52  Apr-60

5 -693.636 -769.1268 Jan-11  Jan-22 Nov-30 Jan-52
Apr-60

6 -692.465 N.A. Nov-17  Jun-20 Feb-31 Jan-52

Sep-60  Oct-60

Table 2: Model comparison. This table shows log likelihood and marginal log likelihood values
for first-order autoregressive models with different numbers of breaks. Also reported are posterior

modes of the time of the breaks.



Parameters estimates

Regimes

1 2 3 4 5 6

date  71-11 11-22 22-30 30-52 52-60 60-04
Constant

Mean 0.071 -0.022 0.155 -0.009 0.030 0.009
s.e. 0.035 0.044 0.052 0.033 0.025 0.006
AR(1) coefficient
Mean 0.372 0.606 0.398 0.729 0.621 0.658
s.e.  0.043 0.073 0.104 0.042 0.069 0.032
Standard deviation
Mean 0.781 0.589 0.310 0.597 0.270 0.148
s.e.  0.028 0.039 0.024 0.027 0.020 0.005
Transition Probability matrix

Mean 0.997 0.989 0.986 0.994 0.985
s.e. 0.003 0.010 0.011 0.005 0.012 0

Table 3: Posterior parameter estimates for the AR(1) hierarchical Hidden Markov Chain model

with five break points in the monthly growth rate of real dividends.



Mean Parameters

Mean s.e.  95% conf interval
bo(1)  0.039 0.040 -0.021  0.104
bo(2) 0563 0.078 0430  0.684

Variance Parameters

Mean s.e.
Bo(l, 1) 0.008 0.008
BO(2, 2) 0.032 0.037

Error term precision

Mean s.e.  95% conf interval
(o) 1.281 0.555 0.531 2.336
do 0.113 0.059 0.035 0.217

Table 4: Posterior estimates of the hyperparameters of the meta distribution for the AR(1) hier-
archical Hidden Markov Chain model with five break points for the monthly growth rate of real
dividends.



yr

Regime Full sample/No breaks Last regime Composite-Meta

1960-2003 100 97.736 101.272
1922-1930 100 136.427 120.306
1930-1952 100 93.012 101.036
1952-1960 100 104.677 107.656

Table 5: Stock price y7 under different scenarios when the interest rate is set at 10 % per annum.



