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Abstract: An Approach to Catalytic Asymmetric Electrocyclization 

(by Abhishek Kothari) 

Chapter 1 outlines the development of a catalytic electrocyclic process and its exploitation in 

asymmetric synthesis. Since Woodward and Hoffmann delineated a rationale for the 

mechanism and stereochemistry of these reactions they have become powerful synthetic 

tools. The aim of this project was to investigate catalytic asymmetric 6! electrocyclizations 

that will enable the rapid synthesis of highly functionalized molecules. 

 

We have demonstrated that the transient hexatriene precursors for [1,6]-electrocyclization 

are difficult to synthesize. When possible the central cis-alkene prefers to exist in a trans-

configured geometry, while the free ketone undergoes an essentially irreversible oxo-

electrocyclization. However the precursors for [1,5]-electrocyclization could be assembled 

via the Suzuki or Stille reactions. We have established a methodology for [1,5]-

electrocyclization using chiral phase-transfer catalysis. These reactions afford the 

electrocyclized products in excellent yield and diastereoselectivity with enantiomeric excess 

up to 68 %. These transformations offer a glimpse of the potential of electrocyclic reactions. 
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In chapter 2, the effects of cyclic backbones on the secondary structures of "-peptides were 

evaluated. Two series of abiotic !-peptides were synthesized with five and six-membered 

cyclic backbones. We have demonstrated that intra-residue nearest-neighbour hydrogen 

bonds may be favoured when the flexibility of the ring constraint can permit their formation. 

These cyclic backbone containing !-peptides have been shown to populate a bend-ribbon 

conformation in the solution and solid phase by NMR and X-ray crystallography 

respectively. 
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Glossary of terms 

  

The following abbreviations are used within the dissertation:  

  

Ac    acyl  

ax    axial  

Ar    aryl  

Bn    benzyl  

Boc    tert-butoxycarbonyl  

bp    boiling point  

br    broad  

Bu    butyl  

Bz    benzoyl  

c    concentration  

cal    calorie  

CCDC   Cambridge Crystallographic Database Centre 

COSY   1H-1H correlation spectroscopy  

CSA   camphor sulfonic acid  

!    chemical shift  

d    doublet  

DCC   dicyclohexylcarbodiimide  

dr    diastereomeric ratio  

DBU   1,8-diazabicyclo[5.4.0]undec-7-ene  

DEPT   distortionless enhancement by proton transfer  

DIPEA   diisopropylethylamine  

dm3  cubic decimetre  

DMAP   4-dimethylaminopyridine  

DMF   N,N-dimethylformamide  

DMSO   dimethyl sulfoxide  

ee    enantiomeric excess  

eq    equatorial  



 ix 

Et    ethyl  

ether   diethyl ether  

FT    Fourier transform  

g    gram  

GABA "-aminobutyric acid 

h    hour(s)  

HMBC   heteronuclear multiple bond connectivity  

HMQC  heteronuclear multiple quantum correlation  

HOMO   highest occupied molecular orbital  

HPLC   high performance liquid chromatography  

HRMS   high resolution mass spectroscopy  

Hz    Hertz  

i    iso  

IR    infra-red (spectroscopy)  

J    coupling constant  

KHMDS  potassium hexamethyldisilazane  

L    milliliter 

LCMS   liquid-chromatography tandem mass spectroscopy  

LDA   lithium di-iso-propylamide  

LiHMDS  lithium hexamethyldisilazane  

LUMO   lowest occupied molecular orbital  

[M+H]+  parent ion bound to a proton  

M    molar concentration (mol.dm-3)  

m    multiplet  

m    meta  

Me    methyl  

mg    milligram  

min    minute(s)  

mol    mole(s)  

m.p.   melting point  
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NMM N-methyl morpholine  

NMR   nuclear magnetic resonance 

NOE  nuclear overhauser effect  
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p    para  

petrol   petroleum ether 40-60  

Ph    phenyl  
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Pr    propyl  

q    quartet  

Rf    retention factor  

rt    room temperature  
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THF   tetrahydrofuran  

TLC   thin layer chromatography  

TMS   tetramethylsilane 

TOCSY total correlation spectroscopy  

Ts    p-toluenesulfonyl  

#  wavenumbers 

Z  number of formula units per unit cell 
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CHAPTER 1: ASYMMETRIC ELECTROCYCLIZATION 

 

1. Introduction 
Electrocyclizations, a class of pericyclic reactions, are characterized by the formation of a 

ring from an open-chain conjugated system, with a !-bond forming across the ends of a 

conjugated system (or vice-versa).1  

  

Electrocyclization reactions can occur thermally or photochemically, via two possible modes 

known as conrotatory and disrotatory.2 The simplest examples of thermal electrocyclization 

are illustrated in figure 1.1.  

 

Me

Me

Me Me Me

Me140˚C, 5.5 h 6!

disrotatory

CO2Me

CO2Me

" "

4!

conrotatory
CO2Me

CO2Me

 

Figure 1.1: Thermal electrocyclization 

 

1.1 Origin of orbital symmetry: 

In his landmark synthesis of vitamin B12, Woodward3 planned to use an intramolecular 

Michael addition to close a six membered ring and introduce two new stereogenic centers, 

but no addition product was observed under basic conditions (figure 1.2).  
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Figure 1.2: Intended Michael addition in vitamin B12 synthesis 

 

Reactions involving  
4n electrons go via the 
conrotatory mode 

Reactions involving 
(4n+2) electrons go via 
the disrotatory mode 
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However, the desired cyclization was found to take place when attempting a melting point of 

the crystalline enol (figure 1.3). This thermal reaction either on melting or when heated in 

inert solvent produces the opposite diastereoisomer to the one postulated on steric grounds. 
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Figure 1.3: Cyclization on melting point determination 

 

Careful examination of the reaction revealed that the olefin geometry of the starting material 

was isomerized under the reaction conditions, but each olefin isomer stereospecifically gives 

rise to a distinct diastereoisomer of the product (figure 1.4). However, irradiation of each 

product produced olefin geometry opposite to that from which it was formed.3  
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Figure 1.4: Observed electrocyclization in vitamin B12 synthesis 

 
Further detailed investigations of these cyclization reactions lead to the development of the 

Woodward-Hoffmann rules for the conservation of orbital symmetry.4 This type of 



Introduction 

 3 

electrocyclization reaction has been proposed to be involved in biosynthesis of a range of 

natural products including the endiandric acids,5 vitamin D,6 (+)-occidentalol7 and others.8,9 

 

Other pericyclic reactions such as cycloadditions and sigmatropic rearrangements and their 

asymmetric variants have been extensively studied,10-15 but in contrast, electrocyclizations 

have been given little attention by the synthetic community. Many electrocyclic reactions are 

not fully exploited due to the high temperatures often required to initiate these 

transformations and difficulties associated in assembling precursors.16 Even more 

significantly, there are no general methods for the asymmetric catalysis of electrocyclization 

reaction, resulting in limited opportunities for exerting stereocontrol in these processes. 

 

1.2 Asymmetric Nazarov (4") cyclization: 

The Nazarov cyclization, formation of cyclopentenones from divinyl ketones catalyzed by 

Lewis or Brønsted acid, is a 4" conrotatory electrocyclization.17 Since the seminal work of 

Denmark18-20 demonstrating the high chemoselectivity of this reaction (figure 1.5), the 

number of studies concerning Nazarov cyclization has grown significantly.21-27 However, 

this reaction classically has limited synthetic utility due to the stoichiometric amounts of 

Lewis or Brønsted acid required for best results and poor regioselectivity of the elimination 

step to give mixtures of isomers. Recently, several research groups have taken significant 

steps towards overcoming these limitations.28-33 

 
OMe3Si O

H

H

H

FeCl3, CH2Cl2

-50 ˚C, 15 min

88 %  

Figure 1.5: Silicon directed Nazarov cyclization 

 

1.2.1 Lewis acid catalysis: 

Trauner et al.29,34 have demonstrated the use of scandium triflate pybox complexes as Lewis 

acid catalysts for an asymmetric Nazarov reaction that proceeds with high levels of 

enantioselectivity (figure 1.6 A). Concomitant to this report, Frontier et al.35 disclosed 

exceptionally mild catalytic conditions for the cyclization of polarized enones (figure 1.6 B).  
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O
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CO2Me

R  

Figure 1.6: Catalytic asymmetric Nazarov cyclization 

 

Similarly, Aggarwal and co-workers28 have shown that stoichiometric amounts of copper-

pybox complexes can be used for related asymmetric Nazarov cyclizations. In this case, the 

square-based pyramidal geometry of the catalyst-substrate complex pushes the alkene 

substituents away from the iPr groups of the ligand. This steric interaction means that 

conrotatory cyclization can only occur via a clockwise rotation of the interacting "-orbitals 

(figure 1.7).28 
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Figure 1.7: Stereochemical model for Nazarov cyclization 

 

Jun-An Ma et al.31 have further developed this reaction to a new catalytic tandem Nazarov 

cyclization-fluorination for the preparation of functionalized fluoroindanones (figure 1.8). 

Recently, the use of Ni(II)-complexes as catalysts to achieve asymmetry in these cyclizations 

has also been reported.33 

 

up to 71 % ee
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Figure 1.8: Tandem Nazarov cyclization-fluorination 
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1.2.2 Brønsted acid catalysis: 

More recently, Rueping and co-workers32,36 have developed the first enantioselective 

Brønsted-acid catalyzed Nazarov cyclization (figure 1.9). While metal-catalyzed reactions 

provide trans-cyclopentenones,28-29,34-35 these reactions primarily generate cis- products. 

Compared to their metal-catalyzed counterpart these reactions require lower catalyst 

loadings (2 mol %) and give higher enantioselectivities (86-98 %). 

 

O

R

Me
O

c (2 mol%)

CH2Cl2

O
O

Me

R
O
O

P
O

NHSO3CF3

Ar

Ar
(c), Ar = 9-Phenanthryl

R = naphthyl,
cis:trans, 9.3:1,
88 % ee (cis)  

Figure 1.9: Brønsted acid catalyzed Nazarov cyclization 

 

1.3 Asymmetric 6"  electrocyclization: 

1.3.1 [1,6]-Electrocyclic reactions: 

The simplest example of a thermal disrotatory 6" electrocyclization is the interconversion of 

1,3,5-hexatriene to 1,3-cyclohexadiene (see figure 1.1). A reaction temperature as high as 

150-200 ˚C is often required to trigger these cyclizations, which disfavours the use of this 

elegant and efficient transformation in the synthesis of complex and delicate molecules. 

Thus, it is important to investigate systems with a lower energy barrier to hexatriene 

electrocyclization, as these could both be used under much milder conditions and be 

amenable to asymmetric catalysis. In this regard, an interesting finding by Magomedov37,38 

shows that the presence of electron-withdrawing groups at C-2 of 3-oxido hexatrienes 

significantly lowers the activation energy of 6" electrocyclization. This helps the reaction to 

proceed under mild conditions (figure 1.10). 

 

O
SO2p-Tol

Ph
!6s

-78 ˚C to rt

O
SO2p-Tol

Ph

 

Figure 1.10: Low temperature 6" electrocyclization 
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Subsequently, Funk et al.39 have reported novel indole annulations, which involved facile 6" 

electrocyclic ring closure of trienecarbamate (figure 1.11).  

 

O

NHBoc

110 oC, 1h
O

NHBoc N
 

Figure 1.11: Novel indole annulation via 6" electrocyclization 

 

A number of groups have conducted theoretical studies on electrocyclization of hexatrienes 

and shown that substitution at various positions of the 1,3,5-hexatriene can have profound 

effects on the rate of electrocyclization reactions.40-43 Fu et al.44 reported that synergistic 

combinations of electron-withdrawing and donating groups around the triene system 

significantly lowers the activation energies for the cyclization reaction by 10-12 kcal/mol 

compared to their unsubstituted counterpart (figure 1.12). This accelerates the rate of 

reaction up to 2 x 108 times, which may allow these reactions to proceed rapidly even at 

room temperature. 

 
A

D

!6s
A

D

2A-3D, 2A-5D, 3A-5D
1

(A = electron acceptor; D = electron donor)

Substitution pattern:

6
 

Figure 1.12: Hexatriene electrocyclization reaction with captodative substitution  

 

More recently based on these observations, Bergman and Trauner45 have reported the 

catalysis of the 6" electrocyclization of a 2-substituted system by transient binding with 

Lewis acids, thereby decreasing the energy barrier for electrocyclization. They have 

demonstrated that the rates of these electrocyclization reactions were increased up to 55-fold 

in the presence of Me2AlCl as a Lewis acid (figure 1.13). The classical orbital symmetry 

effects and torquoselectivity* control the relative stereochemistry of the products in these 

transformations. These results provide proof-of-principle that catalysis of 6" 

electrocyclization can be achieved using a substituent-enhancing strategy.45  

                                                
* As per the IUPAC definition, torquoselectivity is “the preference for ‘inward’ or ‘outward’ rotation of 
substituents in conrotatory or disrotatory electrocyclic ring opening reactions”, however we apply the term to 
mean absolute direction of rotation of substituents during an electrocyclic ring-closing reaction. 
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Ph

OEtO

Me

Ph

OEtO
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Figure 1.13: Lewis acid-catalyzed 6" electrocyclization 

 

1.3.2 [1,5]-Electrocyclic reactions: 

A typical [1,5]-electrocyclic reaction in which a pentadienyl anion undergoes a disrotatory 

six-electron cyclization to afford a functionalized cyclopentene with two stereocentres is 

shown below (figure 1.14 A).46 This system also reacts via a suprafacial mode like the 

hexatriene electrocyclization. Similar to substituent effects in the hexatriene cyclization, the 

presence and positioning of heteroatoms within the [1,5]-" system is known to have 

profound effects on the propensity for cyclization.47-49 Pentadienyl systems with nitrogen 

substituents cyclize at much lower temperatures compared to their all-carbon counterparts 

(figure 1.14 B). 

 

Ph Ph
Ph Ph Ph Ph

- !6s N N

Ph Ph

NHN

Ph Ph

Ph Ph
225 ˚C

KOH

-130 ˚C

PhLi

A B

 

Figure 1.14: [1,5]-electrocyclization 

 

A series of pioneering investigations by Speckamp50-55 and others56-59 have demonstrated that 

2-aza-pentadienyl anions smoothly undergo an [1,5]-electrocyclic reaction. Speckamp et 

al.60 have shown that these reactions can be rendered asymmetric with super-stoichiometric 

amounts of N-methylephedrine (figure 1.15). In a proposed model, it is assumed that the 

azomethine nitrogen hydrogen bonds to the hydroxy group and the tertiary amine 

coordinates with the enolate oxygen via Li#. This puts the azomethine and enolate oxygen in 

a helical conformation, giving rise to the cis product (figure 1.15 B). Although this is a 

powerful and efficient process, it is extremely substrate and catalyst specific. 

 



Introduction 

 8 

N

NO

O

Bn

N

N

O

O

Bn

H
C3H7
H

HC3H7

nBuLi, THF, 0 ˚C

Ph
NMe2

OH

Me

(2.5 eq.)

N
NR

HO
O LiN

MeMe

H

O

Ph

Me
H

H Bn

A B

up to 95 % ee  

Figure 1.15: A. An asymmetric [1,5]-electrocyclization; B. Transition state 

 

More recently, List et al.61 have developed a catalytic asymmetric method for the synthesis 

of 2-pyrazolines using a chiral phosphoric acid as the catalyst (figure 1.16). The $,%-

unsaturated hydrazones undergo a 6" electrocyclization to afford pyrazolines with good 

enantioselectivity. 

 

N
H
N

R1

R2
d (10 mol%)

chlorobenzene, 
30 ˚C, 75-96 h, 

0.1 M

N N

R1

R2 Ar

Ar
(d), Ar = 9-Anthracenyl

O

O
P
O

OH

up to 98 % er  

Figure 1.16: Pyrazoline synthesis via [1,5]-electrocyclization 

 

All of these electrocyclic reactions described are extremely powerful, but these do not 

constitute general methods for the asymmetric catalysis of these transformations. There is 

need to establish a new paradigm for such processes, which will enable the rapid synthesis of 

sensitive and highly functionalized complex molecules, otherwise difficult by current 

methodologies. 
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2. Results and Discussion 

 

2.1 [1,6]-Electrocyclization: 

It has been postulated through theoretical studies that the rate of electrocyclization in a 6" 

system can be accelerated by a synergistic combination of electron-withdrawing and 

donating groups on a hexatriene (figure 2.1).44  

 
A

D

!6s
A

D

2A-3D, 2A-5D, 3A-5D
1

(A = electron acceptor; D = electron donor)

Substitution pattern:

6
 

Figure 2.1: Hexatriene electrocyclization reaction with captodative substitution 

 

This tenet has been confirmed through some experimental observations by Magomedov et 

al.37,38 that demonstrated the presence of an electron-withdrawing group at C-2 and a 

donating group at C-3 of hexatriene (2A-3D system) significantly lowers the activation 

energy for 6" electrocyclization, allowing the reaction to proceed under mild conditions 

(figure 2.2).  

 

O
SO2p-Tol

Ph
!6s

-78 ˚C to rt

O
SO2p-Tol

Ph

 

Figure 2.2: Low temperature 6" electrocyclization 

 

With this in mind, we decided to synthesize substrates with suitable substituents, which will 

undergo accelerated 6" electrocyclization. As the hexatriene with system 2A-3D substituents 

had already been shown to undergo facile electrocyclization (see figure 2.2), we planned to 

synthesize the system with 2A-5D substituents (figure 2.3). An alkoxide is shown to function 

as an electron donor, but OH, OR and NR2 will all work in the same manner. Similarly, an 

ester is depicted as an illustrative electron-withdrawing group, but groups such as NO2, 

SO2R and CN will also facilitate the process. 
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A

D

O

CO2Et

R

R'

!6s R

R'

O

CO2Et2A-5D  

Figure 2.3: 2A-5D hexatriene electrocyclization 

 
It was also anticipated that catalysis might render the process asymmetric. Variation of the 

nature of the R and R’ groups and the double bond geometry of the alkene substituents will 

have a profound effect on the stereochemistry of the final product. In order to achieve an 

asymmetric transformation, we must control the facial selectivity of the process, and we 

envisaged that this could be achieved via secondary amine catalysis (figure 2.4).62  

 

Ph HMe

O
Me

Ph
CO2Et

N
H

R R
H+

O

Ph

Me

CO2Et

EtO2C N

R

R
 

Figure 2.4: 6" electrocyclization using a secondary amine catalyst 

 

In this case, the in situ generation of the reactive hexatriene in the presence of the catalyst 

initiates and accelerates the transformation. The use of a secondary amine catalysis generates 

an enamine of predictable geometry that also functions as an electron-donating group, 

allowing formation of the product. 

 

2.1.1 Retrosynthesis of hexatriene precursor: 

The plan was to synthesize the hexatriene substituted with an electron-withdrawing group at 

the 2-position and an electron-donating group at the 5-position. We envisaged that the 

electron-donating group could effectively be an enolate anion that can be derived from a 

ketone precursor. The general hexatriene skeleton would be assembled according to the key 

disconnections in figure 2.5. This route started with the transition metal coupling of halide 3 

with alkyne 4 to generate the corresponding alkyne 2. Subsequent selective cis-reduction of 

the alkyne followed by enolization would afford the desired hexatriene. 
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Figure 2.5: Retrosynthetic analysis for the preparation of 2A-5D hexatriene 

 

2.1.2 Synthesis of hexatriene precursor: 

Firstly, the decision was made to synthesize a hexatriene precursor an electron-withdrawing 

nitro group. Readily available nitrostyrene was subjected to bromination conditions, 

affording the bromonitrostyrene as needle-shaped crystals. A Sonogashira cross-coupling 

was then carried out to obtain the corresponding trimethyl silyl acetylene derivative 6 

(scheme 2.1). It was found that Et3N as a base and 1,4-dioxane as a solvent were the reagents 

of choice for this coupling reaction (table 2.1). 

 

NO2

Br

NO2

(a)

5

(b)

NO2

TMS

6  
Reagents & conditions Yield of 6 
(C6H11)2NH, MeCN, 80 ˚C, 3 h 29 % 
Et3N, 1,4-dioxane, rt, 1 h 86 % 

 

Scheme 2.1 & Table 2.1: Reagents & conditions: (a) Br2, AcOH, K2CO3, 0-120 ˚C, 1 h, 60 %; 

(b) TMS acetylene, Pd(PPh3)2Cl2, CuI, base, solvent (see table 2.1) 

 

The bromonitrostyrene 5 was obtained as single regioisomer, the geometry and structure of 

which was confirmed by X-ray crystallography (figure 2.6). 

 

NO2

Br

5
 

Figure 2.6: X-ray crystal structure of bromonitrostyrene 5 
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The plan was then to carry out acylation on the terminal alkyne, but all attempts to desilylate 

the TMS acetylene 6 were unsuccessful (table 2.2). Based on a literature report,63 it was 

found that 6 could be acylated directly in the presence of AlCl3 to afford 8 (scheme 2.2). 

 

NO2
8

O

(a)

NO2

TMS

6
NO2

H

7

(b)
X

 
Reagents & conditions Yield of 7 
TBAF, THF, rt, 1 h none 
NaF, TBAC, Et2O:H2O (1:1), rt none 
K2CO3, MeOH, 0 ˚C, 19 h none 

Scheme 2.2 & Table 2.2: Reagents & Conditions: (a) see table 2.2; (b) butyryl chloride, AlCl3,  

0 ˚C-rt, 1 h, 61 % 

 

With the ynone 8 in hand, it was anticipated that the hexatriene precursor would be formed 

via a cis- selective reduction (scheme 2.3). A range of reduction conditions were attempted, 

but all failed to produce any desired alkene 9 (table 2.3). The susceptibility of the nitro group 

to undergo reduction under these reaction conditions made it a difficult reaction to perform 

with appropriate selectivity. 

 

NO2
8

O

(a)
X

NO2

O

Ph

9

O

Ph
NO2

 
Reagents & conditions Yield of 9 
H2(g), Lindlar catalyst, quinoline, CH2Cl2, rt none 
(KCO2N)2, MeOH, AcOH, ! none 
Ni(OAc)2, NaBH4, EDA, H2 (g),  EtOH, rt none 
ZrCp2(H)Cl, THF, 0 ˚C none 

Scheme 2.3 & Table 2.3: Reagents & Conditions: (a) see table 2.3 

 
Having realized the difficulty in reducing the alkyne in the presence of a nitro group, a 

change of strategy was required. Stoltz et al.64,65 have developed a tandem Stille-oxa-

electrocyclization reaction for the synthesis of Saudin (scheme 2.4).  
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O
O

I
O

O
O

Bu3Sn

O
O

O

O O O
O

O

O O
10 11 12 13

(a)

 

Scheme 2.4: Reagents & Conditions: (a) Pd(PPh3)4, CuI, DMF, dark, 60 % 

 

In an analogous manner, the decision was made to install the alkene with the cis geometry 

already established through reaction of an alkyne. We envisaged that the production of a Z-

configured vinyl iodide followed by a subsequent cross coupling could afford the desired 

hexatriene precursor. To this end, aldehyde 14 was subjected to a Grignard addition, 

followed by a Dess-Martin oxidation to afford the desired keto-alkyne 15. The regiospecific 

hydrohalogenation of 15 was performed using LiI as shown by Lu et al.66 to obtain the 

corresponding cis-iodoketone 16 as the major isomer (scheme 2.5). 

 

(a), (b)

14

H

O O (c)
O

I

O

I
15 16 17  

Scheme 2.5: Reagents & Conditions: (a) Ethynylmagnesium bromide, THF, 0 ˚C, 30 mins, 92 %;  

(b) DMP, CH2Cl2, 0 ˚C, 1 h, 60 %; (c) LiI, AcOH, MeCN, rt, 2 h, 40 % (cis) 

 

Halide 16 could be used as a partner for transition metal coupling. Bromonitrostyrene 5 was 

subjected to Negishi coupling with the halide 16 in an attempt to generate the hexatriene 

precursor. After repeated attempts, the cross-coupling failed to afford any desired product 18 

(scheme 2.6). 

 

NO2

Br

5
NO2

O

PhO

I
16

X
(a), (b)

18  

Scheme 2.6: Reagents & Conditions: (a) tBuLi, THF, -78 ˚C then ZnBr2, THF, -78 - 0 ˚C;  

(b) 16, Pd(PPh3)2Cl2, DIBAL, THF, 0 ˚C 
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2.1.3 Using an ester as an electron-withdrawing group: 

After the disappointing results obtained in generating a hexatriene system with nitro as an 

electron-withdrawing group, attention was switched to the use of an ester group in its place. 

A study within the group67 has revealed that an acyclic enone could undergo an undesired 

isomerization reaction. With this in mind, our initial investigation focused on an alkene 

enveloped within a ring to prevent uncontrolled isomerization.  

 

With this objective, the synthesis was started from coumarin in which the ester group is 

tethered within the ring as a lactone. According to a literature procedure,68 bromocoumarin 

20 was obtained by regioselective bromination of coumarin 19, and subsequently subjected 

to Sonogashira coupling to afford alkyne 21. The keto-alkynes 23-24 were obtained by 

acylation of 21 with acyl chlorides in acceptable yields (scheme 2.7). The alkyne 25 was not 

observed under the acylation conditions, instead a desilylated product 22 was obtained. 

 

19

O O O O

(a) Br

O O

(b)

R

O O

R'

O
(c)

20
R' = propyl, 23
R' = ethyl,   24
R' = OBn,   25

21-22 23-25

R = TMS, 21
R = H,      22

 

Scheme 2.7: Reagents & Conditions: (a) Oxone®, 2 M HBr, Et3N, CH2Cl2 rt, 15 h, 93 %;  

(b) TMS acetylene, Pd(PPh3)2Cl2, CuI, DMF, 60 ˚C, 3 h, 88 %; (c) alkyl chloride, AlCl3, CH2Cl2,  

0 ˚C, 1 h, 80-85 % 

 

Once the ynone was in hand, the last step towards generating the hexatriene precursor was to 

selectively reduce the triple bond to obtain the cis-alkene. We were pleased to see that 

selective reduction of 23 in the presence of the Lindlar catalyst produced the desired alkene 

26 in 79 % yield (scheme 2.8).  

 

(a)

O O

O

23
O O
26

O

 
Scheme 2.8: Reagents & Conditions: (a) H2(g), Lindlar catalyst, CH2Cl2, rt, 7 h, 79 % 
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The ketone 26 was subjected to various conditions that it was anticipated could generate the 

reactive hexatriene, which would subsequently undergo 6" electrocyclization (table 2.4). 

However, no products of electrocyclization were observed, and the most common product 

was the trans-configured alkene 28 (scheme 2.9). 

 

(a)

O O
26

O

O O

O

O O

O

O O

X

2728

O

 

N
H OTMS

F3C CF3
CF3

CF3
Jørgensen catalyst  

 

 

 

Scheme 2.9 & Table 2.4: Reagents & Conditions: (a) see table 2.4 

 

The alkene 26 was then subjected to iminium catalysis conditions, but failed to produce the 

desired electrocyclization product (table 2.4, entry 4-6). It was also heated under microwave 

conditions, however isomerization of cis-alkene 26 to trans-alkene 28 was the only observed 

reaction (table 2.4, entry 7-8). The geometry and structure of 28 was further confirmed by X-

ray crystallography (figure 2.7). 

O O

28

O

 
Figure 2.7: X-ray structure of 28 

We reasoned that the failure of 26 to undergo cyclization could be because of the aromatic 

ring in coumarin. The geometrical requirements of the ring-closing reaction could be 

preventing the substrate from undergoing 6" electrocyclization.  

Entry  Reagents & conditions Yield of 27 
1. i. LDA, THF, -78 ˚C; ii. TBSOTf none 
2. i. LDA, THF, -78 ˚C; ii. CD3COOD none 
3. KHMDS, THF, -78 ˚C none 
4. Pyrrolidine, MeOH, 0 ˚C none 
5. L-Proline, MeOH, 0 ˚C none 
6. Jørgensen’s catalyst, CH2Cl2, rt, dark none 
7. DMSO-d6, "wave none 
8. DMF, "wave none 
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2.1.4 Dihydropyranone derivative: 

As demonstrated earlier, we believed that presence of an aromatic ring in 26 could be 

preventing the cyclization. With this in mind, we decided to prepare a substrate similar to 26, 

but without any aromatic ring. This could be achieved by synthesizing the corresponding 

dihydropyranone derivative 33. According to a literature procedure,69 commercially 

available dihydropyranone 29 was brominated at the 2-position to afford 30 in excellent 

yield. This subsequently underwent an efficient Sonogashira coupling followed by acylation 

to afford keto alkyne 32 (scheme 2.10).  

 

30

O O

Br

O O

(a)

O O

(b)

TMS

O O

(c) O

31 3229  

Scheme 2.10: Reagents & Conditions: (a) Br2, Et3N, CH2Cl2, 0 ˚C-rt, 2 h, 94 %; (b) TMS acetylene, 

 Pd(PPh3)2Cl2, CuI, 1,4-dioxane, rt, 1 h, 78 %; (c) butyryl chloride, AlCl3, CH2Cl2, 0 ˚C, 1 h, 53 % 

 

Similar to the coumarin derivative 26, we envisaged that the stereospecific reduction of 

alkyne 32 would also furnish cis-alkene 33. Alkyne 32 was subjected to hydrogenation in the 

presence of the Lindlar catalyst under similar conditions, however we did not observe any 

desired alkene 33; instead isolated only the oxo-electrocyclized product 34. We believe that 

the alkene 33 was formed in situ and underwent a rapid 6" electrocyclization involving the 

ketone to afford 34 (scheme 2.11). 

 

O O

(a)

O O

O

32

O

33
O O

O

33
O O

O
!6s

oxo-

34  

Scheme 2.11: Reagents & Conditions: (a) H2(g), Lindlar catalyst, CH2Cl2, rt, 1 h, 61 % 

 

All electrocyclization reactions are reversible, and hence we anticipated that the oxo-

electrocyclized product 34 could be in equilibrium with its open-chain form. Accordingly, 

we treated 34 with Jørgensen’s catalyst, hoping that the open-chain product 33, even if only 



Results and Discussion 

 17 

present in trace amounts of equilibrium, would undergo the desired hexatriene cyclization to 

afford 35. However, we did not observe any formation of 35, but recovered back all the SM 

34 (scheme 2.12). 

 

O O

O

33

O O

O

34

(a) N
H

R

O O

N R

H+

O O

O

H

35

X

 

Scheme 2.12: Reagents & Conditions: (a) Jørgensen catalyst, CH2Cl2, 0 ˚C 

 

We also tried to generate silyl enol ether 36 from 32 and to subject 32 to reduction 

conditions in the presence of Jørgensen’s catalyst, but without any success (scheme 2.13). 

 

(a)

O O

O

32
O O

O

H

35

X
(b)

O O

OTBS

36

X

 

Scheme 2.13: Reagents & Conditions: (a) Jørgensen cat., Lindlar cat., H2(g), CH2Cl2, rt;  

(b) nBuLi, THF, -78 ˚C then TBSOTf, -78 ˚C 

 

2.1.5 Sulfone derivative: 

After failing to obtain any cyclohexene product with a nitro or an ester as an electron-

withdrawing group, we decided to investigate the utility of a sulfone group. Similarly to 

coumarin 23 and dihydropyranone 32, we synthesized alkyne 41 by a series of reliable steps. 

According to a literature procedure,70 the vinyl sulfone 38 was prepared from commercially 

available styrene 37, which then underwent bromination to furnish 39. Sonogashira coupling 

of the halide 39 followed by acylation produced the ynone 41. When 41 was subjected to 

reduction conditions in the presence of the Lindlar catalyst, we observed the pyran-derived 

product 43; we rationalized this was formed through an electrocyclic 6" process (scheme 

2.14). 
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(d)

(a)
SO2p-Tol

(b)
Br

(c)

SO2p-Tol

TMS

SO2p-Tol

O

OPh

SO2p-Tol

SO2p-Tol

(e)O

SO2p-Tol
Ph

38 39

404143

37

42  

Scheme 2.14: Reagents & Conditions: (a) NaI, CAN, MeCN, rt, 45 mins, 93 %; (b) Br2, AcOH, 

K2CO3, !, 1 h, 95 %; (c) TMS acetylene, Pd(PPh3)2Cl2, CuI, DMF, 50 ˚C, 5 h, 73 %; (d) butyryl 

chloride, AlCl3, CH2Cl2, 0 ˚C, 1 h, 90 %; (e) Lindlar cat., quinoline, H2(g), CH2Cl2, 0 ˚C, 62 % 

 

These findings confirmed that a ketone of this form could not be used as an intermediate en-

route to a hexatriene, as it undergoes essentially an irreversible oxo-electrocylization. 

