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Abstract The describing function is a powerful tool

to characterize nonlinear dynamical systems in the fre-

quency domain. In some cases, it is the only available

description of a nonlinear operator characterizing a cer-

tain subcomponent of the system. This paper presents a

methodology to provide a state-space realization of one

given describing function, in order to allow the study of

the system in the time domain as well. The realization

is based on Hammerstein models and Fourier–Bessel se-

ries. It can be embedded in time domain simulations of

complex configurations with many nonlinear elements

interacting, accurately describing the nonlinear satu-

ration of the system. The technique is applied to an

example application in the field of combustion insta-

bility, featuring self-excited thermoacoustic oscillations.

We benchmark the performance of the tool comparing
the results with a frequency domain analysis of the same

system, obtaining good agreement between the two for-

mulations.

Keywords describing function · state-space realiza-

tion · time domain · thermoacoustic networks

1 Introduction

Combustion systems are subject to acoustic fluctua-

tions of pressure and velocity, called thermoacoustic os-

cillations [1,2]. These arise from the interaction between

acoustic waves and the unsteady heat release rate from
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the flame, which locally induces a gas expansion. Often

these systems are not globally stable, and can nonlin-

early saturate to a dynamic attractor, which in most

cases is a time-periodic acoustic field.

An increasingly large number of experiments [3,4,

5,6,7] and numerical simulations [8,9,10,11] investigate

the nonlinear response of the unsteady heat release rate

to sinusoidal acoustic forcing. The same can be done

for Helmholtz resonators [12,13,14], which are acoustic

damping devices. In particular, both elements (flame

and Helmholtz resonator) can be isolated to an open-

loop configuration, and forced by a harmonic input at a

fixed frequency and amplitude: for the flame, the input

is an acoustic longitudinal velocity fluctuation just up-

stream of the flame; for the resonator, the input is an

acoustic pressure fluctuation at the interface between

the neck of the resonator and the encasing geometry.

Both elements are assumed to be stable, time-invariant

operators, so that the output signal has the same pe-

riod of the input. The response is measured in terms

of the gain and of the phase difference between output

and input. This is the sinusoidal-input describing func-

tion [15] of the element, from here onwards referred to

simply as the describing function.

One can then study the element in a closed-loop

configuration, which in the case of thermoacoustics cor-

responds to placing it in an enclosing geometry, which

feeds back the output of the element as the input (re-

flection of acoustic waves). If the system undergoes a

Hopf bifurcation, one can then track the stability of the

whole system as a function of the amplitude of the limit

cycle, by applying harmonic balance truncated at the

first harmonic. The technique is succinctly described in

[16], and works quite well as long as the system acts as

a low-pass filter on the higher-order harmonics, com-

monly known as the filtering hypothesis.
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Difficulties arise if, for certain parameters, more than

one mode of self-sustained oscillation is possible, be-

cause the knowledge of the describing function to mul-

tiple inputs is then required, as discussed for thermoa-

coustic systems in [17,18].

A second difficulty regards the onset of a secondary

bifurcation, often of the Neimark-Sacker type, where

2 distinct frequencies emerge, as found in experiments

by [19] and in numerical simulations [20] (not yet pub-

lished). This can still be discussed within the describing

function framework [16,21], but is not be considered in

this article.

A third difficulty arises in the low-order modelling

of thermoacoustic oscillations in annular combustors,

where the geometric discrete rotational symmetry makes

the system’s linearized dynamics degenerate: a 2-di-

mensional eigenspace becomes linearly unstable at a

double Hopf bifurcation1, i.e. 2 complex conjugate pairs

of eigenvalues sharing the same frequency and growth-

rate cross the imaginary axis at the same time. To

tackle this third difficulty, a state-space formulation

of the problem is proposed for annular geometries by

[22]. One can then study the dynamical system, either

with time-integration, numerical-continuation, or ana-

lytically with the method of averaging [23] or of multi-

ple scales [24]. The major drawback of these state-space

investigations (see also [25,26,27]) is that the descrip-

tion of the flame response in state-space has so far been

phenomenological and not quantitative.

Section 2 of this paper presents a quantitative state-

space realization of one given describing function, so

that it can be used in time domain models of thermoa-

coustic systems. This modelling tool can improve the

industrial design process, by predicting the nonlinear

frequency shift of a mode when compared to a linear

analysis, and correctly modelling the softening [14] of

Helmholtz resonators in the nonlinear regime.

Note that the focus here is not on system identifi-

cation, because the system is fully described in the fre-

quency domain2, and time domain input/output data

are often not available. [28] describes qualitatively the

inversion of a describing function, for the purpose of

controlling a nonlinear system. [29] describes an itera-

tive, numerical algorithm to calculate a nonlinear satu-

ration function for a given real-valued describing func-

tion. We propose here instead a Fourier–Bessel series

decomposition, which allows the calculation of a good

fit without requiring iterations. This is based on the an-

alytic evaluation of the describing function of a Fourier–

1 many annular combustors are also slightly not-
axisymmetric, perturbing this double-Hopf bifurcation
2 To be precise the response is defined at discrete values of

frequency and amplitude, and then interpolated inbetween.

Bessel term, discussed in appendix A. This procedure is

of general applicability and has good convergence prop-

erties in all cases studied (see for example figure 5). The

nonlinear saturation is then used as part of a modified

Hammerstein model [30], pictured in figure 2.b. This al-

lows us to model the dependence of the phase response

on the input amplitude, so that also a complex-valued

describing function can be fitted. Section 2 discusses

how to fit accurately first the linear part of the model

and then the nonlinear part.

To show the applicability of this nonlinear state-

space realization, we study in section 3 an example

problem modelling a self-excited thermoacoustic exper-

iment [7], which depends on a geometric parameter L of

the configuration (the length of the combustion cham-

ber). We then study the system parametrically in L

with 2 methods.

The first method consists of a first-order harmonic

balance method, often described in thermoacoustics as

the flame describing function framework [4]. It predicts

the amplitudes and the frequencies of the limit cycles

as function of L, as presented in figure 9.

The second method is the time domain realization

of the system, using the state-space realization of the

describing function described in section 2. We run time

domain simulations of the problem and extract the am-

plitude and the frequency of the dominant harmonic of

the signal. One example of simulation is presented in

figure 11.

We then compare the results of the 2 methods in

section 3.3, obtaining a good match, and discuss the

accuracy of the time domain model.

We finally discuss the applications of this method-
ology and possible improvements in section 4.

2 The state-space realization

The describing function represents the response of a

nonlinear operator Q[u(t)] to a sinusoidal input u(t) =

A cos(ωt). In our application u is the fluctuating veloc-

ity measured upstream of the flame, just downstream

of the burner, with amplitude A and forcing frequency

ω, and the quantity Q describes the fluctuating heat

release rate measured at the flame. This section is, how-

ever, general, and applies to a generic single-input single-

output (SISO) system. The describing function of the

operator Q is defined [15] as

Q(A,ω) =
1

A

1

π/ω

∫ 2π/ω

0

Q [A cos(ωt)]

(cos(ωt) + i sin(ωt)) dt (1)
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As a matter of nomenclature, we will use capital let-

ters to indicate the describing or transfer function of

an operator, such as Q(A,ω), and we will use capital

calligraphic letters to describe the corresponding time

domain operator, such asQ[u(t)]. The quantity Q(A,ω)

is a complex number, with its real and imaginary parts

expressing the amplitudes of the components of Q re-

spectively in phase and in quadrature with the sinu-

soidal input. One can then define the gain G and the

phase ϕ of the flame response as the polar coordinates

of the complex number Q(A,ω):

Q(A,ω) = G(A,ω)eiϕ(A,ω), G, ϕ : R+ × R+ 7→ R (2){
G(A,ω) = |Q(A,ω)|
ϕ(A,ω) = arg[Q(A,ω)]

(3)

We assume that the function Q(A,ω) is provided

over the range of frequencies and amplitudes of interest,

from data coming from experiments, numerical simula-

tions or analytical models. To provide an example of

the application of this technique, we apply it to an ex-

periment carried out by [31,7]. The describing function

of the heat release rate response is shown in figure 1. It

has been gently smoothed from experimental data us-

ing B-splines [32]. In addition, the phase is unwrapped

by 2π to present a continuous function ϕ(A,ω) in the

domain.

