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Abstract 

Bistable composite tape-spring technologies have great potential in application to aircraft 

landing gears, in order to reduce weight, complexity and maintenance compared to the 

conventional lock-link assemblies.  To investigate their implementation, the first area of interest 

is the ‘‘ploy’’ region, which corresponds to the transitional state between the folded and the 

extended configurations.  We devise a simple ‘‘free’’ bending system with minimal constraints 

to study the folding nature of tape-spring structures in general.  A finite element (FE) model is 

also established and calibrated using experimental data; a theoretical model is developed to 

provide further insights.  The typical folding process consists of linear bending, torsional 

buckling, localisation and then folding; the shape of the central fold is developable; the ploy 

region is dominated by axial strains and transverse curvature changes.  Here, we achieve a good 

agreement between experiments, simulation and theoretical analysis.   
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1.1 INTRODUCTION 

The use of composite laminated structures in aerospace engineering can reduce weight, 

complexity, improve aerodynamic efficiency and shape adaptivity [1] because of their high 

strength-to-weight ratio and stiffness-to-weight ratio [2].  Morphing composite structures, in 

particular, are proposed extensively for multistable and energy harvesting applications [3].  

Bistable composite structures are a proven technology, and are enabled by means of thermal 

residual stress [5], geometrical curvature effects [6], piezoelectric actuation [7], and prestress 

induced from either elasticity [8] or viscoelasticity [9].  Their potential applications include 

aircraft aerofoils [4,5], automobile structures [6], and wind turbine blades [1], etc.   

A bistable composite ‘‘tape-spring’’ is a thin-walled, open slit composite tube, with stable 

extended and coiled configurations.  This inherent behaviour has similarities with the lock-stay 

or side-stay folding assemblies of an aircraft landing gear: these extend and retract with the gear 

but remain in a fixed position when the gear is stowed in the bay or locked in the ‘‘down’’ 

position.  Using a composite material reduces weight, complexity and maintenance compared 

to conventional lock link assemblies [7].   

We are concerned with the manufacture and folding response of composite tape-springs, and 

we use ordinary isotropic springs for guidance in extending well-known methodologies.  The 

bending response is complex and nonlinear, and controlled by material orthotropy and 

geometrical nonlinearity.  Analysis becomes increasingly detailed and complex: linear elasticity 

accords first material synthesis and the orthotropic specification; moderate displacements 

enable us to think about the torsional buckling that is observed during folding and how to 

formulate the resulting folded shape; and large displacement folding is served by simple 

inextensible shell models of uniform curvature changes.  From a design perspective, we want 

to quantify the stowed shape of the tapes, the structural limitations of folding, and the influence 

of material orthotropy.   

This section is a prelude to the report.  Section 1.2 summarises the research progress in bistable 

composite technologies, and the development of composite tape-springs.  Section 1.3 gives the 
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aim and objectives of this research, and Section 1.4 provides an overview of the sections which 

follow in the report.   

1.2 LITERATURE REVIEW 

1.2.1 Bistable composite technology 

Bistable composite laminate structures can snap from one stable configuration to the other 

under external loads.  To date, it has been reported that their bistability can be produced by 

means of thermal residual stress [8], piezoelectric actuation [9], elastic prestress [10], 

viscoelastic prestress [11] and curvature (geometry) effects [12]: Figure 1-1 shows some 

examples.   

 

Figure 1-1 Examples of bistable composite structures using (a) thermal residual 

stress [13], (b) piezoelectric actuation [9], (c) elastic prestress [14], (d) 

viscoelastic prestress [11], (e) curvature effects [12].   

Bistable structures can be split into two categories (Figure 1-1): ‘‘opposite-sense’’ bistable 

shells have two stable cylindrical shapes, where each centre of cylindrical curvature lies on 

opposite sides of the structure above and below; while ‘‘equal-sense’’ shells have stable 

Equal-sense 

curvature 

(a) (b) 

(c) (d) 

(e) 

Opposite-sense 

curvature 
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curvatures on the same side.  In application to aircraft landing gear, an equal-sense tape is 

utilised because it can be folded reliably without damage.  We call this our bistable composite 

tape-spring (CTS).   

1.2.2 Bistable composite tape-spring 

The bistable CTS was invented by Daton-Lovett in 1996 [15].  An anti-symmetric composite 

lay-up was selected to eliminate coupling between bending and twisting for a less complex 

response.  To date, there have been various approaches in terms of experimental, analytical and 

simulation models to predict and characterise their bistability and deployment behaviour.   

Iqbal and Pellegrino [16] developed a simple analytical model to calculate the strain energy of 

the CTS in terms of the transverse and longitudinal curvatures, which was able to capture the 

main features of the coiling process.  Based on the assumption that the longitudinal deformation 

is uniform, Galletly and Guest further developed a beam model [17], and later a shell model 

[18], to predict the equilibrium configurations of the CTS structures with varying transverse 

shapes.  The validation of the analytical model was performed for different materials including 

antisymmetric laminate, symmetric laminae and isotropic tapes, and results correlated fairly 

well with the published data.  Guest and Pellegrino [12] simplified the analytical model with 

inextensional deformations, and successfully predicted the stability of the cylindrical shell for 

different constitutive relations.   

In folding of CTS structures, Yee et al. [19] investigated the moment-rotation relationship of 

carbon-fibre reinforced polymeric (CFRP) tape-springs.  Similar to isotropic (metallic) tape-

springs [20], the behaviour is linear-elastic for small rotations before buckling into a folded 

configuration, which has a constant moment under large rotations in both equal- and opposite-

sense bending; a finite element analysis was established to study the maximum strain values in 

bending.  Later they studied the folding of a self-deploying composite tube hinge made by 

cutting three parallel slots in a thin-walled cylindrical tube [21].  The strains before failure in 

tension, compression and bending of the hinge were characterised for one-ply and two-ply 

woven composites using large-displacement buckling tests, analytical and FE models [22].  

Mallikarachchi and Pellegrino [23] then investigated the folding and deployment of a composite 

tube hinge with two slots.   
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In addition to using a CTS as a single structure or a tube hinge design, Murphey et al. [24] 

proposed several CTS concepts to construct deployable booms, for use as gravity gradient 

stabilisation devices, optical and other sensing devices.  Xiong et al. [25] studied the 

experimental deployment of a deployable composite structure of three tape-springs, whereas 

Costantine et al. [26] developed a deployable dipole antenna structure using CTS components 

with embedded copper alloy conductors for CubeSat applications; Wu and Viquerat [27] 

examined the natural frequency of a deployable solar array of bistable reeled composite slit 

tubes, and Mao et al. [28] constructed a self-deployable boom assembly of four 1 m long 

bistable CTS components.   

Deployable structures are often stowed for some time during launch and then subjected to 

multiple thermal cycles in orbit [29].  In recent years, there have been growing demands for 

understanding the natural viscoelastic behaviour of the CTS structure, in order to precisely 

control the deployment and stowage of the associated deployable structures.  This can be 

achieved experimentally (by creep or stress relaxation tests) or by characterising the viscoelastic 

constitutive relations of the viscoelastic solids, usually via a Prony series expressing the matrix 

material, which is integrated into the time-dependent relaxation modulus equations [29–33].   

For example, Kwok and Pellegrino [29] investigated the shape recovery behaviour of a simple 

beam and a tape-spring structure made of pure LDPE.  They characterised the reaction force, 

deformed shapes and curvature through experiments, theoretical modelling, and simulations.  

Birnkmeyer et al. [30] studied the effects of long-term stowage on the deployment of bistable 

tape-springs.  Their analytical model showed that the deployment time increased predictably 

with stowage time and temperature in line with experimental observations.  Kwok and 

Pellegrino [34] also developed a viscoelastic model for a single-ply CTS structure, in order to 

investigate the effects of stowage periods on its deployment; the constitutive behaviour of 

materials were homogenised by considering the linear elastic fibres within a linear viscoelastic 

matrix.  Khan et al. [32] examined the effects of matrix viscoelasticity on energy dissipation of 

a three-layer CFRP composite during the stowage state.  Borowski et al. [33] built an 

experimental setup to study the influences of stress relaxation during stowage on the 

deployment dynamics of a polymeric CTS structure; a finite element model with a user-defined 

material subroutine was created, and showed good agreement with experiments.   
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CTS structures can also be manufactured to be neutrally stable, in order to avoid spontaneous 

deployment upon releasing the constraints of transportation, which cause extra vibration and 

instability.  Murphey and Pellegrino [35] fabricated a neutrally stable tape-spring by 

manipulating the prestressed plies and stacking sequences, which had non-zero strain energy in 

both the extended and coiled configurations.  Schultz et al. [36] used a low stiffness epoxy resin 

to produce a stress-free neutrally stable tape-spring structure whose deployment could be 

controlled at any point thermally using a shape memory alloy.  Table 1-1 summarises previous 

research in chronological order on CTS and related structures.   

Table 1-1 Summary of research on CTS and related structures.  UD stands for the 

‘‘unidirectional’’; R is the natural transverse radius; L is the axial 

length; t is the thickness; SA is the ‘‘subtended angle’’.   

Year Investigator Materials Geometry Main content 

1996 Daton-Lovett 

[15] 

UD glass fibre 

reinforced 

polypropylene 

-- Invented and patented the bistable 

composite tape-spring structure. 

2000 Iqbal and 

Pellegrino [16] 

UD glass fibre 

reinforced 

polypropylene 

R: 25 mm  

L: 90 mm 

t: 1.1 mm 

SA: 180˚ 

Developed an FE model to include twist to 

simulate coiling.  Main features captured by 

the model with limited accuracy.   

2004 Murphey and 

Pellegrino [35] 

UD graphite 

T300 fibre 

reinforced epoxy 

prepreg  

R: 32 mm 

t: 0.13 mm 

 

Neutrally stable tape spring fabricated by 

manipulating material orthotropy and 

prestress.  Analytical model able to predict 

neutral stability for prestressed laminates.   

2004 Galletly and 

Guest [17]   

Analytical model Developed a beam model to predict the 

equilibrium shapes of a composite slit tube 

of any longitudinal shape with the cross-

section as a circular arc of varying radius.   

2004 Galletly and 

Guest [18] 

 

Analytical model Developed a shell model to be able to 

predict equilibrium shapes of a composite 

slit tube with any cross-sectional shape.   

2004 Yee et al. [19]  Plain-weave 

T300 carbon 

fibre reinforced 

epoxy resin  

R: 15-20 mm 

L: 150 mm 

t: 0.13-0.26 mm 

SA: variable  

Investigated the moment-rotation relation 

of a carbon fibre reinforced plastic tape-

springs.   

2005 Yee and 

Pellegrino [21] 

Woven T300 

carbon fibre 

reinforced epoxy 

resin 

Tube hinge with 

three slots 

Performed large-displacement buckling 

tests for woven composite structures.  The 

failure strains in tension, compression and 

bending characterised for one-ply and two-

ply woven composites.   

2005 Yee and 

Pellegrino [22] 

Woven T300 

carbon fibre 

reinforced epoxy 

resin 

Tube hinge  

R: 6.5 mm  

L: 50 mm  

t: 0.27-0.47 mm 

SA: 70˚  

Folding of one-ply and two-ply composite 

tube hinges made by cutting three parallel 

slots in a thin-walled cylindrical tube.  

Analytical and FE models developed.   

2006 Guest and 

Pellegrino [12] 

Analytical model Developed an inextensional model to 

predict the stability of the cylindrical shells 

based on minimal strain energy.   

2008 Schultz et al. 

[36] 

Plain-weave 

T300 carbon 

R: 32 mm  

 

Neutrally stable tape-spring fabricated 

through selection of fibre angles, 
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fabric reinforced 

epoxy resin  

manufacturing tool, and matrix material. 

Deployment could be started and stopped at 

any point.   

2010 Murphey et al. 

[24] 

Glass or carbon 

fabric reinforced 

epoxy resin 

R: 6.35 mm  

t: 0.127 mm 

SA: 180˚ 

Utilised CTS components to construct 

deployable booms for spacecraft.   

2010 Kwok and 

Pellegrino [29] 

LDPE R: 38 mm  

L: 340 mm 

t: 0.7 mm 

W: 75 mm 

Investigated the shape recovery behaviour 

of a simple beam and a tape-spring 

structure made of isotropic LDPE.  

Characterised the reaction force, deformed 

shapes and curvature through experiments, 

theoretical model, as well as simulations. 

2011 Mallikarachchi 

and Pellegrino 

[23] 

Plain-weave 

T300 carbon 

fabric reinforced 

epoxy resin 

Composite tube 

hinge with two 

slots  

R=38 mm 

L=140 mm 

t: 0.2 mm 

W=25 mm 

Investigated the folding and deployment of 

a composite tube hinge with two slots.  

Moment-rotation profile studied 

experimentally, and numerically during 

deployment.   

2011 Xiong et al. 

[25] 

Plain-weave 

carbon and glass 

fabric reinforced 

epoxy resin 

R: 20 mm 

L: 120 mm 

t: 0.48-0.64 mm 

SA: 70-90˚ 

Experimentally studied a deployable 

composite structure with three tape-springs.  

Maximum strain values during deployment 

characterised using strain gauges.   

2012 Costantine et 

al. [26] 

Glass fiber 

reinforced epoxy 

with embedded 

copper alloy  

R: 6.5 mm 

L: 560 mm 

SA: 180˚ 

Deployable dipole antenna structure was 

designed, simulated and experimentally 

investigated for CubeSat applications.   

2016 Birnkmeyer et 

al. [30] 

UD T800 carbon 

fibre prepreg  

R: 16.6 mm 

L: 1253 mm 

t: 0.18 mm 

SA: 132˚  

Studied the effects of long-term stowage on 

the deployment of bistable tape-springs.  

Analytical model showed good agreement 

with experiments.  Deployment failed after 

stowage at 100˚C for 3 hours.   

2017 Wu and 

Viquerat [27] 

Braided carbon 

fibre reinforced 

epoxy resin 

R: 38 mm 

L: 5100 mm  

t: 0.368 mm 

SA: 345˚  

Developed a deployable solar array with 

bistable reeled composite slit tubes.  

Examined the natural frequency and coiled 

diameter of the solar array with respect to 

braided angle (15-75˚). 

2017 Kwok and 

Pellegrino [34] 

Plain-weave 

T300-1k carbon 

fibre reinforced 

epoxy resin 

R: 19 mm 

L: 596 mm 

t: 0.125 mm 

SA: 180˚ 

Viscoelastic model developed to predict the 

deployment of composite thin shells stowed 

for an arbitrarily long period of time.  Good 

agreement with experimental results.   

2017 Khan et al. 

[32] 

Plain weave and 

UD carbon fabric 

reinforced epoxy 

resin 

R: 41.32 

L: 152.4 mm  

t: 0.65 mm  

SA: 35.8˚  

Effects of matrix viscoelasticity on energy 

dissipation of a three-layer CFRP 

composite examined during the stowage 

state.  Time-dependent implicit finite 

element model simulated the viscoelastic 

behaviour of the orthotropic type laminate.   

2017 Mao et al. [28] Plain-weave 

glass fabric 

reinforced epoxy 

resin 

R: 7.2 mm 

L: 1000 mm 

t: 0.4 mm  

SA: 180˚ 

Deployable boom assembly of four 1 m 

long bistable GF tape springs investigated 

for deployment dynamics and reliability 

after long-term stowage.  Analytical model 

developed.   

2018 Borowski et 

al. [33] 

Plain-weave 

carbon fabric 

reinforced epoxy 

resin prepreg 

R: 50.8 mm  

L: 305 mm  

t: 0.48 mm 

SA: 29˚  

Developed an experimental setup and FE 

model to study the effects of stress 

relaxation during stowage of a CTS 

structure.  Prony series of the matrix 

material determined through stress 

relaxation tests.   
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1.3 AIMS AND OBJECTIVES 

The aim of this research is to understand the ploy region of a bistable composite tape-spring 

structure and its effects on folding.  These objectives are:   

(i) Experimental investigation into the folding nature of tape-spring structures, for both 

isotropic and orthotropic composite materials, in order to define differences.   

(ii) Finite element analysis of the folding behaviour, in order to complement the experimental 

study and to provide further insight into folding.   

(iii) Mathematical analysis to characterise the folding and ploy shape of tape-springs.   

1.4 OVERVIEW OF REPORT 

This section gives an overview of the main content in each section, to provide a quick index for 

specific interest.  To facilitate reading, each section is ‘‘self-contained’’.   

Section 2 – Composite manufacture and characterisation 

Section 2 provides detailed information on the manufacturing and characterisation of the CTS 

samples: a theoretical background from micromechanics to macromechanics of composites is 

also covered.  The best layup within the framework of glass fabric reinforced polypropylene 

composite is also selected for further investigation; its mechanical properties are experimentally 

characterised using embedded strain gauges.  These data provide a basis for the finite element 

analysis.   

Section 3 – Folding of tape-springs 

Section 3 evaluates the folding nature of tape-springs made from both isotropic and orthotropic 

materials, which exhibit torsional buckling and unstable behaviour.  A finite element model is 

also constructed to study the folding behaviour, and the effects from various factors.  The model 
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provides good agreement with experimental results and implies further insight into the folding 

nature.   