Moreover, the tendency of the cis-alkene to undergo isomerization to the unwanted trans-

alkene also needed to be addressed. 

 

2.1.6 Strategy revisited: 

With the evident problems of alkene isomerization and oxo-electrocyclization, we decided to 

revisit our original strategy (figure 2.8). In an initial investigation our aims were to: (i) 

generate the alkene within a ring to prevent isomerization; (ii) avoid the use of a free ketone 

to preclude any oxo-electrocyclization. 

 

O
R

R'
EWG

!6s

oxo-
O

R

EWG
R'

isomerize

EWG
R'

O
R

 

Figure 2.8: problems in hexatriene cyclization 

 

Firstly, it was decided to place the alkene inside a ring and leave the ketone portion intact. A 

simple way to achieve this was to install the alkene component as an aryl ring. This was 

embodied in compound 44, which could be assembled via a late stage Suzuki coupling of the 
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bromide 45 and the corresponding boronate 46 (figure 2.9). The bromide 45 could be 

prepared by Grignard addition to the aldehyde, followed by oxidation. 

 
O

R

CO2Et
R'

44

Suzuki

coupling

O
R

Br CO2Et
R'B

O

O+

45 46  

Figure 2.9: Retrosynthetic analysis 

 

In a forward sense, the bromoketone 48 was synthesized according to a literature procedure71 

from the corresponding aldehyde 47. Addition of ethylmagnesium bromide to the aldehyde 

47, followed by Swern oxidation produced the desired ketone 48 in 68 % over two steps 

(scheme 2.15).  

 

O

Br

H

O

Br

(a), (b)

4847  

Scheme 2.15: Reagents & Conditions: (a) EtMgBr, THF, 0 ˚C, 75 %; (b) DMSO, TFAA, Et3N, 

CH2Cl2, -78 ˚C-rt, 1 h, 90 % 

 

The boronate esters 49-51 were obtained by hydroboration of the alkyne using Stryker’s 

reagent, a very reliable method demonstrated by Lipshutz and co-workers72 (scheme 2.16 A). 

The alkyne underwent chemo- and stereoselective 1,2-addition of copper hydride followed 

by transmetallation with pinacolborane to generate the desired boronate with retention of 

stereochemistry. The boronate ester 49 could subsequently be converted into the boronic acid 

52 and trifluoro borate salt 53, which could also be used as coupling partners for the Suzuki 

reaction (scheme 2.16 B). 
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R CO2Et
(a)

RB

CO2Et

O

O

A

B
49-51

B

CO2Et

O

O

49

B

CO2Et

(a) KF3B

CO2Et
HO

OH

52 53

(b)

 

Scheme 2.16 & Table 2.5: Reagents & Conditions: A. (a) [(PPh3)CuH]6, PPh3, pinacolborane, THF, 

0 ˚C, 10 min; B (a) NaIO4, NH4OAc, acetone:H2O, rt, 15 mins, 91 %; (b) KHF2, MeOH:H2O,  

rt, 4 h, 55% 

 

Consequently, bromoketone 48 was subjected to optimized Suzuki conditions with boronate 

esters or salts in aqueous solvent to obtain the desired coupling products 54-56. The ethyl or 

methyl boronates readily underwent the desired coupling, but the phenyl boronate 51 failed 

to generate any product under the reaction conditions (scheme 2.17). With 54 and 55 in 

hand, we began to investigate their propensity to undergo in 6" electrocyclization.  

 

O

Br

48

O

R
CO2Et

54-56

(a)

 

Scheme 2.17 & Table 2.6: Reagents & Conditions: (a) boronate, Pd(dppf)Cl2&CH2Cl2,  

Et3N, THF:H2O, ! 

 

The hexatriene precursor 54 was subjected to a variety of conditions in an attempt to initiate 

the desired electrocyclization (scheme 2.18, table 2.7). In all the cases the SM was recovered 

and no electrocyclized product 57 was observed. The ketone 54 was subjected to heating at 

100 ˚C and iminium catalysis using the Jørgensen catalyst, but without any success. We 

rationalized that in order to undergo electrocyclization the aromatic ring has to dearomatize, 

and this could be raising the kinetic barrier to electrocyclization significantly.  

 

R Product, yield 
CH3 49, 77 % 
C2H5 50, 73 % 
Ph 51, 96 % 

Boronate R Product, yield 
53 CH3 54, 53 % 
50 C2H5 55, 57 % 
51 Ph 56, none 
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(a)
O

CO2Et

O

CO2Et

O

CO2Et
H

O

CO2Et

H
X

54 57  
 
 
 
 
 
 

Scheme 2.18 & Table 2.7: Reagents & Conditions: (a) see table 2.7 

 

2.1.7 Isomerization approach: 

After the failure of 54 to undergo any cyclization, we decided to pursue an approach shown 

by Nelson and co-workers.73 In this work, he elegantly demonstrated an iridinium-catalyzed 

allyl isomerization for asymmetric Claisen rearrangements. When 58 was subjected to 

isomerization-Claisen rearrangement reaction conditions, it delivered the rearrangement 

product 59 in enantiomeric purity of up to 96 % (scheme 2.19).  

 

Et R

O 1 mol% Ir(PCy)3
+

3 mol% PPh3. ∆ Et R

OHC Me

59, up to 96 % ee58

Et R

O Me

 

Scheme 2.19: Isomerization-Claisen rearrangement  

 

We envisioned that we could use a similar strategy to synthesize a hexatriene as a transient 

reactive intermediate. With this in mind, 61 was prepared in two steps from the 

commercially available aldehyde 60.74,75 When 61 was reacted with 30 under Sonogashira 

coupling conditions in an attempt to form 62; we were surprised to see the formation of 

product 63 in 30 % yield (scheme 2.20). Nonetheless, the undesired product 63 was 

subjected to isomerization conditions similar to used by Nelson and co-workers,73 but it 

failed to generate any desired transient hexatriene 64 that would subsequently undergo 6" 

electrocyclization (scheme 2.20). 

 

Reagents & Conditions Yield of 57 
LDA, THF, -78 ˚C none 
Cs2CO3, toluene, rt, o/n none 
100 ˚C, o/n none 
Jørgensen cat., CH2Cl2, rt none 
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Scheme 2.20: Reagents & Conditions: (a) ethynylmagnesium bromide, THF, -78 ˚C, 2 h, 95 %;  

(b) imidazole, TBSCl, CH2Cl2, rt, 2h, 76 %; (c) 30, Pd(PPh3)2Cl2, CuI, 1,4-dioxane, rt;  

(d) Ir(PCy)3
+, NaBPh4, PPh3, CH2Cl2:acetone (25:1), ! 

 

We believe the formation of 63 could be due to a Sonogashira-hydropalladation-Sonogashira 

sequence of reactions. Initially the halide 30 undergoes coupling with alkyne 61 to afford the 

Sonogashira product 62. The coupled product 62 subsequently undergoes oxygen-directed 

hydropalladation followed by another cycle of the Sonogashira coupling to produce 63 

(figure 2.10).  

Pd(0)L2

PdL L

O

O

TBSO

Pd
L
Br

L

O
O

O O

Br

30

OTBS

OTBS

Cu

CuI

O
O

OTBS

O O
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Sonogashira
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Figure 2.10: The Sonogashira-hydropalladation-Sonogashira cycle 
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At this stage it was clear that a viable system required: (i) a central double bond in a 

cyclohexene ring instead of an aromatic ring, and (ii) a transient enolate equivalent that was 

not derived from a free ketone. The approach was to use an isomerization strategy to 

generate the required evanescent hexatriene as demonstrated by Nelson et al. (see scheme 

2.19).73 With this in mind, we planned to synthesize a substrate similar to 66 that could 

undergo isomerization at the allylic position to generate the required hexatriene. We hoped 

to assemble 66 by Grignard addition to aldehyde 67, which in turn could be generated via 

transition metal coupling from the corresponding aldehyde 68 and boronate 69 (figure 2.11). 

 
OH

CO2R
R'

B

CO2R
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O

H
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O
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H
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O
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Figure 2.11: Retrosynthetic analysis 

 

As described earlier, the alkynes undergo copper mediated cis-hydroboration to produce the 

boronate esters (see scheme 2.16). Subjecting these boronates 50 and 70 to the Suzuki 

reaction conditions with bromoaldehyde 68 generated the desired coupling products 71-72 in 

good yields (scheme 2.21).  

 
O

H

Br
68

(a)

O

H

CO2R

71, 72

(b)
OH

CO2R

X

O

ORO
73, 7475

R (boronate)

O

O

Product, yield
C2H5 (50)
iPr (70)

71, 95 %
72, 77 %

 

Scheme 2.21 & Table 2.8: Reagents & Conditions: (a) Pd(dppf)Cl2&CH2Cl2, SPhos, K3PO4, 

 toluene:H2O, 90 ˚C, 2 h; (b) Vinylmagnesium bromide, THF, -20 ˚C, 2 h, 83 % 
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We hoped to obtain the allyl alcohols 73-74 by vinyl magnesium bromide addition to the 

aldehydes 71-72, which would subsequently be used to generate the transient hexatriene by 

the previously discussed isomerization approach. However, under the reaction conditions, 

the addition of the vinyl anion equivalent to the aldehyde generated an alkoxide functional 

group that intramolecularly trapped onto the ester to give lactone 75 (see scheme 2.21). 

 

2.1.8 Conclusions: 

The [1,6]- electrocyclization proved to be a challenging transformation to perform. The 

difficulty in synthesizing the hexatriene precursors makes it an intricate process. When 

possible (as in 28) the central cis-alkene prefers to exist in trans-configured geometry, which 

makes it impossible to undergo any electrocyclization. 

 

Equally, under the reaction conditions the free ketones (34 and 43) underwent an essentially 

irreversible oxo-electrocyclization, but failed to facilitate any carbon-cyclized product. From 

these observations, it was concluded that (i) the central alkene should always be inside a ring 

to prevent isomerization; (ii) the use of a free ketone must be avoided to preclude any oxo-

electrocyclization. 

 

The strategy was revised to transiently generate hexatriene as a reactive intermediate via an 

isomerization approach, elegantly demonstrated by Nelson.73 In this case, we observed the 

formation of lactone 75 by vinyl nucleophile addition to the corresponding aldehydes 71 and 

72. We require a less basic source of vinyl anion, or a bulkier ester such as tert-butyl, to 

prevent any lactonization.  
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2.2 [1,5]-electrocyclization: 

As mentioned earlier, in the archetypal [1,5]-electrocyclic reaction, a pentadienyl anion 

undergoes a disrotatory six-electron cyclization to afford a functionalized cyclopentene with 

two stereocentres (figure 2.12 A).46 Like the hexatriene electrocyclization, this isoelectronic 

anionic system reacts suprafacially. It has been shown that the presence of a heteroatom 

inside this system has a profound effect on the rate of electrocyclization (figure 2.12 B).47-49 

 

Ph Ph
Ph Ph Ph Ph

- !6s N N

Ph Ph

NHN

Ph Ph

Ph Ph
225 ˚C

KOH

-130 ˚C

PhLi

A B

 

Figure 2.12: [1,5]-electrocyclization 

 

A pioneering work by Speckamp and co-workers60 has demonstrated a smooth asymmetric 

[1,5]-electrocyclization of a 2-aza-pentadienyl anion (figure 2.13). Although this is a 

powerful and efficient transformation, it requires super-stoichiometric amounts of N-

methylephedrine as a catalyst and is extremely substrate and catalyst specific. 
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Ph
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(2.5 eq.) up to 95 % ee  

Figure 2.13: An asymmetric [1,5]-electrocyclization 

 

With this in mind, we planned to synthesize substrates that would undergo [1,5]-

electrocyclization. We knew that a substrate of the type 76 would be difficult to undergo 

electrocyclization. Similarly, as illustrated earlier for the hexatriene system, we envisaged 

that introduction of an electron-withdrawing group at the 2-position of 76 would enhance the 

rate of cyclization (see figure 2.2). To investigate this hypothesis we hoped to synthesize 

substrates similar to 77 and 78 (figure 2.14).  
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Figure 2.14: [1,5]-electrocyclic substrates 

 

We rationalized that in order to control the absolute direction of rotation of the orbitals in the 

ring-closing process of these systems, we needed to block one "-face of the delocalized 

anion and rely on the stereospecificity of the electrocyclization to direct the stereochemical 

outcome (figure 2.15). One way to accomplish this would be to exploit tight-ion pairing in an 

organic solvent, using a chiral counterion to select one of the two faces of a pentadienyl 

anion or equivalent, and hence influence the enantioselectivity of the cyclization reaction. 

 

X X
R1 R2

R1 R2

X

R1

R3 R3 R3

R2 R2
R2R2

X+

base

catalyst

torquoselective

cation directed
electrocyclization

-

X = C, N  
Figure 2.15: Strategy for asymmetric 6" electrocyclization 

 

2.2.1 Retrosynthesis: 

In order to test the feasibility of the electrocyclic process, we decided to synthesize substrate 

similar to 79. We envisaged that 79 could be assembled via the Suzuki coupling of malonate 

80 with boronate 69 as the other coupling partner (figure 2.16). The malonate 80 could be 

derived from the commercially available 2-iodophenylacetic acid.76 As exemplified earlier, 

we hoped to obtain the boronate 69 by regiospecific hydroboration of the alkyne (see scheme 

2.16).  

 

R'

CO2iPr

CO2iPr

CO2R
I

CO2iPr

CO2iPr R'
CO2R
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O
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+
Suzuki 

coupling

 
Figure 2.16: Retrosynthetic analysis  
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2.2.2 Synthesis of malonate: 

The phenylmalonate 80 was formed from 2-iodophenyl acetic acid 81 in two high-yielding 

steps. The acid 81 underwent an esterification to generate the corresponding isopropyl ester 

82 in good yield. This ester 82 was subsequently treated with a base and isopropyl 

chloroformate in order to obtain the malonate 80 (scheme 2.22). We found that NaH was a 

poor choice of base for this transformation, however switching to a stronger base LiHMDS 

gave complete conversion (table 2.9). 

 

80

CO2H

I

(a) CO2iPr

I

(b)
CO2iPr

I

CO2iPr

8281  

Scheme 2.22 and Table 2.9: Reagents & Conditions: (a) Conc. H2SO4, iPrOH, 90 ˚C, 3 h, 84 %;  

(b) base, THF, -78 ˚C then iPrOCOCl (see table 2.6 ) 

 

2.2.3 Suzuki coupling: 

Once the malonate 80 was in hand, the next step was to subject it to the transition metal-

catalyzed coupling reaction to afford the desired adducts. The ease of preparation of 

reactants, the mild reaction conditions and the non-toxic byproducts favored performing a 

Suzuki reaction on malonate 80 with boronates 49-51 as the coupling partners. The 

boronates 49-51 were obtained by hydroboration of the corresponding alkynes using the 

Stryker reagent (see scheme 2.16).72 Some optimization of the cross-coupling reaction 

revealed that palladium(II) acetate and cyclohexyl JohnPhos 85 gave the best yields for alkyl 

boronates 49 and 50 (scheme 2.23).  

 

80

CO2iPr

I

(a)

CO2iPr

CO2iPr

CO2iPr

R
CO2Et

83-84

P(Cy)2

85
R = CH3, 83 (25 %)
R = C2H5, 84 (61 %)  

Scheme 2.23: Reagents & Conditions: (a) Pd(OAc)2, 85, Et3N, dioxane:H2O, 60 ˚C, 

 

Base Yield of 80 
NaH none 
KHMDS 50 % 
LiHMDS 91 % 
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Contrary to this, under similar reaction conditions phenyl boronate 51 failed to afford desired 

Suzuki adduct 86 (scheme 2.24); instead the deboronation products 87 and 88 were obtained. 

We reasoned that this could be due to the failure of the boronate to undergo transmetallation. 

The function of the base in the Suzuki cross-coupling reaction is to activate the boron by 

forming an ‘ate’ complex, thereby enhancing the polarization of the organic ligand, and 

accelerating the transmetallation.77 We thought, in this particular case, the base triethylamine 

was incompatible with the functional groups present in the reactants. Literature reports78,79 

suggest that fluoride, due to its weak basicity and poor nucleophilicity, could be of particular 

value in these coupling reactions. The high affinity of fluoride ion for boron, and the 

considerable stability of the fluoroborate ion accelerate the transmetallation step. For this 

study we chose cesium fluoride and were pleased to observe the coupling adduct 86 (scheme 

2.24) in moderate yield. The yield increased slightly to 50 % when phosphine ligand 85 was 

replaced by XPhos 89 (table 2.10). We performed a series of experiments and found that the 

palladium(II) acetate was the optimum source of ‘Pd’ for this reaction. 

 

80

CO2iPr

I

(a)

CO2iPr
CO2iPr

CO2iPr

Ph

86

CO2EtPh
CO2Et

Ph

87 88

P(Cy)2

CO2Et

+ + iPriPr

iPr
89  

Entry Reagents & Conditions Yield of 86 
1. Pd(OAc)2, 85, Et3N, dioxane:H2O, ! none 
2. Pd(OAc)2, 85, Et3N, nPrOH:H2O, ! 20 % 
3. Pd(OAc)2, 85, CsF, toluene, 50 ˚C 45 % 
4. Pd(OAc)2, 89, CsF, toluene, rt 50 % 

Scheme 2.24 & Table 2.10: Reagents & Conditions: (a) see table 2.10 

 

Although we managed to get a decent yield of coupling product 86, reproducibility was a 

problem. As a consequence we decided to reverse the coupling partners and carry the 

malonate component as a pinacolboronate and coupling it with the corresponding vinyl 

halides. The boronate 90 was prepared by pinacolborane addition to the malonate 80 in 

presence of palladium(II) acetate as a catalyst and cyclohexyl JohnPhos 85 as a phosphine 

ligand . Unfortunately, when boronate 90 was subjected to Suzuki conditions in the presence 

of halide 30, we failed to observe any coupling product 91 (scheme 2.25).  

 



Results and Discussion 

 29 

CO2iPr

CO2iPr

I

80

(a) CO2iPr

CO2iPr

B
O

O
(b)
X

CO2iPr

CO2iPr

OO
90 91  

Scheme 2.25: Reagents & Conditions: (a) Pd(OAc)2, 85, Et3N, pinacolborane, 1,4-dioxane,  

3 h, 75 %; (b) 30, Pd(OAc)2, 85, Et3N, dioxane:H2O, 80 ˚C 

 

The difficulties associated the Suzuki reaction precluded its application in the generation of 

the desired pentadienyl anion precursor, and hence we decided to apply an alternative 

transition metal catalyzed process: the Stille reaction. 

 

2.2.4 Stille coupling: 

Since its first reported use in the late 1970's, the Stille reaction has been widely used for the 

coupling of both aromatic and vinylic systems.80,81 Because of the problems experienced 

with the Suzuki reaction, the decision was made to apply the Stille coupling for the synthesis 

of the pentadienyl anion precursor, which has fewer limitations on the nature of the coupling 

partners.81  

 

We envisaged that the precursor 92 could be assembled via the Stille coupling of the 

malonate 80 with the stannane 93 as the other coupling partner. The stannanes in turn could 

be generated by hydrostannylation of the corresponding alkynes (figure 2.17). At this point 

we also decided to employ a bulkier isopropyl ester as an electron-withdrawing group at the 

2-position, to avoid any direct 1,2-addition to this functional group. 

 

R

CO2iPr

CO2iPr

CO2iPr
I

CO2iPr

CO2iPr R
CO2iPr

92 80 93

+
Stille

coupling

R'Sn
R

CO2iPr

Hydrostannylation

94  

Figure 2.17: Retrosynthesis via the Stille reaction 

 

2.2.4.1 Alkyne synthesis: 

As illustrated earlier, the phenylmalonate 80 was obtained from 2-iodophenyl acetic acid 81 

in two high-yielding steps (see scheme 2.22). An alkyne ester 94 could be synthesized (i) by 
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direct acylation of terminal alkyne, or (ii) via Corey-Fuchs reaction followed by trapping 

with chloroformate. When subjected to acylation conditions with isopropyl chloroformate, 

Phenylacetylene 95 afforded the desired isopropyl ester 106 in 70 % yield (scheme 2.26).  

 
H

(a)
CO2iPr

95 106  
Scheme 2.26: Reagents & Conditions: (a) nBuLi, THF, -78 ˚C then iPrOCOCl, 76 % 

 
Although some terminal alkynes are commercially available, they are expensive and hence 

we decided to employ the Corey-Fuchs reaction for the synthesis of alkyne esters 94. In the 

first step, aldehydes were treated with carbon tetrabromide and triphenylphosphine, 

generating the dibromoalkenes 101-105 in excellent yields. Treatment of these dibromides 

with 2.2 equivalents of n-butyllithium followed by acylation with isopropyl chloroformate, 

afforded the corresponding alkyne esters (scheme 2.27). By this methodology a range of 

alkyne esters 107-111 were synthesized from the corresponding aldehydes (table 2.11). 

R H

O
R Br

Br
R CO2iPr(a) (b)

96-100 101-105 107-111  
 

Entry Aldehyde Alkyne ester Entry Aldehyde Alkyne ester 

1. H

O

MeO 96  
107

CO2iPrMeO

 
4. H

O

99

O

O  110

CO2iPr

O

O

 

2. H

O

97

MeO

 
108

CO2iPr

MeO  
5. H

O

100  111

CO2iPr

 

3. H

O

98  109

CO2iPr

 

Scheme 2.27 & Table 2.11: Reagents & Conditions: (a) CBr4, PPh3, CH2Cl2, 0 ˚C, 90-99 %; 

(b) nBuLi, THF, -78 ˚C then iPrOCOCl; (c) Pd(PPh3)4, Bu3SnH, THF, 0 ˚C, 44-95 % 

 

2.2.4.2 Hydrostannylation:* 

These alkyne esters were subsequently subjected to palladium-catalyzed hydrostannylation 

conditions. Treatment with palladium tetrakis(triphenylphosphine) and tributyltin hydride at 

                                                
* This work was done in collaboration with Peter Knipe 
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0 ˚C generated the desired stannanes 112-117 in moderate to excellent yields (scheme 2.28). 

These would be then used as coupling partners for the Stille reaction.82-84 

 

R CO2iPr
(a)

106-111 112-117

Bu3Sn R
CO2iPr

 
 

Bu3Sn
iPrO2C

Bu3Sn Bu3Sn
iPrO2C

Bu3Sn
iPrO2C

Bu3Sn
iPrO2C

Bu3Sn
iPrO2C

OMe

OMe

iPrO2C

112 (86 %) 113 (82 %) 114 (54 %)

115 (63 %) 116 (65 %) 117 (96 %)

O

O

 
 

Scheme 2.28: Reagents & Conditions: Pd(PPh3)4, Bu3SnH, THF, 0 ˚C 

 
Palladium(0) catalyzed hydrostannylation of the alkyne esters proceeded to give a single 

regio- and geometric isomer in all cases (see scheme 2.28). In this catalytic cycle, 

palladium(0) undergoes oxidative addition to the tin-hydrogen bond to generate the 

palladium(II) complex 118. This complex then coordinates with the alkyne and delivers the 

hydride preferentially to the aryl substituted terminus to afford 119. This subsequently 

undergoes reductive elimination to generate the corresponding stannane (figure 2.18).85,86 

 

Pd(0)Ln
Bu3SnH

Pd SnBu3
L

L
H

R
O

iPrO
R

O

iPrO

Pd
SnBu3L
HL

H

R

Pd

OiPr
O

SnBu3

L
L

H

R
OiPr

O
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Figure 2.18: Palladium-catalyzed hydrostannylation 
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The stereochemistry of the stannanes obtained was further confirmed by NMR studies. The 

coupling constant between the vinyl proton and the Sn atom (3JSn-H = 28.5-29.6) was 

consistent with a literature report for (E)-vinyl stannane.82 However, the coupling constant 

for (Z)-vinyl stannane synthesized by radical hydrostannylation was found to be > 50 (figure 

2.19). 

 

H

R
OiPr

O

Bu3Sn

J = 28.5-29.6

R

H
OiPr

O

Bu3Sn
J = >50

(E)-vinylstannane (Z)-vinylstannane  

Figure 2.19: Coupling constants for vinyl stannanes 

 

2.2.4.3 Transition metal coupling: 

After obtaining the desired stannanes, they were subjected to the Stille coupling conditions. 

It was found that the phenylmalonate 80 underwent reaction with stannanes in the presence 

of palladium(II) acetate and cyclohexyl JohnPhos to generate the adducts 120-125 in 

moderate yields (scheme 2.29).  
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Bu3Sn R
CO2iPr

CO2iPr

CO2iPr

I

80

(a) CO2iPr

CO2iPr

+

CO2iPr
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CO2
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OMe
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Scheme 2.29: Reagents & Conditions: (a) Pd(OAc)2, cyclohexyl JohnPhos 85, CuI, DMF, rt, 12-18 h 
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2.2.5 Asymmetric 6" electrocyclization: 

After the success of Stille coupling in generating a series of precursors, we planned to 

investigate the electrocyclization of these substrates. A parallel work within the group by E. 

Macvier and S. Thompson had demonstrated that 2-aza-pentadienyl substrates can undergo 

6" electrocyclization in the presence of base and a phase transfer catalyst.87 Cinchonidinium 

derived catalyst 125a was found to give the best enantioselectivity for this transformation 

(scheme 2.30). The reaction afforded the functionalized indolines in high yields and 

excellent enantioselectivity (up to 98 %).  

 

N

CO2iPr

CO2iPr
N
H

CO2iPr
CO2iPr

R1 R1
N

H

H

OH
N

Cl

R2 R2

(a)

125a
up to 98 % ee (>30 examples)  

Scheme 2.30: Reagents & Conditions: (a) catalyst 125a (10 mol %), toluene, -15 ˚C, K2CO3 (aq.) 

 

With these results in mind, we decided to probe the electrocyclization of an analogous all-

carbon system. The substrate 84 was subjected to various basic conditions to establish the 

ease with which the electrocyclization occurs. As mentioned earlier, we envisaged that an 

asymmetric variant of this cyclization could be achieved by blocking one "-face of the 

delocalized anion, and relying on the stereospecificity of the electrocyclic process to direct 

the stereochemical outcome (figure 2.20). One way to achieve this would be to exploit tight-

ion pairing in an organic solvent. Asymmetric phase-transfer catalysis88,89 relies on the tight 

ion-pairing principle,90-94 and has been demonstrated to be a powerful and practical approach 

to the generation of enantioenriched materials.  

 

R1 R2
R1 R2 R1
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R2 R2
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Figure 2.20: Strategy for asymmetric 6" electrocyclization 
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In a preliminary investigation, it was discovered that 84 underwent electrocyclization under 

racemic conditions, with Cs2CO3 as the base (scheme 2.31). This generated the cyclized 

product 126 and 127 with diastereoselectivity of 19:1 (entry 3, table 2.12). It was observed 

that 2.2 equivalents of Cs2CO3 at -20 ˚C for 3 days were the optimum conditions for full 

conversion with high dr. Under the same reaction conditions, using cinchonidinium derived 

125a as a phase-transfer catalyst, the diastereoselectivity increased to 33:1, but we did not 

observe any enantioselectivity (entry 4). When the temperature was further lowered to -55 

˚C, the reaction failed to give any electrocyclized product and all the starting material was 

recovered (entry 5 & 6). It was also found that the reaction did not proceed in the presence of 

aq. K2CO3 as the base (entry 7). The lack of any enantiomeric excess is consistent with 

cyclization of aza-pentadienyl anion with linear chain alkyl substitution.87 However, higher 

enantioselectivities were obtained for branched and cyclized alkyl substitution in case of aza-

pentadienyl substrates.87 

 

CO2iPr

CO2iPr

CO2Et

iPrO2C CO2iPr

H

H
CO2Et

iPrO2C CO2iPr

H

H
CO2Et

126 127

(a)

84

N

H

H

OH
N

Cl

125

+

  
Entry Reagents & Conditions  Product (dr) 

1. Cs2CO3, toluene, rt, 15 h 126, 127 (9:1) 
2. Cs2CO3, 125a, toluene, rt, 15 h  126, 127 (9:1) 
3. Cs2CO3 (2.2 eq.), toluene, -20 ˚C, 3 days  126, 127 (19:1) 
4. Cs2CO3 (2.2 eq.), 125a, toluene, -20 ˚C, 3 days  126, 127  (33:1) 
5. Cs2CO3 (2.2 eq.), toluene, -55 ˚C, 3 days  SM, 84 
6. Cs2CO3 (2.2 eq.), 125a, toluene, -55 ˚C, 3 days  SM, 84 
7. 33 % aq. K2CO3, 125a, tol:CHCl3 (5:1), -20 ˚C, 4 days SM, 84 

Scheme 2.31 & Table 2.12: Reagents & Conditions: (a) see table 2.12 

 

To establish whether changing the group at the %-position of the alkene could affect 

cyclization, we subjected phenyl substrate 120 to the same conditions. We observed that a 

stronger base such as CsOH&H2O was necessary for the reaction to go to completion. We 

were delighted to see that in the presence of catalyst 125a, the phenyl substrate 120 

underwent 6" electrocyclization at -15 ˚C (scheme 2.32). This afforded the cyclized products 

128 and 129 as a 5:1 mixture of diastereoisomers in 28 % ee (major) (entry 4, table 2.13). In 

the 2-aza-pentadienyl anion cyclization, an increase in enantioselectivity was observed at 
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lower temperature,87 however in this case, lowering the temperature to -30 ˚C led to a 

reduction in enantioselectivity (entry 5).  

 

CO2iPr

CO2iPr

120

N

H

H

OH
N

Cl

125

(a)

H CO2iPr
H

iPrO2C CO2iPr

iPrO2C H CO2iPr
H

iPrO2C CO2iPr

+

128 129  
Entry Reagents & Conditions  Yield of 128, (dr) ee for 128 

1. Cs2CO3, toluene, - 15 ˚C, o/n none  - 
2. Cs2CO3, tol:CH2Cl2 (2:1), - 15 ˚C, o/n none  - 
3. 50 % aq. NaOH, 125a, toluene, -15 ˚C none - 
4. CsOH&H2O, 125a, toluene, -15 ˚C, o/n 95 % (5:1) 28 % 
5. CsOH&H2O, 125a, toluene, -30 ˚C, 24 h 92 % (5:1) 9 % 
6. CsOH&H2O, 125a, toluene, -50 ˚C, 2 

days 
none - 

Scheme 2.32 & Table 2.13: Reagents & Conditions: (a) see table 2.13 

 

2.2.6 Proposed mechanism: 

There are two viable pathways for these cyclization reactions. An intramolecular Michael 

addition would formally constitute a 5-(enolexo)-endo trig reaction, which is 

stereoelectronically demanding as delineated by the Baldwin rules.95,96 To enable any 

possibility of orbital overlap between the enolate HOMO and the alkene LUMO, the alkene 

and the malonate portion of the system must lie essentially perpendicular to the plane of the 

arene, but this places the reacting centers somewhat distant (figure 2.21). For the 

electrocyclic process to occur, deprotonation must lead to an essentially planar delocalized 

6" anion, which in accord with the Woodward-Hoffmann rules2,4 undergoes suprafacial 

cyclization to afford the desired product. 

 

R1

R1
R1R1

EWG EWG

5-endo trig Michael
HOMO enolate
LUMO alkene

Electrocyclization
Planar 6! system

Suprafacial cyclization  
Figure 2.21: Mechanistic possibilities for cyclization (R1 = CO2

iPr) 
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2.2.7 Stereochemical model: 

In asymmetric phase-transfer catalysis tight-ion pairing involving the ammonium cation is 

generally considered to be the dominant interaction.90-94 The sense of stereoinduction in the 

electrocyclic mechanism may be tentatively rationalized using a modification of the tight-ion 

pair model for asymmetric phase transfer mediated alkylation proposed by Corey.97 In this 

model, the enolate oxygen is closely associated with the bridgehead ammonium cation, of 

which only one face is accessible. Van der Waals interactions between the substrate, and 

both the quinoline and N-aryl units offer another binding surface. This effectively blocks one 

face of the substrate, with the torquoselectivity a consequence of rotation to place the 

pendant aryl substituent away from the steric bulk of the catalyst (figure 2.22). 