We want to provide a state space model that is

equivalent to the given describing function. Notice that

the describing function provides information on how the

system behaves if only one fundamental harmonic is

present. In the same way, the state space model will be

accurate as long as the system presents a strong fun-
damental harmonic. This restricts the applicability to

the describing function framework, and will accurately

describe the state of the system if, after the Hopf bifur-

cation, secondary bifurcations do not occur. The model

will be tuned at a design frequency ωd, at which it will

be most accurate. For example, one can choose as de-

sign frequency the frequency of the least stable mode of

the whole system, obtained from a linear stability anal-

ysis. One can then run the time simulation, and let the

system evolve to a saturated limit cycle, with a nonlin-

ear saturated frequency ωd,1 = ωd+∆ω. If ∆ω is large,

one can tune the flame model to the frequency ωd,1 and

either run a second time simulation or continue from

the first limit cycle.

Figure 2 shows a sketch in the complex plane of

the input and of the output phasors3 of the describing

function, at a fixed design frequency ωd. The sinusoidal

3 a phasor is a representation of a sinusoidal function with a
certain amplitude, frequency and phase in the complex plane

inputs Aeiωdt rotate in time in the anticlockwise direc-

tion, for 3 different amplitudes A, in the top-left quad-

rant (the other features of the figure are discussed in the

next section). The input is operated on by Q and the

subsequent output is shown in the top-right quadrant.

Since Q is a fully nonlinear operator, the phase and the

gain responses depend on the amplitude A, and the 3

output phasors are not parallel, nor is the ratio of their

moduli with the respective input moduli constant.

In subsection 2.1 and 2.2 we choose the structure of

the state-space realization. The following subsections

2.3 and 2.4 carry out the fitting of respectively the lin-

ear and nonlinear elements that define the realization.

Subsection 2.5 briefly summarizes this section.

2.1 Operator splitting

We decompose the heat release rate response as the sum

of 2 nonlinear operators, as represented in figure 2.b

Q[u(t)] = Q−[u(t)] +Q+[u(t)] (4){
Q−(A,ω) = G−(A,ω)eiϕ−(A,ωd)

Q+(A,ω) = G+(A,ω)eiϕ+(A,ωd)
(5)

The reasoning behind this choice is that the 2 operators

Q− and Q+ will be designed to have a constant phase

response with amplitude. This feature will allow us to

model each of them as a Hammerstein block in section

2.2. The frequency ωd in (5) is the frequency at which

the time domain realization will be most accurate. We

design the 2 operators to have phase responses that dif-

fer by π/2, as can be observed in figure 2.a where their

phase responses (dashed black arrows) are orthogonal.
Their phase response is defined as:{
ϕ−(A,ω) ≡ ϕ(A,ω)− ϕ(A,ωd) + ϕd − π/4
ϕ+(A,ω) ≡ ϕ(A,ω)− ϕ(A,ωd) + ϕd + π/4

(6)

From the definition (6) the output signals of the 2 oper-

ators are always in quadrature, and they are defined so

that at the design frequency ωd they present the phases

ϕ−(A,ωd) = ϕd − π/4 (7a)

ϕ+(A,ωd) = ϕd + π/4 (7b)

The design phase ϕd is the green (negative) angle be-

tween the input (vectors in the top-left quadrant) and

the dashed line in the top-right quadrant in figure 2.

The value of ϕd is quite arbitrary, though in most cases

it is chosen as the mean phase response with amplitude

of the operator Q at the design frequency ωd; secondary

considerations on the limitations of this choice are dis-

cussed at the end of section 2.3. The 2 operators have
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(a) Gain response (b) Phase response

Fig. 1: Smoothed, interpolated data coming from the experiment. The black dots are individual experiments,

carried out at a fixed frequency (horizontal axis, in Hz) and forcing velocity amplitude (vertical axis, normalized

with respect to the mean upstream velocity). The red dashed line is the curve below which the interpolation

is valid, because above it no experimental data is available. At velocity amplitudes below the minimum tested

velocity the corresponding value was used (at the bottom of both plots).

then a phase response that is shifted of ±π/4 with re-

spect to that dashed line, as defined in (6). Once ϕd is

fixed, the phase response of the 2 operators is fixed too

by (6), and the 2 gains G∓(A,ω) can be calculated from

(4). In other words, the original operator Q is rewrit-
ten as the sum of its 2 projections on these 2 directions.

The projections are shown in figure 2 with red, orange,

yellow colours.

2.2 Nonlinear saturation

This subsection applies in the same way to each of the

operatorsQ− andQ+. For ease of notation, we drop the

subscript ± here. We express each of the operators Q as

the composition of a linear operator L and a nonlinear

operator N , as presented in figure 2.b. We choose as

linear operator the linearization of Q:

L(ω) ≡ Q(0, ω) (8)

In (8), L is a transfer function, since it does not depend

on the amplitude by definition. The composition of L

and N can happen in 2 ways [33]:

Wiener model Q = N
[
L
[
u(t)

]]
(9a)

Hammerstein model Q = L
[
N
[
u(t)

]]
(9b)

We now briefly discuss which model is best suited for

the problem at hand. The 2 options lead to a different

expression for the describing function N :

Wiener NNL(A,ω) = Q
( A

|Q(0, ω)| , ω
)
/Q(0, ω)

Hammerstein NLN (A,ω) = Q(A,ω)/Q(0, ω)

We present in figure 3 the gains of NNL and NLN
applied to the full operator Q introduced in (1) (the

same considerations apply when considering Q− and

Q+). Because of (8), the gains are unity at zero ampli-

tude A, as discussed in [30]. Each curve represents the

nonlinear saturation with the amplitude A of the input

at a fixed frequency, with the color of the line indicating

the frequency value. We observe that in the case 3.b the

nonlinear saturation curves have a weak dependence on

the frequency, and tend to overlap better, especially at

large amplitudes. This happens because the dominant

factor of the nonlinear saturation is the amplitude of
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Q−

Q+

u1

u2

u3 q1

q2

q3

3 output sinusoids, q1,q2,q3

3 input sinusoids, u1,u2,u3

π/4

π/4

−ϕd

(a) phasor space representation

✰
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✤✁
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✄
✤☎✆✝

✣✞ ✢✞

(b) flowchart representation

Fig. 2: a) Representation of the input and output phasor of the nonlinear operator in the complex plane at

the design frequency ωd at one instant in time. The 3 black, gray and light gray arrows in the top-left quadrant

represent 3 input phasors with increasing amplitude. These phasors rotate around the origin in time, with direction

eiωdt. The output phasors are represented with the three grayscale thick arrows in the top-right quadrant. The

gain and the phase of the output depend on the input amplitude, e.g. the 3 thick phasors in the top-right quadrant

are not parallel. The mean phase response ϕd of the outputs subtends the arc. The 2 nonlinear operators Q±
are designed so that their phase response is ±π/4 the mean phase response ϕd. The 2 dashed black arrows are

the directions of the 2 operators. The output phasor is then calculated as the sum of its projections onto the 2

operators. The projections at the 3 amplitudes are the red, orange and yellow arrows. b) block diagram of the

model. The internal structure of each of the operators Q± is a Hammerstein model, discussed in section 2.1

forcing, and not the amplitude of the linear response.