Section 4 – Structural behaviour 

Section 4 develops the theoretical analysis for the folding observations presented in Section 3.  

The theoretical model is able to predict the critical buckling force for isotropic tapes under small 

rotations.  It can also predict the minimum force for isotropic tapes under large displacements; 

limited effectiveness is however obtained for composite tapes with a large subtended angle.   

Section 5 – Shape of ploy region 

Section 5 characterises the static folded shape.  We highlight the more interesting shape 

parameters of our folded tapes, such as the exponential decay and ploy length in the ploy region. 

These govern the ability of the tape to be folded and stowed, as well as provide essential guidance 

to the design and implementation of bistable composite tubes.   
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2.1 INTRODUCTION 

For decades, tape-springs made from metallic materials have been used as deployable structures 

in space due to their compact stowed volume and good structural characteristics when deployed 

[37].  Metallic tape springs are only stable in the deployed state, and a robust containment 

solution is required to keep them locked; moreover, during deployment, a control scheme is 

sometimes necessary to prevent dynamic ‘‘blooming’’ where the tape unravels internally and 

prematurely [24].  These aspects pose issues on the overall mass budget, reliability and 

complexity for such mechanisms.   

Bistable CTS structures provide an alternative solution.  They are stable in both extended and 

coiled configurations, which can lead to weight savings, less control complexity, and hence 

increase their reliability [38].  The mechanism of its bistability is well-understood; see for 

example [12]: other previous studies focus on their deployment behaviour as a single structure 

or integrated within other deployable structures [25,28,30,39], as well as modelling their natural 

viscoelastic constitutive behaviour [32,34,40].  These have been reviewed in Section 1.2.2.   

In this section, we provide the details and experiences learned, in order to manufacture the CTS 

samples: previous research on bistable composite structures by the Advanced Structures Group 

in Cambridge provide a basis [12].  To further understand the folding and shape-changing 

behaviour in the ploy region of CTS, the glass fibre (GF) plain-weave woven reinforced 

polypropylene (PP) composite was selected as the material system for investigation.  To 

facilitate a technical understanding, theoretical background topics from micromechanics to 

macromechanics of composites are covered.  The fundamentals of using strain gauges are also 

explained.  Within the framework of GF/PP composite systems, various raw GF fabrics, PP 

sheets and composite layups are used to produce the CTS samples.  From many trials, they 

imply useful guidelines and experiences for their manufacture.  The composite layup with the 

best performance is selected for further investigation.  Subsequently, its mechanical properties 

are characterised with embedded strain gauges.  The cross-sectional structure of the composite 

is also evaluated through optical microscopy to provide a better understanding of its mechanical 

performance.   
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2.2 THEORATICAL BACKGROUND 

2.2.1 Micromechanics of composites 

Various micromechanical models are used to determine the mechanical properties of composite 

materials [41–45].  The most well-known is the classical rule-of-mixtures, also known as the 

Voigt-Reuss (V-R) bounds.  Although the rule-of-mixtures predict the longitudinal modulus of 

UD laminates well enough, it is not suitable for the transverse modulus, which is based on the 

iso-stress assumption (Section 2.2.1.1).  This is unrealistic because the phase with the higher 

elastic modulus usually undergoes higher stress, leading to debonding from the fibres [46].  

Another widely accepted model is the Hashin-Shtrikman (H-S) bounds, which gives a good 

estimation when the ratio of modulus values between different phases is not too large.   

2.2.1.1 Voigt-Reuss bounds 

The V-R bounds use elasticity theory [47] to predict the mechanical properties of the 

unidirectional (UD) laminates, considering the matrix and the fibres to be both isotropic.  The 

Voigt upper bound assumes the fibre reinforcement and matrix are arranged in parallel and 

subject to the same stress; this is known as the iso-strain rule of mixtures.  In the Reuss lower 

bound, the applied stress is perpendicular to the fibres and the constituents of the composite 

undergo the same stress; this is known as the iso-stress rule of mixtures.  They can be expressed 

by the following:   

𝐸VR
1 = 𝐸𝑥f𝑉f + 𝐸m(1 − 𝑉f) (2-1) 

𝐸VR
2 =

𝐸m𝐸𝑦f

𝐸𝑦f(1 − 𝑉f) + 𝑉f𝐸m
 (2-2) 

𝐺𝑥𝑦 =
𝐺m𝐺f

𝐺f(1 − 𝑉f) + 𝑉f𝐺m
 (2-3) 

𝐺f =
𝐸𝑥f

2(1 + 𝑣f)
 (2-4) 

𝐺m =
𝐸m

2(1 + 𝑣m)
 (2-5) 

𝑣𝑥𝑦 = 𝑣f𝑉f + 𝑣m(1 − 𝑉f) (2-6) 

where Exf and Eyf are the Young’s moduli of fibres in longitudinal ‘x’ and transverse ‘y’ 

directions, respectively; Vf is the fibre volume fraction; Gf is the shear modulus of the fibre.   



Section 2 

Composite manufacture and characterisation 

 

13 

 

2.2.1.2 Hashin-Shtrikman bounds 

The H-S bounds are based on minimum potential energy and minimum complementary energy.  

The upper and lower bounds of the bulk modulus K and shear modulus G follow [41,44]:   

𝐾HS
𝑥 = 𝐾f +

𝑉m
1

(𝐾m − 𝐾f)
+

3𝑉f
(3𝐾f + 4𝐺f)

 
(2-7) 

𝐾HS
𝑦
= 𝐾m +

𝑉f
1

(𝐾f − 𝐾m)
+

3𝑉𝑚
(3𝐾m + 4𝐺m)

 
(2-8) 

𝐺HS
𝑥 = 𝐺f +

𝑉m
1

(𝐺m − 𝐺f)
+
6𝑉f(𝐾f + 2𝐺f)
5𝐺f(3𝐾f + 4𝐺f)

 
(2-9) 

𝐺HS
𝑦
= 𝐺m +

𝑉f
1

(𝐺f − 𝐺m)
+
6𝑉m(𝐾𝑚 + 2𝐺m)
5𝐺m(3𝐾m + 4𝐺m)

 
(2-10) 

The H-S upper and lower bounds for the effective modulus lie within the V-R bounds within a 

narrower range, and:   

𝐸HS
𝑥 = 𝐸f

5𝐸m + 3𝑉f(𝐸f − 𝐸m)

5𝐸f − 2𝑉f(𝐸f − 𝐸m)
 (2-11) 

𝐸HS
𝑦
= 𝐸m

3𝐸m + 2𝐸f + 3𝑉f(𝐸f − 𝐸m)

3𝐸m + 2𝐸f − 2𝑉f(𝐸f − 𝐸m)
 (2-12) 

𝐺HS
𝑥𝑦
= 𝐺𝑚

𝐺m(1 − 𝑉𝑓) + 𝐺f(1 + 𝑉𝑓)

𝐺m(1 + 𝑉𝑓) + 𝐺f(1 − 𝑉𝑓)
 (2-13) 

𝑣HS
𝑥𝑦
= 𝑣𝑓𝑉f + 𝑣𝑚(1 − 𝑉f) +

4(𝑣𝑓 − 𝑣𝑚)(
1
𝐾𝑚

−
1
𝐾𝑓
)(1 − 𝑉𝑓)𝑉𝑓

1 − 𝑉𝑓
𝐾𝑓

+
𝑉𝑓
𝐾𝑚

+ 1/𝐺𝑚

 (2-14) 

where 𝐸HS
𝑥  and 𝐸HS

𝑦
 are the H-S upper and lower bounds of the effective modulus, respectively.   

2.2.2 Macromechanics of composites 

Macromechanics of thin laminate theory is based on the classic lamination theory (CLT) to 

characterise the stress and strain with the following assumptions [48]: the displacement 

components are continuous throughout the laminates; each ply is thin and under plane stress; 
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the Kirchhoff-Love hypothesis is valid; the material of the plate is linear elastic with no slip 

between the lamina interfaces. 

2.2.2.1 Stress and strain in a lamina 

A UD lamina is considered as an orthotropic material.  If a lamina is thin and there is no 

transverse loading, the plate is assumed to be in plane stress, which reduces the three-

dimensional stress-strain equations to two-dimensional planar equations:   

[

𝜀1
𝜀2
𝛾12
] = [

𝑆11 𝑆12 0
𝑆12 𝑆22 0
0 0 𝑆66

] [

𝜎1
𝜎2
𝜏12
] (2-15) 

where Sij are the elements of the compliance matrix.  Hence, the stress-strain relationship is 

given by inverting the above:   

[

𝜎1
𝜎2
𝜏12
] = [

𝑄11 𝑄12 0
𝑄12 𝑄22 0
0 0 𝑄66

] [

𝜀1
𝜀2
𝛾12
] (2-16) 

where Qij are the reduced stiffness coefficients, and related to the Sij coefficients by:   

𝑄11 =
𝑆22

𝑆11𝑆22 − 𝑆12
2  (2-17) 

𝑄12 =
𝑆12

𝑆11𝑆22 − 𝑆12
2  (2-18) 

𝑄22 =
𝑆11

𝑆11𝑆22 − 𝑆12
2  (2-19) 

𝑄66 =
1

𝑆66
 (2-20) 

The compliance and reduced stiffness coefficients are related to the engineering elastic 

constants for a UD lamina by:   

𝑆11 =
1

𝐸1
                             𝑄11 =

𝐸1
1 − 𝑣12𝑣21

 (2-21) 

𝑆12 = −
𝑣12
𝐸1
                       𝑄12 =

𝑣12𝐸2
1 − 𝑣12𝑣21

 (2-22) 
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𝑆22 =
1

𝐸2
                            𝑄22 =

𝐸2
1 − 𝑣12𝑣21

 (2-23) 

𝑆66 =
1

𝐺12
                                      𝑄66 = 𝐺12 (2-24) 

According to the symmetry condition of the stress tensor, Q12 = Q21, the Young’s modulus and 

Poisson’s ratios should fulfil the following relations:   

𝐸1𝑣21 = 𝐸2𝑣12 (2-25) 

 

Figure 2-1 Local and global coordinate system of an fibre-angle lamina: ‘1’ denotes 

the local fibre direction; ‘2’ is the direction perpendicular to fibre; ‘x’ is 

along the length and ‘y’ is transverse; θ is the fibre angle.   

Fibres in individual plies of a laminate are usually arranged at different angles to reinforce the 

material.  For the lamina in Figure 2-1, the stress-strain relationship should be transformed from 

the local 1-2 coordinate system to the global x-y system.  The global and local stresses in this 

inclined fibre-angle lamina are related to each other by a transformation matrix in terms of fibre 

angle, θ, i.e.:  

[

𝜎𝑥
𝜎𝑦
𝜏𝑥𝑦

] = [𝑇]−1 [

𝜎1
𝜎2
𝜏12
] (2-26) 

where [T] is the transformation matrix: 

[𝑇] = [
𝑐2 𝑠2 2𝑠𝑐
𝑠2 𝑐2 −2𝑠𝑐
−𝑠𝑐 𝑠𝑐 𝑐2 − 𝑠2

] (2-27) 

and its inverse: 

x 

y 

1 
2 

θ 
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[𝑇]−1 = [
𝑐2 𝑠2 −2𝑠𝑐
𝑠2 𝑐2 2𝑠𝑐
𝑠𝑐 −𝑠𝑐 𝑐2 − 𝑠2

] (2-28) 

with c = cos θ and s = sin θ.   

From the local constitutive laws in Eq. 2-16: 

[

𝜎𝑥
𝜎𝑦
𝜏𝑥𝑦

] = [𝑇]−1[𝑄] [

𝜀1
𝜀2
𝛾12
] (2-29) 

The global and local strain are also related through the transformation matrix:  

[

𝜀1
𝜀2

𝛾12/2
] = [𝑇] [

𝜀𝑥
𝜀𝑦

𝛾𝑥𝑦/2
] (2-30) 

and  

[

𝜀1
𝜀2
𝛾12
] = [𝑅][𝑇] [

𝜀𝑥
𝜀𝑦
𝛾𝑥𝑦
] (2-31) 

where [R] is the Reuter matrix and defined as: 

[𝑅] = [
1 0 0
0 1 0
0 0 2

] (2-32) 

Thus 

[

𝜎𝑥
𝜎𝑦
𝜏𝑥𝑦

] = [𝑇]−1[𝑄][𝑅][𝑇] [

𝜀𝑥
𝜀𝑦
𝛾𝑥𝑦
] (2-33) 

Defining [𝑄̅] as the transformed reduced stiffness matrix, then: 

[𝑄̅] = [𝑇]−1[𝑄][𝑅][𝑇] (2-34) 

which results in: 
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[

𝜎𝑥
𝜎𝑦
𝜏𝑥𝑦

] = [

𝑄̅11 𝑄̅12 𝑄̅16
𝑄̅12 𝑄̅22 𝑄̅26
𝑄̅16 𝑄̅26 𝑄̅66

] [

𝜀𝑥
𝜀𝑦
𝛾𝑥𝑦
] (2-35) 

with the elements given by:   

𝑄̅11 = 𝑄11𝑐
4 + 2(𝑄12 + 2𝑄66)𝑐

2𝑠2 + 𝑄22𝑠
4 (2-36) 

𝑄̅12 = (𝑄11 + 𝑄22 − 4𝑄66)𝑐
2𝑠2 + 𝑄12(𝑐

4 + 𝑠4) (2-37) 

𝑄̅22 = 𝑄11𝑠
4 + 2(𝑄12 + 2𝑄66)𝑐

2𝑠2 + 𝑄22𝑐
4 (2-38) 

𝑄̅16 = (𝑄11 − 𝑄12 − 2𝑄66)𝑐
3𝑠 + (𝑄12 − 𝑄22 + 2𝑄66)𝑐𝑠

3 (2-39) 

𝑄̅26 = (𝑄11 − 𝑄12 − 2𝑄66)𝑐𝑠
3 + (𝑄12 − 𝑄22 + 2𝑄66)𝑐

3𝑠 (2-40) 

𝑄̅66 = (𝑄11 + 𝑄22 − 2𝑄12 − 2𝑄66)𝑐
2𝑠2 + 𝑄66(𝑐

4 + 𝑠4) (2-41) 

2.2.2.2 Constitutive equations of UD laminate 

Using the above, the constitutive equations of the k-th UD ply for a UD laminate with n plies, 

can be written as:   

[

𝜎𝑥
𝜎𝑦
𝜏𝑥𝑦

]

𝑘

= [

𝑄̅11 𝑄̅12 𝑄̅16
𝑄̅12 𝑄̅22 𝑄̅26
𝑄̅16 𝑄̅26 𝑄̅66

]

𝑘

[

𝜀𝑥
𝜀𝑦
𝛾𝑥𝑦
]

𝑘

= [

𝑄̅11 𝑄̅12 𝑄̅16
𝑄̅12 𝑄̅22 𝑄̅26
𝑄̅16 𝑄̅26 𝑄̅66

]

𝑘

{[

𝜀𝑥
0

𝜀𝑦
0

𝛾𝑥𝑦
0

] + 𝑧 [

𝜅𝑥
𝜅𝑦
𝜅𝑥𝑦

]} (2-42) 

The reduced transformed stiffness matrix, [𝑄̅], corresponds to the ply along the thickness of the 

laminate, and a strain with superscript 0 denotes the strain of the mid-plane of the laminate: the 

curvatures in the x- and y-directions are 𝜅𝑥 and 𝜅𝑦, with 𝜅𝑥𝑦 as the twisting curvature.   