 

!6s

H

H
HO

N

PriO O N
CO2iPr
CO2iPr

cyclization away 
from catalyst bulk

EWG

EWG

 
Figure 2.22: Stereochemical model for asymmetric electrocyclization  

(Only one ester group is depicted for clarity) 

 

2.2.8 Catalyst optimization: 

With a practical procedure in hand, we examined the efficacy of a range of different 

cinchona alkaloid-derived ammonium salts in the cyclization process (scheme 2.33). It was 

discovered that treatment of the precursor 120 with 10 mol % (8S,9R)-N-benzyl 

cinchonidinium chloride 125a and CsOH&H2O afforded cyclized product 128 in an excellent 

yield (90 %) with promising ee of 28 %. With the corresponding bromide salt 130 a decrease 

in conversion of 80 % was observed. Changing the catalyst to trifluoromethyl derivative 132 

led to a reduction in enantioselectivity (to 10 % ee). When we switched to catalyst 135, 

synthesized by Maruoka,98 we were delighted to find an increase in enantiomeric excess to 

60 %. This generated the cyclized product as a 5:1 mixture of diastereoisomers, with 

opposite absolute configuration to that obtained with the cinchonidinium catalyst 128 as 

outlined above (table 2.14). 
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H CO2iPr
H

iPrO2C CO2iPr

iPrO2C H CO2iPr
H

iPrO2C CO2iPr
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128 129  
 

NHO

N

H

H
Cl

NR'O

N

H

H
Br

N
Bu

Bu

F
F

F

F

F
F

Br

125a

135

NO

N

H

H
Br

NHO

N

H

H
Cl

133 134

R

130; R = H, R' = H
131; R = H, R' = allyl
132; R = CF3, R' = H

 
Catalyst Yield of 128 ee (dr) 

125a 90 % 28 % (5:1) 
130 ' 10-12 % - 
131 ' 10-12 % - 
132 92 % 10 % (7:2) 
133 ' 10 % - 
134 90 % No ee 
135 95 % (-) 60 %* (5:1) 

Scheme 2.33 & Table 2.14: Reagents and conditions: (a) CsOH&H2O, toluene, -15 ˚C, 24 h 
(*opposite absolute configuration) 

 

2.2.9 Substrate scope: 

Once the conditions for electrocyclization were optimized, using catalyst 135 in toluene at -

15 ˚C, we decided to determine the substrate scope for this reaction. We introduced different 

substituents on the pendant aryl ring and subjected them to similar electrocyclization 

conditions (scheme 2.34). In all instances the reactions generated the cyclized product in > 

95 % yield. It was found that methoxy substitution at 4-position of the aryl ring slightly 

decreased the enantioselectivity to 48 %. An increase in enantioselectivity, however, was 

observed with the 3-methoxy substituent (to 68 %). Piperonyl substitution led to further 

reduction in ee to 38 %. In case of the cyclohexyl substituent we obtained a single 

diastereoisomer of the cyclized product, but did not observe any enantioselectivity.  
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iPr

140 
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Scheme 2.34: Reagents & Conditions: (a) CsOH&H2O, 135, toluene, -15 ˚C, o/n 

 

The relative configuration of 141 was established by nOe studies and by analogy extended to 

all other examples. For substrate 141, H6 showed strong nOes with H7 and H8 (in red), this 

implies the hydrogen atom at the 6-position and cyclohexyl ring are on the same face of the 

molecule. Similarly, H5 shows a weak nOe to the isopropyl CH (in blue) (figure 2.23). 
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Figure 2.23: Key nOe’s for 141 
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2.2.10 Conclusions and future work: 

In conclusion, we have developed an asymmetric synthesis of functionalized indanes that 

constitutes one of the few catalytic asymmetric electrocyclic processes described. The 

precursor for electrocyclization could be assembled via the Suzuki or Stille reactions, 

although the Stille coupling gave better results. It has been demonstrated that the alkynes 

underwent regioselective hydrostannylation to generate the corresponding stannanes as a 

partner for transition metal coupling. 

 

We have established a methodology for [1,5]-electrocyclization using chiral phase-transfer 

catalysis. It was shown that in the presence of cinchonidinium-derived catalyst 125a, the 

precursor 120 underwent 6" electrocyclization to generate cyclized products 128 and 129 as 

a 5:1 mixture of diastereoisomers in 28 % ee (major). However, with the catalyst 135, 

synthesized by Maruoka,98 the enantioselectivity increased to 60 % for the major 

diastereoisomer (see section 2.2.8). 

 

We believe that these reactions proceed via an electrocyclic mechanism. Deprotonation leads 

to an essentially planar delocalized 6" anion, which in accord with the Woodward-Hoffmann 

rules2,4 undergoes suprafacial cyclization. An intramolecular Michael addition, on the other 

hand, would formally constitute a 5-(enolexo)-endo trig cyclization, which is 

stereoelectronically demanding, as delineated by the Baldwin rules95,96 (figure 2.21, see 

section 2.2.6). 
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R1R1

EWG EWG

5-endo trig Michael
HOMO enolate
LUMO alkene

Electrocyclization
Planar 6! system

Suprafacial cyclization  
Figure 2.21: Mechanistic possibilities for cyclization (R1 = CO2

iPr) 

 

This transformation offers a glimpse of the potential of electrocyclic reactions. However, it is 

evident that we require a catalyst that will afford higher enantioselectivities of the cyclized 

products. It is known that chiral dibenzazepinium halide 142, developed and synthesized by 

Lygo,99 is an effective phase-transfer catalyst for asymmetric catalysis.  
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With this in mind, the future work required on this project includes: (i) synthesis of chiral 

dibenzazepinium catalyst 142, and (ii) investigation of its catalytic proficiency for an 

asymmetric 6" electrocyclic reaction (figure 2.24). 
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Figure 2.24: Future work: [1,5]-electrocyclization 
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CHAPTER 2: FOLDAMERS 

 

1. Introduction 

Nature’s building blocks such as proteins, nucleic acids and polysaccharides can perform 

complex chemical operations such as highly selective catalysis and recognition.100 These 

functions are linked to the folding of such biopolymers, which creates an active site by the 

juxtaposition of reactive groups. Synthetic oligomers or foldamers are intended to mimic the 

elegant features of structure and function observed in natural polymers and they display 

ordered structure in solution and solid states.  

 

A foldamer, a term first coined by Gellman,101 is defined as:  

‘Any oligomer that folds into a conformationally ordered state in solution, the structures of 

which are stabilized by noncovalent interactions between nonadjacent monomer units’. 

 

Foldamers can adopt stable secondary structures with as few as four residues,102 in contrast 

to natural oligomers that require a minimum of ten to twelve amino acids. This control over 

oligomer folding could lead to new types of molecules with useful properties and hence it is 

important to identify peptide backbones that will fold into stable secondary structures.  

 

1.1 Ring constrained %-peptides: 

Peptides constructed from naturally occurring $-amino acids must usually have a length of at 

least twelve to twenty units in order to populate a stable conformation in solution. In 

contrast, oligomers composed of %-amino acids populate stable secondary structures with 

five to eight units.102 A wealth of research has been devoted to the fundamentals of %-peptide 

design101-106 and they have been shown to adopt a range of helical,107,108 turn,109 and sheet 

conformations110 in solution, all with remarkable stability. It has been demonstrated that 

substitution patterns and stereochemistry exert profound effects on the folding properties of 

%-peptides (see figure 1.1).  

 

%-Peptides prepared from 1-(aminomethyl)cyclopropanecarboxylic acid form eight-

membered H-bonded rings (figure 1.1a).111 Fleet et al.112 have reported that oligomers 

constructed from 2,3-cis-oxetane ring display an unprecedented 10-helical conformation 

(figure 1.1b), while peptides composed of 2,3-trans-cyclopentane113 (figure 1.1c) and 2,3-
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trans-cyclohexane114,115 (figure 1.1d) %-amino acids adopt 12- and 14-helical conformations 

respectively. Fulop et al.116 have demonstrated that strand (figure 1.1e) and alternating 10/12 

helical conformations (figure 1.1f) may be accessed through homo- or heterochiral 

combinations of either 2,3-cis- or 2,3-trans-cyclopentane %-amino acids.117 Oligomers based 

on 2,3-trans-oxanobornene adopt an 8-helical conformation (figure 1.1g),118 while $/%-

peptides containing cis-cyclopropane %-amino acids populate stable helical folds (figure 

1.1h).119 
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Figure 1.1: Ring-constrained #-peptides: (a) 1-(aminomethyl)cyclopropane; (b) 2,3-cis-oxetane;  

(c) 2,3-trans-cyclopentane; (d) 2,3-trans-cyclohexane; (e) alternating heterochiral 2,3-trans 

cyclopentane; (f) alternating heterochiral 2,3-cis-cyclopentane; (g) oxanobornene;  

(h) cis-cyclopropane 

 

1.2 Ring constrained (-peptides: 

Although a vast amount of research has been dedicated to %-peptides and its conformations, 

relatively little attention has been paid to (-peptides, despite the possibility of traversing 

larger conformational space. It was believed that the added torsional degrees of freedom in (-

amino acids could promote conformationally disordered chains and thus disfavor the 

formation of stable secondary structures.102 Furthermore, in a model study, Dado and 

Gellman 100have shown that $-peptides have higher propensities than #-peptides to populate 

conformations stabilized by nearest-neighbour hydrogen-bonding by FT-IR and NMR 

spectroscopic studies (figure 1.2). 
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Figure 1.2: Possibilities of hydrogen-bonding in (-peptide 

 
1.2.1 Helical structure in (-peptide: 

Two independent research groups120,121 have reported the presence of a stable secondary 

structure in (-peptides at a much lower residue level than their $- and %-counterparts. 

Seebach et al.108,121 demonstrated that (-peptides containing residues bearing (-substitution 

adopt 14-helical conformations stabilized by C=O(i) ) N-H(i+3) hydrogen bonds (figure 

1.3). The direction of the helix dipole has reversed (C)N to N)C) upon changing from a %-

peptide to the corresponding (-peptide. An increase in helix stability was also observed upon 

homologation from $- to %- to (-peptides.108 
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Figure 1.3: 14-helical conformation of (-peptide 

Seebach122 has also shown unusual 9- and 14-membered ring hydrogen bond stabilized 

helical structures in the solid state for (-dipeptide and tetrapeptide respectively (figure 1.4).  
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Figure 1.4: A. (-peptides; B. 9-membered; C. 14-membered helix conformation in solid state 
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Recently, Balaram and co-workers123 reported nine-membered hydrogen-bonded ring 

stabilized helices and ribbons in gabapentin oligomers (figure 1.5).  

  

 
Figure 1.5: A. Gabapentin monomer unit; B. Intramolecular hydrogen bonds in BoC-(Gpn)4-NHMe 

 

Similarly, Kunwar et al.124 reported a novel left-handed 9-helix in mixed (-peptides derived 

from alternating (-Caa and GABA residues (figure 1.6).  
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Figure 1.6: 9-Helix formation in mixed (-peptide (hydrogen bonds shown in blue) 

 
1.2.2 Secondary structure independent of ring size: 

In an interesting study of 2,3-trans-%-aminoxy acid oligomers, Yang et al.125 demonstrated 

that the formation of a nine-membered ring hydrogen bond was independent of ring size for 

five- or six-membered trans-configured constraints (figure 1.7). This is consistent with 

insightful theoretical studies by Hofmann and co-workers126,127 that have predicted 9- and 

14-membered ring hydrogen-bonded helices to be the most stable conformations for (-

peptides. 
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Figure 1.7: Hydrogen bonding independent of ring size 

(A) 5-membered; (B) 6-membered ring constraint 
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1.2.3 Bend-ribbon conformation: 

Farrera-Sinfreu et al.128 reported the formation of %-sheets stabilized by nine-ring hydrogen 

bonds in (-peptides comprised of cyclic (-amino acids (figure 1.8). This peptide populates a 

bend-ribbon conformation in the solution phase. 
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Figure 1.8: Nine-ring hydrogen bond to populate bend-ribbon conformation 

 
1.2.4 Hybrid foldamers: 

Recently, Sanjayan and co-workers129 have designed a hybrid peptide, which displays 

periodic (-turn conformations (figure 1.9). These $-turns were stabilized by the presence of 

seven- and five-membered rings with bifurcated hydrogen bonds, both in the solution and 

solid phase. It was believed that conformational restriction, imposed by the individual amino 

acids, played an important role in pre-organization of the peptide backbone, thus allowing a 

periodic $-turn conformation to be populated. 
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Figure 1.9: A. Hybrid foldamer showing (-turn motif stabilized by bifurcated H-bond; 

B. X-ray structure 
 

All of these examples demonstrate that (-peptides are capable of forming more stable 

secondary structures compared to $- or %-peptides in the solid state as well as the solution 

phase. 
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2. Project Aims 

 

The secondary structures of oligomeric organic molecules are known to possess fascinating 

architectures that can be responsible for their biological function. In this regard (-peptides 

have been less explored than %-peptides congeners and recent literature (see section 1.2) 

indicates their potential to adopt secondary structures of even greater stability.  

 

The project was designed to evaluate the effect of cyclic backbones on the secondary 

structures of $-peptides. Two series of abiotic $-peptides were synthesized with five and 

three-membered cyclic backbones (scheme 2.1). This study was aimed at improving the 

existing understanding of the design and architectural features of $-peptides to control 

different possible secondary structures by varying backbone ring size and substitution 

pattern. It was planned to describe how the introduction of a five-membered ring constraint 

on the backbone of $-amino acid units permits exploration of the intramolecular rather than 

intermolecular hydrogen bonding manifolds, and investigate the conformational effects of 

generating homo- and heterochiral systems.  
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Figure 2.1: Model (-peptide monomer units 
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3. Results And Discussion 

 

(-Peptides present the possibility of traversing a larger conformational space and adopt more 

stable secondary structures than %-peptides. The first step for the synthesis of a (-peptide was 

to identify folding backbone. Once the backbone has been identified, the next step is to put 

ring constraint on it. The (-peptides based on five-membered backbone were considered as a 

model system and it was planned to extend the findings from this study to other systems. The 

use of a dioxolane ring system rather than a cyclopentane as a five-ring constraint is 

envisaged to have little impact on the overall conformation whilst simplifying the synthetic 

approach and easing analysis of NMR spectra (figure 3.1). 
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Figure 3.1: Identification of folding backbone 

 

3.1 Preparation of monomer units: 

Dimethyl tartrate was selected as the starting material for the synthesis of 2,3-trans-

dioxolane-constrained monomer units as it is cheap and readily available in both 

enantiomeric forms. It was envisaged that the N-terminus would be protected as an azide, 

while the C-terminus could be masked as an isopropyl ester. The retrosynthetic analysis for 

the synthesis of a monomer unit is as follows: 
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Figure 3.2: Retrosynthetic analysis for (-peptide building block 

 

Both D- and L-tartrate derived monomer units have been prepared, and the results for the D-

series are presented here. Where a reference to a specific enantiomeric series is intended (for 

example in the preparation of heterochiral oligomers), the prefix D- or L- will used before the 

number of the compound. 
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3.1.1 Ester desymmetrization: 

The first step in the synthesis involved the selective conversion of one of the methyl esters of 

isopropylidene protected dimethyl tartrate 2 into the corresponding alcohol. This presents a 

potential problem, as the C2-symmetric diester has to be desymmetrised. 
 

In an initial endeavor, sodium borohydride (0.6 eq.) was added portion-wise to a stirred 

solution of protected diester 2 in methanol at -10 ˚C (scheme 3.1).130 TLC indicated the 

conversion of starting material into the desired mono alcohol 3 and over-reduced diol 4. 

After flash column chromatography, the desired mono alcohol 3 was obtained in reasonable 

yield (31 %). 
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Scheme 3.1: Reagents & Conditions: (a) NaBH4 (0.6 eq.), MeOH, -10 ˚C, 1 h, 31 % 

 

In an effort to improve the yield, selective conversion of diester 2 to monoacid and 

subsequent reduction to obtain the mono alcohol was considered. Following a literature 

procedure,131 basic hydrolysis of 2 with methanolic potassium hydroxide afforded the mono 

acid 5 in quantitative yield (scheme 3.2). Selective reduction of monoacid 5 was attempted 

with NMM, ethylchloroformate and sodium borohydride at -10 ˚C. Unfortunately even after 

repeated attempts the method failed to produce the desired mono alcohol 3, instead an 

unidentified product from NMM was obtained.  
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Scheme 3.2: Reagents & Conditions: (a) (i) KOH in MeOH, rt, 2 h then 3 N HCl, 99 %; 

(b) (i) NMM, EtOCOCl, THF, -10 ˚C, 10 min; (ii) NaBH4, THF, -10 ˚C, 15 min 

 

Following this unsuccessful attempt, it was planned to carry out selective reduction of acid 5 

with borane. After optimization of reaction conditions, borane in THF solution was added 
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drop wise at -20 ˚C to afford the mono alcohol 3 as the sole product in 70 % yield (scheme 

3.3).  
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Scheme 3.3: Reagents & Conditions: (a) BH3&THF, -20 ˚C to rt, 4 h, 70 % 

 

3.1.2 Azide protection: 

It was decided to introduce azide via the SN2 displacement of an activated sulfonate ester 6 

with azide anion. Methanesulfonyl chloride and Et3N were added to a solution of alcohol 3 

in dichloromethane at 0 ˚C to afford the mesylated product 6 in quantitative yield. Sodium 

azide was heated with crude mesylate 6 in DMF at 95 ˚C to afford azide 7 in 83 % yield over 

two steps after purification (scheme 3.4). 
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Scheme 3.4: Reagents & Conditions: (a) MsCl, Et3N, CH2Cl2, 0 ˚C, 10 min;  

(b) NaN3, DMF, 95 ˚C, 3 h, 83 % (over two steps) 

 

3.1.3 Transesterification:  

The C-terminus would be protected as an isopropyl ester in order to prevent uncontrolled 

intermolecular polymerization once the N-terminus was unmasked. Transesterification was 

achieved by heating a solution of methyl ester 7 in isopropanol and potassium carbonate at 

90 ˚C to afford 8 in 81 % yield (scheme 3.5).  
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Scheme 3.5: Reagents & Conditions: (a) K2CO3, IPA, 90 ˚C, 3 h, 81 % 
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3.1.4 Reduction of azide: 

The reduction of isopropyl-protected azide 8 was achieved using 10 % palladium on carbon 

under an atmosphere of hydrogen. Previous work within the group on similar substrates had 

demonstrated that azide hydrogenation using palladium on activated carbon resulted in the 

formation of unwanted reductive dimerization byproducts.132 This could be avoided by pre-

activating the palladium catalyst with hydrogen prior to addition of the azide. These 

conditions afforded free amine 9 that was used without further purification (scheme 3.6). 
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Scheme 3.6: Reagents & Conditions: (a) H2, Pd/C, IPA, rt, 30 min, 99 % 

 

3.1.5 Hydrolysis of ester: 

Base catalyzed hydrolysis of methyl ester 7, using aqueous sodium hydroxide followed by 

acidification with 3 N HCl, afforded the desired acid 10 in quantitative yield. This acid was 

used without further purification (scheme 3.7). 
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Scheme 3.7: Reagents & Conditions: (a) (i) 1 M aq. NaOH, EtOH, rt, 15 min then 3 N HCl, 99 % 

 

3.2 Synthesis of (-peptides: 

A simple iterative procedure was devised for the synthesis of heterochiral oligomers from the 

monomer (-peptide units. 

 

3.2.1 Synthesis of heterochiral dimer (D-L): 

The crude D-amine 9 was coupled with the crude L-acid 10 using TBTU as a suitable peptide 

coupling agent in the presence of DIPEA (scheme 3.8). The minimum amount of 

dichloromethane was used as solvent and the heterochiral dimer 11 was obtained in 83 % 

yield from monomer D-azido ester 8 after purification.  
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Scheme 3.8: Reagents & Conditions: (a) iPr2NEt, TBTU, CH2Cl2, rt, 10 min, 83 % 

 

3.2.2 Synthesis of heterochiral tetramer (D-L-D-L): 

The dimer azide 11 was reduced using 10 % palladium on carbon under an atmosphere of 

hydrogen to afford free amine 12. Subsequently, the dimer azide 11 was hydrolyzed with 

aqueous sodium hydroxide to afford free acid 13, which was used without further 

purification. 

 

Following the same coupling protocol, dimeric amine 12 was coupled with dimeric acid 13 

using TBTU and DIPEA in a concentrated solution of dichloromethane (scheme 3.9). The 

heterochiral tetramer 14 was obtained in 59 % yield from dimer azido ester 11. An intensive 

spectroscopic analysis was performed to assign and confirm the structure of tetramer (see 

section 3.3).  
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Scheme 3.9: Reagents & Conditions: (a) H2, Pd/C, IPA, 1 h, 99 %; (b) (i) 1 M aq. NaOH, 

EtOH, rt, 15 min then 3 N HCl, 99 %; (c) iPr2NEt, TBTU, CH2Cl2, rt, 15 min, 59 % 
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3.2.3 Synthesis of heterochiral oligomers: 

It was decided to synthesize a homologous series of heterochiral oligomers up to the 

hexamer level. Following the same iterative coupling procedure, and using monomer and 

oligomer units as coupling partners, the heterochiral trimer 15, pentamer 16 and hexamer 17 

were generated (figure 3.3). Similar to the tetramer 14, an intensive spectroscopic analysis 

was performed to assign and confirm the structure of these heterochiral oligomers. 
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Figure 3.3: A. Trimer 15; B. Pentamer 16; C. Hexamer 17 

 

3.3 Structural assignments and investigation of conformations for oligomers: 

An exhaustive spectroscopic analysis using 2D-NMR techniques was performed to assign 

and confirm the structure of the oligomers. As a representative example of the series, the 

assignment of tetramer (figure 3.4) and its preferred secondary structure is revealed here.  
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Figure 3.4: Heterochiral tetramer 14 
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The solution conformation of the tetramer (14) was studied by NMR spectroscopy in organic 

solvents, and it was found that benzene-d6 gave the best dispersion of resonances, 

particularly in the amide region (figure 3.5).  

 
 

 
Figure 3.5: 1H NMR of tetramer 14 

 

The resonance dispersion was excellent considering the repeating unit and was found to be 

independent of concentration below 10 mM, which is consistent with a highly populated 

solution conformation. All resonances could be unambiguously assigned through a 

combination of 2D experiments. COSY and TOCSY spectra allowed assignment within each 

residue, and semi-selective long-range heteronuclear correlations were used to establish 

unambiguous through-bond connectivity. Correlations between H2i and C=Oi and also from 

NHi+1 and H4i+1 to C=Oi were observed, allowing all neighbouring residues to be identified. 

NOEs between the backbone protons (H2, H3, H4, H4’) are only seen within each monomer 

unit, and all interresidue NOEs involve the amide protons (figure 3.6). No inter-residue ring-

ring interactions were observed, suggesting the proposed intraresidue hydrogen bonds.  
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Figure 3.6: Representative NOEs for heterochiral tetramer 14 involving amide protons 

 

Analysis of the amide regions of the 1H NMR spectra of tetrameric oligomers indicated two 

distinct groups of amide proton resonances (see figure 3.5). The chemical shifts of amide 

protons are sensitive to the presence of hydrogen bonding; a decrease in diamagnetic 
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shielding due to involvement in a hydrogen bond should result in a downfield chemical shift. 

For the tetramer 14, such a shift is observed for two of the three protons (NHB, %H 7.55 and 

NHC, %H 7.45) suggesting they are involved in hydrogen-bond formation. The remaining 

amide (NHD) resonates at lower frequency (%H 6.78), similar to the chemical shift for dimeric 

amide 11 which is unable to form hydrogen bonds between the N-H and C=O groups. An 

equivalent pattern was observed for other oligomers. 

 

To confirm the hypothesis for hydrogen bonding, titration experiments were performed, 

whereby aliquots (2 µL) of DMSO-d6 were sequentially added to a solution of the tetramer 

14 and 1H NMR spectra taken. The protons that are shielded from the strongly hydrogen-

bonding solvent (NHB, NHC) are less sensitive to perturbation on DMSO addition, whilst the 

solvent exposed amide proton (NHD) shifts to higher frequency at a greater rate, consistent 

with its lower chemical shift (figure 3.7). 
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Figure 3.7: DMSO titration of heterochiral tetramer 14 

 

This pattern of shielded and deshielded amide protons is consistent with a repeating 

structural unit and suggests that tetramer 14 populates a bend-ribbon (or strand-type) 

conformation in benzene solution stabilized by intramolecular seven-membered-ring nearest-

neighbour hydrogen bonds (figure 3.8). This conformation leaves the C-terminal amide 

(NHD) solvent-exposed, which is consistent with an ester being a poorer hydrogen-bond 

acceptor than an amide.133 
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Figure 3.8: Observed bend-ribbon solution conformation of 

heterochiral tetramer 14 (hydrogen bonds shown in blue) 
 

The isopropylidene groups present in all of these molecules project away from the peptidic 

backbone, which favours an intra-residue hydrogen bond despite the trans- configured ring 

constraint. These results are consistent with some elegant model studies on the folding of $-

amino butyric acid derivatives which demonstrated that both seven- and nine-membered 

nearest neighbour hydrogen bonds are favoured (figure 3.9).100 
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Figure 3.9: Hydrogen-bonding in (-peptide 

 

It is interesting to speculate why this trans-dioxolane constrained amino acid prefers to adopt 

an intra-residue hydrogen bond when the corresponding 2,3-trans-cyclopentane #-aminoxy 

acid oligomers, which effectively differ only by the substitution of the methylene group in 

monomers for an oxygen, form nine-membered inter-residue hydrogen bonds. The larger, 

nine-membered ring could be anticipated to be favoured as the geometry for the hydrogen 

bond can approach linearity.  

 

A similar trend was observed in the solution conformation of the other oligomers 15-17, 

which demonstrates that these oligomers populate bend-ribbon conformations in benzene 

solution stabilized by intramolecular seven-membered-ring nearest-neighbour hydrogen 

bonds.  
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3.4 Solid state conformation*: 

It has been demonstrated that five-membered ring constraint (-peptides populate a bend-

ribbon conformation in solution. This could be further confirmed by the solid-state 

conformation of these oligomers, but unfortunately no crystals were obtained. To further 

investigate it was planned to synthesize a derivative of homochiral tetramer 14 (scheme 

3.10).134 

 

O O
O

O N
H

O O

NH2O

O O
O

O N
H

O O

N
HO

O

Br

12 24

O O
HO

O N
H

O O

N
HO

O

Br
O H

N

O
O

O H
N

O
O

N O

Br

O

tBuO

H

(a)

(b)

(c)

2526  
Scheme 3.10: Reagents & Conditions: (a) p-Bromobenzoylchloride, Et3N, 2 h, 66 %; (b) (i) NaOH, 

1,4-dioxane, 2 h; (ii) Amberlite IR-120 H+ resin; (c) tbutyl glycine ester, TBTU, Et3N,  

DMF:CH2Cl2, 64 % (over two steps) 

 

This derivatization provided a very similar chemical environment to the actual tetrameric $-

peptide 14 with respect to the central two units, as they were also shown to exhibit same 

secondary structure in the solution phase based on NMR spectroscopic data. Oligomer 26 

preferred “bend ribbon” conformation in the X-ray crystal structure (figure 3.10). After 

correlating the results from both solution and solid phase studies it was concluded that bend 

ribbon shape was the most stable conformation for these $- peptides.  

 

                                                
* This work was done in collaboration with Dr. M. K. N. Qureshi. 



Results and Discussion 
 

 57 

O H
N

O
O

O H
N

O
O

N O

Br

O

tBuO

H

26
 
 

Figure 3.10: X-ray structure of 26 showing bend-ribbon conformation 

 

3.5 Synthesis of mixed oligomers: 

Concurrently, the synthesis of (-peptide 18, based on a six-membered ring constrained 

monomer unit (figure 3.11 A), was underway in the group.135 Preliminary conformational 

investigations of the tetramer 18 obtained from this monomer unit demonstrated that it too 

populate a bend-ribbon type conformation stabilized by intra-residue seven-membered 

hydrogen bonded rings (figure 3.11 B).  
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Figure 3.11: (A) Monomer unit; (B) Proposed bend-ribbon conformation of tetramer 18 

(hydrogen bonds shown in blue) 

 

Based on these observations, it was planned to synthesize oligomers with alternating five- 

and six-membered ring constrained monomer units utilizing the same iterative coupling 

strategy.  

 

3.5.1 Synthesis of mixed dimer (5L-6L)*: 

Monomer acid 19 (produced by a co-worker)135 was used as one of the coupling partners in 

the synthesis of mixed dimer 20 (scheme 3.11). 

 

                                                
* This Work was done in collaboration with Liz Jones 
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Scheme 3.11: Reagents & Conditions: (a) iPr2NEt, TBTU, CH2Cl2, rt, 10 min, 58 % 

 

The crude L-amine 9 was coupled with crude L-acid 19 using TBTU in the presence of 

DIPEA as a tertiary amine base. The minimum amount of dichloromethane was used as a 

solvent and the mixed dimer 20 was obtained in 58 % yield from monomer L-azido ester 8.  

 

3.5.2 Synthesis of mixed tetramer (5L-6L-5L-6L): 

The dimeric azide 20 was reduced using 10 % palladium on carbon under an atmosphere of 

hydrogen to afford free amine 21. Subsequently, the dimer azide 20 was hydrolyzed with aq. 

sodium hydroxide to afford free acid 22, which was used without further purification 

(scheme 3.12). 
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Scheme 3.12: Reagents & Conditions: (a) H2, Pd/C, IPA, 1 h, 99 %; (b) (i) 1 M aq. 

NaOH, EtOH, rt, 15 min then 3 N HCl, 99 %; (c) iPr2NEt, TBTU, CH2Cl2, rt, 15 min, 59 % 
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Following the general coupling protocol, dimeric amine 21 was coupled with dimeric acid 22 

using TBTU and DIPEA in a concentrated solution of dichloromethane. The mixed tetramer 

23 was obtained in 59 % yield from dimeric azido ester 20. An intensive spectroscopic 

analysis was performed to assign and confirm the structure of tetramer (see section 3.6).  

 

3.6 Structural assignments and investigation of conformations for mixed tetramer: 

A comprehensive spectrometric analysis using 2D-NMR spectroscopic techniques was 

performed for unambiguous assignment of the mixed tetramer structure (figure 3.12). The 

results are consistent with that of the heterochiral tetramer. 
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Figure 3.12: Mixed tetramer 23 

 

The 1H NMR spectrum of mixed tetramer 23 demonstrates a similar pattern to that of 

heterochiral tetramer 14 in which two amide protons are shifted downfield (NHB, %H 8.05 

and NHC, %H 7.42) (figure 3.13).  

 

 
Figure 3.13: 1H NMR of mixed tetramer 23 

 

Observations from 2D-NMR experiments and NOE data allowed unambiguous assignments 

of all the resonances. Correlations between H2i and C=Oi and also from NHi+1 and H4i+1 to 

C=Oi were observed, allowing all neighbouring residues to be identified. NOEs between the 

backbone protons (H2, H3, H4, H4’) are only seen within each monomer unit, and all 

interresidue NOEs involve the amide protons (figure 3.14).  
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Figure 3.14: Representative NOEs for mixed 

tetramer 23 involving amide protons 

 
1H NMR and DMSO-d6 titration data demonstrates that the protons shielded from the 

strongly hydrogen-bonding solvent are less sensitive to perturbation upon DMSO addition 

(NHB, NHC) whilst the solvent exposed amide proton (NHD) shifts more rapidly to higher 

frequency (figure 3.15). 
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Figure 3.15: DMSO titration of mixed tetramer 23  

 

All of these results are consistent with those of the heterochiral tetramer and suggest that the 

mixed tetramer also populates a bend-ribbon conformation in solution stabilized by 

intramolecular seven-membered-ring nearest-neighbour hydrogen bonds (figure 3.16).  

 

N
OO

O
N

N
O

O

N3

O
O

MeO

OMe

O
O

OMe

MeO

H
H

H

O
O

O
O

 
Figure 3.16: Observed bend-ribbon solution conformation of 23 

(hydrogen bonds shown in blue) 
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3.7 Cyclopropane ring constrained (-peptides: 

Having established that five- and six-membered backbones are flexible enough to permit 

intramolecular hydrogen bonds, it was decided to test a more rigid three-membered 

cyclopropane backbone for any folding properties (figure 3.17). 
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Figure 3.17: five- vs three-membered backbone 

It was believed that intra-residue hydrogen-bonding would not be possible in these oligomers 

due to restricted rotation of three-membered ring constraint. Based on this hypothesis a co-

worker within the group136 synthesized oligomers from cyclopropane constrained (-amino 

acids (figure 3.18 A). In contrast to five- and six-ring constrained, these oligomers form 

intermolecular rather than intramolecular hydrogen bonds in the solid state. Examination of 

the single crystal x-ray data demonstrates that the trimeric $-peptide 27 adopts an extended 

conformation, and self-assembles into an infinite sheet structure through an intermolecular 

bifurcated hydrogen bond network in which the amide N-H and the C$-H protons function as 

hydrogen bond donors (figure 3.18 B). 136 
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Figure 3.18: A. 3-membered ring constrained trimer 27; B. X-ray structure of 27 
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4. Conclusions 

 

The synthesis of five-ring constrained (-amino acid monomer units has been achieved 

successfully in five steps from readily available acetal-protected dimethyl tartrate. The 

heterochiral oligomers were synthesized in moderate yield using an iterative coupling 

procedure from the monomer units and the conformation of these oligomers was 

unambiguously assigned using 2D-NMR spectroscopic techniques.  