This is a feature of forced flames, where one leading

nondimensional number governing the saturation is the

ratio A/U , with U the bulk velocity at the burner inlet.

We must also take into account that the nonlinear

operator N produces, as output, spurious odd harmon-

ics of the input frequency. These harmonics do not hold

any meaning, and can be filtered out with the struc-

ture (9b) if L behaves like a low-pass filter outside the

range of frequencies studied. This is a feature of flames

[34] and a necessity for the model to work, as we want

to comply with the hypothesis of strong attenuation

of higher harmonics that characterizes the describing

function framework. We therefore opt for the Hammer-

stein model described by (9b).

We now exploit the weak dependence of the gain

of N on the frequency, and choose for N a static, i.e.

memory-less, nonlinearity. By operating in this way, the

linear operator L depends only on the frequency, and

the nonlinear operator N depends only on the ampli-

tude:

Q = L
[
N
[
u(t)

]]
Q(A,ω) = N(A)L(ω) (10)

In the frequency domain, we are then approximating

Q(A,ω) ≈ N−(A)L−(ω) +N+(A)L+(ω) (11)

and we will make this approximation accurate at the

design ferquency ωd. Section 2.3 discusses how to cal-

culate the linear operators L±, and section 2.4 discusses

how to calculate the nonlinear operators N±.

2.3 Linear operator fitting

We want to calculate a fit for the linear operator L,

whose frequency response along the imaginary axis s =

iω is defined by equation (8). We choose to fit this curve

with rational function approximations, as discussed by

[35,36]. In particular, the transfer function of the oper-

ator is fitted to

Lfit(s) =

N∑
n=1

cn
s− an

+ d , s = σ + iω (12)

where {cn, an} and d are the coefficients of the fit, which

were calculated using the package VFIT3 written by

[36]. This is quite an established technique, used for ex-

ample in [37] to run time domain simulation of a linear

system, and in [38] to identify and simulate components
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(a) Nonlin. sat. of the Wiener model (b) Nonlin. sat. of the Hammerstein model

Fig. 3: Slices of the nonlinear gain G(A,ω) at 100 frequencies, equispaced from 96 Hz to 194 Hz. Each line cor-

responds to a different frequency, associated to a different color on the colorbar on the right. In (a) the gain of

the operator N is applied after the operator L as in (9a), and this results in larger amplitudes A. In (b) the

operator N is applied before the operator L as in (9b). 2 main behaviours are found around 2 distinct frequencies,

corresponding to the 2 hills in the describing function of figure 1 around 100 Hz and around 190 Hz. The saturation

curves are closer in (b).

(a) Gain response (b) Phase response

Fig. 4: Fitting at fd =120 Hz of the linear operator L−. The gain is decreased outside the range [0.8ωd, 1.2ωd]. The

fit is then weighted higher in the range [0.9ωd, 1.1ωd], where the fit is more accurate.

of acoustic and thermoacoustic systems. In this case, we

enforce the stability of the linear operator, but do not

enforce a passivity constraint [39].

The tool VFIT3 also calculates the matrices A, B,

C, D that describe the state-space realization of (12):

ẋ =Ax+Bu (13a)

y =Cx+Du (13b)

where x is a vector variable describing the internal state,

and u and y are respectively the scalar input and output

of the linear operator.

An important parameter of the fitting is the number

N of poles in (12). A large number N usually leads to

smaller errors within the range of frequencies [ω1, ω2] at

which data is available. On the other hand, a large N

usually results in a fit with many poles an outside the

range [ω1, ω2]. These in turn lead to large, unphysical

gains outside of the range of frequencies [ω1, ω2] studied,

violating our requirement of a low-pass filter behavior

at the higher frequencies. This is often referred to as

overfitting [40], and if overlooked can lead to strongly

oscillating time domain simulations at very high fre-

quencies.

Because of these considerations and after some test-

ing, we choose a number ofN = 8 poles to do the fitting.

We observe that we need: 1) a low-pass filter behavior

at the frequencies of the higher order harmonics, i.e. at

(2k + 1)ωd , k ∈ N>0, as discussed in section 2.2; 2) an

accurate fit only in the vicinity of the design frequency

ωd;
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To satisfy the first constraint, we extend the fit to

a broader range of frequencies, from 30 Hz to 776 Hz.

Moreover, outside the range [0.8ωd, 1.2ωd] we make the

gain decrease towards zero. This guarantees that the fit

will be well behaved outside the range of frequencies of

interest, i.e. it will not exhibit unexpected large gains

due to overfitting.

To satisfy the second constraint, we provide to the

fitting tool VFIT3 a vector of weights, which we choose

larger in the range [0.9ωd, 1.1ωd] to improve the accu-

racy in a neighbourhood of ωd.

We present an example of the fitting in figure 4,

where the original response L, the decreased response

Ldec and the fitted operator Lfit are reported. Notice

that the fit is accurate only in the vicinity of the design

frequency fd.

The 2 linear operators L± are fitted to the lineariza-

tion (8) of Q±, which are defined in (5). Since this is a

fitting algorithm, the fitted operators Lfit
± are affected

by error, and the equation (8) holds only in an approx-

imate sense. In particular, also the phase responses ϕfit
±

are not exactly in quadrature, with equations (7) valid

only in an approximate sense. We can however take this

into account and calculate the nonlinear saturationsN±
as the projections of the original operator Q on these

slightly non-orthonormal operators, as discussed in sec-

tion 2.4.

2.3.1 The design phase

This paragraph discusses a technicality regarding the

choice of the design phase ϕd. We observe that the value

of L±(ωd) depends both on the linear gain G(0, ω) and

on the phase response ϕd of Q±. A geometric interpre-

tation is immediate in figure 2. For example, if the linear

response (black vector, top-right quadrant) is very close

to the direction of Q−, then its projection on Q+ will

be small, and the gain of L+ will be small as well from

(8). This situation can lead to a very small linear gain

and a very steep nonlinear response; in the worst case, if

L+(ω) = 0 the model would be flawed, as the nonlinear

response N [L[u]] would be zero not just in the linear

regime but at all amplitudes. We can avoid these situ-

ations by choosing an appropriate value for ϕd. Among

the many possibilities, we choose to first calculate the

design phase as ϕd = ϕ(ωd, A), averaged over the pos-

sible forcing amplitudes A at the design frequency. Ge-

ometrically, it represents the orientation of the dashed

line that best represents the average orientation of the

output vectors in the top-right quadrant of figure 2. If

then such line is too close to the direction of one of the

operators Q±, i.e. if |ϕd ± π/4 − ϕ(ωd, 0)| < π/8, we

suitably add or subtract to it an angle π/8.