The stresses in each lamina can be integrated through the laminate thickness to give stress 

resultants of force and moment:   

[

𝑁𝑥
𝑁𝑦
𝑁𝑥𝑦

] = ∑∫ [

𝜎𝑥
𝜎𝑦
𝜏𝑥𝑦

]

𝑘

d𝑧
ℎ𝑘

ℎ𝑘−1

𝑛

𝑘=1

=∑∫ [

𝑄̅11 𝑄̅12 𝑄̅16
𝑄̅12 𝑄̅22 𝑄̅26
𝑄̅16 𝑄̅26 𝑄̅66

]
ℎ𝑘

ℎ𝑘−1
𝑘

𝑛

𝑘=1

[

𝜀𝑥
0

𝜀𝑦
0

𝛾𝑥𝑦
0

] d𝑧 +∑∫ [

𝑄̅11 𝑄̅12 𝑄̅16
𝑄̅12 𝑄̅22 𝑄̅26
𝑄̅16 𝑄̅26 𝑄̅66

]
ℎ𝑘

ℎ𝑘−1
𝑘

[

𝜅𝑥
𝜅𝑦
𝜅𝑥𝑦

] 𝑧d𝑧

𝑛

𝑘=1

 

(2-43) 

[

𝑀𝑥

𝑀𝑦

𝑀𝑥𝑦

] = ∑∫ [

𝜎𝑥
𝜎𝑦
𝜏𝑥𝑦

]

𝑘

𝑧d𝑧
ℎ𝑘

ℎ𝑘−1

𝑛

𝑘=1

=∑∫ [

𝑄̅11 𝑄̅12 𝑄̅16
𝑄̅12 𝑄̅22 𝑄̅26
𝑄̅16 𝑄̅26 𝑄̅66

]
ℎ𝑘

ℎ𝑘−1
𝑘

𝑛

𝑘=1

[

𝜀𝑥
0

𝜀𝑦
0

𝛾𝑥𝑦
0

] 𝑧d𝑧 +∑∫ [

𝑄̅11 𝑄̅12 𝑄̅16
𝑄̅12 𝑄̅22 𝑄̅26
𝑄̅16 𝑄̅26 𝑄̅66

]
ℎ𝑘

ℎ𝑘−1
𝑘

[

𝜅𝑥
𝜅𝑦
𝜅𝑥𝑦

] 𝑧2d𝑧

𝑛

𝑘=1

 

(2-44) 



Section 2 

Composite manufacture and characterisation 

 

18 

 

Using the following definitions: 

𝑨𝑖𝑗 =∑(𝑄̅𝑖𝑗)𝑘(ℎ𝑘 − ℎ𝑘−1)

𝑛

𝑘=1

,           𝑖, 𝑗 = 1, 2,6 (2-45) 

𝑩𝑖𝑗 =
1

2
∑(𝑄̅𝑖𝑗)𝑘(ℎ𝑘

2 − ℎ𝑘−1
2 )

𝑛

𝑘=1

,           𝑖, 𝑗 = 1, 2,6 (2-46) 

𝑫𝑖𝑗 =
1

3
∑(𝑄̅𝑖𝑗)𝑘(ℎ𝑘

3 − ℎ𝑘−1
3 )

𝑛

𝑘=1

,           𝑖, 𝑗 = 1, 2,6 (2-47) 

the [A], [B], and [D] matrices thus correspond to the extensional, strain-curvature coupling, and 

bending stiffness matrices, respectively.  The constitutive equation of a laminate is:   

{
  
 

  
 
𝑁𝑥
𝑁𝑦
𝑁𝑥𝑦
𝑀𝑥

𝑀𝑦

𝑀𝑥𝑦}
  
 

  
 

=

[
 
 
 
 
 
𝐴11 𝐴12 𝐴16
𝐴12 𝐴22 𝐴26
𝐴16 𝐴26 𝐴66

𝐵11 𝐵12 𝐵16
𝐵12 𝐵22 𝐵26
𝐵16 𝐵26 𝐵66

𝐵11 𝐵12 𝐵16
𝐵12 𝐵22 𝐵26
𝐵16 𝐵26 𝐵66

𝐷11 𝐷12 𝐷16
𝐷12 𝐷22 𝐷26
𝐷16 𝐷26 𝐷66]

 
 
 
 
 

{
  
 

  
 
𝜀𝑥
0

𝜀𝑦
0

𝛾𝑥𝑦
0

𝜅𝑥
𝜅𝑦
𝜅𝑥𝑦}

  
 

  
 

 (2-48) 

or 

{
𝑁𝑖
𝑀𝑖
} = [

𝑨𝑖𝑗 𝑩𝑖𝑗
𝑩𝑖𝑗 𝑫𝑖𝑗

] {
𝜀𝑗
𝜅𝑗
}                𝑖, 𝑗 = 1, 2,6 (2-49) 

2.2.2.3 Constitutive equations of woven laminate 

For a woven laminate, there have been several models to study the in-plane elastic properties 

of various fabric weaves.  Based on the CLT, Naik and Shembekar [49,50] developed a 2D 

model to predict in-plane elastic properties, which consider undulation of the strands, actual 

strand cross-section and weave geometry, and the strand fibre volume fraction.  The in-plane 

stiffness constants follow:   

𝑨𝑖𝑗(𝑥, 𝑦) = 𝑄𝑖𝑗
𝑀[ℎ𝑥3(𝑥, 𝑦) + ℎ − ℎ𝑥2(𝑥, 𝑦)] + 𝑄𝑖𝑗

𝑊(𝑥, 𝑦)[ℎ𝑥2(𝑥, 𝑦) − ℎ𝑥1(𝑥, 𝑦)]

+ 𝑄𝑖𝑗
𝐹 (𝑥, 𝑦)[ℎ𝑥1(𝑥, 𝑦) − ℎ𝑥3(𝑥, 𝑦)] 

(2-50) 
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𝑩𝑖𝑗(𝑥, 𝑦) =
1

2
𝑄𝑖𝑗
𝑀[ℎ𝑥3(𝑥, 𝑦)

2 − ℎ𝑥2(𝑥, 𝑦)
2] +

1

2
𝑄𝑖𝑗
𝑊(𝑥, 𝑦)[ℎ𝑥2(𝑥, 𝑦)

2 − ℎ𝑥1(𝑥, 𝑦)
2]

+
1

2
𝑄𝑖𝑗
𝐹 (𝑥, 𝑦)[ℎ𝑥1(𝑥, 𝑦)

2 − ℎ𝑥3(𝑥, 𝑦)
2] 

(2-51) 

𝑫𝑖𝑗(𝑥, 𝑦) =
1

3
𝑄𝑖𝑗
𝑀 [ℎ𝑥3(𝑥, 𝑦)

3 −
ℎ3

8
− ℎ𝑥2(𝑥, 𝑦)

3] +
1

3
𝑄𝑖𝑗
𝑊(𝑥, 𝑦)[ℎ𝑥2(𝑥, 𝑦)

3 − ℎ𝑥1(𝑥, 𝑦)
3]

+
1

3
𝑄𝑖𝑗
𝐹 (𝑥, 𝑦)[ℎ𝑥1(𝑥, 𝑦)

3 − ℎ𝑥3(𝑥, 𝑦)
3] 

(2-52) 

Based on the 2D woven model above, Lamers et al. [51] developed it further by considering 

the yarn shape, with:   

𝑨𝑖𝑗
𝑒 (𝑥, 𝑦) = 𝑄𝑖𝑗

𝑅 [ℎ𝑊𝑡
𝑒 (𝑥, 𝑦) − ℎ𝑡

𝑒(𝑥, 𝑦) + ℎ𝐹𝑡
𝑒 (𝑥, 𝑦) − ℎ𝑊𝑏

𝑒 (𝑥, 𝑦) + ℎ𝑏
𝑒(𝑥, 𝑦) − ℎ𝐹𝑏

𝑒 (𝑥, 𝑦)]

+ 𝑄𝑖𝑗
𝑊(𝜃𝑥)[ℎ𝑊𝑏

𝑒 (𝑥, 𝑦) − ℎ𝑊𝑡
𝑒 (𝑥, 𝑦)] + 𝑄𝑖𝑗

𝐹 (𝜃𝑦)[ℎ𝐹𝑏
𝑒 (𝑥, 𝑦) − ℎ𝐹𝑡

𝑒 (𝑥, 𝑦)] 
(2-53) 

𝑩𝑖𝑗
𝑒 (𝑥, 𝑦) = 𝑄𝑖𝑗

𝑅 [ℎ𝑊𝑡
𝑒 (𝑥, 𝑦)2 − ℎ𝑡

𝑒(𝑥, 𝑦)2 + ℎ𝐹𝑡
𝑒 (𝑥, 𝑦)2 − ℎ𝑊𝑏

𝑒 (𝑥, 𝑦)2 + ℎ𝑏
𝑒(𝑥, 𝑦)2 − ℎ𝐹𝑏

𝑒 (𝑥, 𝑦)2]

+ 𝑄𝑖𝑗
𝑊(𝜃𝑥)[ℎ𝑊𝑏

𝑒 (𝑥, 𝑦)2 − ℎ𝑊𝑡
𝑒 (𝑥, 𝑦)2] + 𝑄𝑖𝑗

𝐹 (𝜃𝑦)[ℎ𝐹𝑏
𝑒 (𝑥, 𝑦)2 − ℎ𝐹𝑡

𝑒 (𝑥, 𝑦)2] 
(2-54) 

𝑫𝑖𝑗
𝑒 (𝑥, 𝑦) = 𝑄𝑖𝑗

𝑅 [ℎ𝑊𝑡
𝑒 (𝑥, 𝑦)3 − ℎ𝑡

𝑒(𝑥, 𝑦)3 + ℎ𝐹𝑡
𝑒 (𝑥, 𝑦)3 − ℎ𝑊𝑏

𝑒 (𝑥, 𝑦)3 + ℎ𝑏
𝑒(𝑥, 𝑦)3 − ℎ𝐹𝑏

𝑒 (𝑥, 𝑦)3]

+ 𝑄𝑖𝑗
𝑊(𝜃𝑥)[ℎ𝑊𝑏

𝑒 (𝑥, 𝑦)3 − ℎ𝑊𝑡
𝑒 (𝑥, 𝑦)3] + 𝑄𝑖𝑗

𝐹 (𝜃𝑦)[ℎ𝐹𝑏
𝑒 (𝑥, 𝑦)3 − ℎ𝐹𝑡

𝑒 (𝑥, 𝑦)3] 
(2-55) 

or 

{
𝑁𝑖
𝑀𝑖
} = [

𝑨𝑖𝑗
𝑒 (𝑥, 𝑦) 𝑩𝑖𝑗

𝑒 (𝑥, 𝑦)

𝑩𝑖𝑗
𝑒 (𝑥, 𝑦) 𝑫𝑖𝑗

𝑒 (𝑥, 𝑦)
] {
𝜀𝑗
𝜅𝑗
}                𝑖, 𝑗 = 1, 2,6 (2-56) 

2.2.3 Constitutive specification 

The tape-spring material involved in this report is either isotropic or orthotropic which does not 

require that level of generality as shown above.  The composite layup is effectively symmetrical, 

and there is no bending-stretching coupling.  Thus, for the sake of simpler notation, the 

orthotropic behaviour is captured by four independent parameters: E, v, ρ, β.   

A theoretical analysis follows the plane-stress assumption, with in-plane stress 𝜎, and in-plane 

strain 𝜖.  The coordinate system follows Figure 2-1 with z in the through-thickness direction.  

Define a modular ratio, 𝛽 = 𝐸𝑦/𝐸𝑥: the corresponding Possion’s ratios obey the Reciprocal 

Theorem according to 𝑣𝑥𝑦/𝐸𝑥 = 𝑣𝑦𝑥/𝐸𝑦.  Thus, the engineering constants become:   
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𝐸𝑥 = 𝐸, 𝐸𝑦 = 𝛽𝐸, 𝐺 = 𝜌𝐸, 𝑣𝑦𝑥 = 𝑣, 𝑣𝑥𝑦 = 𝑣/𝛽 (2-57) 

The shear modulus is G with 𝜌 = 1/2(1 + 𝑣) for isotropic material (𝛽 = 1).  The constitutive 

relations for in-plane strains are then written:  

𝜖𝑥 =
𝜎𝑥
𝐸
−
𝑣𝜎𝑦

𝛽𝐸
, 𝜖𝑦 = −

𝑣𝜎𝑥
𝛽𝐸

+
𝜎𝑦

𝛽𝐸
, 𝛾𝑥𝑦 =

𝜏𝑥𝑦

𝜌𝐸
 (2-58) 

The stresses follow, again, from inverting the above:   

𝜎𝑥 =
𝐸

1 − 𝑣2/𝛽
(𝜖𝑥 + 𝑣𝜖𝑦), 𝜎𝑦 =

𝐸𝛽

1 − 𝑣2/𝛽
(𝜖𝑦 +

𝑣𝜖𝑥
𝛽
), 𝜏𝑥𝑦 = 𝛾𝑥𝑦𝜌𝐸 (2-59) 

Bending and stretching of any tape-spring is expressed by the deformation of its internal middle 

surface.  When the in-plane behaviour correlates to the above stresses and strains, the 

corresponding stretching strain energy density per unit surface area can be written as:   

𝑈𝑆 =
𝑡

2
(𝜎𝑥𝜖𝑥 + 𝜎𝑦𝜖𝑦 + 𝜏𝑥𝑦𝛾𝑥𝑦) =

𝑡

2𝐸
(𝜎𝑥

2 +
𝜎𝑦
2

𝛽
−
2𝑣𝜎𝑥𝜎𝑦

𝛽
+
𝜏𝑥𝑦
2

𝜌
) (2-60) 

When there are changes in curvature of the middle surface, the strains vary linearly with 

material height z through the thickness from Kirchoff’s hypothesis [52], and 𝜖𝑥 = 𝑧𝜒𝑥, 

𝜖𝑦 = 𝑧𝜒𝑦, and 𝛾𝑥𝑦 = 2𝑧𝜒𝑥𝑦.  The bending moment stress resultants per unit in-plane length are:  

𝑀𝑥 =
𝐸𝑡3

12(1 − 𝑣2/𝛽)
(𝜒𝑥 + 𝑣𝜒𝑦), 𝑀𝑦 =

𝐸𝑡3

12(1 − 𝑣2/𝛽)
(𝜒𝑦 +

𝑣𝜒𝑥
𝛽
), 𝑀𝑥𝑦 =

𝐸𝑡3𝜌

6
𝜒𝑥𝑦  (2-61) 

The corresponding strain energy density in bending is: 

𝑈𝐵 =
𝐷

2
(𝜒𝑥

2 + 𝛽𝜒𝑦
2 + 2𝑣𝜒𝑥𝜒𝑦 + 2𝛼𝜒𝑥𝑦

2 ) (2-62) 

with flexural rigidity, 𝐷 = 𝐸𝑡3/12(1 − 𝑣2/𝛽), and dimensionless torsional rigidity, 

𝛼 = 4(1 − 𝑣2/𝛽)/𝜌.  For isotropic materials, 𝛼 = 1 − 𝑣; for our composite tapes, 𝛼 ≈ 1.11 [53]. 
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2.2.4 Strain gauge measurement 

Strain gauges are employed to ensure reliable strain measurements compared to the machine 

crosshead motion method [54].  Following Naik’s model [55], the plain woven composite is 

also considered as an orthotropic material.  For a strain gauge subjected to a biaxial-strain field 

at constant temperature as shown in Figure 2-2-a, the change in gauge resistance is [56]:   

∆𝑅𝛺
𝑅𝛺

= 𝑓𝑎𝜀𝑎 + 𝑓𝑡𝜀𝑡 (2-63) 

RΩ is the original gauge resistance; ∆𝑅𝛺 is the change in gauge resistance; 𝑓𝑎  and 𝑓𝑡  are the 

gauge factors of strain gauge in the axial and transverse directions, respectively; 𝜀𝑎 and 𝜀𝑡 are 

the corresponding surfaces strains.  The transverse sensitivity coefficient, Kt, is defined as: 

𝐾𝑡 = 𝐹𝑡/𝐹𝑎, whence:   

∆𝑅𝛺
𝑅𝛺

= 𝑓𝑎(𝜀𝑎 + 𝐾𝑡𝜀𝑡) (2-64) 

 
                               (a)                                      (b)                                                         (c) 

Figure 2-2 Arrangement of strain gauges: (a) single strain gauge; (b) a biaxial strain 

gauge rosette; (c) composite sample with bonded strain gauge rosette.   

When subjected to a uniaxial stress field with the strain gauge parallel to the stress, the 

transverse strain experienced by the gauge is:   

𝜀𝑡 = −𝑣𝜀𝑎 (2-65) 

𝜺𝒕 

𝜺𝒂 

𝜺𝒎𝒚 

𝜺𝒎𝒙 



Section 2 

Composite manufacture and characterisation 

 

22 

 

where 𝑣 is the Poisson’s ratio of the standard calibration material used by the supplier (normally 

steel with 𝑣 = 0.3).  In this loading condition,   

∆𝑅𝛺
𝑅𝛺

= 𝑓𝑎(1 − 𝐾𝑡𝑣) 𝜀𝑎 (2-66) 

The manufacturer’s gauge factor (MGF) is defined as: 

𝑀𝐺𝐹 = 𝑓𝑎(1 − 𝐾𝑣) (2-67) 

Therefore, the strain measure, 𝜀𝑚, follows: 

𝜀𝑚 = 𝜀𝑎 =
𝑓𝑎(1 − 𝐾𝑡𝑣) 𝜀𝑎

𝑀𝐺𝐹
 (2-68) 

For non-uniaxial loading, the measured strain must be corrected for transverse-sensitivity 

effects, where at least two orthogonal strain measurements are required for correction [57].  A 

biaxial strain gauge rosette is shown schematically in Figure 2-2-b, with two strain gauges to 

measure two orthogonal normal strains, denoted by 𝜀𝑚𝑥  and 𝜀𝑚𝑦 .  By considering the 

transverse-sensitivity corrections, the true strain in x- and y-direction, 𝜀𝑥 and 𝜀𝑦, are:   

𝜀𝑥 =
(1 − 𝐾𝑡𝑣)(𝜀𝑚𝑥 − 𝐾𝑡𝜀𝑚𝑦)

1 − 𝐾2
 (2-69) 

𝜀𝑦 =
(1 − 𝐾𝑡𝑣)(𝜀𝑚𝑦 − 𝐾𝑡𝜀𝑚𝑥)

1 − 𝐾𝑡
2  (2-70) 

The error in the measured strain due to the transverse sensitivity is thus: 

Error =
𝐾𝑡(

𝜀𝑡
𝜀𝑎
+ 𝑣)

1 − 𝐾𝑡𝑣
 (2-71) 

The in-plane shear strain can be determined using strain gauges following the testing standard 

ASTM D3518 on plain-weave ±45˚ laminates [58] as shown in Figure 2-2-c.  The shear stress 

on the principal material plane is the same for each lamina in the laminate, and equals to half 
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of the axial stress [58]; the shear strain is also the same in each lamina.  The difference in 

indicated strains from two gauges with their axes 90˚ apart is equal to the shear strain along the 

bisector of those axes [57], i.e.:  

𝛾12 = 𝜀𝑥 − 𝜀𝑦 (2-72) 

A common method of gauge alignment when mounting strain gauges to conventional materials 

is to first burnish alignment marks on the specimen surface; however, it is not practical with 

composite materials [56].  The weave pattern left by the scrim cloth can also be misleading 

since it may not necessarily reflect the true fibre direction.  Thus, a strain measurement error 

occurs when a strain gauge is misaligned with respect to the intended axis of strain measurement 

[59]; and a small misalignment error produces a much larger error in measured strain for 

composites than for the isotropic systems [57].  Assuming the gauge is mounted by θ degree, 

with a gauge misalignment angle of θʹ as shown in Figure 2-3, the actual axial and transverse 

strains may be determined as [48]:   

{

𝜀𝑥
′

𝜀𝑦
′

𝛾𝑥𝑦
′/2
} = [

𝑚2 𝑛2 2𝑚𝑛
𝑛2 𝑚2 −2𝑚𝑛
−𝑚𝑛 𝑚𝑛 𝑚2 − 𝑛2

] {

𝜀𝑥
𝜀𝑦

𝛾𝑥𝑦/2
} (2-73) 

where, 𝑚 = cos 𝜃ʹ; 𝑛 = sin 𝜃ʹ.   