 

NOE correlation data and DMSO-d6 titration experiments suggest that these heterochiral 

oligomers populate a bend-ribbon (or strand-type) conformation in benzene-d6 solution 

stabilized by intramolecular seven-membered-ring nearest-neighbour hydrogen bonds (figure 

4.1 A). This pattern of hydrogen bonding is analogous to their homochiral counterpart. In 

this conformation, the isopropylidene groups project away from the peptidic backbone, thus 

favouring an intra-residue hydrogen bond despite the trans-configured ring constraint. 
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Figure 4.1: Observed bend-ribbon solution conformation of (A) Heterochiral tetramer 14;  

(B) X-ray structure of 26 

 

Similarly, results for the mixed tetramer 23 and six-ring constrained tetramer 18 were 

consistent with that of the heterochiral tetramer 14 and suggest that they also populate bend-

ribbon conformations in solution stabilized by intramolecular seven-membered-ring nearest-

neighbour hydrogen bonds. 

 

This study has confirmed that changing the size of the ring constraint may modulate the 

secondary conformation of ring-constrained $-peptides. It has also demonstrated that intra-

residue nearest-neighbour hydrogen bonds may be favoured when the flexibility of a ring 

constraint can permit their formation. In this scenario, the propensity for the formation of 
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such hydrogen bonds appears to override the influence of the absolute configuration of 

individual residues, as seen in the heterochiral derivatives 14. 

 

Three-membered cyclic backbone makes monomer units more rigid in terms of available 

conformations to $-peptides and these peptides have been demonstrated to adopt an infinite 

parallel sheet structure in the solid state stabilized by intermolecular C–H…O hydrogen 

bonds (figure 4.2).136 

 

 
Figure 4.2: A parallel sheet structure in cyclopropane (-peptides 

 

This work has been extended to use these materials as scaffolds for catalysts and exploiting 

their scope for asymmetric catalysis of various reactions.137,138 
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CHAPTER 3: EXPERIMENTAL PROCEDURE 

 

1. General experimental procedures. 

1.1 Solvents and Reagents 

THF was distilled under an atmosphere of dry nitrogen from lithium aluminium hydride and 

calcium hydride in the presence of triphenylmethane; dichloromethane was distilled from 

calcium hydride; triethylamine was distilled from calcium hydride and stored over potassium 

hydroxide. pH 7 Buffer was prepared by dissolving KH2PO4 (85 g) and NaOH (14.5 g) in 

distilled water (950 mL).  Petrol refers to the fraction of petroleum ether boiling between 40 

and 60 ˚C. All other reagents and solvents were used as supplied, without prior purification. 

 

1.2 Chromatography 

Thin layer chromatography (TLC) was performed on glass or aluminium plates coated with 

Merck 60 F254 silica and visualization was achieved by UV light or by staining with ceric 

ammonium molybdate or potassium permanganate. Flash column chromatography was 

carried out using Merck Kieselgel (230-400 mesh). 

 

1.3 Nuclear Magnetic Resonance Spectroscopy 

NMR spectra were recorded on a Bruker Avance 700 (1H: 700 MHz and 13C: 175 MHz), 

Bruker DPX 400 (1H: 400 MHz and 13C: 100 MHz), a Bruker Avance Cryo 500 (1H: 500 

MHz and 13C: 125 MHz), or a Bruker DPX 200 (1H: 200 MHz and 13C: 50 MHz) 

spectrometer. Chemical shifts are quoted in ppm and are referenced to the residual non-

deuterated solvent peak for proton NMR and deuterated solvent peak for carbon NMR, and 

are reported (based on appearance rather than interpretation) as follows: chemical shift 

%/ppm (number of protons, multiplicity, coupling constant J/Hz, assignment) [br, broad; s, 

singlet; d, doublet; t, triplet; q, quartet; qn, quintet; sept, septet; m, multiplet]. 19F spectra 

were run at 376 MHz on a Bruker Avance 400 with a QNP probe. 

 

1.4 Infrared Spectroscopy 

Infrared spectra were recorded neat on a Perkin-Elmer Spectrum One spectrometer fitted 

with an attenuated total reflectance attachment with internal referencing or a Bruker Tensor 

27 FTIR with internal calibration. 
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1.5 Mass Spectrometry 

Accurate mass measurements were performed on a Finnigan MAT 900 XLT (ES+) at the 

EPSRC National Mass Spectrometry Service Centre at Swansea, or on a Bruker microTOF 

(ES+) at the University of Oxford.  LCMS were performed on an Agilent MSD LC-MS 

APCI 120-1000 full gradient machine or an Agilent LC-MS APCI 1100. 

 

1.6 Polarimetry 

Optical rotations were recorded on a Perkin-Elmer 241 polarimeter with a path length of 1 

dm.  

 

1.7 HPLC 

Chiral HPLC was performed on an Agilent 1200 Series instrument or a Dionex 3000 system 

fitted with the appropriate Daicel Chiralpak column. 

 

The numbering of the compounds is done solely for NMR predictions and do not 

corresponds to its IUPAC nomenclature.  

 

 

 

 



Experimental Procedure 

 66 

2. For Catalytic Asymmetric Electrocyclization 

 

(Z)-(2-Bromo-2-nitrovinyl)benzene (5) 

 
NO2

Br

1

 
 

Bromine was added slowly via separating funnel to a solution of trans-%-nitrostyrene (6.0 g, 

40.3 mmol) in acetic acid (21 mL) and followed by addition of K2CO3 (5.55 g, 40.3 mmol). 

When the evolution of gas had ceased, the mixture was heated to 120 °C. After 30 mins, the 

reaction mixture was cooled and poured into ice-cold water (40 mL) and shaken vigorously 

(a precipitate forms). The resultant solid was filtered off and recrystallized from ethanol to 

afford yellow coloured needles of 5 (5.5 g, 60 %). 

 

m.p. 64-66 ˚C; *max/cm-1 (film): 3061, 2966, 1620, 1528, 1246; +H (400 MHz, CDCl3): 8.65 

(1H, s, H2), 7.89 (2H, dd, J 1.8, 7.5, H4, H4’), 7.50 (3H, m, H5, H5’, H6); +C (100 MHz, 

CDCl3): 135.2 (C3), 134.0 (C2), 128.5 (C4), 128.6 (C5), 127.9 (C6), 122.0 (C1); m/z: 

HRMS (ES+) found 249.9475; C8H6BrNO2 [M+Na]+ requires 249.9476.  
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(E)-Trimethyl(3-nitro-4-phenylbut-3-en-1-yn-1-yl)silane (6) 

 

1

7

11

NO2

Si

 
 

Pd(PPh3)Cl2 (155 mg, 0.22 mmol) and CuI (42 mg, 0.22 mmol) were added to a solution of 5 

(1.0 g, 4.4 mmol) in dioxane (40 mL) at RT, degassed and stirred for 15 mins. Et3N (0.92 

mL, 6.6 mmol) and trimethylsilylacetylene (0.93 mL, 6.6 mmol) were then added to the 

mixture. After 1 h, the solvent was evaporated and resulting mixture was filtered through 

Celite, using diethyl ether. The solvent was evaporated under reduced pressure and the 

crude product was purified by column chromatography (petrol/EtOAc, 20:1) to afford (E)-

trimethyl(3-nitro-4-phenylbut-3-en-1-yn-1-yl)silane as a brown solid (930 mg, 86 %). 

 

m.p. 58-60 ˚C; *max/cm-1 (film): 3061, 2966, 2157, 1620, 1528, 1246; +H (400 MHz, 

CDCl3): 8.28 (1H, s, H7), 8.03 (2H, d, J 7.1, H2 & H6), 7.53-7.46 (3H, m, H3, H4 & H5), 

0.33 (9H, s, H11); +C (100 MHz, CDCl3): 139.4 (C7), 132.7 (C1), 132.4 (Ar CH), 131.3 (Ar 

CH), 130.5 (C8), 128.9 (Ar CH), 111.7 (C10), 93.7 (C9), 0.6 (C11); m/z: HRMS (ES+) 

found 268.0776; C13H15NO2Si [M+Na]+ requires 268.0770. 
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(E)-7-Nitro-8-phenyloct-7-en-5-yn-4-one (8) 

 

11

1

7 NO2

O

 
 

Butyryl chloride (102 "L, 0.98 mmol) was added slowly to a mixture of 6 (200 mg, 0.82 

mmol) and AlCl3 (218 mg, 1.64 mmol) in CH2Cl2 (8 mL) at 0 ˚C and stirred for 30 mins. The 

reaction mixture was diluted with water (25 mL) and extracted with CH2Cl2 (2 x 50 mL). 

The combined organic layers were dried over MgSO4 and concentrated in vacuo. The crude 

product was purified by column chromatography (petrol/EtOAc, 10:1) to yield the desired 

product (120 mg, 61 %) as yellow oil. 

 

*max/cm-1 (film): 3062, 2966, 2876, 2194, 1786, 1673, 1529, 1317; +H (400 MHz, CDCl3): 

8.53 (1H, s, H7), 8.00 (2H, d, J 7.1, H2 & H6), 7.58-7.54 (3H, m, H3, H4 & H5), 2.71 (2H, t, 

J 7.3, H12), 1.82 (2H, td, J 7.3, H13), 1.01 (3H, t, J 7.4, H14); +C (100 MHz, CDCl3): 186.8 

(C11), 144.5 (C7), 133.8 (C1), 131.8 (C8), 129.6 (Ar CH), 129.4 (Ar CH), 99.4 (C10), 78.2 

(C9), 47.2 (C12), 17.4 (C13), 13.5 (C14); m/z: HRMS (ES+) found 266.0797; C14H13NO3 

[M+Na]+ requires 266.0793. 
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1-Phenylbut-3-yn-2-one (15)139 

 

O

 
 

According to a literature procedure,139 a solution of ethynylmagnesium bromide (0.5 M in 

THF, 55.0 mL, 27.5 mmol) was added slowly to a stirred solution of phenylacetaldehyde (3 

g, 25.0 mmol) in THF (25 mL) at 0 ˚C. The solution was slowly warmed to RT. After 2 h, 

the reaction was quenched with sat. NH4Cl and extracted with CH2Cl2 (3 x 50 mL), dried 

over MgSO4 and concentrated in vacuo. The residue was purified by column 

chromatography (petrol/EtOAc, 2:1) to afford the desired alcohol (2.9 g, 81 %) as a 

colourless oil. 

 

A solution of alcohol (560 mg, 3.83 mmol) in CH2Cl2 (5 mL) was added to a solution of 

Dess-Martin Periodinane (1.80 g, 4.22 mmol) in CH2Cl2 (15 mL) at 0 ˚C. After 1 h, the 

reaction was quenched with 1:1 mixture of sat. aq. NaHCO3 and sat. aq. Na2S2O3 (20 mL) 

and extracted with CH2Cl2 (3 x 50 mL). The combined organic layers were dried over 

Na2S2O3 and concentrated in vacuo. The residue was purified by column chromatography 

(petrol/EtOAc, 5:1) to afford the desired product 15 (470 mg, 90 %) as oil.  

 

*max/cm-1 (film): 3310, 3012, 2984, 2870, 2154, 1715, 1315; +H (400 MHz, CDCl3): 7.35-

7.17 (5H, m, Ar CH), 3.71 (2H, s, CH2), 2.84 (1H, s, CH); +C (100 MHz, CDCl3): 184.1 

(CO), 130.7 (Ar C), 129.6 (Ar CH), 128.5 (Ar CH), 128.0 (Ar CH), 127.7 (Ar CH), 85.6 

(CCH), 78.6 (CCH), 54.6 (CH2); m/z: HRMS (ES+) found 167.0481; C10H8O [M+Na]+ 

requires 167.0473. 
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(Z)-4-iodo-1-phenylbut-3-en-2-one (16)139 

 

O

I 1

8

 
 

According to a representative procedure,139 acetic acid (0.22 mL, 3.80 mmol) was added to a 

solution of 15 (500 mg, 3.50 mmol) and LiI (501 mg, 3.80 mmol) in MeCN (4 mL) and 

stirred at RT. After 2 h, the resulting solution was added to ice-cold water (40 mL). Solid 

K2CO3 was added until bubbling ceased and the mixture was extracted with Et2O (3 x 50 

mL). The combined organic layers were dried over MgSO4 and concentrated in vacuo. The 

crude product was purified by column chromatography (petrol/EtOAc, 15:1) to afford a 

mixture of cis-ketone (350 mg, 40 %) and trans-ketone (45 mg, 6 %). 

 

*max/cm-1 (film): 3310, 3010, 2978, 1715; +H (400 MHz, CDCl3): 7.43-7.19 (7H, m, H1, H2 

& Ar CH), 3.85 (2H, s, H4); +C (100 MHz, CDCl3): 197.8 (C3), 145.4 (C2), 135.6 (qC), 

129.6 (Ar CH), 129.4 (Ar CH), 128.7 (Ar CH), 91.6 (C1), 54.8 (C4); m/z: HRMS (ES+) 

found 294.9587; C10H9IO [M+Na]+ requires 294.9596. 
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2-Bromocoumarin (20)68 
 

O O

Br
1

3

9  
 

According to a literature procedure,68 2 N HBr (15.1 mL, 30.1 mmol) was added in one 

portion to a mixture of coumarin (2.0 g, 13.7 mmol) and OXONE® (10.1 g, 16.5 mmol) in 

CH2Cl2 (50 mL) resulting a dark red solution. The mixture was stirred for 2 h at RT as the 

colour faded. Et3N (9 mL, 64 mmol) was added slowly over 1 h and then stirred at RT for a 

further 12 h. The reaction mixture was quenched with water and extracted with CH2Cl2 (3 x 

50 mL). The combined organic layers were dried over MgSO4 and concentrated in vacuo. 

The crude product was purified by column chromatography (CH2Cl2/petrol, 1:1) to afford 2-

bromocoumarin as a white solid (2.85 g, 93 %). 

 

m.p. 108-110 ˚C (Lit- 110-111 ˚C); *max/cm-1 (film): 3053, 1728, 1605, 1245, 1121; +H (400 

MHz, CDCl3): 8.11 (1H, s, H3), 7.62-7.53 (1H, m, H7), 7.47 (1H, dd, J 7.7, 1.5, H5), 7.35 

(1H, dd, J 8.5, H8), 7.33-7.31 (1H, m, H6); +C (100 MHz, CDCl3): 157.5 (C1), 153.6 (C9), 

144.8 (C3), 132.5 (C7), 127.5 (C5), 125.4 (C6), 119.8 (C4), 117.3 (C8), 112.3 (C2); m/z: 

HRMS (ES+) found 224.9545; C9H5BrO2 [M+H]+ requires 224.9546. 
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3-((Trimethylsilyl)ethynyl)-2H-chromen-2-one (21)  

 

O O
1

3

9

Si
12

 
 

Pd(PPh3)Cl2 (0.316 g, 0.45 mmol) and CuI (0.086 g, 0.45 mmol) were added to a solution of 

20 (2.0 g, 8.9 mmol) in DMF (20 mL) and degassed for 10 mins. The colour of the solution 

changed from yellow to light orange. Et3N (2.5 mL, 17.8 mmol) and trimethylacetylene (1.9 

mL, 13.35 mmol) were then added and the solution was heated to 60 ˚C. After 3 h, the 

reaction mixture was cooled to RT and then filtered through Celite, and concentrated in 

vacuo. The crude product was purified by column chromatography (CH2Cl2/petrol, 1:1.5) to 

afford 3-((trimethylsilyl)ethynyl)-2H-chromen-2-one as a brown solid (1.9 g, 88 %). 

 

m.p. 98-100 ˚C; *max/cm-1 (film): 3068, 3035, 2960, 2154, 1726, 1605, 1250, 1058; +H (400 

MHz, CDCl3): 7.88 (1H, s, H3), 7.50 (1H, ddd, J 8.6, 7.3, 1.6, H7), 7.43 (1H, dd, J 7.7, 1.5, 

H5), 7.30-7.23 (2H, m, H6 & H8), 0.25 (9H, s, H12); +C (100 MHz, CDCl3): 159.1 (C1), 

153.2 (C9), 145.9 (C3), 132.2 (C7), 127.7 (C5), 124.7 (C6), 118.5 (C4), 116.6 (C8), 112.6 

(C2), 102.0 (C11), 98.0 (C10), 0.3 (C12); m/z: HRMS (ES+) found 243.0843; C14H14O2Si 

[M+H]+ requires 243.0843. 
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3-(3-Oxohex-1-yn-1-yl)-2H-chromen-2-one (23) 

 

O O

O

1

3

9

14

 
 

Butyryl chloride (0.47 mL, 4.5 mmol) was added to a solution of 21 (1.0 g, 4.1 mmol) in 

CH2Cl2 (40 mL) at 0 ˚C, followed by AlCl3 (1.09 g, 8.2 mmol). After 30 mins, the reaction 

was quenched with water and extracted with CH2Cl2 (3 x 30 mL). The combined organic 

layers were dried over MgSO4 and concentrated under vacuo. The residue was purified by 

column chromatography (CH2Cl2/petrol, 4:1) to afford 3-(3-oxohex-1-yn-1-yl)-2H-chromen-

2-one as white solid (840 mg, 85 %). 

 

m.p. 92-95 ˚C; *max/cm-1 (film): 3057, 2964, 2202, 1728, 1664, 1602, 1259, 1096; +H (400 

MHz, CDCl3): 8.09 (1H, s, H3), 7.62 (1H, ddd, J 8.6, 7.3, 1.6, H7), 7.53 (1H, dd, J 7.8, 1.5, 

H5), 7.40-7.31 (2H, m, H6 & H8), 2.68 (2H, t, J 7.3, H13), 1.78 (2H, sext., J 7.4, H14), 0.98 

(3H, t, J 7.4, H15); +C (100 MHz, CDCl3): 187.5 (C12), 158.3 (C1), 154.0 (C9), 149.4 (C3), 

133.8 (C7), 128.4 (C5), 125.2 (C6), 118.2 (C4), 117.0 (C8), 110.4 (C2), 92.2 (C11), 83.1 

(C10), 47.3 (C13), 17.5 (C14), 13.5 (C15); m/z: HRMS (ES+) found 241.0860; C15H12O3 

[M+H]+ requires 241.0859. 
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3-(3-Oxopent-1-yn-1-yl)-2H-chromen-2-one (24) 

 

O O

O

1
9

12

 
 

Propionyl chloride (79 "L, 0.91 mmol) was added to a solution of 21 (200 mg, 0.83 mmol) 

in CH2Cl2 (8 mL) at 0 ˚C, followed by AlCl3 (221 mg, 1.67 mmol). After 30 mins, the 

reaction was quenched with water and extracted with CH2Cl2 (3 x 30 mL). The combined 

organic layers were dried over MgSO4 and concentrated in vacuo. The residue was purified 

by column chromatography (CH2Cl2/petrol, 4:1) to afford 3-(3-oxopent-1-yn-1-yl)-2H-

chromen-2-one as a colourless oil (175 mg, 94 %). 

 

*max/cm-1 (film): 3057, 2964, 2202, 1728, 1664, 1602, 1259, 1096; +H (400 MHz, CDCl3): 

8.09 (1H, s, H3), 7.67-7.59 (1H, m, H7), 7.53 (1H, dd, J 7.7, 1.5, H5), 7.35 (2H, m, H6 & 

H8), 2.74 (2H, q, J 7.4, H13), 1.22 (3H, t, J 7.4, H14); +C (100 MHz, CDCl3): 188.0 (C12), 

158.3 (C1), 154.0 (C9), 149.3 (C3), 133.8 (C7), 128.5 (C5), 125.2 (C6), 118.3 (C4), 117.1 

(C8), 110.5 (C2), 92.1 (C11), 83.3 (C10), 38.9 (C13), 8.0 (C14); m/z: HRMS (ES+) found 

227.0700; C14H10O3 [M+H]+ requires 227.0703. 
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(Z)-3-(3-Oxopent-1-en-1-yl)-2H-chromen-2-one (26) 
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Quinoline (39 "L, 0.33 mmol) was added to a solution of 23 (800 mg, 3.33 mmol) in CH2Cl2 

(30 mL). The mixture was degassed for 10 mins. Lindlar catalyst (160 mg, 20 % w/w) was 

added and the resulting mixture was stirred under a hydrogen atmosphere at RT. After 7 h, 

the reaction was filtered through Celite, and concentrated under vacuo. The residue was 

purified by column chromatography (ether/petrol, 1:2) to afford (Z)-3-(3-oxopent-1-en-1-yl)-

2H-chromen-2-one as a yellow crystalline solid (640 mg, 79 %). 

 

m.p. 88-90 ˚C; *max/cm-1 (film): 3057, 2962, 2869, 1691, 1605, 1457, 1285, 1185; +H (400 

MHz, CDCl3): 8.76 (1H, s, H3), 7.62 (1H, d, J 7.7, H5), 7.60-7.55 (1H, m, H7), 7.37-7.30 

(2H, m, H6 & H8), 6.89 (1H, d, J 12.9, H10), 6.48 (1H, d, J 12.9, H11), 2.60 (2H, t, J 7.3, 

H13), 1.69 (2H, sext., J 7.4, 7.4, H14), 0.98 (3H, t, J 7.4, H15); +C (100 MHz, CDCl3): 

201.4 (C12), 160.8 (C1), 153.9 (C9), 143.5 (C3), 133.0 (C7), 132.3 (C10), 130.4 (C11), 

129.0 (C5), 124.6 (C6), 122.1 (C4), 119.0 (C2), 116.5(C8), 45.9 (C13), 17.4 (C14), 13.7 

(C15); m/z: HRMS (ES+) found 265.0838; C15H14O3 [M+Na]+ requires 265.0835. 
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(E)-3-(3-Oxohex-1-en-1-yl)-2H-chromen-2-one (28) 
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nBuLi (102 "L, 0.15 mmol, 1.47 M in hexane) was added to a cooled solution of 

diisopropylamine  (22.5 "L, 0.16 mmol) in THF (1 mL) at 0 ˚C and stirred for 20 min. The 

reaction was cooled to -78 ˚C and 26 (32.5 mg, 0.14 mmol) in THF (1 mL) was added slowly 

and stirred for 30 mins. The resulting solution was warmed to RT over 1 h and stirred for 30 

mins. The reaction was quenched with sat. NH4Cl (5 mL) and extracted with CH2Cl2 (3 x 15 

ml). The combined organic layers were dried over MgSO4 and concentrated in vacuo. The 

residue was purified by column chromatography (ether/petrol, 1:2) to afford (E)-3-(3-

oxohex-1-en-1-yl)-2H-chromen-2-one as a yellow solid (28 mg, 86 %). 

 

m.p. 104-107 ˚C; *max/cm-1 (film): 3068, 3035, 2962, 1724, 1595, 1250, 1058; +H (400 

MHz, CDCl3): 7.91 (1H, s, H3), 7.58 (2H, m, H5 & H7), 7.46 (1H, d, J 15.9, H10), 7.35 

(1H, d, J 15.9, H11), 7.33 (2H, m, H6 & H8), 2.65 (2H, t, J 7.3, H13), 1.71 (2H, m, H14), 

0.97 (3H, t, J 7.4, H15); +C (100 MHz, CDCl3): 200.7 (C12), 159.3 (C1), 153.5 (C9), 143.7 

(C3), 135.1 (C10), 133.0 (C7), 130.3 (C11), 128.5 (C5), 124.9 (C6), 122.6 (C4), 119.1 (C2), 

116.7 (C8), 44.0 (C13), 17.6 (C14), 13.8 (C15); m/z: HRMS (ES+) found 265.0838; 

C15H14O3 [M+Na]+ requires 265.0835. 
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3-Ethynyl-2H-chromen-2-one (22) 
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2-(Benzyloxy)acetyl chloride (0.14 mL, 0.91 mmol) was added to a solution of 21 (200 mg, 

0.83 mmol) in CH2Cl2 (8 mL) at 0 ˚C, followed by AlCl3 (221.3 mg, 1.67 mmol). After 30 

mins, the reaction was quenched with water and extracted with CH2Cl2 (3 x 30 mL). The 

combined organic layers were dried over MgSO4 and concentrated in vacuo. The residue was 

purified by column chromatography (CH2Cl2/petrol, 4:1) to afford 3-ethynyl-2H-chromen-2-

one as a colourless oil (120 mg, 86 %). 

 

 *max/cm-1 (film): 3057, 2962, 2869, 2364, 1717, 1285, 1185; +H (400 MHz, CDCl3): 7.95 

(1H, s, H3), 7.56 (1H, d, J 7.7, H5), 7.48 (dd, J 7.7, 1.5, H7), 7.32 (2H, m, H6 & H8), 3.38 

(1H, s, H11); +C (100 MHz, CDCl3): 159.4 (C1), 153.5 (C9), 146.6 (C3), 132.7 (C7), 127.9 

(C5), 124.9 (C6), 118.5 (C4), 116.9 (C8), 112.0 (C2), 83.8 (C10), 81.6 (C11); m/z: HRMS 

(ES+) found 188.0705; C11H6O2 [M+NH4]+ requires 188.0706. 
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3-Bromo-5,6-dihydro-2H-pyran-2-one (30)69 
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According to a literature procedure,69 a solution of bromine (2.7 mL, 52.7 mmol) in CH2Cl2 

(50 mL) was added over 10 min to a stirred solution of dihydropyranone (4.70 g, 47.9 mmol) 

in CH2Cl2 (170 mL). The mixture was stirred at RT for 2 h, after which Et3N (7.35 mL, 52.7 

mmol) was added. After 3 h, the mixture was poured into water (200 mL) and the organic 

layer was separated. The aqueous fraction was extracted with CH2Cl2 (2 x 100 mL). The 

organic layers were combined, dried over MgSO4 and concentrated in vacuo. The residue 

was purified by column chromatography (CH2Cl2/petrol, 3:1) to yield the desired product 30 

(7.9 g, 94 %) as a colourless crystalline solid. 

 

m.p. 32-34 ˚C (Lit- 32-34 ˚C); +H (400 MHz, CDCl3): 7.28 (1H, t, J 4.6, H3), 4.48 (2H, t, J 

6.2, H5), 2.56 (2H, dt, J 6.2, 4.6, H4); +C (100 MHz, CDCl3): 159.5 (C1), 146.1 (C3), 114.1 

(C2), 67.0 (C5), 26.9 (C4); m/z: HRMS (ES+) found 198.9370; C5H5BrO2 [M+Na]+ requires 

198.9371. 
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3-((Trimethylsilyl)ethynyl)-5,6-dihydro-2H-pyran-2-one (31)  
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Et3N (9.5 mL, 68.2 mmol) and trimethylsilyl acetylene (7.23 mL, 51.2 mmol) were added to 

a mixture of 30 (6.0 g, 34.1 mmol), Pd(PPh3)2Cl2 (1.2 g, 1.71 mmol) and CuI (325 mg, 1.71 

mmol) in 1,4-dioxane (140 mL). The reaction mixture was stirred under argon at RT for 30 

mins and then filtered through Celite- with CH2Cl2. The filtrate was concentrated in vacuo. 

The crude product was purified by column chromatography (ether/petrol, 1.5:1) to yield the 

desired product (5.2 g, 78 %) as a brown solid. 

 

m.p. 77-79 ˚C; *max/cm-1 (film): 2966, 2159, 1714, 1677, 1252,1123; +H (400 MHz, 

CDCl3): 7.18 (1H, t, J 4.7, H3), 4.39 (2H, t, J 6.4, H5), 2.53 (2H, dt, J 6.4, 4.7, H4), 0.21 

(9H, s, H8); +C (100 MHz, CDCl3): 161.8 (C1), 149.7 (C3), 118.4 (C2), 98.6 (C7), 78.9 

(C6), 66.7 (C5), 25.1 (C4), 0.2 (C8); m/z: HRMS (ES+) found 217.0658; C10H14O2Si 

[M+Na]+ requires 217.0661. 
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3-(3-Oxohex-1-yn-1-yl)-5,6-dihydro-2H-pyran-2-one (32) 
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Butyryl chloride (0.71 mL, 6.8 mmol) was slowly added to a mixture of 31 (1.1 g, 5.67 

mmol) and AlCl3 (1.5 g, 11.34 mmol) in CH2Cl2 (50 mL) at 0 ˚C and stirred for 15 mins. The 

reaction mixture was diluted with water (25 mL) and extracted with CH2Cl2 (2 x 50 mL). 

The combined organic layers were dried over MgSO4 and concentrated in vacuo. The crude 

product was purified by column chromatography (EtOAc/petrol, 1:1) to yield the desired 

product (580 mg, 53 %) as a yellow oil. 

 

*max/cm-1 (film): 2985, 2170, 1722, 1677, 1267, 1160; +H (400 MHz, CDCl3): 7.42 (1H, t, J 

4.6, H3), 4.47 (2H, t, J 6.2, H5), 2.67-2.61 (2H, m, H4), 2.62 (2H, t, J 5.9, H9), 1.75 (2H, 

sext., J 7.4, H10), 0.96 (3H, t, J 7.4, H11); +C (100 MHz, CDCl3): 186.7 (C8), 165.1 (C1), 

150.2 (C3), 119.4 (C2), 90.0 (C7), 86.7 (C6), 67.6 (C5), 46.5 (C9), 22.4 (C4), 17.1 (C10), 

13.6 (C11); m/z: HRMS (ES+) found 193.0861; C11H12O3 [M+H]+ requires 193.0865. 
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2-Propyl-8,8a-dihydropyrano[4,3-b]pyran-5(7H)-one (34) 

 

O

O

O

6
1

5

10

 
 

A mixture of 32 (100 mg, 0.52 mmol) and Lindlar catalyst (20 mg, 20 wt%) in CH2Cl2 (5 

mL) was stirred under a hydrogen atmosphere at RT. After 1 h, TLC indicated complete 

conversion of starting material. The reaction mixture was filtered through Celite- with 

CH2Cl2 and concentrated in vacuo. The crude product was purified by column 

chromatography (EtOAc/petrol, 1:1) to yield the oxo-cyclized product (62 mg, 61 %) as a 

colourless oil. 

 

*max/cm-1 (film): 2963, 2932, 1703, 1552, 1267, 1077; +H (400 MHz, CDCl3): 7.22 (1H, d, J 

5.9, H6), 5.47 (1H, d, J 5.9, H7), 4.82-4.75 (1H, m, H3), 4.40 (1H, ddd, J 11.6, 5.3, 4.0, H5), 

4.26-4.19 (1H, m, H5), 2.34 (2H, sext., H4), 2.20 (2H, t, J 7.5, H9), 1.57 (2H, dt, J 14.8, 7.0, 

H10), 0.94 (3H, t, J 7.4, H11); +C (100 MHz, CDCl3): 167.1 (C8), 165.1 (C1), 137.6 (C6), 

109.6 (C2), 101.7 (C7), 71.7 (C3), 63.8 (C5), 35.6 (C9), 28.7 (C4), 20.3 (C10), 13.6 (C11); 

m/z: HRMS (ES+) found 217.0840; C11H14O3 [M+Na]+ requires 217.0841. 
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(E)-tert-Butyl(hex-4-en-1-yn-3-yloxy)dimethylsilane (61)74 
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According to a literature procedure,74 a solution of crotonaldehyde 60 (3.0 g, 42.8 mmol) in 

THF (25 mL) was added slowly to a solution of ethynylmagnesium bromide (0.5 M in THF, 

94 mL, 47 mmol) at -78 ˚C. After 2 h, the reaction was quenched with sat. NH4Cl and 

extracted with ether (3 x 100 mL). The combined organic layers were washed with brine, 

dried over MgSO4 and concentrated in vacuo. The residue was purified by column 

chromatography (CH2Cl2/petrol, 2:1) to afford (E)-hex-4-en-1-yn-3-ol (3.9 g, 95 %) as 

yellow oil.  

 

According to a literature procedure,75 imidazole (850 mg, 12.5 mmol) was added to a 

solution of alcohol (1.0 g, 10.4 mmol) in CH2Cl2 (5 mL). This was followed by addition of 

TBSCl (1.9 g, 12.5 mmol) at RT. After 2 h, the reaction was quenched with sat. NH4Cl and 

extracted with CH2Cl2 (3 x 50 mL). The combined organic layers were dried over MgSO4 

and concentrated in vacuo. The crude product was purified over Et3N doped silica by column 

chromatography (CH2Cl2/petrol, 1:10) to afford (E)-tert-butyl(hex-4-en-1-yn-3-

yloxy)dimethylsilane 61 (2.2 g, 76 %) as a colourless oil. 