2.4 Nonlinear operator fitting

We fitted in the previous section the linear operators

Lfit
± of the 2 Hammerstein models Q±. In this section

we fit the nonlinear operators N±, that are defined in

the frequency domain by the approximation (11). We

now treat it as an equality at the design frequency ωd:

Q(A,ωd) = N−(A)Lfit
− (ωd) +N+(A)Lfit

+ (ωd) (14)

Both sides of (14) are complex valued, and Lfit
+ (ωd)

and Lfit
− (ωd) are linearly independent phasors4. We then

operate a vector projection in the complex plane of

Q(A,ωd) on the base composed of the 2 phasors, {Lfit
+ (ωd)

,Lfit
− (ωd)}. To do so, we use the scalar product

〈a, b〉 ≡
[
Re(a)Re(b) + Im(a)Im(b)

]∣∣∣
ω=ωd

(15)

and the norm as |a|2 ≡ 〈a, a〉. With this structure, for

each value of A, the quantities N±(A) are the projec-

tions of Q(A,ωd) on the 2 phasors:[
N+(A)

N−(A)

]
=

1

|Lfit
− |2|Lfit

+ |2 − 〈Lfit
− , L

fit
+ 〉2
·

·
[
|Lfit
− |2, −〈Lfit

− , L
fit
+ 〉

−〈Lfit
− , L

fit
+ 〉, |Lfit

+ |2
] [
〈Q(A,ωd), L

fit
+ 〉

〈Q(A,ωd), L
fit
− 〉

]
(16)

Equation (16) can be obtained by applying the scalar

product (15) between both sides of (14) and the two

phasors one at a time, and inverting the resulting sys-

tem of equations. Now the 2 nonlinear operatorsN± are

defined in the frequency domain by the 2 real-valued

describing functions N±(A) evaluated in (16). In this

section we show how to calculate the memory-less state-

space realization N [u(t)] of a sinusoidal input, real-

valued describing function N(A). The novelty proposed

here is in using a Fourier–Bessel expansion, which leads

to good convergence properties, without the use of iter-

ative algorithms as proposed in [29]. We want to choose

a convenient analytical structure for N that is able to

survive the evaluation of temporal averaging that de-

fines the describing function in equation (1). We pro-

pose the following analytical structure for N (u):

N (u) ≈ qerfµ,κ (u) +

Nb∑
n=1

cnJ1(ûnu) (17)

for a suitable choice of the parameters µ, κ and of the

coefficients cn. The first term in (17) is a modified error

function, defined as:

qerfµ,κ (u) ≡κerf

[√
πµu

2κ

]
, erf(x) ≡ 2√

π

∫ x

0

e−t
2

dt (18)

4 because they are approximately in quadrature
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The function (18) is constructed in a way that the linear

gain is µ and the output saturates at κ:

∂qerfµ,κ (u)

∂u

∣∣∣
u=0

= µ lim
u→±∞

qerfµ,κ (u) = ±κ (19)

The second term in (17) is a Fourier–Bessel series. The

function Jk(x) is the Bessel function of the first kind of

order k, and

ûn =
ũn
W
, (20)

where ũn is the n-th root of J1(x) = 0, with ũ1 being

the smallest non-zero root, and W is a scaling factor.

The first derivative of (17) at the origin is

β ≡ µ+ lim
u→0

∂

∂u

 Nb∑
j=1

cnJ1(ûnu)

 = µ+
1

2

Nb∑
n=1

cnûn (21)

The expansion (17) admits an analytical solution of the

integral (1):

N(A) = µe−k
2A2 [

I0(k2A2) + I1(k2A2)
]

+ 2

Nb∑
n=1

cn
A
J0

(
ûnA

2

)
J1

(
ûnA

2

)
(22)

where k ≡
√

π
8
µ
κ and Ik(x) is the modified Bessel func-

tion of the first kind of order k. An advantage of this

series expansion over a polynomial is a much better con-

vergence far from the origin. The proof of the identity

(22) is reported in the appendix A. One can then fit the

coefficients µ, κ,W, {cn} to best approximate the known

function at the LHS. First we choose to fit the modified

error function term to minimize its distance to N(A),

obtaining the value of k and µ. Then the remaining

terms are non-orthogonal functions. For a fixed value
of W , the fitting of a function on a non-orthonormal

base is explained in [41]. We then look for the optimal

value of the scaling factor W leading to the best fit.

One fitting with 40 terms of the Fourier–Bessel series

is presented in figure 5, with the error reported in red

on the right vertical axis. Since at small amplitudes no

experimental data is available (as discussed in figure

1) the operator has a plateau close to the origin. To

reduce the fitting error at the the end of the plateau

where the first derivative is discontinuous, we locally

applied a moving average filter around the kink before

proceeding with the fitting.

The proposed analytical structure (17) has proved

effective at fitting all the describing functions of the

example application, with an accuracy as good as the

one presented in figure 5, with usually 20 terms being

sufficient to provide a good fit. The fitting presented

in this subsection can be successfully used whenever

one needs to accurately represent in state-space a real-

valued smooth sinusoidal describing function.

2.5 The final state-space realization

This section collects the results of the previous subsec-

tions. The 2 linear operators L± admit the state-space

realization (13):{
ẋ±(t) = A±x±(t) +B±uL±(t)

Q±(t) = C±x±(t) +D±uL±(t)
(23)

where uL± are the inputs of the 2 linear operators. The

matrices describing this linear system were calculated

in subsection 2.3. From equation (9b), these inputs are

saturated by the nonlinear memory-less functions N±:

uL± = N±[u(t)] (24)

where u is the input of the final operator. The 2 nonlin-

ear saturations N± have the analytical structure (17),

and the coefficients describing them were calculated in

subsection 2.4. We can then put the 2 equations (23)

and (24) together and obtain{
ẋ±(t) = A±x±(t) +B±N±[u(t)]

Q±(t) = C±x±(t) +D±N±[u(t)]
(25a)

The final output is then given by (4):

Q[u(t)] = Q−[u(t)] +Q+[u(t)] (25b)

Equations (25) fully describe the nonlinear state-space

realization, and the internal state of the operator is

{x+, x−}. This subsection concludes the description of

the nonlinear state-space realization, which will be used

in section 3.2 in the example application in the time do-

main.

3 Application

This section presents an application example of the

state-space realization. The example consists of a self-

excited system, schematically represented in figure 6,

where only one nonlinear operator Q is present.

In section 3.1 we study the system in the frequency

domain with the harmonic balance method. In section

3.2 we study it in the time domain with the state-space

realization of the describing function introduced in sec-

tion 2. We compare the results obtained with the 2

techniques in 3.3.

We describe briefly the physics of the application

example in the rest of this part, and later solve the

problem in subsection 3.1 and 3.2.

We model the experiment [31,7] of a confined, tur-

bulent, partially premixed swirling flame. The experi-

ment consists schematically of three parts: 1) the con-

figuration upstream of the flame, which includes the
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(a) Operator N−, saturating the input for L− (b) Operator N+, saturating the input for L+

Fig. 5: Fitting of the 2 real-valued describing functions N−(A) and N+(A) at fl = 180 Hz, with N = 40 terms

in the Fourier–Bessel series. The original functions and their fit are reported respectively with a continuous black

line and a dashed cyan line. They are barely distinguishable by eye, and their value is reported on the left vertical

axis of each figure. The absolute value of their difference is reported in red, and refers to the vertical axis on the

right.

B ZL
ξ

u uds

Q Tr

upstream
acoustics

downstream
acoustics

Fig. 6: Sketch of the experiment. B and ZL are lin-

ear time-invariant operators, with L being the length

of the downstream duct, which can be changed. ξ ≡
(ρc)ds/(ρc)us and Tr ≡ Tds/Tus are multiplicative fac-

tors, and Q(A,ω) is the nonlinear operator considered

in section 2.

burner and the swirler; 2) the flame, assumed to be

compact when compared to the length of the experi-

ment; 3) the exhaust gas tube of variable length L.

Since the focus of this article is on the nonlinear

flame model, we do not describe in detail the configu-

ration of the experiment, which can be found in [31,7].