 

Figure 2-3 Schematic illustration of gauge misalignment.   

x θ 

θ' 

θ' 

y 
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2.3 EXPERIMENTAL 

2.3.1 Materials 

The plain weave GF fabric gives well-balanced properties for laminates other than UD fabrics.  

The GF fabrics were supplied by MB Fibreglass Ltd, UK; the PP sheets were supplied by 

GoodFellow Cambridge Ltd, UK.  Table 2-1 shows the materials properties, and Figure 2-4 

shows the sample appearance.   

Table 2-1 Materials properties of GF fabrics and PP sheets.   

Materials GF fabric [60] PP sheet [61] 

Density 81 g/m2 175 g/m2 200 g/m2 0.9 g/cm3 0.9 g/cm3 

Thickness (mm) 0.09 0.24 0.20 0.5 1.0 

Construction warp×weft (th/cm) 12.6×11.1 6.6×6.2 7.4×7.4 -- -- 

Type of yarn EC9 34×2 EC9 136×2 EC9 68×2 -- -- 

Poisson’s ratio 0.2 0.42 

Elastic modulus (GPa) 72.4 1.53 

Shear modulus (GPa) 30 0.54 

Thermal expansion coefficient 

(µm/m°C) 5.0 84.8 

   
(a)                                                   (b)                                                    (c) 

  
(d)                                                        (e) 

Figure 2-4 Materials used: (a) 81 gsm GF woven; (b) 175 gsm GF woven; (c) 200 

gsm GF woven; (d) 1.0 mm PP sheet; (e) 0.5 mm PP sheet.   



Section 2 

Composite manufacture and characterisation 

 

25 

 

2.3.2 Production of composite tape-springs 

A simple manufacturing process for fabricating the CTS was followed.  Briefly, a specific 

composite layup consisted of different layers of GF fabric and PP sheet (as in Table 2-1).  The 

composite layup was placed between two PTFE coated glass fabric papers, and gradually 

wrapped and tightened on a cylindrical mould (Ø25 × 300 mm) by using a heat shrink tape.  A 

jubilee clip was employed to lock the whole layup at the end.  A fan-assisted oven was preheated 

to a designated temperature before the wrapped mould was placed inside for heating.  Following 

heat treatment, the shrink tape and PTFE paper were released, and the composite sample was 

manually cut to the correct size before testing.   

2.3.3 Mechanical testing 

To evaluate the composite mechanical properties, flat samples were produced with embedded 

strain gauges.  Production of flat samples is similar to Section 2.3.2, using a flat steel plate of 

size (320 × 50 × 3 mm) for a mould, with strain gauges placed on the outer surface of the 

composite layup.  This arrangement ensured direct contact between the strain gauges and 

samples to minimise effects from using adhesives, as well as keeping minimal effects to the 

mechanical performance of composites.  Mechanical tests were carried out using an Instron 

4483 universal tensile machine with a 30 kN load cell at room temperature.  Figure 2-5 shows 

a typical experimental setup where a constant crosshead speed of 2 mm/min was adopted for 

all tests.  The embedded strain gauge was soldered to a lead pad, and connected to a National 

Instrument PXIe-1071 series transducer; strain data were monitored and recorded at 2 Hz.  A 

sample dimension of 250 × 30 × 0.65 mm was employed with a testing span of 190 mm.  A 6 mm 

strain gauge with 120 Ω was supplied by Tokyo Sokki Kenkyujo Co. Ltd., with a thermal 

expansion coefficient of 11 µm/(m∙˚C), and transverse sensitivity (Kt) of 0.1%.   

Elastic properties in fibre direction were determined by testing samples with warp fibres in the 

longitudinal and transverse directions following ASTM D3039 [62], the layups being 

designated as [0F/90F]3 and [90F/0F]3 separately.  Shear properties of the composite were 

derived from tests of in-plane shear responses according to ASTM D3518 [58] with warp fibres 

oriented at 45˚, and the layup denoted as [±45F]3.  Three samples for each test were conducted 
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to evaluate repeatability.  The stress was calculated by dividing the tensile force at each data 

point by the original cross-sectional area of each sample.   

 

Figure 2-5 Experimental setup for the tensile testing of flat composite samples with 

embedded strain gauges (inset).   

2.3.4 Optical microscopy 

Though the plain-weave GF fabric used have the same warp and weft yarn count as in Table 2-1, 

the mechanical properties of woven composite are also dependent on the yarn bundle geometry 

[55].  Thus, the cross-section of the selected composite layup was evaluated by using optical 

microscope to determine detailed fabric geometry.  Flat woven composite samples were 

embedded into an epoxy matrix and, following resin curing, the specimen was progressively 

ground and polished prior to microscopy work.   

Specimen 
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Strain 
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Camera 
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2.4 RESULTS AND DISCUSSION 

2.4.1 Selection of raw materials and layup 

Though bistability is not necessary for a landing gear folding hinge design, it was used to 

examine the quality of CTS samples, since any misalignment of fabric would cause the sample 

to become skewed when coiled.  Thus, multiple combinations of GF fabrics and PP sheets were 

used to produce bistable tubes.  Initial trials utilised 175 gsm GF woven and 1.0 mm PP sheet, 

but none of the samples worked well; however, these give some guidance and insight for further 

improvement: in particular, with 1.0 mm PP sheet, the composite tubes were too stiff to be 

bistable, and a poor fibre-matrix interface was observed.  Thus, we decided to use 81 gsm GF 

woven and 0.5 mm PP sheet.  The results were encouraging, and some of the layups used are 

listed in Table 2-2.  The first time we obtained bistability was with tube No 6, and the moulding 

conditions were 195 ˚C for 1.5 h.  Though the sample is bistable, there is clear delamination 

throughout the sample when coiled, as shown in Figure 2-6-a.  More samples were therefore 

produced to improve the bonding of fibre-matrix interfaces.  By increasing the moulding 

temperature and time, it was found that delamination could be improved but hardly avoided.  

Tube No 8 was the best as presented in Figure 2-6-b.  Increasing the moulding temperature was 

not considered due to a higher risk of ageing and damage to the glass fibres.   

Table 2-2 Experimental trials of different layups to produce bistable tubes.   

Tube 
Length 

(mm) 

Mould 

(mm) 

Circumference 

(mm) 

Subtended 

angle (˚) 

Moulding 

conditions (˚C) 

Vf 

（%） 
Layup 

6 200 25 70 321 195 ˚C-1.5 h 11.31 81 GF/0.5 PP/81 GF 

7 200 31 90 333 225 ˚C-1.5 h 11.31 81 GF/0.5 PP/81 GF 

8 200 31 90 333 225 ˚C-3.0 h 11.31 81 GF/0.5 PP/81 GF 

10 200 31 90 333 225 ˚C-3.0 h 11.31 2×81 GF/0.5 PP 

11 200 31 90 333 225 ˚C-3.0 h 11.31 0.5 PP/2×81 GF 

13 200 31 90 333 225 ˚C-3.0 h 6.01 0.5 PP/2×81 GF/0.5 PP 

14 200 31 90 333 225 ˚C-3.0 h 11.31 0.5 PP/4×81 GF/0.5 PP 

15 200 31 90 333 225 ˚C-3.0 h 16.06 0.5 PP/6×81 GF/0.5 PP 

16 200 31 90 333 225 ˚C-3.0 h 20.33 0.5 PP/8×81 GF/0.5 PP 

17 200 31 90 333 225 ˚C-3.0 h 24.18 0.5 PP/10×81 GF/0.5 PP 



Section 2 

Composite manufacture and characterisation 

 

28 

 

  

 

 (a)                                                                               (b) 

Figure 2-6 Bistable CTS samples produced at (a) 195 ˚C for 1.5 h and (b) 225 ˚C for 

3 h.  Delamination is clear in both cases.   

Based on the success of the above bistability, we altered the layers and kept the same volume 

fraction as per tubes 10 and 11.  By putting the two GF layers together, the delamination 

problem, Figure 2-6, was resolved but new issues occurred.  Since the thermal expansion 

coefficient of PP is around 20 times higher than GF, the PP sheet was placed inside the mould 

for tube 10, but ended up with much smaller dimeter than the mould.  However, with PP bonded 

outside of the GF, sample No 11 was quite flat, ending up with longitudinal curvature.  To solve 

the issues caused by the mismatch of the thermal expansion coefficient of fabric and matrix, 

further samples were made with two PP layers placed on the top and bottom of the GF woven 

layers to balance the shrinkage of the PP matrix.  Tubes 13-17 were made with different volume 

fractions, as listed in Table 2-2, in order to evaluate its effects on bistability.  Though there is 

no delamination for samples 13-15, tubes 13 and 14 were not bistable, and tube 15 was just 

bistable.  Samples 16 and 17 had good bistability, but it was observed that because of too many 

layers of GF fabrics, the PP could not penetrate through all of the layers, and the resin was not 

evenly distributed.   

Table 2-3 Experimental trials of different layups to produce bistable CTS samples.   

Tube 
Length 

(mm) 

Mould 

(mm) 

Circumference 

(mm) 

Subtended 

angle (˚) 

Moulding 

conditions (˚C) 
Vf 

Layups 

(outside to inside) 

B4 130 31 57 333 225 ˚C-3.0 h 13.31 0.5 PP/200 GF 

B5 200 31 70 333 225 ˚C-3.0 h 23.49 0.5 PP/2×200 GF 

B6-a 200 31 90 333 225 ˚C-3.0 h 31.54 0.5 PP/3×200 GF 

B6-b 200 31 90 333 225 ˚C-4.0 h 31.54 0.5 PP/3×200 GF 

B7 200 31 90 333 225 ˚C-3.0 h 38.05 0.5 PP/4×200 GF 

B8 200 31 90 333 225 ˚C-3.0 h 31.54 0.5 PP/6×200 GF/0.5 PP 

B10 200 31 90 333 225 ˚C-3.0 h 23.49 
0.5 PP/2×200 GF/0.5 

PP/2×200 GF 
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It is concluded that to produce a bistable CTS sample: (i) a minimum value of Vf is needed to 

generate the bistability; (ii) layers of GF fabric need to be placed together to avoid premature 

delamination during the coiling process; (iii) the GF woven with space between warp/weft yarn 

was preferred for better penetration of the matrix resin.   

 

Figure 2-7 Composite tubes produced following layups showed in Table 2-3: (a) 

sample B4; (b) sample B5; (c) sample B6-a; (d) sample B7.   

From these experiences, the fabric material was changed to 200 gsm woven GF.  Unlike the 

175 gsm woven GF, it has more space between the warp and weft fibre tows, as shown in Figure 2-4, 

which would benefit the penetration of matrix resin.  Samples were made following the layups 

in Table 2-3, and Figure 2-7 gives their appearances.  Similar to previous findings using a lower 

Vf, by placing the PP sheet outside of the GF layers there is expansion in the diameter of the 

sample due to a higher thermal expansion coefficient of the matrix.  For sample B4, a 

longitudinal curvature was developed upon releasing the mould (Figure 2-7-a); there is a very 

clear expansion of sample B5 as well (Figure 2-7-b).  By employing more GF layers, the 

expansion problem was significantly reduced in samples B6-a (Figure 2-7-c) and B7 (Figure 

2-7-d), and both samples behave with bistability.  Again, the fibre-matrix bonding in some 

regions of sample B7 are poor, which would affect the composite properties significantly.  The 

composite layup of B6-a, i.e. [±45F]3, was therefore selected for further investigation.  A better 

(a) (b) 

(c) 

(d) 



Section 2 

Composite manufacture and characterisation 

 

30 

 

sample quality was achieved by increasing the period of heat treatment to 4 hours, i.e. sample 

B6-b, which was adopted for subsequent research.  The average thickness of the selected 

composite layup was measured using digital callipers and was typically 0.65 mm.   

2.4.2 Tensile properties  

The mechanical properties of the selected composite layup were evaluated with embedded 

strain gauges, and Table 2-4 shows the results for tensile behaviour.  Figure 2-8 shows a typical 

tensile stress-strain curve for a three-layered woven composite.  It is noticed that the strain 

gauges start to detach from the sample surface at strains around 0.0025, see Figure 2-8: thus, 

the modulus could be determined using the strain values from both the strain gauges and 

crosshead motion; while the strain at failure was only determined from the crosshead 

movement.  The composite sample was linear elastic until failure, where the tensile strength in 

warp (𝜎1
𝑊𝐶) and weft (𝜎2

𝑊𝐶) directions are 215 MPa and 198 MPa, respectively, corresponding 

to failure strains of 𝜀1𝑓
𝑃𝑊 = 3.46% and 𝜀2𝑓

𝑃𝑊 = 2.34% [63].   

Table 2-4 Tensile test results of flat composite samples with embedded strain 

gauges.  SE is the ‘‘standard error’’.   

Sample No 
Tensile strength 

(MPa) 

Strain at failure 

(%) 

Modulus (GPa) Poisson’s 

ratio Strain gauge Crosshead motion 

      

[0/90]3 𝜎1
𝑊𝐶 𝜀1𝑓

𝑊𝐶 𝐸1
𝑊𝐶  v12 

1 206.68 3.55 12.79 8.39 0.11 

2 206.52 3.56 12.27 6.11 0.12 

3 233.08 3.26 13.90 10.10 0.11 

Mean ± SE 215.43 ± 8.83 3.46 ± 0.10 12.99 ± 0.48 8.20 ± 1.16 0.11 ± 0.01 

      

[90/0]3 𝜎2
𝑊𝐶 𝜀2𝑓

𝑊𝐶 𝐸2
𝑊𝐶  v21 

1 196.29 2.33 15.52 11.01 0.13 

2 203.05 2.34 18.69 8.66 0.16 

3 194.8695 2.34 13.98 8.46 0.21 

Mean ± SE 198.07 ± 2.52 2.34 ± 0.01 16.06 ± 1.39 9.38 ± 0.82 0.17 ± 0.03 

      

The modulus values derived from different strain data have a large variance, highlighted by the 

inset, Figure 2-8; the strain gauge data give more accurate strain measurements.  In addition, 

the transverse-sensitivity effects have been corrected following Section 2.2.3.  Any discrepancy 

from the crosshead motion may be attributed to a lack of sensitivity of the sample deformation 

near the grips and to transverse sensitivity effects.  Thus, the elastic moduli of composite were 

determined to be 𝐸1
𝑊𝐶 = 12.99 GPa, and 𝐸2

𝑊𝐶 = 16.06 GPa.  As the woven composite was 
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fabricated with same fibre counts in both directions, the Young’s modulus in the warp direction 

was found to be slightly lower than in the weft direction.  A similar variance was obtained for 

Poisson’s ratio, with v12=0.11 compared to v21=0.17, which may be caused by the differences 

of fibre tow geometry in the warp and weft directions [55]; this is further addressed in Section 2.4.4.   

 

Figure 2-8 Tensile stress-strain curve of a flat composite sample, showing the stress-

strain curves derived from both strain gauges (black) and crosshead 

movement (red).   

The H-S bounds based micromechanical model (Section 2.2.1.2) can be applied to predict the 

engineering constants of the GF/PP woven composite.  With 30% Vf, it gives 𝐸1
𝑊𝐶 = 𝐸2

𝑊𝐶=13.70 GPa, 

and 𝑣12 = 𝑣21 = 0.10.  Despite the experimental system error, these agree well with the mean 

measured modulus value of 14.53 GPa and Poisson’s ratio of 0.14.   