 

+H (400 MHz, CDCl3): 5.86-5.77 (1H, m, H5), 5.56 (1H, dd, J 5.6, H4), 4.83 (1H, d, J 5.6, 

H3), 2.47 (1H, s, H1), 1.71 (3H, d, J 6.6, H6), 0.90 (9H, s, H9), 0.12 (6H, d, J 5.0, H7); +C 

(100 MHz, CDCl3): 130.6 (C4), 127.0 (C5), 84.2 (C2), 73.0 (C1), 63.3 (C3), 25.6 (C9), 18.3 

(C8), 17.4 (C6), -4.6 (C7); m/z: HRMS (ES+) found 210.1436; C12H22OSi [M]+ requires 

210.1440. 
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3-((Z)-2,2,3,3,12,12,13,13-Octamethyl-5,10-di((E)-prop-1-en-1-yl)-4,11-dioxa-3,12-

disilatetradec-6-en-8-yn-7-yl)-5,6-dihydro-2H-pyran-2-one (63) 
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A solution of 30 (197 mg, 0.94 mmol), Pd(PPh3)Cl2 (29.8 mg, 0.043 mmol) and CuI (8.2 mg, 

0.043 mmol) in 1,4-dioxane (6 mL) was degassed and stirred at RT for 15 mins. A solution 

of 61 (150 mg, 0.85 mmol) in dioxane (2 mL) was added, followed by Et3N (0.18 mL, 1.28 

mmol). After 1 h, the solvent was evaporated and residue was dissolved in CH2Cl2 and 

filtered through Celite,. The crude product was purified over Et3N doped silica by column 

chromatography (petrol/EtOAc, 3:1) to afford the desired product (132 mg, 30 %) as a 

colourless oil. 

 

*max/cm-1 (film): 2955, 2857, 1728, 1472, 1251, 1059; +H (400 MHz, CDCl3): 7.22 (1H, dd, 

J 8.2, 4.6 Hz, H3), 6.78 (1H, dd, J 8.5, 1.2, H7), 5.86-5.75 (1H, m, H19), 5.74-5.65 (1H, m, 

H10), 5.62-5.54 (1H, m, H18), 5.50-5.41 (1H, m, H9), 5.13 (1H, dd, J 6.4, 6.4, H8), 5.02 

(1H, dd, J 5.1, H17), 4.31 (2H, t, J 6.2, H5), 2.53-2.50 (2H, m, H4), 1.72 (3H, d, J 6.4, H20), 

1.66 (3H, d, J 6.5, H11), 0.91 (9H, s, H23), 0.87 (9H, s, H14), 0.12 (6H, s, H21), 0.05 (6H, s, 

H12); +C (100 MHz, CDCl3): 162.1 (C1), 144.6 (C7), 141.9 (C3), 131.7 (C9), 131.0 (C18), 

129.2 (C6), 127.0 (C10), 125.6 (C19), 115.8 (C2), 96.7 (C16), 80.0 (C15), 72.9 (C8), 65.6 

(C5), 64.0 (C17), 25.9 (C14), 25.8 (C23), 24.8 (C4), 18.3 (C13), 18.2 (C22), 17.7 (C11), 

17.4 (C20), -4.4 (C12), -4.6 (C21); m/z: HRMS (ES+) found 539.2993; C29H48O4Si2 

[M+Na]+ requires 539.2989. 
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tert-Butyldimethyl(((2E,7E)-7-nitro-8-phenylocta-2,7-dien-5-yn-4-yl)oxy)silane  
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A solution of 5 (200 mg, 0.88 mmol), Pd(PPh3)Cl2 (31.0 mg, 0.044 mmol) and CuI (8.4 mg, 

0.044 mmol) in dioxane (6 mL) was degassed and stirred at RT for 15 mins. A solution of 61 

(206 mg, 0.96 mmol) in dioxane (4 mL) was added to the above mixture, followed by Et3N 

(0.18 mL, 1.32 mmol) and heated at 50 ˚C. After 3 h, the reaction was cooled to RT, the 

solvent was evaporated and the residue was dissolved in CH2Cl2 and filtered through 

Celite,. The crude product was purified over Et3N doped silica by column chromatography 

(petrol/EtOAc, 20:1) to afford tert-butyldimethyl(((2E,7E)-7-nitro-8-phenylocta-2,7-dien-5-

yn-4-yl)oxy)silane (255 mg, 81 %) as a yellow oil. 

 

*max/cm-1 (film): 3010, 2930, 2857,2337, 1624, 1532, 1324, 1251; +H (400 MHz, CDCl3): 

8.27 (1H, s, H7), 7.99 (1H, d, J 7.4, H2 & H6), 7.53-7.46 (1H, m, Ar CH), 7.46-7.42 (2H, m, 

Ar CH), 6.00-5.87 (1H, m, H13), 5.69-5.61 (1H, m, H12), 5.19 (1H, d, J 5.9, H11), 1.79-1.77 

(3H, d, J 6.5, H14), 0.93 (9H, s, H17), 0.16 (6H, d, J 1.9, H15); +C (100 MHz, CDCl3): 

138.8 (C7), 132.3 (Ar CH), 131.2 (Ar CH), 130.5 (C1), 129.6 (C12), 129.0 (Ar CH), 128.3 

(C13), 104.2 (C10), 74.8 (C9), 64.2 (C11), 25.8 (C17), 18.3 (C16), 17.6 (C14), -4.6 (C15); 

m/z: HRMS (ES+) found 375.2102; C20H27NO3Si [M+NH4]+ requires 375.2098. 
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(E)-1-Methyl-4-(styrylsulfonyl)benzene (38)70 
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According to a literature procedure,70 a solution of CAN (13.7 g, 25 mmol) in dry CH3CN 

(80 mL) was added dropwise to a degassed mixture of styrene (1.04 g, 10 mmol), p-toluene 

sulfinate (2.10 g, 11.5 mmol) and NaI (1.73 g, 11.5 mmol) in dry acetonitrile (120 mL). The 

reaction mixture was stirred vigorously at RT under an argon atmosphere for 45 min. The 

solvent was removed in vacuo; the residue was diluted with water (300 mL) and extracted 

using dichloromethane (3 x 200 mL). The combined organic extracts were washed with 

water, saturated sodium thiosulfate and brine. The organic layers were dried over anhydrous 

sodium sulfate and concentrated in vacuo. The crude product was purified by column 

chromatography on neutral alumina (EtOAc/petrol, 1:4) to afford the vinyl sulfone (2.4 g, 93 

%) as a colourless crystalline solid. 

 

m.p. 107-109 ˚C (lit: 119-121 ˚C); +H (400 MHz, CDCl3): 7.82 (2H, d, J 8.3, Ar CH), 7.65 

(1H, d, J 15.4, CH), 7.54-7.42 (2H, m, Ar CH), 7.42-7.29 (5H, m, Ar CH), 6.83 (1H, d, J 

15.4, SO2CH), 2.43 (3H, s, CH3); +C (100 MHz, CDCl3): 144.2 (Ar CH), 141.7 (Ar CH), 

137.9 (CH), 132.4 (Ar CH), 130.9 (Ar CH), 129.9 (Ar CH), 128.9 (Ar CH), 128.5 (Ar CH), 

127.8 (Ar CH), 127.7 (SO2CH), 21.5 (CH3); m/z: HRMS (ES+) found 281.0613; C15H14O2S 

[M+Na]+ requires 281.0612. 
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(Z)-1-((1-Bromo-2-phenylvinyl)sulfonyl)-4-methylbenzene (39) 
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Bromine (52 "L, 2.0 mmol) was added slowly to a solution of 38 (516 mg, 2.0 mmol) in 

acetic acid (10 mL) surrounded by a cold-water bath, followed by addition of anhydrous 

K2CO3 (145 mg, 1.0 mmol). When the evolution of gas had ceased, the mixture was refluxed 

for 30 mins, then cooled, poured into cold water and stirred vigorously. The mixture was 

extracted with CH2Cl2 (3 x 50 mL). The combined organic layers were dried over MgSO4 

and concentrated in vacuo. The crude product was purified over alumina by column 

chromatography (petrol/EtOAc, 4:1) to afford (Z)-1-((1-bromo-2-phenylvinyl)sulfonyl)-4-

methylbenzene (630 mg, 95 %) as a white crystalline solid.  

 

m.p. 88-90 ˚C; *max/cm-1 (film): 3045, 2915, 1615, 1597, 1491, 1324, 1153; +H (400 MHz, 

CDCl3): 8.34 (1H, s, CH), 7.88 (2H, d, J 8.3, Ar CH), 7.84-7.78 (2H, m, Ar CH), 7.46-7.40 

(3H, m, Ar CH), 7.36 (2H, d, J 8.0, Ar CH), 2.46 (3H, s, CH3); +H (400 MHz, CDCl3): 

145.1 (Ar CH), 138.5 (Ar CH), 134.3 (CH), 131.9 (Ar CH), 130.9 (Ar CH), 130.1 (Ar CH), 

129.8 (Ar CH), 129.2 (Ar CH), 128.7 (Ar CH), 121.1 (CBr), 21.7 (CH3); m/z: HRMS (ES+) 

found 358.9714; C15H13BrO2S [M+Na]+ requires 358.9712. 
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(E)-Trimethyl(4-phenyl-3-tosylbut-3-en-1-yn-1-yl)silane (40) 
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Pd(PPh3)Cl2 (21 mg, 0.03 mmol) and CuI (6 mg, 0.03 mmol) were added to a solution of 39 

(202 mg, 0.6 mmol) in DMF (6 mL) at RT, degassed and stirred for 15 mins. Et3N (126 "L, 

0.9 mmol) and trimethylsilylacetylene (132 "L, 0.9 mmol) were added and the mixture was 

heated to 50 ˚C. After 5 h, the solvent was evaporated and resulting mixture was filtered 

through Celite, using Et2O. The solvent was evaporated under reduced pressure and the 

crude product was purified by column chromatography (petrol/EtOAc, 6:1) to afford (E)-

trimethyl(3-nitro-4-phenylbut-3-en-1-yn-1-yl)silane as a colourless oil (155 mg, 73 %). 

 

*max/cm-1 (film): 3024, 2960, 2157, 1321, 1251, 1154, 1090, 846; +H (400 MHz, CDCl3): 

7.96 (2H, dt, J 3.7, 2.2, Ar CH), 7.87 (1H, s, H7), 7.84 (2H, d, J 8.3, Ar CH), 7.43-7.34 (3H, 

m, Ar CH), 7.31 (2H, d, J 8.0, Ar CH), 2.42 (3H, s, CH3), 0.19 (9H, s, H11); +C (100 MHz, 

CDCl3): 144.8 (C8), 142.2 (C7), 136.0 (qC), 133.0 (qC), 131.7 (Ar CH), 130.5 (Ar CH), 

129.7 (Ar CH), 129.2 (Ar CH), 128.8 (Ar CH), 124.9 (qC), 110.4 (C10), 96.8 (C9), 21.9 

(CH3), -0.5 (C11); m/z: HRMS (ES+) found 377.1001; C20H22O2SSi [M+Na]+ requires 

377.1002. 
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(E)-8-Phenyl-7-tosyloct-7-en-5-yn-4-one (41) 
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Butyryl chloride (18 "L, 0.17 mmol) was added slowly to a mixture of 40 (50 mg, 0.14 

mmol) and AlCl3 (37.3 mg, 0.28 mmol) in CH2Cl2 (2 mL) at 0 ˚C and stirred for 30 mins. 

The reaction mixture was diluted with water (10 mL) and extracted with CH2Cl2 (2 x 30 

mL). The combined organic layers were dried over MgSO4 and concentrated in vacuo. The 

crude product was purified by column chromatography (petrol/EtOAc, 4:1) to yield the 

desired product (42 mg, 90 %) as a yellow oil. 

 

*max/cm-1 (film): 3010, 2966, 2876, 2194, 1786, 1673, 1529, 1321; +H (400 MHz, CDCl3): 

8.12 (1H, s, H7), 7.93-7.88 (2H, m, Ar CH), 7.85 (2H, d, J 8.3, Ar CH), 7.51-7.41 (3H, m, 

Ar CH), 7.35 (2H, d, J 8.1, Ar CH), 2.55 (2H, t, J 7.3, H12), 2.43 (3H, s, CH3), 1.69 (2H, m, 

H13), 0.94 (3H, t, J 7.4, H14); +C (100 MHz, CDCl3): 186.6 (C11), 147.2 (C7), 145.1 (C8), 

135.5 (CCH3), 132.6 (C15), 132.0 (qC), 130.7 (Ar CH), 129.9 (Ar CH), 129.0 (Ar CH), 

128.7 (Ar CH), 122.4 (Ar CH), 98.2 (C10), 81.2 (C9), 47.2 (C12), 21.7 (CH3), 17.4 (C13), 

13.5 (C14); m/z: HRMS (ES+) found 375.1034; C21H20O3S [M+Na]+ requires 375.1031. 
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2-phenyl-6-propyl-3-tosyl-2H-pyran (43) 

 

O

S
Ph

O O

6

1

 
 

A mixture of 41 (20 mg, 0.06 mmol) and Lindlar catalyst (2 mg, 10 wt%) in CH2Cl2 (1 mL) 

was stirred under a hydrogen atmosphere at RT in the dark. After 1 h, the reaction mixture 

was filtered through Celite- with CH2Cl2 and concentrated in vacuo. The crude product was 

purified by column chromatography (EtOAc/petrol, 1:6) to yield the oxo-cyclized product 

(14 mg, 70 %) as a colourless oil. 

 

*max/cm-1 (film): 3010, 2980, 2874, 1780, 1673, 1530, 1308; +H (400 MHz, CDCl3): 7.55 

(2H, d, J 8.3, Ar CH), 7.27-7.23 (3H, m, H6 & Ar CH), 7.20-7.16 (3H, m, Ar CH), 7.12 (2H, 

d, J 8.1, Ar CH), 6.02 (1H, s, H8), 5.26 (1H, d, J 6.3, H5), 2.33 (3H, s, CH3), 2.07-1.88 (2H, 

m, H3), 1.36-1.18 (2H, m, H2), 0.62 (3H, t, J 7.4, H1); +C (100 MHz, CDCl3): 167.0 (C4), 

142.5 (C7), 141.2 (Ar C), 139.8 (Ar CCH3), 137.2 (C6), 135.8 (Ar CSO2), 129.6 (Ar CH), 

129.4 (Ar CH), 128.8 (Ar CH), 127.9 (Ar CH), 127.0 (Ar CH), 102.1 (C5), 72.5 (C8), 35.4 

(C3), 21.4 (CH3), 20.2 (C2), 13.5 (C1); m/z: HRMS (ES+) found 377.1179; C21H22O3S 

[M+Na]+ requires 377.1187. 
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1-(2-Bromophenyl)propan-1-one (48)71 

 
O

Br  
 

According to a literature procedure,71 a solution of ethylmagnesium bromide (1.0 M in THF, 

10 mL, 10 mmol) was added slowly to a stirred solution of 2-bromobenzaldehyde (1.1g, 6 

mmol) in THF (10 mL) at 0 ˚C. The solution was slowly warmed to RT. After 2 h, the 

reaction was quenched with sat. NH4Cl and extracted with CH2Cl2 (3 x 50 mL), dried over 

MgSO4 and concentrated in vacuo. The residue was purified by column chromatography 

(petrol/EtOAc, 2:1) to afford the desired alcohol (955 mg, 75 %) as a colourless oil. 

 

A solution of trifluoroacetic anhydride (0.92 mL, 6.63 mmol) in CH2Cl2 (4 mL) was added 

dropwise to a solution of DMSO (0.63 mL, 8.84 mmol) in CH2Cl2 (8 mL) at  -78 °C. After 

stirring for 10 min, a solution of the alcohol (950 mg, 4.42 mmol) in CH2Cl2 (8 mL) was 

added dropwise to the mixture. The reaction mixture was allowed warm to RT, and Et3N 

(1.85 mL, 13.3 mmol) was added by syringe. After 1 h, the reaction was quenched with 

water and extracted with CH2Cl2 (3 x 50 mL). The combined organic layers were washed 

with sat. NaHCO3 and brine, dried over MgSO4 and concentrated in vacuo. The residue was 

purified by column chromatography (petrol/EtOAc, 8:1) to afford the desired product 48 

(850 mg, 90 %) as a colourless oil. 

 

+H (400 MHz, CDCl3): 7.60 (1H, dd, J 8.6, 0.8, Ar CH), 7.47-7.22 (3H, m, Ar CH), 2.77 

(2H, q, J 7.4, CH2), 1.26 (3H, t, J 7.4, CH3); +C (100 MHz, CDCl3): 205.1 (CO), 141.9 (qC), 

133.6 (Ar CH), 131.3 (Ar CH), 128.1 (Ar CH), 127.4 (Ar CH), 118.5 (qC), 36.4 (CH2), 8.1 

(CH3); m/z: HRMS (ES+) found 234.9728; C9H9BrO [M+Na]+ requires 234.9729. 
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(Z)-Ethyl 2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)but-2-enoate (49)72 

 

B
O

OO

O
 

 

According to a literature procedure,72 in a flame dried flask, Stryker’s reagent [(PPh3)CuH]6 

(35 mg, 0.10 mmol) and PPh3 (52.5 mg, 0.20 mmol) were weighed under an argon 

atmosphere and dissolved in THF (3 mL).  The resulting bright red solution was cooled in an 

ice bath and pinacolborane (0.8 mL, 5.5 mmol) was added and allowed to stir for 5 min.  

This caused the solution to turn to a darker colour. Ethyl but-2-ynoate (582 "L, 5.0 mmol) 

was then added dropwise over 5 min. The solvent was evaporated under reduced pressure 

and the residue was quickly purified over a short pad of silica (5% EtOAc/petrol) to afford 

the desired boronate (920 mg, 77 %) as a colourless oil. 

 

*max/cm-1 (film): 2979, 2936, 1719, 1626, 1355, 1212, 1136, 1036; +H (400 MHz, CDCl3): 

6.79 (1H, q, J 7.0, CH), 4.21 (2H, q, J 7.1, CH2), 1.96 (3H, d, J 7.0, CH3), 1.28 (3H, t, J 7.1, 

CH3), 1.25 (12H, s, CCH3); +C (100 MHz, CDCl3): 169.2 (CO), 151.6 (CH), 128.7 (CCH), 

83.8 (OCCH3), 60.2 (OCH2), 24.6 (CCH3), 17.2 (CHCH3), 14.3 (CH2CH3); m/z: HRMS 

(ES+) found 263.1430; C12H21BO4 [M+Na]+ requires 263.1427. 
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(Z)-Ethyl 2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pent-2-enoate (50) 72 

 

B
O

OO

O
 

 

According to a literature procedure,72 in a flame dried flask, Stryker’s reagent [(PPh3)CuH]6 

(70 mg, 0.20 mmol) and triphenylphosphine (105 mg, 0.40 mmol) were weighed under an 

argon atmosphere and dissolved in THF (10 mL).  The resulting bright red solution was 

cooled in an ice bath and pinacolborane (1.6 mL, 11 mmol) was added and allowed to stir for 

5 min.  This caused the solution to turn to a darker colour. Ethyl pent-2-ynoate (1.32 mL, 10 

mmol) was then added dropwise over 5 min. The solvent was evaporated under reduced 

pressure and the residue was quickly purified over a short pad of silica (petrol/EtOAc, 10:1) 

to afford (Z)-ethyl 2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pent-2-enoate (1.84 g, 73 

%) as a colourless oil. 

 

+H (400 MHz, CDCl3): 6.65 (1H, t, J 7.3, CH), 4.20 (2H, q, J 7.1, OCH2), 2.36 (2H, dq, J 

7.5, 7.1, CH2CH3), 1.28 (3H, t, J 7.1, ester CH3), 1.25 (12H, s, CCH3), 1.03 (3H, t, J 7.6, 

CH2CH3); +C (100 MHz, CDCl3): 169.3 (OCO), 157.9 (CH), 128.7 (CCH), 83.8 (OCCH3), 

60.2 (OCH2), 24.6 (CCH3),  24.5 (CH2CH3), 14.3 (ester CH3), 13.2 (CH2CH3); m/z: HRMS 

(ES+) found 277.1599; C13H23BO4 [M+Na]+ requires 277.1587. 
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(Z)-Ethyl 3-phenyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)acrylate (51) 72 

 

B
O

OO

O
 

 

According to a literature procedure,72 in a flame dried flask, Stryker’s reagent [(PPh3)CuH]6 

(7 mg, 0.02 mmol) and PPh3 (10.5 mg, 0.04 mmol) were weighed under an argon 

atmosphere and dissolved in THF (1 mL).  The resulting bright red solution was cooled in an 

ice bath and pinacolborane (160 "L, 1.1 mmol) was added and allowed to stir for 5 min.  

This caused the solution to turn to a darker colour. Ethyl 3-phenylpropiolate (166 "L, 1 

mmol) was then added dropwise over 5 min. The solvent was evaporated under reduced 

pressure and the residue was quickly purified over a short pad of silica (5% EtOAc/petrol) to 

afford (Z)-ethyl 3-phenyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)acrylate (290 mg, 

96 %) as a colourless oil. 

 

+H (400 MHz, CDCl3): 7.45-7.37 (3H, m, CH & Ar CH), 7.37-7.29 (3H, m, Ar CH), 4.25 

(2H, q, J 7.1, CH2), 1.32 (12H, s, CCH3), 1.20 (3H, t, J 7.1, CH3); +C (100 MHz, CDCl3): 

170.8 (OCO), 146.9 (CH), 135.6 (Ar qC), 129.2 (Ar CH), 128.7 (Ar CH), 128.4 (Ar CH), 

108.6 (CCH), 84.2 (OCCH3), 60.7 (OCH2), 24.8 (CCH3), 13.9 (CH3); m/z: HRMS (ES+) 

found 325.1584; C17H23BO4 [M+Na]+ requires 325.1587. 
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(Z)-(1-ethoxy-1-oxobut-2-en-2-yl)boronic acid (52) 

 

(HO)2B
O

O

 
 

NaIO4 (3.2 g, 14.7 mmol) and NH4OAc (1.05 g, 13.6 mmol) were dissolved in an 

acetone/water mixture (37.5 mL + 15 mL) at RT.  The boronate 49 (500 mg, 2.1 mmol) was 

added and the mixture stirred for 15 min.  Acetone was evaporated in vacuo and the mixture 

extracted with EtOAc. The solvent was evaporated to afford (Z)-(1-ethoxy-1-oxobut-2-en-2-

yl)boronic acid (300 mg, 91 %) as white crystals. 1H and 13C NMR were consistent with 

previously reported data.*  

 

m.p. 54-56 ˚C; *max/cm-1 (film): 3230, 2978, 2936, 1719, 1626, 1355, 1212, 1136, 1036; +H 

(400 MHz, CDCl3): 7.33 (1H, q, J 7.2, CH), 5.95 (2H, s, OH), 4.27 (2H, q, J 7.1, CH2), 2.14 

(3H, d, J 7.2, CHCH3), 1.34 (3H, t, J 7.1, CH2CH3); +C (100 MHz, CDCl3): 158.1 (CO), 

131.7 (CH), 111.1 (qC), 60.8 (OCH2), 18.9 (CHCH3), 14.4 (CH2CH3); m/z: HRMS (ES+) 

found 181.0644; C6H11BO4 [M+Na]+ requires 181.0648. 

 

Potassium (Z)-1-ethoxy-1-oxobut-2-en-2-yltrifluoroborate (53) 

KF3B
O

O

 
 

Boronic acid 52 (330 mg, 2.1 mmol) and KHF2 (447 mg, 5.7 mmol) were suspended in a 

water/MeOH mixture (2:1, 6 mL) and stirred at RT for 4 h under argon. The reaction mixture 

was cooled in an ice bath for 30 mins and filtered to afford white crystals (250 mg, 55 %). 

 

m.p. 161-165 ˚C; *max/cm-1 (film): 2978, 2930, 1722, 1620, 1355, 1210, 1136, 1036; +H 

(400 MHz, d6-DMSO): 5.55 (1H, q, J 6.4, CH), 3.97 (2H, q, J 7.1, CH2), 1.51 (3H, d, J 6.7, 

CH3), 1.14 (3H, t, J 7.1, CH2CH3); +C (100 MHz, d6-DMSO): 159.8 (CO), 145.4 (CH), 

129.3 (qC), 58.7 (OCH2), 17.2 (CHCH3), 15.2 (CH2CH3); +F (376 MHz, d6-DMSO): -139.1; 

m/z: HRMS (ES+) found 243.086; C6H9BF3KO2 [M+Na]+ requires 243.0182. 
                                                
* Gravel M. et al. Org. Prep. Proced. Int. 2004, 36, 573. 
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(Z)-Ethyl 2-(2-propionylphenyl)but-2-enoate (54) 

 
O

CO2Et  
 

Pd(dppf)Cl2·CH2Cl2 (9 mg, 0.01 mmol) was added to a solution of 48 (105 mg, 0.50 mmol) 

in THF (3 mL) and stirred at RT for 15 mins. 53 (143 mg, 0.65 mmol), Et3N (210 "L, 1.50 

mmol) and water (150 "L, 8.3 mmol) were added and the mixture was heated to 50 ˚C. After 

3 h, the reaction was quenched with water and extracted with CH2Cl2 (3 x 30 mL). The 

combined organic layers were dried over MgSO4 and concentrated in vacuo. The crude 

product was purified by column chromatography (petrol/EtOAc, 10:1) to afford (Z)-ethyl 2-

(2-propionylphenyl)but-2-enoate (25 mg, 53 %)  as a colourless oil and SM 48 (65 mg, 0.31 

mmol).  

 

*max/cm-1 (film): 3030, 2970, 2940, 1735, 1715, 1645, 1370; +H (400 MHz, CDCl3): 7.74 

(1H, dd, J 7.7, 1.2, Ar CH), 7.50-7.43 (1H, m, Ar CH), 7.43-7.35 (1H, m, Ar CH), 7.14 (1H, 

dd, J 7.5, 1.2, Ar CH), 7.08 (1H, q, J 7.2, CH), 4.14 (2H, q, J 7.1, OCH2), 2.87 (2H, q, J 7.2, 

CH2CH3), 1.63 (3H, d, J 7.2, CHCH3), 1.20 (3H, t, J 7.1, ester CH3), 1.10 (3H, t, J 7.2, 

CH2CH3); +C (100 MHz, CDCl3): 203.3 (CO), 166.3 (OCO), 144.6 (CCH), 138.4 (Ar CH), 

137.9 (Ar CH), 135.4 (Ar CH), 131.8 (CH), 131.2 (Ar CH), 128.4 (Ar CH), 127.7 (Ar CH), 

60.7 (OCH2), 33.7 (CH2CH3), 15.4 (ester CH3), 14.2 (CHCH3), 8.3 (CH2CH3); m/z: HRMS 

(ES+) found 269.1148; C15H18O3 [M+Na]+ requires 269.1148.  
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(Z)-Ethyl 2-(2-propionylphenyl)pent-2-enoate (55) 

 
O

CO2Et  
 

Pd(dppf)Cl2·CH2Cl2 (9 mg, 0.01 mmol) was added to a solution of 48 (100 mg, 0.47 mmol) 

in THF (3 mL) and stirred at RT for 15 mins. 50 (144 mg, 0.57 mmol), Et3N (197 "L, 1.41 

mmol) and water (140 "L, 7.8 mmol) were added and the mixture was heated to 70 ˚C. After 

15 h, the reaction was quenched with water and extracted with CH2Cl2 (3 x 30 mL). The 

combined organic layers were dried over MgSO4 and concentrated in vacuo. The crude 

product was purified by column chromatography (petrol/EtOAc, 10:1) to afford (Z)-ethyl 2-

(2-propionylphenyl)pent-2-enoate (70 mg, 57 %)  as a colourless oil. 

 

*max/cm-1 (film): 3032, 2970, 2948, 1732, 1712, 1635, 1372; +H (400 MHz, CDCl3): 7.73 

(1H, dd, J 7.5, 1.6, Ar CH), 7.53-7.32 (2H, m, Ar CH), 7.13 (1H, dd, J 7.0, 1.8, Ar CH), 6.96 

(1H, t, J 7.7, CH), 4.14 (2H, q, J 7.1, OCH2), 2.87 (2H, q, J 7.2, COCH2), 1.96 (2H, m, 

CHCH2), 1.20 (3H, t, J 7.1, CH3), 1.10 (3H, t, J 7.2, OCH2CH3), 0.97 (3H, t, J 7.5, 

CHCH2CH3); +C (100 MHz, CDCl3): 203.3 (CO), 166.3 (OCO), 144.6 (CH), 138.4 (qC), 

137.9 (qC), 135.4 (Ar CH), 131.8 (qC), 131.2 (Ar CH), 128.4 (Ar CH), 127.7 (Ar CH), 60.7 

(OCH2), 33.7 (COCH2), 22.6 (CHCH2), 14.2 (OCH2CH3), 13.1 (CH3), 8.3 (CHCH2CH3); 

m/z: HRMS (ES+) found 283.1303; C13H20O3 [M+Na]+ requires 283.1305. 
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2-Bromocyclohex-1-enecarbaldehyde (68)140 

 

1
7

H

O

Br  
 

According to the literature procedure,140 PBr3 (13.0 mL, 0.14 mol) was slowly added to a 

solution of DMF (12.0 mL, 0.15 mol) in CHCl3 (100 mL) at 0 ˚C. After 30 mins the reaction 

was warmed to RT and a solution of cyclohexanone (5.0 g, 0.05 mol) in CHCl3 (50 mL) was 

added. The reaction mixture was refluxed for 3 h, cooled to RT and poured onto ice water. 

Solid sodium bicarbonate was slowly added to neutralize the aqueous phase, which was then 

separated and extracted with ether. The combined organic layers were washed with sat. 

NaHCO3 and brine, dried over MgSO4 and concentrated in vacuo. The crude product was 

purified by column chromatography (2% ether/petrol) to afford 2-bromocyclohex-1-

enecarbaldehyde (6.2 g, 65 %) as yellow oil.  

 

+H (400 MHz, CDCl3): 10.01 (1H, s, H1), 2.76-2.73 (2H, m, H7), 2.26 (2H, ddd, J 8.3, 5.9, 

2.3, H4), 1.77-1.75 (2H, m, H6), 1.68-1.66 (2H, m, H5); +C (100 MHz, CDCl3): 193.9 (C1), 

143.7 (C2), 135.5 (C3), 39.0 (C4), 25.2 (C5), 24.4 (C6), 21.3 (C6); m/z: HRMS (ES+) found 

210.9730; C7H9BrO [M+Na]+ requires 210.9734. 
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Isopropyl 3-phenylpropiolate isopropyl 3-phenylpropiolate (106) 

 

1
4 O

O

 
 
nBuLi (1.47 M in THF, 6.6 mL, 9.8 mmol)  was slowly added to a solution of 

phenylacetylene 95 (1.0 g, 9.8 mmol) in THF (20 mL) at -78 ˚C and stirred for 20 mins at 

this temperature. Isopropyl chloroformate (1.0 M in toluene, 9.8 mL, 9.8 mmol) was slowly 

added and allowed to warm to RT. The reaction was quenched with sat. NaHCO3 and 

extracted with CH2Cl2 (3 x 75 mL). The combined organic layers were dried over MgSO4 

and concentrated in vacuo. The crude product was purified by column chromatography 

(petrol/EtOAc, 8:1) to afford isopropyl 3-phenylpropiolate (1.4 g, 76 %) as a colourless oil. 
1H and 13C NMR were consistent with previously reported data.* 

 

*max/cm-1 (film): 3010, 2983, 2216, 1705, 1285, 1195, 1104; +H (400 MHz, CDCl3): 7.61-

7.53 (2H, m, Ar CH), 7.45-7.39 (1H, m, Ar CH), 7.34 (2H, ddd, J 6.5, 5.6, 2.5, Ar CH), 5.14 

(1H, sept., J 6.3, CH(CH3)2), 1.32 (6H, d, J 6.3, CH3); +C (100 MHz, CDCl3): 153.6 (OCO), 

133.0 (Ar CH), 130.5 (Ar CH), 128.5 (Ar CH), 119.4 (C4), 85.5 (C3), 81.1 (C2), 70.0 

(OCH), 21.7 (CH(CH3)2); m/z: HRMS (ES+) found 211.0727; C12H12O2 [M+Na]+ requires 

211.0730. 