The configuration upstream of the flame is fixed, and its

acoustic response is governed in the frequency domain

by the admittance B:

û =B(ω)
p̂

(ρc)us
(26)

where (ρc) is the characteristic impedance of the gas,

i.e. the product of density and speed of sound, the lat-

ter being a function of temperature. Here and in the

following, we indicate with a hat variables that depend

on frequency, e.g. û = û(ω), and we will drop the hat

to discuss time domain variables, such as u = u(t). The

variables p̂ and û in (26) are measured just upstream of

the flame surface and refer to acoustic pressure and ve-

locity. We avoid adding the subscript us to both quanti-

ties to not burden the notation in the previous sections,

where u can be interpreted more generally as the input

of a generic nonlinear operator Q, in contexts different

from this application. We also assume that the flame is

compact in space, i.e. it is an interface between the up-

stream and downstream geometry. In a similar manner,

the acoustics downstream of the flame are described by

the impedance ZL:

p̂ds
(ρc)ds

=ZL(ω)ûds (27)

This impedance depends parametrically on the length

L of the downstream duct, which can be varied. At the

flame interface, under the assumption of a low Mach

number flow, the pressure is continuous across the flame

interface [42], i.e. p̂ = p̂ds, which we rewrite as:

p̂

(ρc)us
=

(ρc)ds
(ρc)us

p̂ds
(ρc)ds

(28a)

At the flame interface the fluctuating heat release rate

induces a sudden expansion of the gas:

ûds = [1 + (Tds/Tus − 1)Q (A,ω)] û (28b)
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The degree of this expansion depends on the ratio Tds/Tus
of the temperatures in Kelvin degrees downstream and

upstream of the flame, and on the sensitivity of the fluc-

tuating heat release rate on acoustic forcing, described

by the describing function Q, which depends on the

amplitude A of the upstream velocity fluctuation, with

u(t) = A cos(ωt). Equation (28b) can be derived from

[43] imposing the continuity of the pressure at the sur-

face.

All quantities describing the problem have either

been directly measured or estimated in [31,7].

3.1 Frequency domain

This section evaluates the amplitude and the frequency

of the limit cycles of the example problem using the

harmonic balance method. Combining the equations

(26,27,28) we obtain this dispersion relation in ω:

B(ω)
(ρc)ds
(ρc)us

ZL(ω) [1 + (Tds/Tus − 1)Q (A,ω)] = 1

The relation is parametric in the length L of the com-

bustion chamber. For the acoustic operators B and ZL
we fit a rational function approximation as described in

section 2.3, but with a number of poles N = 12. The

rational function can then be evaluated at arbitrary val-

ues of s = σ + iω. On the other hand, we assume that

the flame response Q is independent of the growth-rate

σ, and extrude the value from the imaginary axis, cal-

culating it according to Q(A, Im[s] = ω). This leads to

the dispersion relation

HL[σ, ω,A] = 0 (29)

where

HL[σ, ω,A] =HL[s,A] ≡ T fit
L (σ + iω)·

· [1 + (Tds/Tus − 1)Q (A,ω)]− 1 (30)

T fit
L (s) ≡Bfit(s)

(ρc)ds
(ρc)us

Zfit
L (s) (31)

Equation (29) is a nonlinear eigenvalue problem in the

complex Laplacian variable s = σ + iω.

3.1.1 Linear stability analysis

In the linear regime, the amplitude A is zero and we

study the solutions of the problem HL[σ, ω, 0] = 0. For

each length L, the absolute value of HL is calculated

in a regular fine grid {σm, ωn} in the range of interest,

as reported for L = 0.8 in figure 7. A numerical search

of the zeros of the equation is then started from the

local minima of the map. These zeros are the linear

eigenvalues of the problem, reported for all lengths in

figure 8 in terms of growth-rates and frequencies.

Fig. 7: absolute value of the LHS of the dispersion

relation (29) describing the problem for L =0.8 m. Lo-

cal minima are reported with red crosses, and solutions

with red circles. Only the portion of the domain pre-

senting solutions is shown. The value is rescaled with

the arctangent function to present a finite codomain

[0 , 1] for representation purposes.

3.1.2 Nonlinear stability analysis

In this section we discuss the existence and stability of

limit cycles in the system. Limit cycles are found with

HL[0, ω,A] = 0 because they represent periodic oscilla-

tions with zero growth rate. We numerically search for

them in a similar manner to the previous section, ob-

taining solutions (ωj , Aj). We then numerically perturb

the amplitude of oscillation to Aj + δA and calculate

the resulting perturbed eigenvalue δσ+ i(ωj +δωj). We

then apply Loeb’s criterion [15], and infer that the so-

lution is stable/unstable if δσj/δA ≶ 0, assuming that

only one frequency of oscillation is present in the sys-

tem. We carry out the same analysis for all lengths L

of the downstream duct, and report the amplitude and

the frequency of the stable/unstable limit cycles with

filled/empty circles in figure 9. There is a region with

multiple solutions, for L between 0.99 and 1.02 m, one

approximately at 160 Hz and the other approximately

at 130 Hz.

A first observation regards the points at L = 0.99,

1.00 m, where 2 distinct limit cycles approximately at

160 Hz and at 130 Hz coexist. In this scenario it is im-

possible to discuss the stability of the 2 modes without

a dual-input describing function, which is not available.

Loeb’s criterion can be used only to provide sufficient

conditions for instability.

We then focus on the mode around 130 Hz. We fix

in particular L =1.00 m, with the other lengths in the

region presenting a similar behaviour. We study the

eigenvalues of the problem as a function of the am-
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(a) Nondimensional growth-rate (b) Frequency of oscillation

Fig. 8: Eigenvalues of the linear problem for all the lengths L of the downstream duct. The 2 plots represent the

same data, using two distinct vertical axis and colormaps. In a), the height of the circles represents the growth-

rate σ and the colour the frequency f of oscillation. In b), the height represents the frequency, and the colour the

growth-rate. Eigenvalues with large negative growth-rate are not visible on the plot.

plitude of oscillation in figure 10. At a fixed length L

in this region, there are 1 stable and 1 unstable limit

cycles, at approximately the same frequency. This dif-

fers from a subcritical Hopf bifurcation, because the

stable limit cycle has a smaller amplitude of oscillation

then the unstable limit cycle. We also observe that if

the system starts at the unstable limit cycle, it is at-

tracted towards a higher amplitude of oscillation, until

the eigenvalue disappears. It is then harder to make a

definitive discussion of the nonlinear, saturated state of

the system in this region. We however notice how the

overall shape of the unstable mode in figure 10.a resem-

bles a subcritical-Hopf bifurcation. The time domain

analysis of the system will suggest the same behaviour.

The results from the frequency domain analysis are

for the most part consistent with the experiment [7].

However, not all of the features from the present anal-

ysis could be observed in the experiment, in particular

for those conditions where the analysis predicts multi-

ple limit-cycles.

3.2 Time domain

This section evaluates the amplitude and the frequency

of the limit cycles of the example problem running time

domain simulations. We first combine equations (26,27,28a)

and repeat (28b):

û =B(ω)
(ρc)ds
(ρc)us

ZL(ω)ûds ≡ T fit
L (ω)ûds (32a)

ûds =û+ (Tds/Tus − 1)Q (A,ω) û (32b)

The operator T fit
L (ω) was introduced in equation (31),

and we use here its state-space representation{
ẋT (t) = ALxT (t) +BLuds(t)

u(t) = CLxT (t)
(33a)

We instructed the tool VFIT3 to provide the best fit

with the feedthrough matrix DL set to 0, compare with

(13). The state space model for (32b) is:

uds(t) =u(t) + (Tds/Tus − 1)Q[u(t)], (33b)

where the operator Q is fully described by the equa-

tions (25). These equations can be numerically inte-

grated in time with respect to the 3 internal state vec-

tors {xT , x−, x+} describing respectively the acoustic

state and the states of the 2 linear operators, see again

(25). At each time step, u(t) can be calculated with

(33a), and uds(t) can be calculated with (33b). Notice

that if DT was not set to 0 in (33a), an algebraic loop

would appear, because u(t) would depend on uds(t), but

also uds(t) would depend on u(t) because of (33b). This

would require a study of the problem in the context of

differential algebraic equations, with an additional root

solver operation at each time step.