2.4.3 Shear properties  

A typical shear stress-strain curve of the composite is shown in Figure 2-9, and Table 2-5 shows 

the shear properties of a flat [±45F]3 composite sample with embedded strain gauges.  Again, 

the strain gauges detach at a strain value around 0.008, as highlighted, and a linear elastic shear 

modulus was observed until a strain level of 1%.  It then becomes nonlinear, followed by a 
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second almost linear response, with a lateral shear modulus 𝐺12
𝑊𝐶∗ = 80 MPa  before fully 

fracturing.  The shear strength and shear strain at failure were 42 MPa and 27%, respectively.  

The shear modulus calculated from embedded strain gauges agrees well with predictions from 

the micromechanical model, i.e. 824 MPa against 978 MPa; whilst the shear modulus 

determined from the crosshead movement gives a larger modulus value of 1249 MPa because 

transverse sensitivity effects are not corrected.   

 

Figure 2-9 Shear stress-strain curve of a [±45F]3 composite sample, showing the 

shear stress-strain curves derived from both strain gauges (black) and 

crosshead movement (red).   

Table 2-5 Shear properties of [±45F]3 composite samples with strain gauges.  SE 

is the ‘‘standard error’’.   

Sample 
Shear modulus (MPa) Shear strength 

(MPa) 

Shear strain at 

failure (%) Strain gauge Crosshead motion 

      

 𝐺12
𝑊𝐶  𝐺12

𝑊𝐶  𝐺12
𝑊𝐶∗ 𝜏12

𝑊𝐶 𝛾12𝑓
𝑊𝐶 

1 713 1001 74 41.06 27.99 

2 847 1292 82 43.09 25.58 

3 912 1453 84 42.74 27.19 

Mean ± SE 824 ± 59 1249 ± 132 80 ± 3 42.30 ± 0.63 26.92 ± 0.71 
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2.4.4 Cross-section of composite layup 

The cross-sectional content of GF/PP composite was evaluated from optical microscopy in both 

the warp and weft directions.  Typical results are shown in Figure 2-10.  Though the fibre count 

is the same in both directions, the tow geometry was found to be different.  Table 2-6 gives the 

tow geometry of a single ply as measured by using FIJI [64], where a single woven lamina 

thickness was determined to be 0.205 mm.   

 

Figure 2-10 Cross-sectional area of composite layup in (a) warp and (b) weft 

directions.   

Table 2-6 Tow geometry of the plain-weave GF in warp and weft directions.   

Direction Tow width (mm) Tow height (mm) Tow spacing (mm) 

    

Warp 1.285 0.092 1.332 

Weft 0.669 0.153 1.332 

    

  

Figure 2-11 Unit cell model of plain-weave woven lamina reconstructed using 

TexGen [65], showing clearly the difference in tow geometry in warp and 

weft directions.   

To clearly define the differences in tow geometry, a unit cell model of plain-weave woven 

lamina was established using TexGen [65], see Figure 2-11.  The fibre tow in the warp direction 

is two times wider and around 70% smaller in thickness compared to weft fibre tow.  For the 

(a) (b) 
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same fibre counts, the cross-sectional area of a single warp fibre tow is 20% smaller than the 

weft fibre tow.  This is in accordance with the 24% difference in measured modulus values, and 

we can expect a more effective and collective response of fibres in the weft direction [66].  Thus, 

the tensile strength in weft direction is lower than warp direction, recall Table 2-4, and the 

discrepancy in modulus and Poisson’s ratio in warp and weft directions from Section 2.4.2 are 

induced by different fibre tow geometries.   

2.5 CONCLUSIONS 

In this section, we have provided detailed studies on manufacturing the GF/PP based composite 

tape-spring samples.  Trials on different composite layups provided useful guidelines and 

experiences for manufacturing, and the best performing sample had a layup of [±45F]3.  Its 

mechanical properties were then characterised with embedded strain gauges, which gave 

reliable strain data after corrections of the transverse-sensitivity, compared to the crosshead 

motion.  Though the fibre tows of the GF fabric in the warp and weft directions have a similar 

filament count, the tow geometry is found to be different, resulting in the discrepancy between 

moduli and Poisson’s ratio values.  These data provide a basic understanding of the composite 

material, and facilitate construction of the finite element model for composite tape-spring 

analysis in Section 3.   
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3.1 INTRODUCTION 

Thin isotropic tape-spring (ITS) structures have been used, for example, to construct storable 

tubular extendible members (STEMs) [37] for space exploration.  The most common ITS is 

made of steel, i.e. a tape-measure, or thin beryllium copper for spacecraft applications, which 

can be age-hardened using a heated cylindrical former [67].   

Recall that every undeformed tape-spring is characterised by its transverse curvature 1/R, 

uniform thickness t, subtended angle ξ and length L: the arc-length, b, is Rξ, see Figure 3-1-a.  

For a tape-spring with/without initial longitudinal curvature, bending to generate positive 

Gaussian curvature is recognised as equal-sense bending (ESB), Figure 3-1-b, whist negative 

Gaussian curvature corresponds to opposite-sense bending (OSB), Figure 3-1-c.  During ESB, 

compressive stresses are induced along the tape edges, leading to flexural-torsional buckling 

and a series of edge kinks, which then coalesce into a single elastic fold.  In OSB, tensile edge 

stresses are produced with higher deformation levels than ESB, before snapping through to 

form a fold.  Once the elastic fold is well-developed, the bending moment is approximately 

constant in both cases [20].   

 

Figure 3-1 Schematic representation of a tape-spring structure: (a) geometry 

definition; (b) subject to equal-sense bending; (c) opposite-sense bending.   

The analytical moment-rotation relationships for symmetrical tape bending have been well-

understood [67].  Performing a similar practical experiment necessitates a bespoke and, hence, 

expensive bending rig, able to apply precise uniform bending moments and end rotations.  

(b) (c) (a) 

ξ R 

b 
F 

F 

F 



Section 3 

Folding of tape-springs 

 

37 

 

Because the ends must be securely held, the scope for torsional buckling during ESB, manifestly 

apparent during manual bending of a lengthy tape, is clearly reduced.  Instead, we used a simpler 

three-point bending arrangement, schematically shown in Figure 3-2-a.  Following the 

approximation as illustrated in Figure 3-2-b and c, the folded angle of a tape is approximately 

2𝜓 = sin−1(2𝛿/𝐿).   

 

 

Figure 3-2 Schematic equal-sense bending of a tape-spring structure: (a) evaluation 

setup; (b) a typical shape in folding; (c) approximated shape to determine 

the folded angle.   

In this section, we evaluate the folding behaviour of tape-springs.  Unlike normal three-point 

bending, we establish a ‘‘free’’ bending setup with minimal end constraints, in order to promote 

torsional buckling more readily; folding of CTS samples is however investigated in terms of 

ESB only, since OSB causes damage and delamination to the composite material.  For ITS, 

folding is studied in both ESB and OSB processes.  FE models are also constructed using 

ABAQUS/Explicit [68] for both types of tape-springs, and compared to experiments.   
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3.2 EXPERIMENTAL FOLDING 

CTS samples with different lengths and subtended angles, were fabricated following Section 

2.3.2: Figure 3-3 shows some of the samples.  ITS samples with different lengths were cut from 

a normal steel tape-measure.   

 

Figure 3-3 CTS samples with different initial geometry in their extended and coiled 

shapes.   

 

Figure 3-4 (a) Experimental setup for the folding tests of the tape-springs; (b) 

folding a CTS sample; (c) folding an ITS sample.   

Figure 3-4 shows the schematic experimental setup, including the folded shapes of both CTS 

and ITS.  Briefly, tape samples were connected to an Instron Serious 5564 materials testing 

machine using inextensible steel wires through centre-line longitudinal holes located at the ends 

and in the middle.  During ESB, the outer two wires are anchored downwards, and the middle 

wired pulled upwards.  The tape gradually deforms into a cylindrical central fold, connected by 

‘‘ploy’’ regions to the two tape ends, which maintain with natural radius R.  The applied force 
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is F, and the mid-point displacement is δ when the folded angle is 2ψ.  Test data was recorded 

by a 100 N load cell as the cross-head moved at 60 mm/min.  Both loading and unloading 

processes were monitored and each test cycle was performed three times, in order to evaluate 

repeatability.   

3.3 FINITE ELEMENT MODEL 

3.3.1 FE model for CTS 

3.3.1.1 Micromechanics 

There have been many attempts to model woven composites, documented well by Ansar et al. 

[69].  Their performances for specific purposes have been simulated through idealisation of 

geometric parameters and their weave architectures at a micro-structural level.  However, their 

capabilities as geometrical models are limited to estimating the actual proportion of fibres in 

three, mutually orthogonal directions [69].  Lamers et al. [51] developed a macro-mechanical 

model for the ABD stiffness matrix of a woven laminate by considering the real tow geometry.  

It is complicated however by discretising the unit cell into elements and slices, which involves 

substantial computation; development of new mechanics and modelling methods are time-

consuming and beyond the scope of this project.   

Our woven composite is thus implemented using the modified Naik’s model [55], where a 

woven composite ply has one isotropic matrix layer and two UD laminates, see Figure 3-5.  We 

therefore capture layered information, which allows an investigation into the effects of the fibre 

angle.   
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Figure 3-5 Schematic representation of the Naik’s model [55], showing that one 

plain weave composite ply can be represented as one matrix layer and 

two unidirectional laminae.   

Properties of the UD laminate were determined by mechanical tests and by the micromechanical 

model, from Section 2.2.1.  The micromechanical model based on Hashin-Shtrikman (H-S) 

bounds [41] provides the theoretical basis; for plain weave lamina, its mechanical properties 

also depend on the yarn bundle geometry [55].   

 

Figure 3-6 Coordinate system and fibre directions of the GF/PP woven composite: 

‘1’ denotes the fibre in warp direction; ‘2’ is the fibre in weft direction; 

‘x’ is along the sample length and ‘y’ is transverse; 𝜽 is the fibre angle of 

the woven composite, defined as +𝜽 in warp and −𝜽 in weft fibre.   

Figure 3-6 shows the coordinate system and fibre directions of the GF/PP woven composite.  In 

order to construct the FE model, the effects of fibre weaves and crimps are idealised, and the 

modulus values cannot be adopted directly from tests.  Assuming instead that the longitudinal 

and transverse stiffness of a woven composite follow 𝐸11
𝑊𝐶: 𝐸22

𝑊𝐶 = 𝑎: 𝑏, which can be measured 

experimentally, then:   
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𝐸11
𝑊𝐶 =

𝑎

𝑏
𝐸22
𝑊𝐶 =

𝑎

(𝑎 + 𝑏)
(𝐸HS

1 + 𝐸𝐻𝑆
2 ) (3-1) 

The modulus of the UD laminate in the warp (𝐸11
𝑤𝑎𝑟𝑝

) and weft (𝐸11
𝑤𝑒𝑓𝑡

) direction are then:   

𝐸11
𝑤𝑎𝑟𝑝

=
𝑎

𝑏
𝐸11
𝑤𝑒𝑓𝑡

=
𝑎

(𝑎 + 𝑏)
𝐸HS
1  (3-2) 

𝐸22
𝑤𝑎𝑟𝑝

=
𝑎

𝑏
𝐸22
𝑤𝑒𝑓𝑡

=
𝑎

(𝑎 + 𝑏)
𝐸HS
2  (3-3) 

3.3.1.2 Viscoelasticity 

The time-dependent viscoelasticity of the GF/PP composite also needs to be considered, which 

can be achieved by integrating the time-dependent relaxation modulus into the 

micromechanical model.  The glass fibres are normally considered as elastic and isotropic, and 

viscoelastic effects are dominated by the fibres [30].  Considering a semi-crystalline polymer 

as a two-phase material, the instantaneous response to an external mechanical loading, as well 

as its load-bearing ability, is mainly determined by the crystalline response; while the time-

dependent viscoelastic effects are developed in the amorphous regions [70].  The time-

dependent viscoelasticity of polymers can be integrated using the experimentally determined 

stress relaxation modulus 𝐸̇m(𝑡) at time t, which is usually described by a Prony series [30]:  

𝐸̇m(𝑡) = 𝐸m [1 −∑𝑘i(1 − 𝑒
−𝑡/𝜏i)

𝑁

𝑖=1

] (3-4) 

ki is the tensile relaxation coefficient; τi is the characteristic time; and N is the number of series 

terms.  The corresponding relaxation shear modulus 𝐺̇𝑚(𝑡) becomes:   

𝐺̇𝑚(𝑡) =
𝐸m

2(1 + 𝑣𝑚)
[1 −∑𝑘i(1 − 𝑒

−𝑡/𝜏i)

𝑁

i=1

] (3-5) 

3.3.1.3 Construction of the FE model 

The FE model was constructed using ABAQUS/Explicit [68] following Naik’s idealisation 

[55].  The woven composite layup [±45F]3 was simplified into a UD laminate with stacking 



Section 3 

Folding of tape-springs 

 

42 

 

sequence [m/(45/-45)3/m], where the m-ply was the pure PP matrix layer; the ply stack is shown 

in Figure 3-7-a.  To determine the real thickness of each ply, optical microscopy was used to 

examine the cross-sectional area of a composite sample, Section 2.4.4.  The thickness of the 

optimised UD layer was determined to be 0.1 mm, and the matrix layer was 0.025 mm.  

Properties of the UD laminae in the warp and weft directions were informed by tests and by the 

micromechanical model.  Viscoelastic effects within a UD layer can also be optimised since its 

properties are dominated by fibres [30]: correspondingly, the Prony series for the matrix layer, 

Table 3-1, is implemented in ABAQUS using the results from Tscharnuter et al. [71].   

  

Figure 3-7 Construction of the FE model: (a) composite layup adopted in the FE 

model; (b) boundary conditions applied in the model without the 

constraints of end rotations.   

Table 3-1 Prony series coefficients of the PP matrix as adapted from Tscharnuter 

et al. [71].   

N ki τi 

1 3.26E-6 0.1 

2 3.19E-5 1 

3 6.39E-5 10 

4 1.65E-4 100 

5 2.79E-4 1000 

6 5.03E-5 10000 

7 2.19E-3 100000 

The model used S4R reduced integration, four-noded shell elements coupled to hourglass 

control, finite membrane strains and a geometrically nonlinear analysis.  The ‘stabilize’ function 

minimised instabilities according to a damping factor of 1×10-6.  Convergence studies on the 

mesh size were carried out to determine the acceptable accuracy of the model: an element edge 

size of 2 mm and around 2000 elements in total were found to be successful.  Figure 3-7-b 

shows the constrained translational degrees of freedom in the model.  Displacement restrictions 
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in the z-direction were applied to two nodes at the centre of cross-section at both ends; one node 

is able to move towards the other along the x-direction and a displacement restriction was also 

applied to the central node in the y-direction; no rotational constraints were applied.  Folding is 

then achieved by displacing the central node of the shell in the z-direction.   

3.3.2 FE model for ITS 

The construction of an isotropic FE model is more straightforward.  The properties of a typical 

steel tape-measure [12] are listed in Table 3-2.  To determine the shell geometry, an image of 

the cross-section was loaded into DraftSight software [72] and scaled to the real size, Figure 

3-8, which show that the sides of the tape-spring are flat.  The effects of a polymer coating layer 

on the outside of the tape-spring were neglected in experiments since its modulus is several 

orders lower than steel; the coating was nonetheless removed by heat treatment in a fan-assisted 

oven to reveal the actual thickness of steel as 0.09 mm.   

Table 3-2 Material properties of a steel tape-measure.   

Materials Steel tape-spring 

Elastic modulus (GPa) 210 

Poisson’s ratio 0.3 

Thickness (mm) 0.09 

 

Figure 3-8 Model geometry for the FE analysis determined by measuring the real 

sample: (a) edge of a steel tape-spring sample; (b) dimensions (in mm) of 

shell for the FE model.   

For a thin isotropic shell structure, transverse shear stress effects are negligible [73].  Thus, a 

3-node triangular mesh, S3R element, was used rather than the S4R element for a CTS.  A 

convergence study shows that an element size of 2.5 mm is appropriate for the analysis, and 

boundary conditions and solution process etc. as in Section 3.3.1.3 were also adopted.   

Sample side view 
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3.4 FOLDING OF COMPOSITE TAPE-SPRINGS 

3.4.1 Folding behaviour 

Experiments were conducted on different CTS samples to evaluate their folding nature and the 

effects from geometry.  Three sample lengths of 50 mm, 100 mm and 200 mm, with ξ equal to 

120˚, 180˚ and 320˚, were considered.  All samples were folded to an angle, 2𝜓, of around 90˚, 

corresponding to a maximum loading displacement of 15 mm for samples 50 mm long, 30 mm 

for 100 mm long, and 70 mm for the 200 mm samples.   

 

Figure 3-9 Force versus displacement during free bending of different length CTS 

samples.   