 

                                                
* Wadsworth D. H. et al. J. Org Chem. 1987, 52, 3662. 
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(Z)-Ethyl 2-(2-formylcyclohex-1-en-1-yl)pent-2-enoate (71) 

 

1

6

H

O

CO2Et  
 

Pd(dppf)Cl2·CH2Cl2 (65 mg, 0.08 mmol) and SPhos (66 mg, 0.16 mmol) were added to a 

solution of 68 (150 mg, 0.80 mmol) in toluene (2 mL) and stirred at RT for 15 mins. K3PO4 

(340 mg, 1.6 mmol), 50 (270 mg, 1.06 mmol) in toluene (1 mL) and water (300 "L, 16 

mmol) were added to this mixture and heated to 90 ˚C. After 2 h, the reaction was cooled 

and quenched with water and extracted with CH2Cl2 (3 x 30 mL). The combined organic 

layers were dried over MgSO4 and concentrated in vacuo. The crude product was purified by 

column chromatography (petrol/EtOAc, 12:1) to afford (Z)-ethyl 2-(2-formylcyclohex-1-en-

1-yl)pent-2-enoate (180 mg, 95 %)  as a colourless oil. 

 

*max/cm-1 (film): 2970, 2936, 1745, 1735, 1640, 1350; +H (400 MHz, CDCl3): 9.62 (1H, s, 

CHO), 6.94 (1H, t, J 7.7, CH), 4.44-3.87 (2H, q, J 7.1 OCH2), 2.58-2.11 (4H, m, H2 & H5), 

2.11-1.93 (2H, m, CHCH2), 1.82-1.50 (4H, m, H3 & H4), 1.25 (3H, t, J 7.1, OCH2CH3), 1.00 

(3H, t, J 7.5, CH3), +C (100 MHz, CDCl3): 192.6 (CHO), 165.7 (OCO), 154.1 (C6), 146.9 

(CH), 136.8 (C1), 130.8 (CCH), 61.0 (OCH2), 32.4 (CH2), 23.0 (C5), 22.0 (C2), 21.7 (C3), 

21.4 (C4), 14.2 (OCH2CH3), 12.9 (CH2CH3); m/z: HRMS (ES-) found 235.1330; C14H20O3 

[M-H]+ requires 235.1334. 
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(Z)-4-Propylidene-1-vinyl-5,6,7,8-tetrahydro-1H-isochromen-3(4H)-one (75) 

 

O

O

1

6

10  
 

Vinylmagnesium bromide (1.0 M in THF, 0.15 mL, 0.15 mmol) was added dropwise to a 

solution of 71 (30 mg, 0.13 mmol) in THF (0.5 mL) at -20 ˚C. After 2 h, the reaction was 

quenched with sat. NH4Cl and extracted with CH2Cl2 (3 x 30 mL). The combined organic 

layers were dried over MgSO4 and concentrated in vacuo. The crude product was purified by 

column chromatography (petrol/EtOAc, 10:1) to afford (Z)-4-propylidene-1-vinyl-5,6,7,8-

tetrahydro-1H-isochromen-3(4H)-one (23 mg, 83 %) as a yellow oil. 

 

*max/cm-1 (film): 2934, 1724, 1613, 1367, 1228, 1193, 1049; +H (400 MHz, CDCl3): 6.72 

(1H, t, J 7.7, H8), 5.75 (1H, ddd, J 17.0, 10.1, 6.9, OCHCH), 5.20 (2H, dd, J 16.7, 10.1, 

CHCH2), 4.85 (1H, d, J 6.9, OCH), 2.54-2.30 (2H, m, H9), 2.29-2.16 (2H, m, H5), 2.07 (2H, 

m, H2), 1.86-1.75 (2H, m, H3), 1.60-1.37 (2H, m, H4), 1.07 (3H, t, J 7.5, CH3); +C (100 

MHz, CDCl3): 167.8 (OCO), 142.7(C7), 134.4 (qC), 132.1 (OCHCH), 128.2 (qC), 125.3 

(qC), 117.7 (CHCH2), 81.4 (OCH), 28.2 (C9), 26.5 (C5), 23.0 (C2), 22.5 (C3), 21.8 (C4), 

13.9 (C10); m/z: HRMS (ES+) found 241.1208; C14H18O2 [M+Na]+ requires 241.1204. 
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Isopropyl 2-(2-iodophenyl)acetate (82)76 

 

CO2iPr

I  
 

According to a representative procedure,76 Conc. H2SO4 (0.6 mL) was added to a solution of 

(2-iodophenyl)acetic acid 81 (2.0 g, 7.63 mmol) in iPrOH (6 mL) and refluxed for 3 h. The 

solution was cooled to RT and poured into water (15 mL) and extracted with ether (3 x 30 

mL). The combined organic layers were dried over MgSO4 and concentrated in vacuo. The 

crude product was purified column chromatography (petrol/EtOAc, 5:1) to afford isopropyl 

2-(2-iodophenyl)acetate (1.95 g, 84 %) as a colourless oil. 

*max/cm-1 (film): 3035, 2979, 2935, 1732, 1467, 1255, 1107; +H (400 MHz, CDCl3): 7.85 

(1H, dd, J 7.9, 0.9, Ar CH), 7.38-7.19 (2H, m, Ar CH), 7.01-6.88 (1H, m, Ar CH), 5.07 (1H, 

sept., J 6.3, OCH), 3.76 (2H, s, CH2), 1.27 (6H, d, J 6.3, CH3); +C (100 MHz, CDCl3): 170.1 

(OCO), 139.5 (Ar CH), 138.0 (CCH2), 130.6 (Ar CH), 128.8 (Ar CH), 128.4 (Ar CH), 101.0 

(CI), 68.5 (OCH), 46.6 (CH2), 21.8 (CH3); m/z: HRMS (ES+) found 326.9853; C11H13IO2 

[M+Na]+ requires 326.9852. 
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Diisopropyl 2-(2-iodophenyl)malonate (80)  

 

I O

O

OO

 
 

A solution of LiHMDS in toluene (12 mL, 1.0 M, 12 mmol) was slowly added via syringe 

pump to a solution of 82 (1.65 g, 5.4 mmol) in THF (6 mL) at -78 ˚C over 30 mins. The 

reaction mixture was stirred at this temperature for 1 h and a solution of isopropyl 

chloroformate (10.8 mL, 1.0 M, 10.8 mmol) was added slowly. The reaction was allowed to 

warm to RT and stirred for 3 h. The reaction was quenched with sat. NH4Cl and extracted 

with CH2Cl2 (3 x 50 mL). The organic layers were dried over MgSO4 and concentrated in 

vacuo. The crude product was purified by column chromatography (petrol/EtOAc, 20:1) to 

afford the desired product as a light yellow oil (1.90 g, 91 %). 

  

*max/cm-1 (film): 3063, 2982, 2936, 1731, 1468, 1375, 1261, 1163, 1101, 1012; +H (400 

MHz, CDCl3): 7.84 (1H, dd, J 8.0, 1.1, Ar CH), 7.47-7.39 (1H, m, Ar CH), 7.34 (1H, td, J 

7.7, 1.2, Ar CH), 6.99 (1H, ddd, J 9.1, 7.7, 1.7, Ar CH), 5.08 (2H, sept., J 6.3, OCH), 5.02 

(1H, s, CH2), 1.26 (6H, d, J 6.3, CH3), 1.23 (6H, d, J 6.3, CH3); +C (100 MHz, CDCl3): 

167.3 (OCO), 139.5 (Ar CH), 136.7 (qC), 129.6 (Ar CH), 128.4 (Ar CH), 101.8 (qC), 69.7 

(OCH), 62.6 (CH), 21.6 (CH3); m/z: HRMS (ES+) found 413.0213; C15H19IO4 [M+Na]+ 

requires 413.0220. 
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(Z)-Diisopropyl 2-(2-(1-ethoxy-1-oxobut-2-en-2-yl)phenyl)malonate (83) 

 
1

9 13

O

O

O O

O O
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Pd(OAc)2 (3.4 mg, 0.015 mmol) and cyclohexyl JohnPhos 85 (21 mg, 0.06 mmol) was added 

to a solution of 80 (120 mg, 0.3 mmol) in dioxane:H2O (9:1, 1.2 mL) at RT and stirred for 10 

mins. Et3N (126 "L, 0.9 mmol) and 49 (86.4 mg, 0.36 mmol) in dioxane:H2O (0.6 mL) were 

added and the mixture was heated to 60 ˚C o/n. The flask was cooled and the mixture was 

filtered through Celite, using ether. The organic layers were dried over MgSO4 and 

concentrated in vacuo. The crude product was purified by column chromatography 

(petrol/ether, 10:1) to afford (Z)-diisopropyl 2-(2-(1-ethoxy-1-oxobut-2-en-2-

yl)phenyl)malonate (23 mg, 25 %) as a yellow oil and SM 80 (25 mg). 

 

*max/cm-1 (film): 3035, 2982, 2940, 1725, 1642, 1375, 1174. 1101; +H (400 MHz, C6D6): 

8.04 (1H, dd, J 7.9, 0.8, H9), 7.19 (1H, td, J 7.7, 1.4, H8), 7.05 (1H, td, J 7.6, 1.2, H7), 6.94 

(1H, dd, J 7.7, 1.0, H6), 5.97 (1H, q, J 7.3, H12), 5.18 (1H, s, H4), 5.14-5.00 (2H, m, H2), 

4.08 (2H, q, J 7.2, H15), 2.09 (3H, d, J 7.2, H13), 1.08 (6H, d, J 6.3, H1), 1.04 (3H, t, J 7.1, 

H16), 1.00 (6H, d, J 6.3, H1’); +C (100 MHz, C6D6): 167.9 (C3), 166.2 (C14), 144.7 (C10), 

139.3 (C12), 134.5 (C5), 130.2 (Ar CH), 128.1 (Ar CH), 127.4 (Ar CH), 121.4 (Ar CH), 69.2 

(C2), 60.1 (C15), 55.1 (C4), 21.4 (C1), 15.8 (C13), 14.2 (C16); m/z: HRMS (ES+) found 

399.1780; C21H28O6 [M+Na]+ requires 399.1778. 
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(Z)-Diisopropyl 2-(2-(1-ethoxy-1-oxopent-2-en-2-yl)phenyl)malonate (84) 

 
1
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O

O

O O

O O
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Pd(OAc)2 (17 mg, 0.075 mmol) and cyclohexyl JohnPhos 85 (105 mg, 0.3 mmol) were 

added to a solution of 80 (600 mg, 1.5 mmol) in dioxane:H2O (9:1, 3 mL) and degassed. 

Et3N (0.64 mL, 4.5 mmol) was then added and stirred for 10 min. Boronate 50 (460 mg, 1.8 

mmol) in dioxane:H2O was added to this solution and heated to 60 ˚C o/n. The flask was 

cooled and the mixture was filtered through Celite, using ether. The organic layers were 

dried over MgSO4 and concentrated in vacuo. The crude product was purified by column 

chromatography (10 % ether in petrol) to afford the desired product as a yellow oil (365 mg, 

61 %). 

 

*max/cm-1 (film): 3084, 2982, 2940, 1735, 1731, 1466, 1374, 1202, 1102, 1033; +H (400 

MHz, CDCl3): 7.52 (1H, dd, J 7.8, 1.2, Ar CH), 7.35-7.20 (2H, m, Ar CH), 7.14 (1H, dd, J 

7.5, 1.5, Ar CH), 5.98 (1H, t, J 7.5, H12), 5.02 (2H, sept., J 6.3, H2), 4.74 (1H, s, H4), 4.11 

(2H, q, J 7.1, H16), 2.62 (2H, m, H13), 1.22 (6H, d, J 6.3, H1), 1.18 (6H, d, J 6.2, H1’), 

1.18-1.14 (3H, t, J 7.1, H14), 1.09 (3H, t, J 7.5, H17); +C (100 MHz, CDCl3): 167.9 (C3), 

166.6 (C15), 149.5 (C12), 139.5 (C10), 131.8 (C5), 131.5 (C11), 129.9 (Ar CH), 129.0 (Ar 

CH), 127.7 (Ar CH), 127.6 (Ar CH), 69.2 (C2), 60.6 (C16), 54.8 (C4), 23.2 (C13), 21.6 (C1), 

14.1 (C14), 13.7 (C17); m/z: HRMS (ES+) found 413.1928; C22H30O6 [M+Na]+ requires 

413.1935. 
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(Z)-diisopropyl 2-(2-(3-ethoxy-3-oxo-1-phenylprop-1-en-2-yl)phenyl)malonate (86) 

 

16
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Pd(OAc)2 (1.2 mg, 0.005 mmol) and XPhos 89 (2.4 mg, 0.005 mmol) were added to a 

solution of 80 (600 mg, 1.5 mmol) in toluene (0.5 mL) and degassed. CsF (30.4 mg, 0.20 

mmol) was then added and stirred for 10 min. Boronate 51 (31 mg, 0.10 mmol) in toluene 

(0.3 mL) was added to this solution and stirred at RT for 24 h. The flask was cooled and the 

mixture was filtered through Celite, using ether. The organic layers were dried over MgSO4 

and concentrated in vacuo. The crude mixture was purified by preparative TLC 

(petrol/EtOAc, 10:1) to afford the desired product as a yellow oil (12 mg, 54 %). 

 

*max/cm-1 (film): 3070, 2980, 2954, 1733, 1440, 1374, 1105, 1030; +H (400 MHz, CDCl3): 

7.66-7.57 (1H, m, Ar CH), 7.47-7.30 (8H, m, Ar CH), 6.72 (1H, s, H12), 5.10 (1H, s, H4), 

5.06 (2H, sept., J 6.3, H2), 4.15 (2H, q, J 7.1, H18), 1.26 (6H, d, J 6.3, H1), 1.19 (6H, d, J 

6.3, H1’), 1.13 (3H, t, J 7.1, H19); +C (100 MHz, CDCl3): 168.2 (C3), 167.9 (C17), 138.7 

(C12), 137.7 (C10), 135.2 (C5), 133.2 (C11), 131.9 (C13), 129.5 (Ar CH), 128.6 (Ar CH), 

128.5 (Ar CH), 128.4 (Ar CH), 127.8 (Ar CH), 69.3 (C2), 61.2 (C18), 54.8 (C4), 21.6 (C1), 

13.8 (C19); m/z: HRMS (ES+) found 461.1937; C26H30O6 [M+Na]+ requires 461.1935. 
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Diisopropyl 2-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)malonate (90) 
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Pd(OAc)2 (8.5 mg, 0.038 mmol) and cyclohexyl JohnPhos 85 (52.5 mg, 0.15 mmol) were 

added to a solution of 80 (300 mg, 0.75 mmol) in dioxane (3 mL) and degassed. Et3N (0.32 

mL, 2.25 mmol) was then added and stirred for 10 min. Pinacolborane (0.22 mL, 1.5 mmol) 

was added to this solution and heated to 60 ˚C. After 3 h, the flask was cooled and the 

mixture was filtered through Celite, using ether. The organic layers were dried over MgSO4 

and concentrated in vacuo. The crude product was purified by column chromatography 

(petrol/ether, 10:1) to afford the desired product as an orange solid (225 mg, 75 %). 

 

m.p. 70-72 ˚C; *max/cm-1 (film): 3036, 2980, 2937, 1730, 1601, 1493, 1350, 1146, 1069; +H 

(400 MHz, CDCl3): 7.82 (1H, dd, J 7.5, 0.9, Ar CH), 7.47-7.35 (2H, m, Ar CH), 7.28 (1H, 

td, J 7.3, 1.5, Ar CH), 5.60 (1H, s, H4), 5.06 (2H, sept., J 6.3, H2), 1.31 (12H, s, H12), 1.25 

(6H, d, J 6.2, H1), 1.22 (6H, d, J 6.3, H1’); +C (100 MHz, CDCl3): 168.8 (C3), 139.5 (qC), 

136.2 (Ar CH), 131.1 (Ar CH), 128.4 (qC), 127.0 (Ar CH), 83.8 (C11), 68.9 (C2), 56.6 (C4), 

24.8 (C12), 21.6 (C1); m/z: HRMS (ES+) found 413.2213; C21H31BO6 [M+Na]+ requires 

413.2210. 
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1-(2,2-Dibromovinyl)-4-methoxybenzene (101) * 

 

1

6

Br

BrMeO  
 

According to a literature procedure,* PPh3 (4.8 g, 18 mmol) was added in portions to a 

solution of CBr4 (3.0 g, 9 mmol) in CH2Cl2 (16 mL) at 0 ˚C. After 30 mins, 4-

methoxybenzaldehyde 96 (1.0 g, 7.4 mmol) was added and the mixture was stirred at 0 ˚C 

for 1 h. A mixture of 1:1 mixture of H2O:brine was added and layers were separated. The 

aqueous layer was extracted with a 1:1 mixture of petrol:CH2Cl2. The combined organic 

layers were dried over MgSO4 and concentrated in vacuo. The crude product was purified by 

column chromatography (petrol/EtOAc, 15:1) to afford 1-(2,2-dibromovinyl)-4-

methoxybenzene (2.04 g, 95 %) as a yellow oil. 

 

*max/cm-1 (film): 2994,  2928, 2897, 1592, 1417, 1254, 1223, 1146, 1017; +H (400 MHz, 

CDCl3): 7.51 (2H, d, J 8.5, H4), 7.41 (1H, s, H2), 6.90 (2H, d, J 8.6, H5), 3.83 (3H, s, 

OCH3), +C (100 MHz, CDCl3): 136.3 (C6), 133.7 (C2), 129.9 (Ar CH), 128.6 (Ar CH), 

113.8 (C5), 88.7 (C1), 55.3 (OCH3); m/z:  HRMS (ES-): 290.8. 

 

                                                
* Zheng W. et al. Bioorg. Med. Chem. Lett. 2008, 18, 4932. 
* Zheng W. et al. Bioorg. Med. Chem. Lett. 2008, 18, 4932. 
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1-(2,2-Dibromovinyl)-3-methoxybenzene (102)* 

 

1
4

Br

Br

OMe  
 

According to a literature procedure,* PPh3 (4.8 g, 18 mmol) was added in portions to a 

solution of CBr4 (3.0 g, 9 mmol) in CH2Cl2 (16 mL) at 0 ˚C. After 30 mins, 3-

methoxybenzaldehyde 97 (1.0 g, 7.4 mmol) was added and mixture was stirred at 0 ˚C for 1 

h. A mixture of 1:1 mixture of H2O:brine was added and the layers were separated. The 

aqueous layer was extracted with a 1:1 mixture of petrol:CH2Cl2. The combined organic 

layers were dried over MgSO4 and concentrated in vacuo. The crude product was purified by 

column chromatography (petrol/EtOAc, 15:1) to afford 1-(2,2-dibromovinyl)-3-

methoxybenzene (2.0 g, 93 %) as a yellow oil. 

 

*max/cm-1 (film): 2990, 2930, 2897, 1592, 1410, 1250, 1223, 1146, 1017; +H (400 MHz, 

CDCl3): 7.47 (1H, s, H2), 7.30-7.23 (1H, m, Ar CH), 7.14-7.06 (2H, m, Ar CH), 6.90 (1H, 

dd, J 8.3, 2.5, Ar CH), 3.83 (3H, s, OCH3); +C (00 MHz, CDCl3): 136.7 (C2), 133.8 (qC), 

129.4 (Ar CH), 128.8 (qC), 128.5 (Ar CH), 121.0 (Ar CH), 113.6 (Ar CH), 89.8 (C1), 55.3 

(OCH3); m/z: HRMS (ES-): 290.8. 

 

 

                                                
* Khan Z.; Wirth T. Org. Lett. 2009, 11, 229. 
* Khan Z.; Wirth T. Org. Lett. 2009, 11, 229. 
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2-(2,2-Dibromovinyl)naphthalene (103)* 

 
Br

Br

1

12  
 

According to a literature procedure,* PPh3 (4.1 g, 15.4 mmol) was added in portions to a 

solution of CBr4 (2.6 g, 7.7 mmol) in CH2Cl2 (13 mL) at 0 ˚C. After 30 mins, 2-

naphthaldehyde 98 (1.0 g, 6.4 mmol) was added and mixture was stirred at 0 ˚C for 1 h. A 

mixture of 1:1 mixture of H2O:brine was added and the layers were separated. The aqueous 

layer was extracted with a 1:1 mixture of petrol:CH2Cl2. The combined organic layers were 

dried over MgSO4 and concentrated in vacuo. The crude product was purified by column 

chromatography (petrol/EtOAc, 15:1) to afford 2-(2,2-dibromovinyl)naphthalene (1.9 g, 95 

%) as a yellow solid. 

 

m.p. 84-86 ˚C, *max/cm-1 (film): 2994, 2928, 2897, 1592, 1417, 1254, 1223, 1146, 1017; +H 

(400 MHz, CDCl3): 8.02 (1H, s, H2), 7.84 (3H, m, Ar CH), 7.64 (2H, dd, J 5.7, 2.6, Ar CH), 

7.55-7.45 (2H, m, Ar CH); +C (100 MHz, CDCl3): 136.9 (C2), 133.0 (qC), 132.9 (qC), 

132.7 (qC), 128.3 (Ar CH), 128.1 (Ar CH), 127.9 (Ar CH), 127.7 (Ar CH), 126.7 (Ar CH), 

126.5 (Ar CH), 125.6 (Ar CH), 89.8 (qC); m/z: (ES-): 333.8. 

 

                                                
* Khan Z.; Wirth T. Org. Lett. 2009, 11, 229. 
* Khan Z.; Wirth T. Org. Lett. 2009, 11, 229. 
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5-(2,2-Bibromovinyl)benzo[d][1,3]dioxole (104)* 
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According to a literature procedure,* PPh3 (3.84 g, 14.7 mmol) was added in portions to a 

solution of CBr4 (2.21 g, 7.3 mmol) in CH2Cl2 (12 mL) at 0 ˚C. After 30 mins, piperonal 99 

(1.0 g, 6.7 mmol) was added and mixture was stirred at 0 ˚C for 3 h. A mixture of 1:1 

mixture of H2O:brine was added and layers were separated. The aqueous layer was extracted 

with a 1:1 mixture of petrol:CH2Cl2. The combined organic layers were dried over MgSO4 

and concentrated in vacuo. The crude product was purified by column chromatography 

(petrol/ether, 20:1) to afford 5-(2,2-dibromovinyl)benzo[d][1,3]dioxole (2.03 g, 99 %) as a 

colourless oil. 

 

*max/cm-1 (film): 2990, 2928, 2897, 1590, 1417, 1254, 1223, 1146, 1017; +H (400 MHz, 

CDCl3): 7.37 (1H, s, H8), 7.19 (1H, d, J 1.5, H6), 6.95 (1H, dd, J 8.1, 1.6, H4), 6.80 (1H, d, 

J 8.1, H3), 5.99 (2H, s, H1); +C (100 MHz, CDCl3): 147.8 (C2), 147.6 (C7), 136.3 (C8), 

129.2 (C5), 123.4 (C4), 108.3 (C3), 108.1 (C6), 101.4 (C1), 87.8 (C9); m/z: (ES-) 304.8 
 

                                                
* Khan Z.; Wirth T. Org. Lett. 2009, 11, 229. 
* Sai H. et al. Synthesis 1995, 5, 582. 
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Isopropyl 2-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)acetate (90a) 
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Pd(OAc)2 (11 mg, 0.05 mmol) and cyclohexyl JohnPhos 85 (64 mg, 0.18 mmol) were added 

to a solution of 82 (270 mg, 0.9 mmol) in dioxane (3.6 mL) and stirred at RT for 15 mins. 

This was followed by addition of Et3N (377 "L, 2.7 mmol) and pinacolborane (262 "L, 1.8 

mmol) and the reaction mixture was heated to 80 ˚C. After 3 h, the reaction was cooled to 

RT, quenched with sat. NH4Cl and extracted with CH2Cl2 (3 x 30 mL). The crude product 

was purified by column chromatography (petrol/EtOAc, 7:1) to afford isopropyl 2-(2-

(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)acetate (240 mg, 89 %) as an orange oil. 

 

*max/cm-1 (film): 3055, 2883, 2938, 1728, 1444, 1351, 1266, 1145, 1070; +H (400 MHz, 

CDCl3): 7.80 (1H, dd, J 7.4, 1.2, Ar CH), 7.35 (1H, m, Ar CH), 7.31-7.19 (1H, m, Ar CH), 

7.17 (1H, d, J 7.6, Ar CH), 4.97 (1H, sept., J 6.2, H2), 3.91 (2H, s, H4), 1.30 (12H, s, H12), 

1.20 (6H, d, J 6.3, H1); +C (100 MHz, CDCl3): 173.4 (OCO), 136.0 (C10), 131.0 (C5), 

130.0 (Ar CH), 129.2 (Ar CH), 126.2 (Ar CH), 83.7 (C11), 67.7 (C2), 41.2 (C4), 24.8 (C12), 

21.9 (C1); m/z: HRMS (ES+) found 327.1747; C17H25BO4 [M+Na]+ requires 327.1741. 
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Isopropyl 2-(2-(2-oxo-5,6-dihydro-2H-pyran-3-yl)phenyl)acetate (91a) 
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Pd(dppf)Cl2 (8.2 mg, 0.01 mmol), cyclohexyl JohnPhos 85 (14 mg, 0.04 mmol), Et3N (84 

"L, 0.6 mmol) and boronate 90a (67 mg, 0.22 mmol) were added to a solution of 30 (35.4 

mg, 0.2 mmol) in dioxane:H2O (9:1, 0.8 mL) and heated to 80 ˚C. After 1 h, the reaction was 

cooled to RT and filtered through Celite,. The solvent was dried over MgSO4 and 

concentrated in vacuo. The crude product was purified by column chromatography 

(petrol/EtOAc, 2:1) to afford isopropyl 2-(2-(2-oxo-5,6-dihydro-2H-pyran-3-

yl)phenyl)acetate (15 mg, 27 %) as a yellow oil. 

 

*max/cm-1 (film): 3429, 2982, 1722, 1685, 1339, 1258, 1213, 1155; +H (400 MHz, CDCl3): 

7.34-7.25 (3H, m, Ar CH), 7.15 (1H, d, J 7.3, H9), 6.86 (1H, t, J 4.3, H15), 4.94 (1H, sept., J 

6.3, H2), 4.52 (2H, t, J 6.2, H13), 3.53 (2H, s, H4), 2.60 (2H, td, J 6.2, 4.3, H14), 1.18 (6H, 

d, J 6.3, H1); +C (100 MHz, CDCl3): 167.9 (C3), 166.6 (C12), 149.5 (C15), 139.5 (C10), 

131.8 (C5), 131.5 (C11), 129.9 (Ar CH), 129.0 (Ar CH), 127.7 (Ar CH), 127.6 (Ar CH), 69.2 

(C2), 60.6 (C13), 54.8 (C4), 23.2 (C14), 21.6 (C1); m/z: HRMS (ES+) found 297.1098; 

C16H18O4 [M+Na]+ requires 297.1097. 

 

 



Experimental Procedure 

 113 

(2S,3S)-3-Ethyl 1,1-diisopropyl 2-ethyl-2,3-dihydro-1H-indene-1,1,3-tricarboxylate 

(126) 
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Racemic: Cs2CO3 (27.6 mg, 0.085 mmol) was added to a solution of 84 (30 mg, 0.077 

mmol) in toluene (0.5 mL) and stirred at RT. After 15 h, the reaction was quenched with sat. 

NH4Cl and extracted with CH2Cl2 (2 x 20 mL). The organic layers were dried over MgSO4 

and concentrated in vacuo. The crude product was purified by column chromatography 

(petrol/ether, 5:1) to afford the desired product (19:1 dr) as a yellow oil (23 mg, 80 %). 

 

Asymmetric: A solution of 84 (30 mg, 0.08 mmol) and catalyst (8S,9R)-(.)-N-

benzylcinchonidinium chloride 125a (3.4 mg, 0.008 mmol) in toluene (0.4 mL) was stirred at 

0 ˚C for 30 mins. CsCO3 (27 mg, 0.9 mmol) was added and the solution was stirred for 15 h. 

The reaction was quenched with sat. NH4Cl and extracted with CH2Cl2 (2 x 20 mL). The 

crude product was purified by column chromatography (petrol/ether, 5:1). The desired 

product was obtained as a mixture of two diastereoisomers 126 & 127 (33:1) as a yellow oil 

(20 mg, 67 %, 0 % ee) 

 

*max/cm-1 (film): 3035, 2980, 2940, 1728, 1726, 1466, 1374, 1260; Major diastereoisomer: 

+H (700 MHz, C6D6): 7.95-7.91 (1H, m, Ar CH), 7.39 (1H, d, J 7.5, Ar CH), 7.15-7.09 (2H, 

m, Ar CH), 5.06 (1H, sept., J 6.2, H2), 4.92 (1H, sept., J 6.2, H2’), 4.17 (1H, d, J 9.2, H6), 

4.09-3.99 (3H, m, H5 & H16), 2.26-2.18 (1H, m, H13), 1.73 (1H, m, H13’), 1.15 (3H, t, J 

7.5, H14), 1.08 (3H, d, J 6.3, H1), 0.99 (3H, d, J 6.3, H1), 0.96 (3H, t, J 7.1, H17), 0.92 (3H, 

d, J 6.3, H1’), 0.88 (3H, d, J 6.3, H1’); m/z: HRMS (ES+) found 413.1938; C22H30O6 

[M+Na]+ requires 413.1935; Minor diastereoisomer: +H (700 MHz, C6D6): 7.85 (1H, d, J 

7.7, Ar CH), 7.38 (1H, d, J 7.3, Ar CH), 7.15-7.08 (2H, m, Ar CH), 5.14 (1H, sept., J 6.3, 

H2), 5.05-5.00 (1H, m, H2’), 4.22 (1H, d, J 7.5, H6), 3.92-3.84 (2H, m, H16), 3.69 (1H, ddd, 

J 9.5, 7.6, 5.0, H5), 2.29-2.25 (1H, m, H13), 2.14-2.10 (1H, m, H13’), 1.13 (3H, d, J 6.3, 

H1), 1.08 (3H, d, J 6.3, H1), 1.06 (3H, d, J 6.2, H1’), 0.99 (3H, d, J 6.3, H1’), 0.96 (3H, t, J 
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7.1, H14), 0.90 (3H, t, J 7.1, H17); +C (175 MHz, C6D6): 173.2 (C3), 169.5 (C15), 143.0 

(qC), 141.6 (qC), 129.3 (Ar CH), 126.9 (Ar CH), 124.7 (Ar CH), 69.5 (C2), 69.3 (C2’), 61.3 

(C16), 55.5 (C6), 52.1 (C5), 25.2 (C13), 21.8 (C1), 14.6 (C14), 13.5 (C14); m/z: HRMS 

(ES+) found 413.1936; C22H30O6 [M+Na]+ requires 413.1935. 

 

(E)-Ethyl 3-phenyl-2-(tributylstannyl)acrylate (112a) 
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According to a modified literature procedure,84 Pd(PPh3)4 (60 mg, 0.05 mmol) and tributyltin 

hydride (715 "L, 2.65 mmol) were added to a solution of ethyl 3-phenylpropiolate (415 "L, 

2.5 mmol) in THF (10 mL) at 0 ˚C. After 1 h, the solvent was evaporated and the residue 

was filtered through Celite, using ether. The crude product was chromatographed 

(petrol/ether, 20:1) to afford (E)-ethyl 3-phenyl-2-(tributylstannyl)acrylate (1.1 g, 94 %) as a 

colourless oil. 

 

+H (400 MHz, CDCl3): 7.37-7.28 (5H, m, Ar CH), 6.71 (1H, t, 3JSn-H 28.5, H7), 4.18 (2H, q, 

J 7.1, H10), 1.57-1.52 (6H, m, H12), 1.47-1.28 (6H, m, H13), 1.23 (3H, t, J 7.1, H11), 1.14-

1.01 (6H, m, H14), 0.90 (9H, t, J 7.2, H15); +C (100 MHz, CDCl3): 173.2 (C9), 142.1 (C7), 

139.8 (C6), 137.0 (Ar CH), 128.3 (Ar CH), 128.1 (Ar CH), 128.0 (C8), 60.3 (C10), 28.9 

(C13), 27.3 (C14), 14.2 (C11), 13.7 (C15), 10.6 (C12); m/z HRMS (ES+) found 489.1785; 

C23H38O2Sn [M+Na]+ requires 489.1791. 
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(Z)-Ethyl 2-(2-(2-isopropoxy-2-oxoethyl)phenyl)-3-phenylacrylate (86a) 
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Pd(OAc)2 (15.2 mg, 0.07 mmol) and PPh3 (53.6 mg, 0.21 mmol) were added to a solution of 

82 (200 mg, 0.68 mmol) in DMF (4 mL) at RT and stirred for 15 mins. CuI (28 mg, 0.14 

mmol) and 112a (368 mg, 0.80 mmol) in DMF (4 mL) were added and the mixture was 

heated to 80 ˚C. After 6 h, the reaction was cooled to RT, the solvent was evaporated under 

reduced pressure and the residue was filtered through Celite, using ether. The crude product 

was purified by column chromatography (petrol/EtOAc, 20:1) to afford (Z)-ethyl 2-(2-(2-

isopropoxy-2-oxoethyl)phenyl)-3-phenylacrylate (214 mg, 92 %) as a yellow oil. 