As initial condition x = {xT , x−, x+} we keep gen-

erating a new random initial condition until physical

values of uds(t) and u(t) result from (33a) and (33b).

In particular, the random initial state should predict

a value for the velocity u upstream of the flame such

that the flame response is defined for such amplitude,

and such that the gain of the nonlinear operator is in a

limited range. The system is then time-integrated until

it converges to a limit cycle. An example is reported in

figure 11.
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(a) limit cycle amplitude of oscillation (b) Frequency of oscillation

Fig. 9: Nonlinear stability analysis, for all the lengths L of the downstream duct. The two plots represent the

same data: in a), the height of the circles represents the limit cycle amplitude A, and the colour the frequency f of

oscillation; in b), the height represents the frequency, and the colour the limit cycle amplitude A. Stable/unstable

limit cycles are represented with filled/empty circles.

(a) Nondimensional growth-rate (b) Frequency of oscillation

Fig. 10: Eigenvalues of the nonlinear problem for a fixed length L =1 m of the downstream duct, at discrete,

equispaced amplitudes of oscillation A. The 2 plots represent the same data, using two distinct vertical axis and

colormaps. In a), the height of the circles represents the growth-rate σ and the colour the frequency f of oscillation.

In b), the height represents the frequency, and the colour the growth-rate. Eigenvalues with large negative growth-

rate are not visible on the plot. The vertical black lines mark the amplitudes of the limit cycles, at which one

growth-rate changes sign in a).

At L =1.01 m the system is linearly stable (see fig-

ure 8.a), and we tested that the system converges to the

steady solution for a set of random initial conditions.

Subsequently, we forced the system with an external,

artificial harmonic source at the frequency of the least

stable linear mode, which we stop after ∆t =0.2 s. In

this second case, the system converges to a stable limit

cycle. This scenario describes a subcritical Hopf bifur-

cation.

3.3 Comparison

To compare the time domain simulations with the fre-

quency domain simulations, we extract [44] the ampli-

tude and the frequency of the dominant harmonic from

the saturated limit cycle of u(t) of each simulation, run

for each value of the length L. In the first round of sim-

ulations, the design frequency ωd is set to the frequency

of the least stable mode of the linear stability analysis.

These results are reported with a continuous green line

in figure 12. We observe a general qualitative agreement
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(a) velocity u(t) just upstream of the flame surface (b) Estimated power spectrum density of u(t).

Fig. 11: Time simulation of the system of equations (33) for a fixed value of the length L =0.8 m of the downstream

duct. a) represents the time domain signal, and b) the spectrum of the signal. The system converges to a limit

cycle. The third harmonic is visible in b). Analogous simulations are carried out for all lengths L.

with the frequency domain results (coloured dots, the

same as figure 9).

We also run a second round of simulations, setting

ωd to the frequency of the saturated limit cycle of the

first round of simulations. We then run a third round

of simulations in the same way, reported with the con-

tinuous red line in figure 12. The agreement with the

frequency domain results is now much better.

We finally report the normalized difference between

the 2 sets of results, in percentage, in figure 13. The

error diminuishes with the number of the iteration at

most points. It is larger in the transition zone discussed

at the end of section 3.1.2, reported in the figure be-

tween the 2 vertical dashed lines, where the analysis in

the frequency domain is harder. In particular, the error

is largest at L = 0.98,0.99 m, where it is fundamen-

tally not correct to compare the 2 approaches because

the analysis in the frequency domain is not complete:

the stability of the reported solutions can not be fully

ascertained and more solutions may exist.

4 Conclusions

We present a state-space realization Q of a describing

function Q, combining two Hammerstein models. For

the linear part of the operators we use a rational func-

tion approximation, while for the nonlinear part of the

model we propose the use of Fourier–Bessel series. The

evaluation of the realization is fully automated and not

iterative, and allows the study in the time domain of the

behaviour of a system in a range of frequencies centred

around a design frequency fd.

We show the applicability of the tool on a thermoa-

coustic application, comparing the results of a time do-

main analysis using the state-space realization Q with

the results of a nonlinear frequency-domain analysis us-

ing the original describing function Q.

In all the cases where the frequency-domain analy-

sis is simple there is very good agreement between the

results, validating the accuracy of the state-space real-

ization proposed here.

In the other cases, the frequency-domain analysis

is difficult or not possible without further information

about the system. In these latter cases the state-space

realization can be used as a rough tool to isolate one

mode at a time, and provide quick results.

This tool will be particularly useful in the study

of thermoacoustic oscillations in annular combustion

chambers, where a time domain approach to the prob-

lem has so far been more successful than a frequency

domain approach. It allows an accurate description of

the nonlinear saturation of the problem, improving on

existing time domain solvers [45,46,47].

We observe that it may be possible to change the

design frequency fd of Q during the time domain simu-

lation, by extracting in real-time the instantaneous fre-

quency of oscillation of the system and incrementally

retuning the model. The extraction could be done with

a nonlinear Kalman filter [48].
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(a) Amplitude of oscillation A. (b) Frequency of oscillation f

Fig. 12: Comparison of the results of the time domain (continuous lines) and the frequency domain (the same

circles as figure 9) approaches, in terms of amplitude (in a)) and frequency of oscillation (in b)) of the saturated

limit cycle. The green line is obtained with a first time simulation by setting the flame model design frequency ωd
to the frequency of the least stable linear mode (reported as black dots in b)). The red line is obtained by iterating

the process 2 times.

(a) Relative error for the predicted amplitude A (b) Relative error for the predicted frequency f

Fig. 13: Error between the results obtained in the frequency domain (subscript f) and in time domain (subscript

t), in percentage. The agreement is very good, except in the region where the frequency-domain stability analysis

is not conclusive, delimited by the 2 vertical dashed lines.

A Describing function calculation

In this appendix we evaluate the describing function (defined
by (1)) of the saturation function N . We will prove here the
more general result for an input with structure

u(t) = A1 cos(ωt+ ϕ1) +A2 cos(ωt+ ϕ2) (34)

to the function N , as opposed to the case under considera-
tion in this article introduced in (1) where u(t) = A cos(ωt).
In particular, the input described by (34) describes the con-
tribution of two modes, oscillating at the same frequency,
instead of a single sinusoidal input A cos(ωt+ϕ). The motiva-
tion to cover this more general case is to make this framework
usable in rotationally symmetric annular combustors featur-
ing azimuthal modes. In that case, each burner is subject to

the combined input of two thermoacoustic modes, depending
on the amplitudes A1 and A2 of the two modes at that lo-
cation, and on their phases ϕ1, ϕ2. Once the result for the
input (34) is obtained, it will be sufficient to set A1 = A,
ϕ1 = ϕ2 = A2 = 0 to obtain the special case of the single
input response used in this article, as presented at the end of
the appendix.