Figure 3-9 shows the force-displacement relationship of a CTS sample with ξ = 120˚.  Clearly, 

the peak force is larger for shorter samples, and is higher during loading than unloading in all 

cases.  Such hysteresis may be due to the viscoelasticity of the GF/PP composite.  It is observed 

also that bending is accompanied by torsional buckling, but the precise initiation point is not 

clear from the curves.   
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Figure 3-10 Force versus displacement during folding of different length CTS 

samples with a large ξ of 180˚ compared to Figure 3-8.   

As similar behaviour is also observed for a CTS with ξ=180˚, in Figure 3-10.  The applied load 

magnitudes all increase, and the 50 mm sample shows bistable folding.  Experiments were also 

carried out for a CTS with ξ=320˚, but some were compromised by the steel wires falling at the 

support holes because the applied forces there were much larger.  Table 3-3 summarises the 

experimental data on the peaks and valleys (first point of minimum force after the peak force) 

of different CTS samples; note that each test shows high repeatability.   
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Table 3-3 Experimental peaks and valleys in folding of CTS samples.  SE is the 

standard error.   

ξ (˚) L (mm) 
Peak  Valley 

Fmax (N) δ (mm)  Fmin (N) δ (mm) 

120 50 23.19 4.26  3.40 8.16 

  23.58 4.21  3.37 8.17 

  23.59 4.24  3.39 8.14 

 Mean ± SE 23.45 ± 0.13 4.24 ± 0.01  3.39 ± 0.01 8.16 ± 0.01 

 100 10.15 6.00  2.69 22.50 

  10.14 6.00  2.68 22.50 

  9.97 5.97  2.68 22.37 

 Mean ± SE 10.01 ± 0.06 5.99 ± 0.01  2.68 ± 0.01 22.46 ± 0.04 

 200 4.22 11.20  1.43 38.70 

  4.13 11.20  1.41 38.80 

  4.03 11.43  1.40 38.93 

 Mean ± SE 4.13 ± 0.05 11.27 ± 0.08  1.41 ± 0.01 38.81 ± 0.07 

180 50 49.79 6.71  -- -- 

  50.17 6.59  -- -- 

  50.22 6.60  -- -- 

 Mean ± SE 50.01 ± 0.14 6.64 ± 0.04  -- -- 

 100 28.20 4.51  5.13 23.81 

  29.05 4.40  5.09 23.46 

  29.40 4.07  5.09 23.40 

 Mean ± SE 28.88 ± 0.36 4.33 ± 0.13  5.10 ± 0.01 23.55 ± 0.13 

 200 12.39 9.31  3.10 41.62 

  12.48 8.97  3.24 41.42 

  12.47 8.57  3.16 41.52 

 Mean ± SE 12.45 ± 0.03 8.95 ± 0.21  3.17 ± 0.04 41.52 ± 0.06 

320 200 35.02 24.68  18.65 51.81 

  33.36 24.62  17.90 50.43 

  30.71 24.61  16.79 50.48 

 Mean ± SE 33.03 ± 1.26 24.64 ± 0.02  17.78 ± 0.54 50.91 ± 0.45 

3.4.2 Validation of FE model 

The FE model from Section 3.3.1 was used to offer further insights.  Experimental data from 

Figure 3-10 were used to calibrate the model: though the viscoelasticity of matrix layer was 

considered, it is observed that the integration of Prony parameters of PP matrix in the model 

has marginal effects on the load profiles.  The viscoelastic behaviour of the composite should 

have substantial effects during unloading, but the Prony series for a typical GF/PP system 

cannot be found in literature.  Thus, only forward folding is simulated using the FE model.  

Figure 3-11 compares to experimental data, where there is clearly good agreement between the 

trends, but a major difference is the sharp peak from the simulation at the onset of initial 
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bending.  This is due to a pronounced bifurcation when torsional buckling occurs, as highlighted 

by the insets.  The torsional buckling also occurs in the experiments but this is more gradual 

owing to the presence of initial imperfections.  Conversely, if the perfectly symmetrical 

boundary conditions are relaxed in the FE analysis, this peak is reduced in height and becomes 

rounder, as per experiments [63].   

 

Figure 3-11 Force-displacement curves of the bistable CTS samples.  Insets show the 

shapes at different stages from experiments and FE simulations 

(with/without symmetric boundaries).   

Figure 3-12 shows further evidence of torsional buckling from the FE model by plotting the 

curvature changes of the central node of the tape shell against the displacement.  Initially, there 

is pure bending in both x- and y-directions.  The torsional coupling peak is clearly demonstrated 

by the sharp peak in transverse curvature change, 𝜒𝑦, at around 3 mm.  The tape then twists 

given by the increase in twisting curvature, 𝜒𝑥𝑦 .  Twisting reaches a maximum value at a 

displacement of 30 mm, then decreases.  A minimum force is observed when the central fold 

region becomes transversely flattened as 𝜒𝑥𝑦 ≈ 1/𝑅 , where twisting deformation is fully 

recovered.   
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Figure 3-12 Curvature changes of the central node in longitudinal (𝝌𝒙), transverse 

(𝝌𝒚) and twisting (𝝌𝒙𝒚) directions during the folding process.   

3.4.3 Effect of tape length 

Effects due to sample length are further evaluated from the theoretical analysis and FE model.  

Figure 3-13 shows the force-displacement curves from the FE model compared to the 

experimental data from Figure 3-10.  Table 3-4 also compares the data at peaks and valleys 

from the FE model to the experimental data from Table 3-3.  Generally, the FE model shows 

good agreement with experimental results in terms of force magnitude, while the corresponding 

peak positions are shifted by experimental imperfections, as discussed in Section 3.4.2.   

Table 3-4 FE data on peaks and valleys during folding of CTS samples with 

different lengths, compared to experimental data in Table 3-3.   

Subtended 

angle (˚) 

Length 

(mm) 

Peak  Valley 

Fmax ± SE (N) δ ± SE (mm)  Fmin ± SE (N) δ ± SE (mm) 

180 50 50.01 ± 0.14 6.64 ± 0.04  BEHAVES AS BISTABLE, 

VALLEY IS NOT FOUND  FE 51.67 4.10  

 100 28.88 ± 0.36 4.33 ± 0.13  5.10 ± 0.01 23.55 ± 0.13 

 FE 29.77 2.59  4.17 17.64 

 200 12.45 ± 0.03 8.95 ± 0.21  3.17 ± 0.04 41.52 ± 0.06 

 
FE 14.78 4.11  2.43 40.75 
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Figure 3-13 Force-displacement curves of the CTS samples with different sample 

length.  The FE data are compared to those adopted from Figure 3-10; 

insets show shape changes at different stages for a CTS 50 mm in length.   

3.4.4 Effect of subtended angle  

We evaluate the effect of subtended angle for a fixed sample radius of 12.5 mm, where Figure 

3-14 shows the force-displacement curves for different subtended angles.  Clearly, the applied 

force magnitude increases with subtended angle, and various data points highlighted in Figure 

3-14 are further plotted against subtended angle in Figure 3-15-a.  First, Figure 3-15-a shows 

the change in critical buckling force; Figure 3-15-b then gives the initial slope and maximum 

force.  Two data points are also adopted from the experimental curves in Figures 3-9 and 3-10.   

By increasing the subtended angle, the critical buckling force as well as the maximum force 

increase linearly.  The initial slope also increases as observed from both experiments and FE 

analysis, and then becomes stabilised beyond 230˚.  This can be attributed to the increase in 

bending stiffness with subtended angle through the second moment of area [74].   
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Figure 3-14 Force-displacement curves with different subtended angle obtained from 

the FE analysis with sample initial radius of 12.5 mm.   

 

Figure 3-15 Changes of critical force at buckling, slope and maximum force with 

subtended angle.  Initial radius is 12.5 mm and the length is 200 mm.   
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3.4.5 Effect of fibre angle 

It is observed that the fibre angle profoundly affects the folding of a CTS, and FE analysis gives 

further insight.  Figure 3-16 shows the evolution of the force profiles where the fibre angle 

clearly governs the shapes.  Figure 3-17 details the changes of the buckling force, initial slope 

and maximum applied force: both the buckling and peak forces are maximised at a fibre angle 

of 45˚.  The initial slope in each case reduces with increased fibre angle, which may be related 

to the modulus ratio in two-directions, requiring further investigation.   

 

Figure 3-16 Force-displacement curves of the CTS samples with different fibre angle 

from FE analysis.   

Experimental trials on folding a composite tube with a [±30F]3 layup gave a highly unstable 

twisted geometry.  Finite element models also predict similar features: Figure 3-18 shows the 

twisting curvature at the central node for a folded tape shape with various fibre angles.  It is 

noted that apart from the tape-spring with fibres oriented ±45˚, residual twisting of the samples 

are always observed.   
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Figure 3-17 Changes of critical force at buckling, initial slope and maximum force 

with fibre angle.  Initial model radius is 12.5 mm, and length is 200 mm.  

 

Figure 3-18 Twisting curvature of the central node and the folded shape of a CTS, 

for different fibre angles.   
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To evaluate the shape of the central folded region, each CTS with a different fibre angle was 

folded to around 180˚.  The central circular region can be characterised by the longitudinal 

curvature change along the edge nodes, see Figure 3-19-a, and then by r and 2φ: see Figure 3-1-b.  

Figure 3-19-b shows the changes of r and 2φ, which all decrease with increased fibre angle.  

This implies that a CTS with a smaller fibre angle would have larger central fold radius.   

 

Figure 3-19 Characterisation of the central folded region: (a) longitudinal curvature 

change of a CTS with ±45˚ fibre angle; (b) changes of radius and central 

subtended angle with fibre angle.   

3.5 FOLDING OF ISOTROPIC TAPE-SPRINGS 

3.5.1 Folding behaviour 

Figure 3-20 shows the force-displacement curves from the ESB cycles, where both the loading 

and unloading were monitored to a central displacement of 70 mm, corresponding to a relative 

folded angle of around 90˚.  Different folding stages are characterised A to D as shown.   
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Figure 3-20 Experimental results of force versus displacement curves during ESB 

loading and unloading.  Stages A-D characterise different deformation 

responses of the tape.   

Similar to a CTS, torsional buckling develops with smooth and uniform deformation along the 

two tape edges in the longitudinal direction throughout Stage-A.  Bending is accompanied by 

twisting deformation beyond the critical force, Fcrit, at the onset of Stage-B, with a decrease in 

stiffness i.e. gradient.  Stage-C is highly nonlinear where the twisting deformation becomes 

localised with a rapid reduction in applied force.  Since experimental tests are not perfectly 

symmetric, the ‘‘kinks’’ form on one side of the tape before the other side, resulting in the step-

like features in Figure 3-20.  There is snapping when the two kinks then coalesce into one elastic 

fold as twisting reduces.  The onset of Stage-D is characterised by a minimum force, a well-

formed central fold with no twist, and a rising nonlinear profile.  During unloading, the loading 

features are totally reversible, expect for some hysteresis where the loads are slightly lower.  The 

loading process is thus our main focus: Stages-A and B can be treated as a small displacement 

regime, and Stage-D is regarded as large displacement.  Detailed analysis is discussed later.   

Opposite-sense bending (OSB) of an ITS is also evaluated using the same setup, and Figure 3-21 

shows the force-displacement curves.  Unlike the ESB, there is no bending-torsional buckling 

during OSB, but there is a major snap-through/snap-back peak as highlighted by the inset figures.   
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Figure 3-21 Force versus displacement curves during the OSB loading and 

unloading.  Insets show corresponding tape shapes.   

3.5.2 Validation of FE model 

Figure 3-22 compares the FE analysis to experiments where, in general, there is good 

agreement.  The major difference is a sharp peak at the onset of loading in the FE model during 

Stage-A, which corresponds to coupling of bending and torsion for perfectly symmetrical 

boundary conditions, which is not realised in experiments.  By employing an offset (shifting 

the constrained node by an element size of 2.5 mm) to the boundary constraints in the model, 

the peak vanishes, and gives a nearly perfect fit to the experiments, see Figure 3-22.  A minor 

difference appears in Stage-C where, unlike the step-like snap processes from Section 3.5.1, the 

simulated force gradually reduces and is followed by a major snap-through response.  This is 

also caused by the perfect symmetry BCs in the model as the localised kinks occur 

simultaneously on both sides of the tape.  The discrepancy can also be attributed to the 

differences in sample attachment methods between experiments and FE model, since the steel 

wires do not remain vertical under large displacements.   

0

3

6

9

12

0 10 20 30 40 50 60 70

F
o

rc
e,

 F
(N

)

Displacement, δ (mm)

Test-01

Test-02

Test-03

Loading 

Unloading 

Delayed 

unloading 

Peak generated through snap-

through response 

Snap-through 

Snap-back 

Peak generated by snap-

back response 



Section 3 

Folding of tape-springs 

 

56 

 

 

Figure 3-22 Force versus displacement curves from FE during loading and unloading 

with and without the symmetrical boundary condition, compared to the 

experimental results.   

 

Figure 3-23 Real tape-spring deformation compared to the deformed shapes from the 

FE model during ESB.   
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Figure 3-23 also shows the actual deformed shapes at different stages, directly compared to the 

FE model.  Figure 3-24 shows the results compared to experiments.  It is clear that the FE model 

successfully captures the main features from both ESB and OSB processes.   

 

Figure 3-24 Force versus displacement curves during the OSB loading from the FE 

model, and experimental results.   

3.5.3 Effect of tape length  

Opposite-sense bending of an IST is analogous to previous findings [20], but ESB is quite 

different.  To simulate the free ESB folding of an ITS, imperfections in the FE model are 

needed.  Further experiments were conducted on IST samples with different lengths of 50 mm, 

100 mm, and 200 mm, folded to an angle of around 80˚, and Figure 3-25 compares to FE results.  

Again, there is good agreement.  In general, the maximum force occurs at a folded angle of 

around 20˚, then decreases with localisation along the edges.  The tape snaps into a simple fold 

at the centre, where twisting buckling disappears and the folding region is considered as well 

formed with minimum force.  The corresponding fold angle for minimum force increases as the 

length decreases, see Figure 3-25.   
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Figure 3-25 Force-displacement curves of the isotropic tape-springs in ESB with 

different lengths.  The FE data are compared to those adopted from 

Figure 3-22; dots show the maximum and minimum force locations.   

Table 3-5 Maximum and minimum force positions extracted from the data dots 

highlighted in Figure 3-25.   

Length 

(mm) 

Maximum force position  Minimum force position 

Fmax ± SE (N) Folded angle (˚) Fmin ± SE (N) Folded angle (˚) 

200-ESB 1.512 20.75 0.334 38.19 

 1.513 20.63 0.339 38.19 

 1.505 20.75 0.330 38.19 

Mean ± SE 1.511 ± 0.003 20.71 ± 0.04 0.334 ± 0.003 38.19 ± 0.00 

FE model 1.554 20.35 0.347 35.78 

100-ESB 2.577 22.15 0.870 46.66 

 2.570 22.38 0.876 46.68 

 2.575 22.38 0.873 46.68 

Mean ± SE 2.574 ± 0.002 22.31 ± 0.08 0.873 ± 0.002 46.67 ± 0.01 

FE model 2.511 17.60 1.019 48.94 

50-ESB 4.51 22.76 3.384 48.33 

 4.52 22.66 3.391 48.23 

 4.55 22.52 3.405 48.08 

Mean ± SE 4.53 ± 0.01 22.65 ± 0.07 3.394 ± 0.006 48.22 ± 0.07 

FE model 4.735 17.36 2.821 48.08 
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To further characterise the effects induced by sample length, the maximum and minimum force 

data in Figure 3-25 were extracted and shown in Table 3-5.  It gives a good agreement in 

predicting the peak positions but there is a larger variation in the minimum force positions.   

3.6 CONCLUSIONS 

We have evaluated the folding nature of tape-springs made from isotropic and orthotropic 

materials.  The composite tape-springs were manufactured following Section 2; the isotropic 

tape springs were cut from a tape-measure.  We have clearly observed torsional buckling and 

instability during folding for both.  The FE model has been developed to study the folding in 

more detail, and has been calibrated by experimental results in each case.  The model provides 

good agreement and captures the main features for both types of tapes.  Torsional buckling 

occurs during equal-sense bending.  The length and subtended angle control the load 

magnitudes, while the overall folding behaviour follows similar stages.  From these 

observations for both isotropic and composite tape-springs, the structural behaviour of tape-

springs is further discussed and analysed in Section 4.   
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4.1 INTRODUCTION 

The folding behaviour of a tape-spring structure is highly nonlinear and directionally dependent 

[20].  The analytical moment-rotation relationships for symmetrical tape bending have been 

developed by Rimrott [75], Calladine [52], Mansfield [76] and more recently by Seffen [67].  

Unsymmetrical bending characterised by tape twisting has been studied also by Mansfield in 

consequence to uniform equal-sense bending and buckling in a torsional mode.  These provide 

the basis for analysis of the folding observations in Section 3.   