 

*max/cm-1 (film): 3034, 2980, 2940, 1722, 1642, 1375, 1174, 1101; +H (400 MHz, CDCl3): 

7.42-7.28 (9H, m, Ar CH), 6.82 (1H, s, H12), 5.15-4.88 (1H, sept., J 7.3, H2), 4.20 (2H, q, J 

6.7, H20), 3.75 (2H, s, H4), 1.19 (6H, d, J 6.3, H1), 1.13 (3H, t, J 6.7, H21); +C (100 MHz, 

CDCl3): 171.2 (C3), 168.2 (C19), 140.9 (C12), 135.3 (qC), 133.5 (qC), 132.7 (Ar CH), 

128.6 (Ar CH), 127.1 (Ar CH), 68.3 (C2), 61.1 (C20), 39.5 (C4), 21.5 (C1), 14.7 (C21); m/z: 

HRMS (ES+) found 375.1572; C22H24O4 [M+Na]+ requires 375.1570. 
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(E)-Isopropyl 3-phenyl-2-(tributylstannyl)acrylate (112) 
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Pd(PPh3)4 (296 mg, 0.26 mmol) and Bu3SnH (3.6 mL, 13.5 mmol) were added to a solution 

of isopropyl 3-phenylpropiolate 106 (2.4 g, 12.8 mmol) in THF (50 mL) at 0 ˚C. After 1 h, 

the solvent was evaporated and residue was filtered through Celite, using ether. The crude 

product was chromatographed (petrol/ether, 20:1) to afford (E)-isopropyl 3-phenyl-2-

(tributylstannyl)acrylate (5.3 g, 86 %) as a colourless oil. 

 

*max/cm-1 (film): 2957, 2948, 1695, 1605, 1510, 1464, 1253, 1106; +H (400 MHz, CDCl3): 

7.37-7.28 (5H, m, Ar CH), 6.71 (1H, t, 3JSn-H 28.5, H7), 5.15 (1H, sept., J 7.2, H10), 1.58-

1.52 (6H, m, H12), 1.47-1.28 (6H, m, H13),  1.22 (6H, d, J 6.3, H11), 1.14-1.01 (6H, m, 

H14), 0.90 (9H, t, J 7.2, H15); +C (100 MHz, CDCl3): 185.0 (C9), 141.7 (C7), 140.2 (C6), 

137.1 (Ar CH), 128.2 (Ar CH), 127.9 (C8), 67.6 (C10), 28.9 (C13), 27.3 (C14), 21.8 (C11), 

13.7 (C15), 10.5 (C12); ); m/z: HRMS (ES+) found 503.1957; C24H40O2Sn [M+Na]+ 

requires 503.1947. 

 



Experimental Procedure 

 117 

(Z)-Isopropyl 2-(2-(2-isopropoxy-2-oxoethyl)phenyl)-3-phenylacrylate (86b) 
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Pd(OAc)2 (3.8 mg, 0.017 mmol) and PPh3 (13.4 mg, 0.051 mmol) were added to a solution 

of 82 (50 mg, 0.17 mmol) in DMF (1 mL) at RT and stirred for 15 mins. CuI (7 mg, 0.034 

mmol) and 112 (87 mg, 0.18 mmol) in DMF (1 mL) were added and the mixture was heated 

to 80 ˚C. After 15 h, the reaction was cooled to RT, the solvent was evaporated under 

reduced pressure and the residue was filtered through Celite, using ether. The crude product 

was purified by column chromatography (petrol/EtOAc, 10:1) to afford (Z)-isopropyl 2-(2-

(2-isopropoxy-2-oxoethyl)phenyl)-3-phenylacrylate (52 mg, 86 %) as a yellow oil. 

 

*max/cm-1 (film): 3010, 2982, 1728, 1466, 1375, 1216, 1105; +H (400 MHz, CDCl3): 7.42-

7.28 (9H, m, Ar CH), 6.78 (1H, s, H12), 5.09-4.93 (2H, m, H2 & H18), 3.75 (2H, s, H4), 

1.18 (6H, d, J 6.3, H1), 1.11 (6H, d, J 6.3, H19); +C (100 MHz, CDCl3): 176.2 (C3), 174.1 

(C17), 136.8 (C12), 130.5 (qC), 129.7 (Ar CH), 128.6 (Ar CH), 128.4 (Ar CH), 128.3 (Ar 

CH), 128.2 (Ar CH), 127.1 (Ar CH), 68.8 (C2), 68.2 (C18), 39.2 (C4), 21.8 (C1), 21.4 

(C19); m/z: HRMS (ES+) found 389.1727; C23H26O4 [M+Na]+ requires 389.1723 
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(Z)-Diisopropyl 2-(2-(3-isopropoxy-3-oxo-1-phenylprop-1-en-2-yl)phenyl)malonate 

(120) 

 

16

19

1

9

O O

O

O

OO

 
 

Pd(OAc)2 (90 mg, 0.4 mmol) and cyclohexyl JohnPhos 85 (211 mg, 0.6 mmol) were added 

to a solution of 80 (780 mg, 2 mmol) in DMF (6 mL) at RT and stirred for 15 min under 

argon. CuI (77 mg, 0.4 mmol) and 112 (1.15 g, 2.4 mmol) in DMF (4 mL) were added and 

the mixture was heated to 80 ˚C. After 15 h, the solvent was evaporated under reduced 

pressure. The residue was filtered through Celite , using ether. The solvent was evaporated 

and the crude product was purified by column chromatography (petrol/EtOAc, 20:1) to 

afford (Z)-diisopropyl 2-(2-(3-isopropoxy-3-oxo-1-phenylprop-1-en-2-yl)phenyl)malonate 

(546 mg, 61 %) as a colourless oil. 

 

*max/cm-1 (film): 3010, 2982, 1728, 1466, 1375, 1216, 1104; +H (400 MHz, CDCl3): 7.60 

(1H, d, J 7.4, Ar CH), 7.45-7.29 (8H, m, Ar CH), 6.66 (1H, s, H12), 5.13 (1H, s, H4), 5.11-

4.98 (3H, m, H2 & H18), 1.26 (6H, d, J 6.2, H1), 1.19 (6H, d, J 6.3, H1’), 1.12 (6H, d, J 6.2, 

H19). +C (100 MHz, CDCl3): 168.1 (C3), 168.0 (C17), 138.7 (qC), 136.9 (C12), 135.3 (qC), 

133.6 (qC), 131.8 (qC), 129.5 (Ar CH), 129.3 (Ar CH), 128.5 (Ar CH), 128.4 (Ar CH), 128.2 

(Ar CH), 127.8 (Ar CH), 69.2 (C2), 68.9 (C18), 54.8 (C4), 21.6 (C1), 21.5 (C1’), 21.4 (C19); 

m/z: HRMS (ES+) found 475.2083; C27H32O6 [M+Na]+ requires 475.2091. 

 

 



Experimental Procedure 

 119 

Isopropyl 3-(4-methoxyphenyl)propiolate (107) 
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nBuLi (1.6 M in THF, 9.1 mL, 14.5 mmol) was added slowly via syringe pump to a solution 

of dibromide 101 (2.0 g, 6.9 mmol) in THF (20 mL) at -78 ˚C. The reaction was stirred at -

78 ˚C for 45 mins and then at 0 ˚C for 45 mins. The flask was re-cooled to -78 ˚C and 

isopropyl chloroformate (1.0 M in toluene, 8.3 mL, 8.3 mmol) was added. The mixture was 

allowed to warm to 0 ˚C and stirred for 1 h. The reaction was quenched with sat. NH4Cl and 

extracted with ether (3 x 50 mL). The combined organic layers were dried over MgSO4 and 

concentrated in vacuo. The crude product was purified by column chromatography 

(petrol/EtOAc, 20:1) to afford isopropyl 3-(4-methoxyphenyl)propiolate (650 mg, 44 %) as a 

white solid. 

 

m.p. 45-48 ˚C; *max/cm-1 (film): 3010, 2983, 2216, 1705, 1285, 1195, 1104; +H (400 MHz, 

CDCl3): 7.54 (2H, d, J 8.2, H7), 6.88 (2H, d, J 8.2, H8), 5.15 (1H, sept., J 6.2, H2), 3.83 

(3H, s, OCH3), 1.33 (6H, d, J 6.3, H1); +C (100 MHz, CDCl3): 161.4 (C3), 153.9 (C9), 

134.9 (C7), 114.2 (C8), 111.5 (C6), 86.5 (C5), 80.2 (C4), 69.8 (C2), 55.4 (OCH3), 21.7 (C1); 

m/z: HRMS (ES+) found 241.0834; C13H14O3 [M+Na]+ requires 241.0830. 
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(E)-Isopropyl 3-(4-methoxyphenyl)-2-(tributylstannyl)acrylate (113) 
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Pd(PPh3)4 (60 mg, 0.05 mmol) and Bu3SnH (0.73 mL, 2.75 mmol) were added to a solution 

of alkyne 107 (545 mg, 2.50 mmol) in THF (10 mL) at 0 ˚C. After 1 h, the solvent was 

evaporated and the residue was filtered through Celite, using ether. The crude product was 

purified by column chromatography (petrol/ether, 20:1) to afford (E)-isopropyl 3-(4-

methoxyphenyl)-2-(tributylstannyl)acrylate (1.04 g, 82 %) as a colourless oil. 

 

*max/cm-1 (film): 2957, 2950, 1696, 1606, 1510, 1464, 1374, 1107, 1036; +H (400 MHz, 

CDCl3): 7.30 (2H, d, J 8.3, H3), 6.82 (2H, d, J 8.1, H2), 6.61 (1H, t, 3JSn-H 29.7, H5), 5.15-

5.03 (1H, sept., J 6.2, H8), 3.80 (3H, s, OCH3), 1.59-1.52 (6H, m, H11), 1.33 (6H, m, H12), 

1.23 (6H, d, J 6.3, H9), 1.05 (6H, dd, J 15.3, 6.9, H10), 0.94-0.87 (9H, m, H13); +C (100 

MHz, CDCl3): 172.3 (C7), 159.6 (C1), 141.5 (C5), 129.7 (C3), 113.5 (C2) 112.9 (C6), 67.6 

(C8), 55.3 (OCH3), 28.8 (C11), 27.3 (C12), 21.9 (C9), 13.7 (C10), 10.5 (C13); m/z: HRMS 

(ES+) found 533.2054; C25H42O3Sn [M+Na]+ requires 533.2053. 
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Isopropyl 3-(3-methoxyphenyl)propiolate (108) 
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nBuLi (1.6 M in THF, 9.1 mL, 14.5 mmol) was added slowly via syringe pump to a solution 

of dibromide 102 (2.0 g, 6.9 mmol) in THF (20 mL) at -78 ˚C. The reaction was stirred at -

78 ˚C for 45 mins and then at 0 ˚C for 45 mins. The flask was re-cooled to -78 ˚C and 

isopropyl chloroformate (1.0 M in toluene, 8.3 mL, 8.3 mmol) was added. The mixture was 

allowed to warm to 0 ˚C and stirred for 1 h. The reaction was quenched with sat. NH4Cl and 

extracted with ether (3 x 50 mL). The combined organic layers were dried over MgSO4 and 

concentrated in vacuo. The crude product was purified by column chromatography 

(petrol/EtOAc, 20:1) to afford isopropyl 3-(3-methoxyphenyl)propiolate (720 mg, 48 %) as a 

colourless oil. 

 

*max/cm-1 (film): 3010, 2983, 2216, 1705, 1285, 1195, 1104; +H (400 MHz, CDCl3): 7.32-

7.25 (1H, m, Ar CH), 7.19 (1H, dd, J 7.6, 1.1, Ar CH), 7.13-7.09 (1H, m, Ar CH), 7.02-6.97 

(1H, m, Ar CH), 5.17 (1H, sept., J 6.2, H2), 3.81 (3H, s, OCH3), 1.35 (6H, d, J 6.2, H1); +C 

(100 MHz, CDCl3): 159.3 (C3), 153.6 (C8), 129.6 (Ar CH), 125.5 (Ar CH), 120.6 (C6), 

117.4 (Ar CH), 117.3 (Ar CH), 85.6 (C5), 80.7 (C4), 70.1 (C2), 55.4 (OCH3), 21.7 (C1); 

m/z: HRMS (ES+) found 241.0837; C13H14O3 [M+Na]+ requires 241.0835. 
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(E)-Isopropyl 3-(3-methoxyphenyl)-2-(tributylstannyl)acrylate (114) 
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Pd(PPh3)4 (70 mg, 0.06 mmol) and Bu3SnH (0.89 mL, 3.3 mmol) were added to a solution of 

alkyne 108 (654 mg, 3.0 mmol) in THF (12 mL) at 0 ˚C. After 1 h, the solvent was 

evaporated and the residue was filtered through Celite, using ether. The crude product was 

purified by column chromatography (petrol/ether, 20:1) to afford (E)-isopropyl 3-(3-

methoxyphenyl)-2-(tributylstannyl)acrylate (820 mg, 54 %) as a colourless oil. 

 

*max/cm-1 (film): 2957, 2950, 1696, 1606, 1510, 1464, 1374, 1107, 1036; +H (400 MHz, 

CDCl3): 7.20 (1H, t, J 7.9, Ar CH), 6.92 (1H, d, J 7.6, Ar CH), 6.88 (1H, s, H1), 6.82-6.77 

(1H, m, Ar CH), 6.65 (1H, t, 3JSn-H 29.6, H7), 5.10 (1H, sept., J 6.2, H10), 3.79 (3H, s, 

OCH3), 1.61-1.50 (6H, m, H13), 1.40-1.28 (6H, m, H14), 1.20 (6H, d, J 6.3, H11), 1.09-1.00 

(6H, m, H12), 0.90 (9H, t, J 7.3, H15); +C (100 MHz, CDCl3): 170.3 (C9), 159.6 (C2), 141.5 

(C7), 129.7 (Ar CH), 128.5, (Ar CH), 128.3 (Ar CH), 113.5 (C1) 112.9 (C8), 67.6 (C10), 

55.3 (OCH3), 28.8 (C13), 27.3 (C14), 21.9 (C11), 13.7 (C12), 10.5 (C15); m/z: HRMS (ES+) 

found 533.2054; C25H42O3Sn [M+Na]+ requires 533.2053. 
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(Z)-Diisopropyl 2-(2-(3-isopropoxy-1-(4-methoxyphenyl)-3-oxoprop-1-en-2-

yl)phenyl)malonate (121) 
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Pd(OAc)2 (13.5 mg, 0.06 mmol) and cyclohexyl JohnPhos 85 (63 mg, 0.18 mmol) were 

added to a solution of 80 (240 mg, 0.6 mmol) in DMF (2 mL) at RT and stirred for 15 min 

under argon. CuI (22.8 mg, 0.12 mmol) and 113 (381 mg, 0.75 mmol) in DMF (1 mL) were 

added and the mixture was heated to 80 ˚C. After 15 h, the solvent was evaporated under 

reduced pressure. The residue was filtered through Celite, using ether. The solvent was 

evaporated and the crude product was purified by column chromatography (petrol/EtOAc, 

20:1) to afford (Z)-diisopropyl 2-(2-(3-isopropoxy-1-(4-methoxyphenyl)-3-oxoprop-1-en-2-

yl)phenyl) malonate (85 mg, 30 %) as a colourless oil and SM 80 (122 mg). 

 

*max/cm-1 (film): 3010, 2982, 1728, 1466, 1375, 1216, 1104; +H (400 MHz, CDCl3): 7.63-

7.56 (1H, m, Ar CH), 7.43-7.30 (5H, m, Ar CH), 6.89 (2H, d, J 8.6, Ar CH), 6.58 (1H, s, 

H12), 5.13 (1H, s, J 6.6, H4), 5.12-5.01 (3H, m, H2 & H18), 3.84 (3H, s, OCH3), 1.26 (6H, 

d, J 6.3, H19), 1.19 (6H, d, J 6.3, H1), 1.16 (6H, d, J 6.3, H1’); +C (100 MHz, CDCl3): 

168.1 (C3 & C17), 159.9 (C16), 139.2 (C12), 136.8 (C10), 131.9 (C5), 131.2 (C11), 130.2 

(Ar CH), 129.4 (Ar CH), 128.0 (Ar CH), 127.7 (Ar CH), 113.7 (C15), 69.2 (C18), 68.8 (C2), 

55.3 (OCH3), 54.8 (C4), 21.6 (C19), 21.5 (C1), 21.4 (C1’); m/z: HRMS (ES+) found 

505.2193; C28H34O7 [M+Na]+ requires 505.2197. 
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(Z)-Diisopropyl 2-(2-(3-isopropoxy-1-(3-methoxyphenyl)-3-oxoprop-1-en-2-

yl)phenyl)malonate (122) 
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Pd(OAc)2 (28 mg, 0.13 mmol) and cyclohexyl JohnPhos 85 (63 mg, 0.18 mmol) were added 

to a solution of 80 (240 mg, 0.6 mmol) in DMF (2 mL) at RT and stirred for 15 min under 

argon. CuI (23 mg, 0.12 mmol) and 114 (381 mg, 0.75 mmol) in DMF (1 mL) were added 

and the mixture was heated to 80 ˚C. After 15 h, the solvent was evaporated under reduced 

pressure. The residue was filtered through Celite, using ether. The solvent was evaporated 

and the crude product was purified by column chromatography (petrol/EtOAc, 20:1) to 

afford (Z)-diisopropyl 2-(2-(3-isopropoxy-1-(3-methoxyphenyl)-3-oxoprop-1-en-2-

yl)phenyl) malonate (160 mg, 54 %) as a colourless oil. 

 

*max/cm-1 (film): 3012, 2985, 1725, 1470, 1375, 1216, 1105; +H (400 MHz, CDCl3): 7.63-

7.58 (1H, m, Ar CH), 7.42-7.31 (3H, m, Ar CH), 7.31-7.24 (1H, m, Ar CH), 7.01 (1H, d, J 

7.6, Ar CH), 6.97 (1H, s, H14), 6.91-6.84 (1H, m, Ar CH), 6.63 (1H, s, H12), 5.14 (1H, s, 

H4), 5.12-4.99 (3H, m, H2 & H20), 3.82 (3H, s, OCH3), 1.27 (6H, d, J 6.3, H21), 1.20 (6H, 

d, J 6.3, H1), 1.13 (6H, d, J 6.3, H1’); +C (100 MHz, CDCl3): 168.1 (C2), 167.8 (C20), 

159.5 (C15), 136.6 (qC), 132.2 (qC), 129.5 (Ar CH), 129.3 (Ar CH), 128.2 (Ar CH), 127.8 

(Ar CH), 121.0 (Ar CH), 114.1 (Ar CH). 113.8 (Ar CH), 69.3 (C20), 68.9 (C2), 55.2 

(OCH3), 54.8 (C4), 21.6 (C21), 21.5 (C1), 21.4 (C1’); m/z: HRMS (ES+) found 505.2193; 

C28H34O7 [M+Na]+ requires 505.2197. 
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Isopropyl 3-(naphthalen-2-yl)propiolate (109) 
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nBuLi (1.3 M in THF, 10.8 mL, 14.1 mmol) was added slowly via the syringe pump to a 

solution of dibromide 103 (2.0 g, 6.4 mmol) in THF (20 mL) at -78 ˚C. The reaction was 

stirred at -78 ˚C for 45 mins and then at 0 ˚C for 45 mins. The flask was re-cooled to -78 ˚C 

and isopropyl chloroformate (1.0 M in toluene, 7.7 mL, 7.7 mmol) was added. The mixture 

was allowed to warm to 0 ˚C and stirred for 1 h. The reaction was quenched with sat. NH4Cl 

and extracted with ether (3 x 50 mL). The combined organic layers were dried over MgSO4 

and concentrated in vacuo. The crude product was purified by column chromatography 

(petrol/EtOAc, 20:1) to afford isopropyl 3-(naphthalen-2-yl)propiolate (1.45 g, 95 %) as a 

colourless oil. 

 

*max/cm-1 (film): 3010, 2983, 2216, 1705, 1285, 1195, 1104; +H (400 MHz, CDCl3): 8.16 

(1H, s, H7), 7.86-7.82 (3H, m, Ar CH), 7.60-7.50 (3H, m, Ar CH), 5.19 (1H, sept., J 6.2, 

H2), 1.36 (6H, d, J 6.3, H1); +C (100 MHz, CDCl3): 153.7 (C3), 134.2 (qC), 133.8 (qC), 

132.6 (Ar CH), 128.4 (Ar CH), 128.3 (Ar CH), 128.1 (Ar CH), 127.9 (Ar CH), 126.9 (Ar 

CH), 116.9 (qC), 86.1 (C5), 81.2 (C4), 70.1 (C2), 21.7 (C1); m/z: HRMS (ES+) found 

261.0886; C16H14O2 [M+Na]+ requires 261.0886. 
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(E)-Isopropyl 3-(naphthalen-2-yl)-2-(tributylstannyl)acrylate (115) 
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Pd(PPh3)4 (146 mg, 0.13 mmol) and Bu3SnH (1.9 mL, 7.0 mmol) were added to a solution of 

alkyne 109 (1.5 g, 6.3 mmol) in THF (25 mL) at 0 ˚C. After 1 h, the solvent was evaporated 

and residue was filtered through Celite, using ether. The crude product was purified by 

column chromatography (petrol/ether, 20:1) to afford (E)-isopropyl 3-(naphthalen-2-yl)-2-

(tributylstannyl)acrylate (2.1 g, 63 %) as a colourless oil. 

 

*max/cm-1 (film): 2957, 2950, 1696, 1606, 1510, 1464, 1374, 1107, 1036; +H (400 MHz, 

CDCl3): 7.86-7.75 (4H, m, Ar CH), 7.57-7.41 (3H, m, Ar CH), 6.90 (1H, s, 3JSn-H 29.6, 

H11), 5.16 (1H, sept., J 6.3, H14), 1.70-1.59 (6H, m, H17), 1.42 (6H, m, H18), 1.25 (6H, d, J 

6.3, H15), 1.19-1.12 (6H, m, H16), 0.97 (9H, t, J 7.3, H19); +H (400 MHz, CDCl3): 172.9 

(C13), 141.7 (C11), 140.8 (qC), 134.6 (qC), 133.3 (qC), 133.0 (qC), 128.2 (Ar CH), 127.7 

(Ar CH), 127.6 (Ar CH), 127.5 (Ar CH), 126.2 (Ar CH), 126.1 (Ar CH), 125.8 (Ar CH), 

67.8 (C14), 28.9 (C17), 27.4 (C18), 21.9 (C15), 13.7 (C16), 10.6 (C19); m/z: HRMS (ES+) 

found 553.2087; C28H42O2Sn [M+Na]+ requires 553.2104. 
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(2,2-Dibromovinyl)cyclohexane (105)* 
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According to a literature procedure,* PPh3 (5.12 g, 19.5 mmol) was added in portions to a 

solution of CBr4 (3.23 g, 9.76 mmol) in CH2Cl2 (12 mL) at 0 ˚C. After 30 mins, 

cyclohexanecarbaldehyde (1.08 mL, 8.87 mmol) was added and mixture was stirred at 0 ˚C 

for 3 h. A mixture of 1:1 mixture of H2O:brine was added and layers were separated. The 

aqueous layer was extracted with a 1:1 mixture of petrol:CH2Cl2. The combined organic 

layers were dried over MgSO4 and concentrated in vacuo. The crude product was purified by 

column chromatography (petrol/ether, 50:1) to afford (2,2-dibromovinyl)cyclohexane (2.29 

g, 97 %) as a colourless oil. 

 

*max/cm-1 (film): 2990, 2928, 2897, 1590, 1417, 1254, 1223, 1146, 1017; +H (400 MHz, 

CDCl3): 6.23 (1H, d, J 9.1, H2), 2.35-2.19 (1H, m, H3), 1.81-1.56 (5H, m, CH2), 1.40-1.02 

(5H, m, CH2); +C (100 MHz, CDCl3): 143.7 (C2), 86.9 (C1), 42.4 (C3), 31.2 (C4), 25.7 

(C5), 25.5 (C6); m/z: HRMS (ES+) found 290.9175; C8H12Br2 [M+Na]+ requires 290.9183. 

 
 

                                                
* Khan Z.; Wirth T. Org. Lett. 2009, 11, 229. 
* Trost B. M.; Livingston R. C. J. Am. Chem. Soc. 2008, 130, 11970. 
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Isopropyl 3-(benzo[d][1,3]dioxol-5-yl)propiolate (110) 

 

7
1

O

O

O

O

12

 
 
nBuLi (1.48 M in THF, 14.4 mL, 21.3 mmol) was added slowly via the syringe pump to a 

solution of dibromide 104 (3.11 g, 10.2 mmol) in THF (20 mL) at -78 ˚C. The reaction was 

stirred at -78 ˚C for 45 mins and then at 0 ˚C for 45 mins. The flask was recooled to -78 ˚C 

and isopropyl chloroformate (1.0 M in toluene, 12.2 mL, 12.2 mmol) was added. The 

mixture was allowed to warm to 0 ˚C and stirred for 1 h. The reaction was quenched with 

sat. NH4Cl and extracted with ether (3 x 50 mL). The combined organic layers were dried 

over MgSO4 and concentrated in vacuo. The crude product was purified by column 

chromatography (petrol/ether, 9:1) to afford isopropyl 3-(benzo[d][1,3]dioxol-5-

yl)propiolate (1.67 g, 71 %) as a yellow crystalline solid. 

 

m.p. 68-72 ˚C; *max/cm-1 (film): 3010, 2983, 2216, 1705, 1285, 1195, 1104; +H (400 MHz, 

CDCl3): 7.14 (1H, dd, J 8.1, 1.6, H4), 7.00 (1H, d, J 1.6, H6), 6.78 (1H, d, J 8.1, H3), 6.00 

(2H, s, H1), 5.14 (1H, sept., J 6.2, H11), 1.32 (6H, d, J 6.3, H12); +C (100 MHz, CDCl3): 

153.7 (C10), 149.9 (C2), 147.6 (C7), 128.9 (C4), 112.7 (C5), 112.6 (C6), 108.9 (C3), 101.6 

(C1), 86.1 (C8), 80.0 (C9), 69.9 (C11), 21.7 (C12); m/z: HRMS (ES+) found 255.0630; 

C13H12O4 [M+Na]+ requires 255.0630. 
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Isopropyl 3-cyclohexylpropiolate (111) 

 

1

O

O
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nBuLi (1.3 M in THF, 9.04 mL, 11.8 mmol) was added slowly via syringe pump to a solution 

of dibromide 105 (1.50 g, 5.60 mmol) in THF (10 mL) at -78 ˚C. The reaction was stirred at   

-78 ˚C for 45 mins and then at 0 ˚C for 45 mins. The flask was recooled to -78 ˚C and 

isopropyl chloroformate (1.0 M in toluene, 6.7 mL, 6.7 mmol) was added. The mixture was 

allowed to warm to 0 ˚C and stirred for 1 h. The reaction was quenched with sat. NH4Cl and 

extracted with ether (3 x 50 mL). The combined organic layers were dried over MgSO4 and 

concentrated in vacuo. The crude product was purified by column chromatography 

(petrol/ether, 9:1) to afford isopropyl 3-cyclohexylpropiolate (761 mg, 70 %) as a colourless 

oil. 

 

*max/cm-1 (film): 3010, 2980, 2218, 1710, 1286, 1195, 1110; +H (500 MHz, CDCl3): 5.07 

(1H, hept., J 6.3, H8), 2.49 (1H, m, H4), 1.89-1.78 (2H, m, CH2), 1.69 (2H, m, CH2), 1.59-

1.42 (2H, m, CH2), 1.34-1.26 (4H, m, CH2), 1.28 (6H, d, J 6.3, H9); +C (125 MHz, CDCl3): 

153.7 (C7), 92.4 (C5), 73.4 (C6), 69.5 (C8), 31.5 (C3), 28.9 (C4), 25.6 (C2), 24.7 (C1), 21.7 

(C9); m/z: HRMS (ES+) found 217.1209; C12H18O2 [M+Na]+ requires 217.1204. 
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(E)-Isopropyl 3-(benzo[d][1,3]dioxol-5-yl)-2-(tributylstannyl)acrylate (116) 

 

7

OO
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Pd(PPh3)4 (146 mg, 0.13 mmol) and Bu3SnH (1.91 mL, 7.09 mmol) were added to a solution 

of alkyne 110 (1.5 g, 6.46 mmol) in THF (40 mL) at 0 ˚C. After 1 h, the solvent was 

evaporated and residue was filtered through Celite, using ether. The crude product was 

purified by column chromatography (petrol/ether, 50:1) to afford (E)-isopropyl 3-

(benzo[d][1,3]dioxol-5-yl)-2-(tributylstannyl)acrylate (2.19 g, 65 %) as a yellow oil. 

 

*max/cm-1 (film): 2960, 2950, 1696, 1606, 1510, 1464, 1374, 1107, 1036; +H (500 MHz, 

CDCl3): 6.89 (1H, d, J 1.3, H6), 6.82 (1H, dd, J 8.1, 1.2, H4), 6.74 (1H, d, J 8.0, H3), 6.56 

(1H, t, 3JSn-H 29.6, H8), 5.94 (2H, s, H1), 5.09 (1H, sept., J 6.2, H11), 1.60-1.51 (6H, m, 

H14), 1.39-1.29 (6H, m, H15), 1.24 (6H, d, J 6.3, H12), 1.08-1.02 (6H, m, H13), 0.90 (9H, t, 

J 7.3, H16); +C (125 MHz, CDCl3): 172.7 (C10), 147.6 (C2), 147.4 (C7), 141.1 (C8), 138.1 

(C5), 131.6 (C4), 122.9 (C9), 108.1 (C6), 107.9 (C3), 101.1 (C1), 67.6 (C11), 29.7 (C14), 

27.3 (C15), 21.8 (C12), 13.7 (C16), 10.2 (C13); m/z: HRMS (ES+) found 547.1840; 

C25H40O4Sn [M+Na]+ requires 547.1846. 
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(E)-Isopropyl 3-cyclohexyl-2-(tributylstannyl)acrylate (117) 
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Pd(PPh3)4 (60 mg, 0.052 mmol) and Bu3SnH (0.76 mL, 2.82 mmol) were added to a solution 

of alkyne 111 (500 mg, 2.57 mmol) in THF (15 mL) at 0 ˚C. After 1 h, the solvent was 

evaporated and residue was filtered through Celite, using ether. The crude product was 

purified by column chromatography (petrol/ether, 50:1) to afford (E)-isopropyl 3-

cyclohexyl-2-(tributylstannyl)acrylate (1.20 g, 96 %) as a colourless oil. 

 

*max/cm-1 (film): 2957, 2952, 1692, 1610, 1512, 1464, 1380, 1110, 1036; +H (500 MHz, 

CDCl3): 5.89-5.70 (1H, d, 3JSn-H 29.6, H5), 5.02 (1H, sept., J 6.2, H8), 2.82-2.69 (1H, m, 

H4), 1.76-1.55 (6H, m, CH2), 1.54-1.43 (6H, m, H11), 1.35-1.27 (6H, m, H12), 1.25 (6H, d, 

J 6.3, H9), 1.21-0.96 (4H, m, CH2), 0.97-0.90 (6H, m, H10), 0.88 (9H, t, J 7.3, H13); +C 

(125 MHz, CDCl3): 170.8 (C7), 158.2 (C5), 133.5 (C6), 67.1 (C8), 40.6 (C4), 33.4 (C3), 

28.9 (C12), 27.1 (C11), 25.9 (C1), 25.6 (C2), 22.0 (C9), 13.7 (C13), 10.1 (C10); m/z: HRMS 

(ES+) found 509.2421; C24H46O2Sn [M+Na]+ requires 509.2417. 
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(Z)-Diisopropyl 2-(2-(3-isopropoxy-1-(naphthalen-2-yl)-3-oxoprop-1-en-2-

yl)phenyl)malonate (123) 
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Pd(OAc)2 (28 mg, 0.13 mmol) and cyclohexyl JohnPhos 85 (63 mg, 0.18 mmol) were added 

to a solution of 80 (240 mg, 0.6 mmol) in DMF (2 mL) at RT and stirred for 15 min under 

argon. CuI (23 mg, 0.12 mmol) and 115 (424 mg, 0.8 mmol) in DMF (1 mL) were added to 

this mixture and heated to 80 ˚C. After 15 h, the solvent was evaporated under reduced 

pressure. The residue was filtered through Celite, using ether. The solvent was evaporated 

and the crude product was purified by column chromatography (petrol/EtOAc, 20:1) to 

afford (Z)-diisopropyl 2-(2-(3-isopropoxy-1-(naphthalen-2-yl)-3-oxoprop-1-en-2-yl)phenyl) 

malonate (120 mg, 39 %) as oil. 