We proceed by rewriting u as

u = a cos(ωt) + b sin(ωt) (35)

by introducing the costants{
a ≡ A1 cosϕ1 +A2 cosϕ2

b ≡ −A1 sinϕ1 −A2 sinϕ2
(36)



State-space realization of a describing function 15

Notice that a, b do not depend on the time variable t. We
study the averaging integral in the definition (1) of describing
function for the operator N , and we will later divide by the
amplitude A to recover the full expression. In other words, for
the time being we study the product N(A,ω)A. We substitute
in the product the equation (35) and change the time variable:

1

π

∫ 2π

0

N (a cos t+ b sin t) (cos t+ i sin t) dt = fc + ifs (37)

We substitute the expression for N from (17):

fc =
1

π

∫ 2π

0

qerfµ,κ (a cos t+ b sin t) cos tdt+

N∑
n=1

cn

π

∫ 2π

0

J1(ûn(a cos t+ b sin t)) cos tdt

≡ferfc +

N∑
n=1

cnf
b,n
c (38a)

fs =
1

π

∫ 2π

0

qerfµ,κ (a cos t+ b sin t) sin tdt+

N∑
n=1

cn

π

∫ 2π

0

J1(ûn(a cos t+ b sin t)) sin tdt

≡ferfs +

N∑
n=1

cnf
b,n
s (38b)

We study first the integrals ferfc and ferfs due to the error
function in section A.1, and then each of the N integrals fb,nc
and fb,ns of the Fourier–Bessel series in section A.2. We put
together the expressions and discuss them in section A.3.

A.1 Averaging the error function

We substitute the definition of qerfµ,κ from (18) into the ex-

pression of ferfc and ferfs in (38). We obtain

ferfc =
κ

π

∫ 2π

0

erf

(√
πµ

2κ
(a cos t+ b sin t)

)
cos tdt (39a)

ferfs =
κ

π

∫ 2π

0

erf

(√
πµ

2κ
(a cos t+ b sin t)

)
sin tdt (39b)

For conciseness, we introduce the constant

k =

√
π

8

µ

κ
, (40)

so that the argument of the erf function is
√

2k(a cos t +
b sin t). This leads to neater expressions in the following. We
proceed by expressing the argument of the exponential func-
tion as

a cos t+ b sin t = R sin(t+ ψ), (41)

where R and ψ are defined as

R ≡
√
a2 + b2 (42a)

ψ ≡ arg(b+ ia) (42b)

The two integrals (39) become

ferfc =
κ

π

∫ 2π

0

erf
(√

2kR sin(t+ ψ)
)

cos tdt (43a)

ferfs =
κ

π

∫ 2π

0

erf
(√

2kR sin(t+ ψ)
)

sin tdt (43b)

We exploit the fact that the erf function is defined as an
integral itself, and apply integration by parts to (43a):

fc
erf =

κ

π

[
erf
(√

2kR sin(t+ ψ)
)

sin t
]2π
0
− (44)

κ

π

2
√
π

√
2k

∫ 2π

0

e−2k2R2 sin2(t+ψ)R cos(t+ ψ) sin tdt

The first term trivially vanishes. In the second, 2/
√
π is the

factor present in the definition (18) of the erf function, and√
2k comes from the chain rule of the derivative of erf with

respect to t, together with the term R cos(t + ψ) inside the
integral. Substituting the definition of k from (40) only at its
first occurrence into the second term, we can simplify:

κ

π

2
√
π

√
2k =

µ

π
(45)

We now apply a change of integration variable t→ χ− ψ to
the integral (44), and because the integrand is periodic in t
and then in χ, we keep the same limits of integration in the
new variable.

ferfc = −
µ

π
R

∫ 2π

0

e−2k2R2 sin2 χ cosχ sin(χ− ψ)dχ (46)

We then expand the trigonometric term sin(χ−ψ), and take
the sum out of the integral. We obtain

ferfc =− µR [+Esc cosψ − Ecc sinψ] (47a)

ferfs =− µR [−Esc sinψ − Ecc cosψ] (47b)

where we introduced the integrals

Esc ≡
1

π

∫ 2π

0

e−2k2R2 sin2 χ cosχ sinχdχ = 0 (48a)

Ecc ≡
1

π

∫ 2π

0

e−2k2R2 sin2 χ cos2 χdχ =

2

π

∫ π

0

e−2k2R2 sin2 χ cos2 χdχ (48b)

The first integral (48a) is zero since its integrand is odd. In
(48b), we exploited the fact that the integrand has period π.
We then use power reduction formulas on the terms sin2 χ
and cos2 χ:

Ecc =
2

π

∫ π

0

e−k
2R2(1−cos 2χ) 1 + cos 2χ

2
dχ =

1

2π

∫ 2π

0

e−k
2R2(1−cos t)(1 + cos t)dt (49)

The integrand in (49) has period 2π and is an even function
of t, so:

Ecc =
1

π

∫ π

0

e−k
2R2+k2R2 cos t(1 + cos t)dt =

=e−k
2R2

(
1

π

∫ π

0

ek
2R2 cos tdt+

1

π

∫ π

0

ek
2R2 cos t cos tdt

)
=e−k

2R2 (
I0(k2R2) + I1(k2R2)

)
(50)
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In (50), I0(x) and I1(x) are the modified Bessel functions of
the first kind of the zero and first order respectively. We first
substitute (50,48a) in (47), and then we substitute R sinψ =
a and R cosψ = b. We obtain:

ferfc =aferfnl (kR) (51a)

ferf2 =bferfnl (kR) (51b)

with

ferfnl (kR) ≡ µe−k
2R2 (

I0(k2R2) + I1(k2R2)
)

(52)

acting as a gain, as it multiplies the linear term in (51) and
depends on the amplitude of oscillation. The two analytical
expressions (51) have been compared with the numerical inte-
gration of (38) and its counterpart for a few values of µ, κ, a, b,
and lead to relative errors of the order of machine precision,
thus confirming their validity.

A.2 Averaging Bessel functions

The n-th term of fb,nc and of fb,ns in (38) are respectively

fb,nc ≡
1

π

∫ 2π

0

J1(2una cos t+ 2unb sin t) cos tdt (53a)

fb,ns ≡
1

π

∫ 2π

0

J1(2una cos t+ 2unb sin t) sin tdt (53b)

where we introduced un ≡ ûn/2. We define f̂b,nj = fb,nc +

ifb,ns and apply the substitution

z = eit, sin t =
1

2i

(
1−

1

z

)
, cos t =

1

2

(
1 +

1

z

)
(54)

We obtain

f̂b,nj =
1

π

∫ 2π

0

J1

(
un(a− ib)z + un(a+ ib)

1

z

)
zdt (55)

We now change the line integral into a contour integral in the
complex plane on the circle |z| = 1. From (54) we have that
dt = dz/iz, and

f̂b,nj =
1

πi

∮
|z|=1

J1

(
un(a− ib)z + un(a+ ib)

1

z

)
dz (56)

The Bessel function J1(z) is an entire function, so the only

singularity of f̂b,nj (z) is at the origin, and is of the essential
type. We can then apply the residue theorem,

f̂b,nj =
1

πi
2πiRes

[
J1

(
un(a− ib)z + un(a+ ib)

1

z

)]
z=0

=

= 2Res [G(z)]z=0 (57)

We expand the Bessel function in G(z) with its Laurent series:

G(z) =
∑
m=0

(−1)mu1+2m
n

m!(m+ 1)!