The elastic folding of an ITS is very well understood but there is little work on folding of a 

CTS.  In folding of an ITS, it eventually buckles to form a localised folded region that is 

approximately curved uniformly in the longitudinal direction, with a radius of curvature almost 

equal to the transverse radius of the undeformed cross-section [21].  An alternative concern is 

the torsional buckling and instabilities observed in the bending of tape-springs.  Coupled 

torsional-bending buckling of a tape-spring was first explained by Mansfield [77] for an ITS, 

while orthotropic was not covered.   

For aircraft landing gear applications, we want to capture torsional buckling as this limits the 

applied force during initial folding; we then analyse the large displacement folding.   

4.2 FOLDING OBSERVATIONS 

Figure 4-1 schematically shows a typical force-displacement profile for ESB folding of a tape-

spring structure, either isotropic or orthotropic.  The tape ends are free to rotate and to approach 

one another but are restrained linearly against the centrally applied, vertical force, F.  In 

summary, four stages of deformation are observed as demonstrated in Section 3, briefly: Stage-

A is initial, symmetrical bending with smooth and uniform deformation along the tape; Stage-

B commences when torsional buckling initiates with a critical force, Fcrit, and twisting 

deformation gradually follows.  Following a maximum force, Fmax, twisting then diminishes 
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during Stage-C as the fold begins to localise and become well formed as the applied force drops.  

A minimum force, Fmin, is then expressed at the onset of Stage-D where the curved fold is 

complete and central, and separated by transition, i.e. ploy regions (characterised in Section 5) 

on either side: “point-like” folding then proceeds under increasing force.   

 

Figure 4-1 Schematic representation of force-displacement in equal-sense bending 

of a tape-spring structure.   

4.3 TORSIONAL BUCKLING 

4.3.1 Theoretical analysis 

Coupled torsional-bending buckling of a tape-spring was first explained by Mansfield [77]. The 

tape has to be thin-walled and sufficiently curved initially, and carries a uniform bending 

moment along its length.  The product of initial orthogonal curvatures, or Gaussian curvature, 

builds up as the original cross-section flattens, resulting in the well-known build-up of in-plane 

middle surface forces from Gauss’s Theorema Egregium [52].  Sustaining ever larger in-plane 

forces is, however, not possible indefinitely, and buckling in a torsional mode enables a 

developable response for continued bending with no further change in Gaussian curvature.  

Mansfield predicts a constant applied moment during post-buckling even though the axial 

curvature increases; the level of twisting rises and then falls to zero as the tape loses more 

transverse curvature, before becoming cylindrically curved along its length - features we have 

seen in our three-point bending tests.   

Torsional 

buckling 

F 

δ 

(B) (C) 

(D) 
(A) 

Fcrit 

Fmax 

Fmin 
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Mansfield’s analysis assumes uniform twisting and axial curvatures in order to solve for the 

non-uniform transverse curvature change across the width of tape.  He produces a fourth-order 

governing differential equation by considering transverse moment equilibrium and geometrical 

compatibility from the change in Gaussian curvature.  Three-point bending here produces a 

length-wise bi-linear bending moment, which renders a closed-form solution intractable by the 

same approach.  As a first approximation by analogy, we can set the peak bending moment in 

the middle of the tape equal to Mansfield’s applied moment, thence his torsional buckling 

bending moment: setting peak stresses in thin-walled structures equal to known local buckling 

stresses, is often performed.   

But we wish to consider orthotropic tape-springs, which Mansfield does not.  They are studied 

by Giomi and Mahadevan [79] but they do not cover torsional buckling.  To simplify matters, 

we remark that the onset of buckling is “early” in the loading cycle where the amount of 

transverse flattening is practically zero compared to the axial curvature change, 𝜒𝑥 .  We 

therefore assume no initial flattening and no y-direction variation, with only uniform curvatures 

throughout, setting up an algebraic rather than a differential analysis.  The simplest formulation 

is thus energetic, and considers bending and stretching components of strain energy, with the 

two becoming coupled by the change in Gaussian curvature; and because of uniform curving, 

the stored energy can be calculated per unit length of tape.  The tape is already twisted and 

curved in order to find the initiation conditions for torsional buckling.   

For current values of curvature equal to 𝜅𝑥, 𝜅𝑦 and 𝜅𝑥𝑦, the Gaussian curvature is defined by 

𝜅𝑥𝜅𝑦 − 𝜅𝑥𝑦
2  [52].  The initial transverse curvature is 𝜅𝑦0 = 1/𝑅, which remains fixed, setting 

𝜅𝑦 = 1/𝑅  from 𝜒𝑦 = 𝜅𝑦 − 𝜅𝑦0 = 0 .  Gauss’s Theorema Egregium also yields the formal 

relationship between in-plane strains and the change in Gaussian curvature [52]:   

−
𝜕2𝜖𝑥
𝜕𝑦2

−
𝜕2𝜖𝑦

𝜕𝑥2
+
𝜕2𝛾𝑥𝑦

𝜕𝑥𝜕𝑦
= (𝜅𝑥𝜅𝑦 − 𝜅𝑥𝑦

2 ) − (𝜅𝑥0𝜅𝑦0 − 𝜅𝑥𝑦0
2 ) (4-1) 

Axial strains, 𝜖𝑥, are dominant, and the initial curvatures, 𝜅𝑥0 and 𝜅𝑥𝑦0, are zero.  Integrating 

with respect to y, we therefore arrive at an expression for 𝜖𝑥, including constants of integration.  

The net axial force due to stresses 𝜎𝑥 must be zero, dictating that ∫ 𝑡𝜎𝑥 𝑑𝑦 = 0 across the width 
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of cross-section.  For a constant thickness t, then ∫ 𝜖𝑥 𝑑𝑦 = 0 is also true, enabling the constants 

to be found.  The final strain expression is [53]:   

𝜖𝑥 = −
1

2
∙
𝜅𝑥
𝑅
∙ (𝑦2 −

𝑏2

12
) +

1

2
𝜅𝑥𝑦
2 (𝑦2 −

𝑏2

12
) (4-2) 

The right-hand side deliberately conveys two specific components.  The first is the “beam” 

bending part, for a parabolic-shaped cross-section, which is the shallow shell approximation for 

being uniformly curved; there is compression in the outer fibres, at y = ±b/2, and tensile strain 

in the middle.  The second is due purely to twisting, resulting in tension this time in the outer 

fibres: if we imagine the edges of deformed tape gently modulating on a helical path, they must 

be longer than, say, the central fibre, which remains straight.   

Twisting therefore offsets compressive strains on the edges, and vice versa in the middle of the 

tape; but also, the Gaussian curvature before twisting is initiated, 𝜅𝑥/𝑅, is defrayed by the 

action of 𝜅𝑥𝑦
2 , which reduces 𝜖𝑥.  So we expect 𝜅𝑥𝑦 to emerge as a buckling consequence and 

the Gaussian curvature at buckling to be conserved.   

The strain energy in stretching per unit length, 𝑈̅𝑠, is given by integrating Eq. 2-60 across the 

width after substituting for 𝜖𝑥, all other strain terms being zero, i.e.:   

𝑈𝑠 = ∫
𝐸𝑡

2

𝑏/2

−𝑏/2

∙ 𝜖𝑥
2𝑑𝑦 =

𝐸𝑡𝑏5

1440
(𝜅𝑥𝑦

2 −
𝜅𝑥
𝑅
)
2

 (4-3) 

For the equivalent in bending, 𝑈̅𝐵, only 𝜅𝑥 and 𝜅𝑥𝑦 contribute to Eq. 2-62; the parameter β is 

remiss, but the orthotropic torsional rigidity, α, now appears, with 𝑈̅𝐵 = ∫(𝐷/2) ∙ (𝜅𝑥
2 +

2𝛼𝜅𝑥𝑦
2 )𝑑𝑥𝑑𝑦.  The total strain energy per unit length, 𝑈̅, combines these terms, which can be 

written as [53]:   

𝑈 =
𝐷𝑏

2
[𝜅𝑥

2 + 2𝛼𝜅𝑥𝑦
2 + 𝜙 (𝜅𝑥𝑦

2 −
𝜅𝑥
𝑅
)
2

] (4-4) 

with 
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𝜙 = 𝑏4(1 − 𝑣2/𝛽)/(60𝑡2) (4-5) 

Equilibrium configurations stem from energy minima with respect to the appropriate curvature 

[80].  Despite twisting curvature, no axial torque is applied and 𝜕𝑈̅/𝜕𝜅𝑥𝑦 = 0, yielding two 

solutions:   

𝜅𝑥𝑦 ∙ [𝛼 + 𝜙 (𝜅𝑥𝑦
2 −

𝜅𝑥
𝑅
)] = 0     →      𝜅𝑥𝑦 = 0, 𝜅𝑥𝑦

2 −
𝜅𝑥
𝑅
= −

𝛼

𝜙
 (4-6) 

The first, 𝜅𝑥𝑦 = 0, is initial bending; the second shows non-zero twisting and a fixed amount 

of positive Gaussian curvature, 𝛼/𝜙, provided 𝜅𝑥 > 𝑅𝛼/𝜙.   

The applied moment, M, (in the same direction as 𝑀𝑥) is equal to 𝜕𝑈̅/𝜕𝜅𝑥 = 0 because 𝑈̅ is 

formulated per unit axial length [76], returning 𝐷𝑏 ∙ [𝜅𝑥 − (1/𝑅) ∙ 𝜙 ∙ (𝜅𝑥𝑦
2 − 𝜅𝑥/𝑅)] .  

Substituting for each solution captures the initial and buckled bending responses with:   

𝑀𝐴 = 𝐷𝑏 ∙ [1 + 𝜙/𝑅
2] ∙ 𝜅𝑥     or     𝑀𝐵 = 𝐷𝑏 ∙ [𝜅𝑥 + 𝛼/𝑅] (4-7) 

They are valid only when each configuration is strictly stable, which is assessed from the 

eigenvalues of the Hessian stiffness matrix for 𝑈̅ [81].  As a result, the first M is valid up to 

𝜅𝑥 = 𝑅𝛼/𝜙, and the second for 𝜅𝑥 larger.   

Both express linear curvature responses, with the second including an intercept.  When plotted 

together we see a bi-linear profile with an abrupt change in gradient at 𝜅𝑥 = 𝑅𝛼/𝜙; at this point, 

we have our critical buckling moment, 𝑀 = 𝐷𝑏 ∙ (𝑅𝛼/𝜙) ∙ [1 + 𝜙/𝑅2] .  This moment 

correlates to 𝐹crit𝐿/4 for our critical three-point loading force, 𝐹crit, when applied centrally 

over span L [53]:   

𝐹crit =
4𝐷𝑏

𝐿
∙
𝑅𝛼

𝜙
∙ [1 + 𝜙/𝑅2] (4-8) 
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4.3.2 Material specification 

The effectiveness of Eq. 4-8 is evaluated for both ITS and CTS.  Torsional buckling is identified 

for experiments as the change in initial slope, for Stage-A to B, recall Figure 4-1.  Figure 4-2 

compares the resulting data.  The correlation for ITS is nearly perfect; while for CTS, it is out 

by a factor of around 5.  We suspect, the previous analysis for shallow shells should not apply 

to tapes curved transversely by π radians, which needs to be further addressed.  The variance in 

data points may also be attributed to the difficulty in locating the switch between linear regimes 

in the experimental curves for CTS.   

 

Figure 4-2 Critical force at torsional buckling, changing with tape length: (a) 

isotropic tape-spring; (b) composite tape-spring.  Theoretical curves are 

fitted using Eq. 4-8.   

4.4 LARGE DISPLACEMENT FOLD GEOMETRY 

We now consider the large displacement untwisted folding of a tape-spring during Stage-D in 

Figure 4-1.  For uniform bending, it is usual to assume that any changes in strain energy in a 

folded tape-spring are due to the fold alone and not to the ploy regions, which maintain a fixed 
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shape.  Because the shape of fold has changed from one type of open cylinder to another, there 

is only developable bending deformation and negligible stretching [80].   

The change in axial curvature, 𝜒𝑥, is 1/r, where r is the unknown uniform radius of the central 

fold: there is no twisting curvature, and 𝜒𝑦 = ±1/𝑅, where R is the original transverse radius 

of curvature: the ± sign accords opposite/equal-sense bending, respectively.  The total strain 

energy in bending, 𝑈̅𝐵, multiplies the energy density by the surface area of fold:   

𝑈𝐵 = 2𝑟𝜓𝑏 ∙
𝐷

2
[𝜒𝑥

2 + 𝛽𝜒𝑦
2 + 2𝑣𝜒𝑥𝜒𝑦] = 𝐷𝑏𝜓 [

1

𝑟
+
𝛽

𝑅2
∓
2𝑣

𝑅
] (4-9) 

A minimal energy configuration sets 𝜕𝑈̅𝐵/𝜕𝑟  equal to zero, which returns 𝑟 = 𝑅/√𝛽  for 

bending in both directions [53].   

Anywhere within the fold, the axial bending moment per unit width is Mx from Eq. 2-61.  

Multiplying by the flattened width b expresses the total moment, equal to the applied moment, 

𝑀∗
±.  Therefore:   

𝑀∗
± =

𝑏𝐷

𝑅
∙ (1 ± 𝑣√𝛽) (4-10) 

𝑀∗
+ values from Eq. 4-10 are superposed onto the (M, θ) curves from FE analysis in Figure 4-3 

over the same rotation range [53].  The correlation with Eq. 4-10 is very good throughout.   

 

Figure 4-3 Opposite-sense orthotropic moment-rotation response from FE model.  

Red lines are constant 𝑴∗
+ prediction from Eq. 4-10.   
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4.5 CONCLUSIONS 

We have developed a theoretical analysis for the folding observations from Section 3.  The 

effects of geometrical non-linearity are considered with coupling between bending and 

stretching.  We can predict the critical torsional buckling force for isotropic tape-springs, but 

not for composite tape-springs.  When folded to a higher angle, a good correlation is obtained 

for orthotropic tapes.   
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5.1 INTRODUCTION 

When designing the side-stay or link-stay hinge structures for aircraft landing gear, it is 

essential to understand the complete shape of folded tape-springs.  As noted in earlier sections, 

we consider the folded shape to be defined by the uniform folded radius of curvature and the 

side ploy regions, whose length-wise boundary conditions must comply with the fold and the 

end casings.  These ploy regions have a natural length scale of minimal deformation, 𝐿∗, just as 

the fold has radius r, see Figure 5-1.  These lengths, however, may not be able to properly form 

if the connected tape is too short: it becomes over-confined and liable to damage during folding.   

We have already calculated r for ITS and CTS structures, our aim now is to reliably calculate 

the natural ploy shape properties, and to compare them to experiments and FE simulation.  A 

parametric study on the effects from initial geometry on the folded shape is also presented.   

5.2 PLOY SHAPE – THEORY 

The folded tape has three clear regions, which are shown for one half of a tape in Figure 5-1.  

The fold itself, Region-A, connects to the start of the ploy, Region-B, over which the change in 

transverse curvature decays before the undeformed straight end.  At the connection between 

Region-A and B, 𝜅𝑥 = 1/𝑟, 𝜅𝑦 = 0, which define the boundary conditions for the ploy shape.   

 

Figure 5-1 Schematic folded tape-spring: the shaded Region-B is the ploy region up 

to the start of the Region-A and the natural end Region-C.  The length of 

the ploy region is 𝑳∗ where the transverse curvature ranges from 0 to 1/R.   
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y 
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A 
B 
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The ploy region extends for a length many times larger than the shell thickness, t, and on the 

scale of the original transverse radius of curvature R.  Such behaviour is purported to be a long-

wave solution within the classical Donnell equations for deformation of an initially cylindrical 

shell [52].  The pair of variables in that case are the radial displacement, w, and the Airy Stress 

function, ϕ, tantamount to in-plane forces, which both vary in the x (axial) and y 

(circumferential) directions.   

The cylindrical nature assumes a closed shell but our open cylindrical tape is governed 

equivalently.  We reflect the same boundary conditions along its edges - as if having excised a 

strip from the original closed shell with no edge loading.  The w and ϕ functions adopted in [52] 

both multiply an eigen function, sin (πy/b), by separate x-wise variations before being submitted 

to Donnell’s equations: our strip conforms exactly to the required edge conditions if it has a 

transverse arc-length of b.   

The long-wave solution is dominated by axial stretching and circumferential bending, which 

allows us to “switch off” certain parts within the Donnell set, as carefully laid out in [52].  The 

resulting pair of coupled differential equations in w and ϕ are simplified approximations of 

geometrical compatibility and equilibrium for bending and stretching together; similar forms 

have been obtained elsewhere, for example, when describing the “persistence” of end-wise 

pinching of an isotropic pipe [82].  If we repeat the long-wave derivation in [52], however, 

substituting for our orthotropic material laws from Section 2.2.3, we ultimately arrive at the 

equivalent pair of governing second-order differential equations: 

𝜋4

𝑏4
∙ 𝜙 −

𝐸

𝑅

𝑑2𝑤

𝑑𝑥2
= 0, 𝐷𝛽

𝜋4

𝑏4
∙ 𝑤 +

𝑡

𝑅

𝑑2𝜙

𝑑𝑥2
= 0 (5-1) 

These differ from Donnell’s original equations in two ways.  The modular ratio, β, is now 

present and our ϕ is a stress function, differing from ϕ in [52], a force function, by a factor of 

thickness, t, which makes no difference to the outcome shortly.  Substituting ϕ from the first 

equation into the second, and differentiating twice with respect to x, produces a fourth-order 

equation in w alone:   
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𝑑4𝑤

𝑑𝑥4
+
𝐷𝑅2𝛽𝜋8

𝐸𝑡𝑏8
∙ 𝑤 = 0 (5-2) 

Writing the pre-factor of w as 4k4, we can establish a characteristic length scale, l, equal to π/k, 

from the general solution.  Equating terms and re-arranging in terms of l, we arrive at [53]: 

𝑙 =
𝑏2

𝜋𝑅1/2
∙ [
4𝐸𝑡

𝐷𝛽
]

1
4
     →     𝑙 =

2

𝜋
∙ [
3(1 − 𝑣2/𝛽)

𝛽
]

1/4

∙
𝑏2

𝑅1/2𝑡1/2
 (5-3) 

The particular boundary conditions at both ends of the ploy region ultimately dictate the 

numerical scale of this expression, making 2 ∙ 3
1

4…/𝜋 irrelevant for now.  If β >> ν2, the essential 

dimensional variation of l goes with 𝑏2 ∙ 𝑅1/2 ∙ 𝑡1/2 ∙ 𝛽−1/4.  For a fixed width and material, 

𝑙~1/√𝑅𝑡, which is precisely the inverse relationship observed when dealing with “short-wave” 

solutions, i.e. boundary layer effects of Donnell’s equations.  We can of course shorten the 

expression by writing b as a proportion of R, setting 𝑙~𝑅3/2 ∙ 𝑡1/2 ∙ 𝛽−1/4, as in [82], giving 

fewer parameters to vary when characterising l experimentally.   

The numerical pre-factor in Eq. 5-3 has a value close to unity, around 0.8 for ν = 0.3 and β = 1.  

From finite element simulations shown momentarily, this tends to overshoot by some way. As 

ever, assuming that certain kinematic terms are dominant in Donnell’s equations subtracts from 

the general application of the long-wave result; that the ploy length is somewhere between long 

and short.   

A more general and direct analysis was originally produced by Jain and Rimrott in 1971 on the 

closely related subject of STEMS—Storable Tubular Extendable Members [83].  These are 

metal tape-spring slit tubes enveloping nearly 2π radians of cross-section, capable of being 

wound onto a drum and then deployed on a spacecraft for gravity compensation, instrument 

positioning etc.  From the outset, they deal with changes of curvatures, χ, in the ploy region, 

assuming that one end has been completely flattened, the other being fully rounded and 

unstressed, i.e. ploy Region-B in Figure 5-1.  Transverse moment equilibrium is simplified 

crucially by assuming that the double rate of change of transverse curvature along the STEM, 

𝜕2𝜒𝑦/𝜕𝑥
2 dominates, as per Donnell; but that the equivalent rate for the change in curvature 
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along, 𝜕2𝜒𝑥/𝜕𝑥
2, is some fixed proportion, a, of the principal rate.  Employing the Codazzi-

Mainardi compatibility equations, they arrive at a final governing equation for 𝜒𝑦: 

𝜕2𝜒𝑦

𝜕𝑥2
+ 𝑘2

𝜕2𝜒𝑦

𝜕𝑦2
= 0 (5-4) 

where 𝑘 = √1 + 𝑎 and ultimately is a decay parameter. 

Jain and Rimrott [83] employ a Fourier series solution for 𝜒𝑦, which sums to a uniform −1/𝑅 

at the flat end, and to zero at x equal to “infinity”, for simplicity: only opposite sense flattening 

is dealt with but the result can be extended easily for 𝜒𝑦 = +1/𝑅 at x = 0.  They are then able 

to find the corresponding changes in transverse curvature, 𝜒𝑥, and twisting curvature, 𝜒𝑥𝑦.   

If instead we take a leading order solution for 𝜒𝑦, equal to 𝑓(𝑥) cos π𝑦/𝑏 and substitute into 

Eq. 5-4, then [53]: 

𝑑2𝑓

𝑑𝑥2
−
𝑘2𝜋2

𝑏2
𝑓 = 0 →  𝜒𝑦 = −

1

𝑅
∙ exp (−

𝑘𝜋𝑥

𝑏
) cos (𝜋𝑦/𝑏) (5-5) 

which complies with the earlier boundary conditions.  The other changes in curvature follow 

from the Codazzi-Mainardi equations again, with 

𝜒𝑥𝑦 =
𝑘

𝑅
∙ exp (−

𝑘𝜋𝑥

𝑏
) sin (𝜋𝑦/𝑏) (5-6) 

𝜒𝑥 = −
𝑘2

𝑅
∙ exp (−

𝑘𝜋𝑥

𝑏
) [1 − cos (𝜋𝑦/𝑏)] (5-7) 

Jain and Rimrott acknowledge that because the bending solution foists a change in Gaussian 

curvature, there is also in-plane stretching primarily along the ploy length, again, in the same 

direction in Donnell’s cylinders.   

The expression for the former in terms of curvature changes (rather than absolute terms, Eq. 

4.1) is shown to be −𝜒𝑥𝑦
2 + 𝜒𝑥𝜒𝑦 + 𝜒𝑥/𝑅 in [83].  Considering Eqs. 5-5 to 5-7, the order in 
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size of contributions from all changes in curvature are the same, and all must be included in the 

relationship to 𝜕2𝜖𝑥/𝜕𝑦
2.  We may therefore write, substitute and calculate:   

𝜕2𝜖

𝜕𝑦2
= 𝜒𝑥𝑦

2 − 𝜒𝑥𝜒𝑦 − 𝜒𝑥/𝑅 =
𝑘2

𝑅2
[exp (−

𝑘𝜋𝑥

𝑏
) + exp (−

2𝑘𝜋𝑥

𝑏
)] ∙ [1 − cos (𝜋𝑦/𝑏)] (5-8) 

This expression is then integrated twice with respect to y to give the strain and thence axial 

stress.  The constants of integration follow from setting the nett axial force to be zero, i.e. 

∫ 𝜖𝑥𝑑𝑦 = 0 between limits of ±𝑏/2.  For our solution, it can be shown:   

𝜖𝑥 =
𝑘2

𝑅2
∙ [exp (−

𝑘𝜋𝑥

𝑏
) + exp (−

2𝑘𝜋𝑥

𝑏
)] ∙ [

𝑦2

2
+
𝑏2

𝜋
∙ cos (

𝜋𝑦

𝑏
) −

𝑏2

24
+
2𝑏2

𝜋3
] (5-9) 

To find k, the usual strain energy components from bending and stretching are assembled.  In 

the case of bending (Eq. 2-62), the dominant product term is 𝜒𝑦
2, which varies with 1/𝑅2; for 

the others, (𝜒𝑥𝑦
2 , 𝜒𝑥𝜒𝑦)~𝑘

2𝑅2 and 𝜒𝑥
2~𝑘4𝑅2, which are much smaller because k is usually less 

than unity.  The finial total energy expression is thus [53]: 

𝑈 = 𝑈𝐵 + 𝑈𝑠 = ∫∫𝑈𝐵 + 𝑈𝑆 𝑑𝑥𝑑𝑦 = ∫ ∫
1

2

inf

0

(𝐷𝛽𝜒𝑦
2 + 𝐸𝑡𝜖𝑥

2)
𝑏/2

−𝑏/2

𝑑𝑥𝑑𝑦 (5-10) 

Substituting for 𝜒𝑦 and 𝜖𝑥, and performing the integration, we arrive at: 

𝑈𝐵 = 𝐵 ∙
𝐷𝛽𝑏2

𝑅2𝑘
, 𝑈𝑠 = 𝑆 ∙

𝐸𝑡𝑏6𝑘3

𝑅4
 (5-11) 

where B is a constant equal to 1/8𝜋 ≈ 0.039, and 𝑆 = 9.18 × 10−6.  The proper value of k 

minimises 𝑈̅ by differentiating with respect to k and setting equal to zero, i.e. 

𝑘4 =
𝐵

3𝑆
∙
𝐷𝛽

𝐸
∙
𝑅2

𝑡𝑏4
 →  𝑘4 =

𝐵

36𝑆
∙

𝛽

1 − 𝑣2/𝛽
∙
𝑡2𝑅2

𝑏4
 (5-12) 
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Returning to Eq. 5-5, the characteristic length of decay and thus ploy length, 𝐿∗ from the ploy 

Region-B, is set by the index of the exponent.  To compare directly with Donnell’s solution, 

Eq. 5-3, we set 𝐿∗ = 𝑏/𝜋𝑘 to give [53]:   

𝐿∗ =
𝑏2

𝜋
[
1 − 𝑣2/𝛽

120𝛽
]

1/4

√𝑐/𝑡 (5-13) 

For 𝜈 = 0.3 and 𝛽 = 1, the numerical pre-factor is around 0.093: this is considerably smaller 

than the prediction from Eq. 5-3, because all curvature terms now contribute to the level of 

Gaussian curvature.  But it seems self-defeating to declare a specific ploy length in view of the 

decaying nature of the problem; an index equal to −1 lends a reduction in parameter values of 

only 63%.  We can, of course, compare different predictions of 𝐿∗ for the same measure, but it 

is better to compare the decaying variation due to k originally.  Comfortingly, there is the same 

long-wave dependency of 𝐿∗ on 𝑏2 ∙ 𝑅−1/2 ∙ 𝑡−1/2 ∙ 𝛽−1/4 as in l from Donnell.   

5.3 PLOY SHAPE – CHARACTERISATION 

5.3.1 Tape shape in folding 

Figure 5-2 shows the curvature changes on nodes along the central line of the folded shape with 

a folded angle of around 90˚.  There is a transition point T, which indicates the onset of 

exponential decay in 𝜒
𝑦
, and is well-fitted by Eq. 5-5 when the decay parameter 𝑘 = 0.62.  In 

this region, 𝜒
𝑥
 and 𝜒

𝑥𝑦
 are also close to zero, which correlates with our assumption for Eqs. 5-6 

and 5-7 in the ploy Region-B.  The fitting-curve is extended to 𝜒
𝑦
= 1/𝑅, i.e. point N where 

𝜒𝑦 = 1/𝑅, as indicated by the dashed line in Figure 5-2, which defines the theoretical boundary.  

Any differences between the theoretical analysis and real shape is considered to be minor 

compared to the complexity it would bring mathematically.  The ploy length, 𝐿∗, is therefore 

characterised as the distance between points N and P.  Consider the tape shape with 𝜒𝑦 less than 

5% of the value of 𝜅𝑦0, as in the natural Region-C: the ploy length 𝐿∗ = 𝐿𝑃 − 𝐿𝑁 is found to be 

57 mm in this case.  This correlates well with the prediction from Eq. 5-13 which gives the 
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value of 53.7 mm.  Further studies on what dominates the shape of a CTS ploy region are now 

investigated using theory and FE analysis.   

 

Figure 5-2 Curvature changes on nodes along central line of a folded tape.  Solid 

curve is fitted by Eq. 5-5; dashed line shows an extension of exponential 

decay.   

5.3.2 Folded tape shape 

The folded ploy shape of a CTS is recorded using a zSnapper® vario 3D laser scanner shown 

schematically in Figure 5-3, with a resolution of 100 µm [84].  The laser projector emits stripes 

of laser light onto an object, which are deformed by its shape and captured by the camera.  

Calibration is made by measuring a calibration gauge (with reference points) in different 

positions using SnapCal software.  The calibration data are imported into SingleZsn software, 

where all sample scans were recorded and constructed into a discrete point cloud [84].  All 

scans had a resolution of 640 × 480 pixels.   

-0.1

-0.06

-0.02

0.02

0.06

0.1

0 20 40 60 80 100

C
u

rv
a

tu
re

 c
h

a
n

g
e

Length from centre (mm)

𝝌
𝒙𝒚

 

𝝌
𝒙
 

𝝌
𝒚
 

Region-B Natural end Region-A 

M 
N O 

P Q 

T 

Theoretical 

boundary 

𝝌
𝒚
= 𝟏/𝑹 

Nodes along 

central line 



Section 5 

Shape of ploy region 

 

77 

 

 

Figure 5-3 Schematic representation of 3D laser scanning setup.   

The shape of a CTS with L=200 mm, folded to 180˚, is characterised by the 3D laser scanning 

and an FE analysis.  It is noted that the quality of data near the sample edge are quite poor.  The 

region of interest however are the ploy region of the folded circular Region-A and the onset of 

ploy Region-B from Figure 5-1.   

 

Figure 5-4 Comparison of the folded tape shape in the central fold region.  Initial 

geometry of the CTS tape is 200 length and 180˚ subtended angle.  

The scanned data were reconstructed using MATLAB [85].  Figure 5-4 compares the measured 

shape with the FE model in Region-A, with x values bounded between ± 8 mm, as discussed in 

Section 3.4.4 (Figure 3-19).  In this region, the measured shape gives 𝜅𝑦 = 0.00036 mm-1, with 

𝜅𝑥 = 0.054 mm-1.  This indicates that it is slightly curved in transverse direction.  The FE shape 
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provides 𝜅𝑦 = 0.00039  mm-1, while 𝜅𝑥 = 0.12  mm-1.  The difference in the longitudinal 

direction can be attributed to the applied boundary conditions since the central fold region is 

quite sensitive to them [20]: to facilitate the 3D scanning, the two ends of the real tape sample 

is bonded together transversely, while for the FE shape, the whole model is constrained 

longitudinally.   

 

Figure 5-5 Comparison of (a) the folded tape shape in the ploy Region-B and (b) the 

transverse curvature change values through the region.   

Figure 5-5-a shows the shapes in the ploy Region-B.  The slight undulations in the FE shape 

are due to the relatively large element size compared to the resolution of the laser scanning 

system.  The transverse curvature is calculated through the scanned region, and compared to 

the values from the FE shape in Figure 5-5-b, which shows good agreement.  Therefore, the 

parametric study is focused on the ploy Region-B.   

5.3.3 Parametric study   

A parametric study on the governing factors of the folded tape shape is performed using the FE 

model alone.  The ploy shape of the folded tape can still be characterised by the exponential 

decay (Eq. 5-12) even though it is formed by bending the entire strip and not flattening one end.   

Figure 5-6 shows the decay parameter k (Eq. 5-12) and ploy length 𝐿∗ (Eq. 5-13) as a function 

of sample width, initial radius, and thickness, separately: for each variable, the other parameters 
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are kept constant.  With increasing width and radius, the value of k decreases, which implies 

that the ploy region B becomes longer.  Increasing the thickness, the growth in k is accompanied 

by a reduction in 𝐿∗.   

 

Figure 5-6 Effect of (a) sample width, (b) initial radius and (c) thickness on decay 

parameter, k, and ploy length, 𝑳∗.   

Instead of 𝑘~1/𝑏 from Eq. 5-12, the fitting curve is adopted with 𝑘 = 2.49𝑏−0.4.  Equation 5-12 

for b is also limited for predicting the effects of both R and t: in terms of 𝑘~√1/𝑅 and 𝑘~√𝑡, 

the fitting curves are implemented with 𝑘 = 0.82𝑅−0.12 and 𝑘 = 0.62𝑡0.07, respectively.  This 

may suggest that the absolute value of k is very sensitive to the boundary conditions, and further 

study is needed.   

In terms of ploy length (Eq. 5-13), the analytical model provides more effective predictions.  In 

Figure 5-6-a and b, data points were extracted from the FE model by considering the 𝜒𝑦 value 

at point P (Figure 5-2) to be within ~5% of the original curvature; while for Figure 5-6-c, the 

analytical model is based on the thin-shell theory (typically 𝑡/𝑅 < 1/20 [73]).  Its effectiveness 

reduces with increasing tape thickness and 𝜒𝑦 < 1/10𝑅 is adopted for 𝑡 ≤ 1.3 mm, with 𝜒𝑦 as 

20% of the original curvature with 𝑡 = 2.6 mm.   
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5.4 CONCLUSIONS 

We have characterised the shape of folded tape-springs using compact but effective models.  It 

is clear that the shape of the fold itself is developable; the ploy region is not but axial strains 

and transverse curvature changes are dominant.  It is also clear that there are shortfalls in our 

models for different, possibly attractive combinations of geometry and material for alternative 

composite tape-springs.  Rather than exclude these because we cannot predict their folded 

shapes accurately, we will re-explore our modelling assumptions and devise new insight.  We 

must also return to the question of how these shapes are affected by the tape-spring being 

already bistable—which we have excluded here.   

We have highlighted the more interesting shape parameters of our folded tapes, such as the 

exponential decay and ploy length in the ploy region.  These govern the ability of the tape to be 

folded and stowed, as well as provide essential guidance to the design and implementation of 

bistable composite tubes.  The tape will also have to bear compression when straight as part of 

its landing gear function.  We will therefore be returning to “standard” structural testing of 

axially loaded, orthotropic thin-walled open tubes.   
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