(
(a− ib)z + (a+ ib)/z

2

)1+2m

(58)

We substitute the binomial expansion of the power of the sum(
(a− ib)z + (a+ ib)/z

2

)1+2m

= (59)

1

21+2m

1+2m∑
k=0

zk−(2m+1−k)
(1 + 2m

k

)
(a− ib)k(a+ ib)1+2m−k

The residue in (58) is the sum of the coefficients of the term
1/z. Therefore, in the sum (59) we retain only the term with
k− (2m+ 1− k) = −1, from which follows k = m. This term
of (59) is:

1

21+2m
z−1

(1 + 2m

m

)
(a− ib)m(a+ ib)m+1 =

a+ ib

2

1

22m
z−1 (2m+ 1)!

m!(m+ 1)!
(a2 + b2)m (60)

Equation (57) evaluates to

f̂b,nj =(a+ ib)

∞∑
m=0

(−1)m(2m+ 1)!u1+2m
n

(m!(m+ 1)!)2

(
R

2

)2m

with R =
√
a2 + b2. This series converges to

f̂b,nj =(a+ ib)
2J0

(
un
√
a2 + b2

)
J1
(
un
√
a2 + b2

)
√
a2 + b2

(61)

The two forcing terms (53) can be evaluated as the real and
imaginary part of (61):

fb,nc =afb,nnl (R) (62a)

fb,ns =bfb,nnl (R) (62b)

where we introduced

fb,nnl (R) ≡ 2
J0 (unR) J1 (unR)

R
(63)

A.3 Final expression

The final expression of fc and of fs is obtained by substituting
(51) and (62) into (38):

fc(a, b) =a

(
ferfnl (kR) +

N∑
n=1

cnf
b,n
nl (R)

)
= afnl(R) (64a)

fs(a, b) =b

(
ferfnl (kR) +

N∑
n=1

cnf
b,n
nl (R)

)
= bfnl(R) (64b)

with un = ûn/2, the constant k = µ/κ
√
π/8 as defined in

(40), the value of R is defined in (42a) and

fnl(R) ≡ ferfnl (kR) +

N∑
n=1

cnf
b,n
nl (R) (65)

where ferfnl and fb,nnl have been defined respectively in (52)
and (63). The two terms fc and fs in (64) are symmetric with
respect to a, b, since we have fc(a, b) = fs(b, a).

By exploiting the fact that limR→0 J1(R)/R = 1/2, and
then substituting (21), we observe that

lim
R→0

fnl(R) = µ+

N∑
j=0

cnun = µ+
1

2

N∑
j=0

cnûn ≡ β (66)

where we substituted the property (21) in the last passage.
It can be proved that the first derivative at zero is

lim
R→0

∂fnl

∂R
(R) = 0, (67)

meaning that fnl is constant at first order in R.
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In the case of the input described by a single sinusoid
A cos(ωt), it is sufficient to set A1 = A, ϕ1 = ϕ2 = A2 = 0.
This leads in the definitions in (36) to a = A, b = 0, and the
substitution of these in (64) leads to

fc(a, b) =A

(
ferfnl (kA) +

N∑
n=1

cnf
b,n
nl (A)

)
=Afnl(A) (68a)

fs(a, b) =0 (68b)

The component in quadrature with the input signal u is zero,
and N(A) is real valued. Substituting (68) in (37), and be-
cause (37) is equal to N(A,ω)A, we obtain

N(A,ω) =fnl(A) (69)

with fnl matching the RHS of (22).
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33. J.C. Gómez, E. Baeyens, Journal of Process Control
14(6), 685 (2004). DOI 10.1016/j.jprocont.2003.09.010.
URL http://linkinghub.elsevier.com/retrieve/pii/

S0959152403001173

34. T. Schuller, D. Durox, S. Candel, Combustion and
Flame 134(1-2), 21 (2003). DOI 10.1016/S0010-2180(03)
00042-7. URL http://linkinghub.elsevier.com/

retrieve/pii/S0010218003000427

35. B. Gustavsen, A. Semlyen, IEEE transactions on Power
Delivery 14(3), 1052 (1999)

36. B. Gustavsen, S. Member, IEEE transactions on Power
Delivery 21(3), 1587 (2006)

37. S. Kurokawa, F.N.R. Yamanaka, A.J. Prado, J. Pissolato,
Electric power systems research 79, 1155 (2009). DOI
10.1016/j.epsr.2009.02.007

38. M.R. Bothien, J.P. Moeck, A. Lacarelle, C.O. Paschereit,
Proceedings of the Institution of Mechanical Engineers,
Part A: Journal of Power and Energy 221(5), 657

(2007). DOI 10.1243/09576509JPE384. URL http://

pia.sagepub.com/lookup/doi/10.1243/09576509JPE384

39. B. Gustavsen, IEEE transactions on Power Delivery
23(4), 2278 (2008)

40. B. Gustavsen, C. Heitz, IEEE Transactions on advanced
packaging 31(4), 664 (2008)

41. W. Klink, G. Payne, Journal of Computational Physics
21, 208 (1976)

42. T. Lieuwen, Journal of Propulsion and Power 19(5), 765
(2003). DOI 10.2514/2.6193. URL http://arc.aiaa.

org/doi/abs/10.2514/2.6193

43. B. Schuermans, W. Polifke, C.O. Paschereit, ASME, In-
ternational Gas Turbine and Aeroengine Congress and
Exhibition, Indianapolis, IN (1999)

44. A. Choi, IEEE Transactions on Speech and Au-
dio Processing 5(2), 201 (1997). DOI 10.1109/89.
554783. URL http://ieeexplore.ieee.org/lpdocs/

epic03/wrapper.htm?arnumber=554783

45. C. Pankiewitz, T. Sattelmayer, Journal of En-
gineering for Gas Turbines and Power 125(3),
677 (2003). DOI 10.1115/1.1582496. URL
http://gasturbinespower.asmedigitalcollection.

asme.org/article.aspx?articleid=1421647

46. B. Schuermans, V. Bellucci, C.O. Paschereit, Proceedings
of ASME Turbo Expo 2003 (2003)

47. S.R. Stow, A.P. Dowling, Journal of Engineering for
Gas Turbines and Power 131(3), 031502 (2009). DOI
10.1115/1.2981178. URL http://link.aip.org/link/

JETPEZ/v131/i3/p031502/s1&Agg=doi

48. H. Hajimolahoseini, M.R. Taban, H. Soltanian-Zadeh,
Measurement 45(1), 126 (2012). DOI 10.1016/j.
measurement.2011.09.008. URL http://linkinghub.

elsevier.com/retrieve/pii/S0263224111003034

http://rspa.royalsocietypublishing.org/content/469/2157/20130232.short
http://rspa.royalsocietypublishing.org/content/469/2157/20130232.short
http://rspa.royalsocietypublishing.org/content/469/2157/20130232.short
http://linkinghub.elsevier.com/retrieve/pii/S0965997808001919
http://linkinghub.elsevier.com/retrieve/pii/S0965997808001919
http://doi.wiley.com/10.1002/aic.690370211
http://linkinghub.elsevier.com/retrieve/pii/S0959152403001173
http://linkinghub.elsevier.com/retrieve/pii/S0959152403001173
http://linkinghub.elsevier.com/retrieve/pii/S0010218003000427
http://linkinghub.elsevier.com/retrieve/pii/S0010218003000427
http://pia.sagepub.com/lookup/doi/10.1243/09576509JPE384
http://pia.sagepub.com/lookup/doi/10.1243/09576509JPE384
http://arc.aiaa.org/doi/abs/10.2514/2.6193
http://arc.aiaa.org/doi/abs/10.2514/2.6193
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=554783
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=554783
http://gasturbinespower.asmedigitalcollection.asme.org/article.aspx?articleid=1421647
http://gasturbinespower.asmedigitalcollection.asme.org/article.aspx?articleid=1421647
http://link.aip.org/link/JETPEZ/v131/i3/p031502/s1&Agg=doi
http://link.aip.org/link/JETPEZ/v131/i3/p031502/s1&Agg=doi
http://linkinghub.elsevier.com/retrieve/pii/S0263224111003034
http://linkinghub.elsevier.com/retrieve/pii/S0263224111003034

	Introduction
	The state-space realization
	Application
	Conclusions
	Describing function calculation