 

*max/cm-1 (film): 3020, 2980, 1730, 1470, 1375, 1216, 1105; +H (500 MHz, CDCl3): 7.87 

(1H, s, H14), 7.82 (3H, m, Ar CH), 7.56-7.34 (7H, m, Ar CH), 6.81 (1H, s, H12), 5.19 (1H, 

s, H4), 5.12-5.03 (3H, m, H2 & H24), 1.26 (6H, d, J 6.2, H25), 1.20 (6H, d, J 6.3, H1), 1.11 

(6H, d, J 6.3, H1’); +C (125 MHz, CDCl3): 168.1 (C3), 167.9 (C23), 138.8 (qC), 136.9 

(C12), 133.8 (qC), 133.1 (qC), 132.8 (qC), 131.9 (qC), 129.5 (Ar CH), 129.4 (Ar CH), 128.3 

(Ar CH), 128.2 (Ar CH), 128.1 (Ar CH), 127.8 (Ar CH), 127.6 (Ar CH), 126.5 (Ar CH), 

126.4 (Ar CH), 126.0 (Ar CH), 69.3 (C24), 69.0 (C2), 54.8 (C4), 21.6 (C25), 21.5 (C1), 21.4 

(C1’); m/z: HRMS (ES+) found 525.2245; C31H34O6 [M+Na]+ requires 525.2248. 
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(Z)-Diisopropyl 2-(2-(1-(benzo[d][1,3]dioxol-5-yl)-3-isopropoxy-3-oxoprop-1-en-2-

yl)phenyl)malonate (124) 
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Pd(OAc)2 (12 mg, 0.052 mmol) and cyclohexyl JohnPhos 85 (30 mg, 0.084 mmol) were 

added to a solution of 80 (100 mg, 0.26 mmol) in DMF (2 mL) at RT and stirred for 15 min 

under argon. CuI (10 mg, 0.052 mmol) and 116 (161 mg, 0.31 mmol) in DMF (1 mL) were 

added to this mixture and heated to 80 ˚C. After 15 h, the solvent was evaporated under 

reduced pressure. The residue was filtered through Celite, using ether. The solvent was 

evaporated and crude product was purified by column chromatography (petrol/EtOAc, 20:1) 

to afford (Z)-diisopropyl 2-(2-(1-(benzo[d][1,3]dioxol-5-yl)-3-isopropoxy-3-oxoprop-1-en-2-

yl)phenyl)malonate (74 mg, 59 %) as a solid. 

 

m.p. 76-79 ˚C; *max/cm-1 (film): 3012, 2985, 1720, 1472, 1375, 1216, 1105; +H (500 MHz, 

CDCl3): 7.58 (1H, d, J 7.9, Ar CH), 7.40-7.28 (3H, m, Ar CH), 6.98 (1H, d, J 1.4, Ar CH), 

6.89 (1H, dd, J 8.1, 1.3, Ar CH), 6.79 (1H, d, J 8.0, Ar CH), 6.52 (1H, s, H12), 5.98 (2H, s, 

H16), 5.10 (1H, s, H4), 5.09-5.00 (3H, m, H2 & H21), 1.25 (6H, d, J 6.2, H22), 1.19 (6H, d, 

J 6.3, H1), 1.16 (6H, d, J 6.3, H1’); +C (125 MHz, CDCl3): 168.1 (C20), 167.8 (C3), 147.9 

(C15), 147.7 (C17), 138.9 (qC), 136.6 (C12), 131.9 (qC), 129.5 (Ar CH), 129.3 (Ar CH), 

129.2 (Ar CH), 128.1 (Ar CH), 127.7 (Ar CH), 123.5 (Ar CH), 108.4 (C14), 108.1 (C18), 

101.2 (C16), 69.2 (C21), 68.9 (C2), 54.8 (C4), 21.6 (C22), 21.5 (C1), 21.4 (C1’); m/z: 

HRMS (ES+) found 519.1984; C28H32O8 [M+Na]+ requires 519.1989. 
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(Z)-Diisopropyl 2-(2-(1-cyclohexyl-3-isopropoxy-3-oxoprop-1-en-2-yl)phenyl)malonate 

(125) 
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Pd(OAc)2 (24 mg, 0.11 mmol) and cyclohexyl JohnPhos 85 (60 mg, 0.16 mmol) were added 

to a solution of 80 (200 mg, 0.52 mmol) in DMF (3 mL) at RT and stirred for 15 min under 

argon. CuI (20 mg, 0.104 mmol) and 117 (301 mg, 0.62 mmol) in DMF (2 mL) were added 

to this mixture and heated to 80 ˚C. After 15 h, the solvent was evaporated under reduced 

pressure. The residue was filtered through Celite, using ether. The solvent was evaporated 

and crude product was purified by column chromatography (petrol/EtOAc, 20:1) to afford 

(Z)-diisopropyl 2-(2-(1-cyclohexyl-3-isopropoxy-3-oxoprop-1-en-2-yl)phenyl)malonate (85 

mg, 36 %) as a colourless oil. 

 

*max/cm-1 (film): 3010, 2982, 2940, 1725, 1470, 1375, 1220, 1108; +H (500 MHz, CDCl3): 

7.52 (1H, d, J 6.9, Ar CH), 7.31 (1H, td, J 7.6, 1.3, Ar CH), 7.28-7.22 (1H, m, Ar CH), 7.16 

(1H, dd, J 7.6, 1.2, Ar CH), 5.75 (1H, d, J 9.8 Hz, H12), 5.10-5.02 (3H, sept., J 6.2, H2, H2’ 

& H18), 4.80 (1H, s, H4), 2.99 (1H, m, H13), 1.84 (2H, d, J 12.6, CH2), 1.73 (4H, m, CH2), 

1.41-1.29 (2H, m, CH2), 1.24 (6H, d, J 6.2, H19), 1.20 (6H, d, J 6.2, H1), 1.19 (6H, d, J 6.2, 

H1’), 1.12 (2H, m, CH2); +C (125 MHz, CDCl3): 168.0 (C17), 166.4 (C3), 151.4 (C12), 

139.5 (qC), 131.7 (qC), 130.5 (qC), 129.8 (Ar CH), 129.0 (Ar CH), 127.6 (Ar CH), 127.5 

(Ar CH), 69.1 (C18), 68.1 (C2), 54.7 (C4), 38.5 (C13), 32.6 (CH2), 25.9 (CH2), 25.5 (CH2), 

21.7 (C19), 21.6 (C1), 21.5 (C1’); m/z: HRMS (ES+) found 481.2563; C27H38O6 [M+Na]+ 

requires 481.2561. 
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2.1 General procedure for 6"-electrocyclization: 

 

Racemic: 

CsOH·H2O was added to a stirred solution of electrocyclic precursor in toluene at -15 ˚C and 

stirred for 18 h. The reaction was quenched with sat. NH4Cl and extracted with CH2Cl2 (2 x 

15 mL). The combined organic layers were dried over MgSO4 and concentrated in vacuo. 

The crude product was purified by column chromatography (petrol/EtOAc, 20:1) to afford 

the desired electrocyclic product. 

 

Asymmetric:  

CsOH·H2O was added to a stirred solution of electrocyclic precursor and phase-transfer 

catalyst in toluene at -15 ˚C and stirred for 18 h. The reaction was quenched with sat. NH4Cl 

and extracted with CH2Cl2 (2 x 15 mL). The combined organic layers were dried over 

MgSO4 and concentrated in vacuo. The crude product was purified by column 

chromatography (petrol/EtOAc, 20:1) to afford the desired electrocyclic product. 

 

(2R,3S)-Triisopropyl 2-phenyl-2,3-dihydro-1H-indene-1,1,3-tricarboxylate (128) 
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Racemic: The reaction was performed according to the general procedure using CsOH·H2O 

(8 mg, 0.048 mmol) and 120 (20 mg, 0.044 mmol) in toluene (0.2 mL) at -15 ˚C to afford the 

desired product as a colourless oil in quantitative yield (5:1 dr). 

 

Asymmetric: The asymmetric reaction was performed according to the general procedure 

using CsOH·H2O (8 mg, 0.048 mmol) and 120 (20 mg, 0.044) and (8S,9R)-(&)-N-

benzylcinchonidinium chloride 125a in toluene (0.2 mL) at -15 ˚C to afford the desired 

product as a colourless oil (18 mg, 90 %) as a mixture of two diastereoisomers (5:1 dr), 28 % 

ee (major diastereoisomer). 
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Major diastereoisomer: [$]D
22: +22.5˚ (c 0.041, CHCl3), *max/cm-1 (film): 2985, 2940, 

1729, 1470, 1252, 1104; +H (500 MHz, CDCl3): 7.66-7.62 (1H, m, Ar CH), 7.42 (1H, t, J 

7.4, Ar CH), 7.40-7.31 (4H, m, Ar CH), 7.25-7.18 (3H, m, Ar CH), 5.16-5.07 (1H, sept., J 

6.2, H2), 5.08-5.00 (1H, hept., J 6.2, H14), 4.93 (1H, d, J 8.0, H5), 4.61-4.51 (1H, m, H2’), 

4.41 (1H, d, J 8.0, H6), 1.28 (3H, d, J 6.3, H1), 1.26 (3H, d, J 6.3, H1), 1.22 (3H, d, J 6.3, 

H15), 1.21 (3H, d, J 6.3, H15), 1.05 (3H, d, J 6.3, H1’), 0.55 (3H, d, J 6.3, H1’); +C (125 

MHz, CDCl3): 171.2 (C3), 168.7 (C3), 168.6 (C13), 141.0 (qC), 139.3 (qC), 139.1 (qC), 

128.9 (Ar CH), 128.1 (Ar CH), 127.9 (Ar CH), 127.3 (Ar CH), 126.4 (Ar CH), 124.8 (Ar 

CH), 70.1 (C4), 69.5 (C2), 69.2 (C2’), 68.6 (C14), 55.3 (C6), 53.7 (C5), 21.8 (C1), 21.7 

(C1), 21.6 (C15), 21.5 (C15), 21.4 (C1’), 20.7 (C1’); m/z: HRMS (ES+) found 475.2091; 

C27H32O6 [M+Na]+ requires 475.2091. 

 

(2S,3R)-Triisopropyl 2-phenyl-2,3-dihydro-1H-indene-1,1,3-tricarboxylate (136) 
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Asymmetric: The asymmetric reaction was performed according to the general procedure 

using CsOH·H2O (18 mg, 0.12 mmol) and 120 (27 mg, 0.06) and catalyst 135 (5 mg, 0.006 

mmol) in toluene (0.2 mL) at -15 ˚C to afford the desired product (25 mg, 93 %) as a mixture 

of two diastereoisomers (5:1 dr), 60 % ee (major diastereoisomer). 

 

Major diastereoisomer: [$]D
22: -18.6˚ (c 0.107, CHCl3), *max/cm-1 (film): 2984, 2940, 

1729, 1470, 1252, 1104; +H (500 MHz, CDCl3): 7.65-7.62 (1H, m, Ar CH), 7.42 (1H, t, J 

7.4, Ar CH), 7.40-7.31 (4H, m, Ar CH), 7.25-7.18 (3H, m, Ar CH), 5.16-5.07 (1H, sept., J 

6.2, H2), 5.08-5.00 (1H, hept., J 6.2, H14), 4.93 (1H, d, J 8.0, H5), 4.61-4.51 (1H, m, H2’), 

4.41 (1H, d, J 8.0, H6), 1.28 (3H, d, J 6.3, H1), 1.26 (3H, d, J 6.3, H1), 1.22 (3H, d, J 6.3, 

H15), 1.21 (3H, d, J 6.3, H15), 1.05 (3H, d, J 6.3, H1’), 0.55 (3H, d, J 6.3, H1’); +C (125 

MHz, CDCl3): 171.2 (C3), 168.7 (C3), 168.6 (C13), 141.0 (qC), 139.3 (qC), 139.1 (qC), 
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128.9 (Ar CH), 128.1 (Ar CH), 127.9 (Ar CH), 127.3 (Ar CH), 126.4 (Ar CH), 124.8 (Ar 

CH), 70.1 (C4), 69.5 (C2), 69.2 (C2’), 68.6 (C14), 55.3 (C6), 53.7 (C5), 21.8 (C1), 21.7 

(C1), 21.6 (C15), 21.5 (C15), 21.4 (C1’), 20.7 (C1’); m/z: HRMS (ES+) found 475.2091; 

C27H32O6 [M+Na]+ requires 475.2091. 

 

(2S,3R)-Triisopropyl 2-(3-methoxyphenyl)-2,3-dihydro-1H-indene-1,1,3-tricarboxylate 

(138) 
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Racemic: The reaction was performed according to the general procedure using CsOH·H2O 

(13 mg, 0.084 mmol) and 122 (20 mg, 0.042 mmol) in toluene (0.2 mL) at -15 ˚C to afford 

the desired product as a colourless oil in quantitative yield (5:1 dr). 

 

Asymmetric: The asymmetric reaction was performed according to the general procedure 

using CsOH·H2O (13 mg, 0.084 mmol) and 122 (20 mg, 0.042) and catalyst 135 (3 mg, 

0.004 mmol) in toluene (0.2 mL) at -15 ˚C to afford the desired product (18 mg, 90 %) as oil 

as a mixture of two diastereoisomers (5:1 dr), 68 % ee (major diastereoisomer). 

 

Major diastereoisomer: [$]D
22: -16.1˚ (c 0.190, CHCl3); *max/cm-1 (film): 3010, 2985, 

2940, 1729, 1470, 1252, 1104; +H (500 MHz, CDCl3): 7.65-7.62 (1H, m, Ar CH), 7.42 (1H, 

d, J 7.2, Ar CH), 7.35 (2H, m, Ar CH), 7.15 (1H, m, Ar CH), 6.94-6.88 (2H, m, Ar CH), 

6.78-6.73 (1H, m, Ar CH), 5.12 (1H, sept., J 12.4, 6.2, H2), 5.04 (1H, sept., J 12.7, 6.4, 

H14), 4.92 (1H, d, J 8.0, H5), 4.59 (1H, sept., J 12.5, 6.2, H2’), 4.39 (1H, d, J 8.0, H6), 3.75 

(3H, s, OCH3), 1.29 (3H, d, J 6.3, H1), 1.26 (3H, d, J 6.3, H1), 1.23 (6H, d, J 6.3, H15), 1.06 

(3H, d, J 6.3, H2’), 0.60 (3H, d, J 6.3, H2’); +C (125 MHz, CDCl3): 171.2 (C13), 168.6 

(C3), 168.5 (C3’), 159.3 (C18), 140.9 (qC), 140.7 (qC), 139.3 (qC), 129.1 (Ar CH), 128.9 

(Ar CH), 128.1 (Ar CH), 126.3 (Ar CH), 124.8 (Ar CH), 121.1 (Ar CH), 114.7 (C17), 112.9 
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(C19), 70.1 (C4), 69.5 (C2), 69.1 (C2), 68.6 (C14), 55.3 (C5), 55.2 (OCH3), 53.6 (C6), 21.8 

(C1), 21.7 (C1), 21.6 (C15), 21.5 (C15’), 21.4 (C1’), 20.7 (C1’); m/z HRMS (ES+) found 

505.2192; C28H34O7 [M+Na]+ requires 505.2197; Minor diastereoisomer: [$]D
22: +29.5˚ (c 

0.043, CHCl3); *max/cm-1 (film): 3015, 2980, 2942, 1725, 1480, 1250, 1104;+H (500 MHz, 

CDCl3): 7.71 (1H, d, J 7.3, Ar CH), 7.62 (1H, d, J 7.3, Ar CH), 7.42-7.33 (2H, m, Ar CH), 

6.93 (1H, t, J 8.0, Ar CH), 6.64 (1H, dd, J 8.2, 2.4, Ar CH), 6.52 (1H, s, Ar CH), 6.46 (1H, d, 

J 7.7, Ar CH), 4.94 (1H, sept., J 12.2, 6.1, H2), 4.79 (1H, d, J 7.9, H5), 4.71 (1H, d, J 7.4, 

H6), 4.73-4.61 (2H, m, H2 & H14), 3.61 (3H, s, OCH3), 1.24 (3H, d, J 6.3, H1), 1.10 (3H, d, 

J 6.3, H1), 1.07 (6H, d, J 6.3, H15), 0.74 (3H, d, J 6.3, H1’), 0.69 (3H, d, J 6.3, H1’); +C 

(125 MHz, CDCl3): 170.0 (C3), 168.7 (C13), 167.2 (C3’), 158.6 (C18), 140.7 (qC), 139.0 

(qC), 138.9 (qC), 128.7 (Ar CH), 128.6 (Ar CH), 127.7 (Ar CH), 127.4 (Ar CH), 126.4 (Ar 

CH), 121.3 (Ar CH), 115.5 (C19), 113.2 (C17), 69.5 (C4), 69.4 (C2), 68.7 (C14), 67.8 (C2’), 

54.9 (OCH3), 54.8 (C6), 53.3 (C5), 21.6 (C1), 21.5 (C1), 21.4 (C15), 21.3 (C15), 20.9 (C1’), 

20.8 (C1’); m/z HRMS (ES+) found 505.2196; C28H34O7 [M+Na]+ requires 505.2197. 
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(2S,3R)-Triisopropyl 2-(4-methoxyphenyl)-2,3-dihydro-1H-indene-1,1,3-tricarboxylate 

(137) 

 
1

15

H
H

O
O O

O

O O

6 19 OMe

 
 

Racemic: The reaction was performed according to the general procedure using CsOH·H2O 

(13 mg, 0.084 mmol) and 121 (20 mg, 0.042 mmol) in toluene (0.2 mL) at -15 ˚C to afford 

the desired product as a colourless oil in quantitative yield (5:1 dr). 

 

Asymmetric: The asymmetric reaction was performed according to the general procedure 

using CsOH·H2O (13 mg, 0.084 mmol) and 121 (20 mg, 0.042) and catalyst 135 (3 mg, 

0.004 mmol) in toluene (0.2 mL) at -15 ˚C to afford the desired product (19 mg, 95 %) as oil 

as a mixture of two diastereoisomers (5:1 dr), 48 % ee (major diastereoisomer). 

 

Major diastereoisomer: [$]D
22: -13.2˚ (c 0.125, CHCl3); *max/cm-1 (film): 3010, 2985, 

2940, 1729, 1470, 1252, 1104; +H (500 MHz, CDCl3): 7.65-7.62 (1H, m, Ar CH), 7.41 (1H, 

d, J 7.2, Ar CH), 7.35 (2H, m, Ar CH), 7.26 (2H, d, J 8.7, Ar CH), 6.78 (2H, d, J 8.7, Ar 

CH), 5.16-5.07 (1H, sept., J 6.1, H2), 5.08-4.99 (1H, sept., J 6.2, H14), 4.87 (1H, d, J 8.3, 

H5), 4.64-4.55 (1H, sept., J 6.2, H2’), 4.38 (1H, d, J 8.3, H6), 3.76 (3H, s, OCH3), 1.29 (3H, 

d, J 6.3, H1), 1.26 (3H, d, J 6.3, H1), 1.23 (3H, d, J 6.3, H15), 1.21 (3H, d, J 6.3, H15), 1.07 

(3H, d, J 6.3, H1’), 0.63 (3H, d, J 6.3, H1’); +C (125 MHz, CDCl3): 171.3 (C3), 168.7 

(C13), 168.6 (C3’), 158.9 (C19), 141.1 (qC), 139.4 (qC), 130.0 (qC), 128.8 (Ar CH), 128.0 

(Ar CH), 126.3 (Ar CH), 124.7 (Ar CH), 113.5 (C18), 112.9 (C20), 70.0 (C4), 69.4 (C2), 

69.1 (C14), 68.5 (C2’), 55.3 (OCH3), 55.2 (C6), 53.1 (C5), 21.8 (C1), 21.7 (C1), 21.6 (C15), 

21.5 (C15), 21.4 (C1’), 20.9 (C1’); m/z: HRMS (ES+) found 505.2193; C28H34O7 [M+Na]+ 

requires 505.2197; Minor diastereoisomer: [$]D
22: +16.8˚ (c 0.115, CHCl3); *max/cm-1 

(film): 2996, 2978, 2930 1730, 1470, 1250, 1104; +H (500 MHz, CDCl3): 7.70 (1H, d, J 7.2, 

Ar CH), 7.60 (1H, d, J 7.3, Ar CH), 7.42-7.33 (2H, m, Ar CH), 6.83 (2H, d, J 8.4, Ar CH), 
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6.58 (2H, d, J 8.8, Ar CH), 4.94 (1H, sept., J 6.1, H2), 4.77 (1H, d, J 7.8, H5), 4.69 (1H, d, J 

7.9, H6), 4.72-4.58 (2H, m, H2 & H14), 3.66 (3H, s, OCH3), 1.24 (3H, d, J 6.3, H1), 1.12 

(3H, d, J 6.3, H1), 1.08 (6H, dd, J 6.3, H15), 0.75 (3H, d, J 6.3, H1’), 0.71 (3H, d, J 6.3, 

H1’); +C (125 MHz, CDCl3): 170.1 (C3), 168.8 (C13), 167.3 (C3’), 159.0 (C19), 140.7 (qC), 

138.9 (qC), 130.4 (qC), 129.5 (Ar CH), 128.7 (Ar CH), 127.8 (Ar CH), 127.4 (Ar CH), 126.4 

(Ar CH), 114.3 (C18), 112.9 (C20), 69.5 (C4), 69.4 (C2), 68.7 (C14), 65.8 (C2), 55.1 

(OCH3), 54.0 (C6), 53.4 (C5), 21.7 (C1), 21.5 (C1), 21.4 (C15), 21.3 (C15), 21.0 (C1’), 20.9 

(C1’); m/z: HRMS (ES+) found 505.2179; C28H34O7 [M+Na]+ requires 505.2197.* 

 

(2S,3R)-Triisopropyl 2-(naphthalen-2-yl)-2,3-dihydro-1H-indene-1,1,3-tricarboxylate 

(139) 
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Racemic: The reaction was performed according to the general procedure using CsOH·H2O 

(12 mg, 0.08 mmol) and 123 (20 mg, 0.04 mmol) in toluene (0.2 mL) at -15 ˚C to afford the 

desired product as a colourless oil in quantitative yield (5:1 dr). 

 

Asymmetric: The asymmetric reaction was performed according to the general procedure 

using CsOH·H2O (12 mg, 0.08 mmol), 123 (20 mg, 0.04 mmol) and catalyst 135 (3 mg, 

0.004 mmol) in toluene (0.2 mL) at -15 ˚C to afford the desired product (19 mg, 94 %) as a 

mixture of two diastereoisomers (7:1 dr), 51 % ee (major diastereoisomer). 

 

Major diastereoisomer: [$]D
22: -13.8˚ (c 0.590, CHCl3); *max/cm-1 (film): 3010, 2985, 

2940, 1729, 1470, 1252, 1104; +H (500 MHz, CDCl3): 7.84-7.71 (5H, m, Ar CH), 7.66 (1H, 

dd, J 6.6, 5.2, Ar CH), 7.49-7.34 (5H, m, Ar CH), 5.18-5.09 (1H, m, H2), 5.12 (1H, d, J 8.3, 

H5), 5.07-5.00 (1H, m, H14), 4.55 (1H, d, J 8.2, H6), 4.52-4.43 (1H, m, H2’), 1.28 (6H, d, J 

                                                
* ppm error 3.40 
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6.3, H1), 1.22 (3H, d, J 6.3, H15), 1.20 (3H, d, J 6.3, H15), 0.99 (3H, d, J 6.3, H1’), 0.27 

(3H, d, J 6.3, H1’); +C (125 MHz, CDCl3): 171.2 (C3), 168.7 (C13), 168.6 (C3’), 141.0 

(qC), 139.4 (qC), 136.6 (qC), 133.2 (qC), 132.8 (qC), 129.0 (Ar CH), 128.1 (Ar CH), 127.9 

(Ar CH), 127.8 (Ar CH), 127.7 (Ar CH), 127.4 (Ar CH), 127.1 (Ar CH), 126.4 (Ar CH), 

125.9 (Ar CH), 125.7 (Ar CH), 124.8 (Ar CH), 120.1 (Ar CH), 70.2 (C4), 69.5 (C2), 69.2 

(C14), 68.7 (C2), 55.3 (C6), 53.7 (C5), 21.8 (C1), 21.7 (C1), 21.6 (C15), 21.5 (C15), 21.3 

(C1’), 20.5 (C1’); m/z: HRMS (ES+) found 525.2249; C31H34O6 [M+Na]+ requires 

525.2253; Minor diastereoisomer: [$]D
25: +17.9˚ (c 0.145, CHCl3); *max/cm-1 (film): 3010, 

2985, 2940, 1725, 1472, 1250, 1110; +H (500 MHz, CDCl3): 7.77-7.73 (1H, m, Ar CH), 

7.64 (3H, m, Ar CH), 7.52-7.48 (2H, m, Ar CH), 7.47-7.39 (2H, m, Ar CH), 7.38-7.34 (2H, 

m, Ar CH), 6.94 (1H, d, J 9.4, Ar CH), 4.98 (1H, sept., J 6.3, H2), 4.93 (1H, d, J 7.9, H5), 

4.87 (1H, d, J 7.9, H6), 4.56 (1H, sept., J 6.2, H14), 4.50 (1H, sept., J 6.2, H2’), 1.25 (3H, d, 

J 6.3, H1), 1.11 (3H, d, J 6.3, H1), 0.99 (3H, d, J 6.3, H15), 0.96 (3H, d, J 6.3, H15), 0.51 

(3H, d, J 6.3, H2’), 0.45 (3H, d, J 6.3, H2’); +C (125 MHz, CDCl3): 170.0 (C3), 168.8 

(C13), 167.3 (C3’), 140.7 (qC), 139.0 (qC), 135.1 (qC), 132.8 (qC), 132.7 (qC), 128.8 (Ar 

CH), 127.8 (Ar CH), 127.7 (Ar CH), 127.6 (Ar CH), 127.4 (Ar CH), 127.1 (Ar CH), 126.5 

(Ar CH), 125.7 (Ar CH), 125.5 (Ar CH), 69.6 (C4), 69.5 (C2), 68.6 (C14), 67.8 (C2’), 54.9 

(C6), 53.5 (C5), 21.6 (C1), 21.5 (C1), 21.4 (C15), 21.3 (C1’), 20.8 (C1’); m/z: HRMS (ES+) 

found 525.2251; C31H34O6 [M+Na]+ requires 525.2253. 
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(2S,3R)-Triisopropyl 2-(benzo[d][1,3]dioxol-5-yl)-2,3-dihydro-1H-indene-1,1,3-

tricarboxylate (140) 
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Racemic: The reaction was performed according to the general procedure using CsOH·H2O 

(12 mg, 0.08 mmol) and 124 (20 mg, 0.04 mmol) in toluene (0.2 mL) at -15 ˚C to afford the 

desired product as a colourless oil in quantitative yield (7:2 dr). 

 

Asymmetric: The asymmetric reaction was performed according to the general procedure 

using CsOH·H2O (12 mg, 0.08 mmol), 124 (20 mg, 0.04 mmol) and catalyst 135 (3 mg, 

0.004 mmol) in toluene (0.2 mL) at -15 ˚C to afford the desired product (19 mg, 94 %) as a 

colourless oil as a mixture of two diastereoisomers (7:2 dr), 38 % ee (major 

diastereoisomer). 

 

Major diastereoisomer: [$]D
22: -9.6˚ (c 0.380, CHCl3); *max/cm-1 (film): 3010, 2985, 2940, 

1729, 1470, 1252, 1104; +H (500 MHz, CDCl3): 7.64-7.60 (1H, m, Ar CH), 7.41 (1H, d, J 

7.2, Ar CH), 7.38-7.31 (2H, m, Ar CH), 6.86-6.81 (2H, m, Ar CH), 6.70 (1H, d, J 8.6, Ar 

CH), 5.89 (2H, 2 x s, OCH2), 5.12 (1H, sept., J 6.2, H2), 5.09-5.01 (1H, sept., J 6.3, H14), 

4.85 (1H, d, J 8.4, H5), 4.70-4.62 (1H, m, H2’), 4.34 (1H, d, J 8.3, H6), 1.29 (3H, d, J 6.3, 

H1), 1.26 (3H, d, J 6.3, H1), 1.24 (3H, d, J 6.3, H15), 1.23 (3H, d, J 6.3, H15), 1.10 (3H, d, J 

6.2, H1’), 0.72 (3H, d, J 6.3, H1’); +C (125 MHz, CDCl3): 171.1 (C3), 168.6 (C13), 168.5 

(C3’), 147.3 (qC), 146.7 (qC), 140.9 (qC). 139.3 (qC), 132.7 (qC), 128.9 (Ar CH), 128.0 (Ar 

CH), 126.3 (Ar CH), 124.7 (Ar CH), 122.3 (Ar CH), 109.5 (C18), 107.9 (C22), 100.8 

(OCH2), 70.0 (C4), 69.5 (C2), 69.1 (C14), 68.6 (C2’), 55.3 (C6), 53.5 (C5), 21.8 (C1), 21.7 

(C1), 21.6 (C15), 21.5 (C15), 21.4 (C1’), 20.9 (C1’); m/z: HRMS (ES+) found 519.1972; 

C28H32O8 [M+Na]+ requires 519.1989.* 

                                                
* ppm error 2.1 
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(2R,3R)-Triisopropyl 2-cyclohexyl-2,3-dihydro-1H-indene-1,1,3-tricarboxylate (141) 
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Racemic: The reaction was performed according to the general procedure using CsOH·H2O 

(13 mg, 0.088 mmol) and 125 (20 mg, 0.044 mmol) in toluene (0.2 mL) at -15 ˚C to afford 

the desired product as a colourless oil in quantitative yield as a single diastereoisomer. 

 

Asymmetric: The asymmetric reaction was performed according to the general procedure 

using CsOH·H2O (13 mg, 0.088 mmol), 125 (20 mg, 0.04 mmol) and catalyst 135 (3.3 mg, 

0.0044 mmol) in toluene (0.2 mL) at -15 ˚C to afford the desired product (19 mg, 95 %) as a 

single diastereoisomer; no ee obtained. 

 

*max/cm-1 (film): 3010, 2980, 2940, 1728, 1470, 1251, 1105; +H (500 MHz, CDCl3): 7.51 

(1H, d, J 7.0, Ar CH), 7.30-7.19 (3H, m, Ar CH), 5.17-5.09 (2H, m, H2 & H2’), 5.08-4.97 

(1H, sept., J 6.3, H14), 3.93 (1H, d, J 8.7, H6), 3.60 (1H, dd, J 8.6, 7.2, H5), 1.91 (1H, m, 

H16), 1.71 (2H, m, CH2), 1.66-1.59 (2H, m, CH2), 1.54 (1H, m, CH2), 1.31 (6H, dd, J 6.3, 

H1), 1.28 (6H, d, J 6.3, H15), 1.24 (3H, d, J 6.3, H1’), 1.20 (3H, d, J 6.3, H1’), 1.17-1.09 

(3H, m, CH2), 1.05-0.94 (2H, m, CH2); +C (125 MHz, CDCl3): 172.9 (C3), 169.3 (C13), 

169.1 (C3’), 141.8 (qC), 140.7 (qC), 128.6 (Ar CH), 127.6 (Ar CH), 125.2 (Ar CH), 123.7 

(Ar CH), 69.3 (C4), 69.2 (C2), 68.3 (C14), 68.0 (C2’), 54.7 (C5), 52.4 (C6), 39.4 (C16), 33.2 

(CH2), 30.4 (CH2), 26.7 (CH2), 26.6 (CH2), 26.2 (CH2), 21.9 (C1), 21.7 (C15), 21.6 (C15), 

21.5 (C1’); m/z: HRMS (ES+) found 481.2543; C27H38O6 [M+Na]+ requires 481.2561.* 

 

                                                
* ppm error 3.51 
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3. For Ring Constrained (-peptides 

 

3.1 Experimental procedures and data for monomer units 

Both D- and L-tartrate derived monomer units have been prepared, and the data for the D-

series is presented here. Where a reference to a specific enantiomeric series is intended (eg in 

the preparation of heterochiral oligomers), the prefix D- or L- will be used before the number 

of the compound. 

 

(4S,5R)-Methyl 5-(hydroxymethyl)-2,2-dimethyl-1,3-dioxolane-4-carboxylate (3) 

 

O O

O

O
OH

1 2 3

4  
 

According to a literature procedure,131 a solution of 1 M methanolic KOH (8.77 mL) was 

added dropwise to a solution of diester 2 (2.0 g, 9.17 mmol) in methanol (9 mL) over 1 h. 

The reaction mixture was stirred at RT. After 1.5 h, the mixture was dissolved in water and 

acidified to pH 1 with 3 N HCl solution and extracted with CHCl3 (4 x 50 mL). The 

combined organic layers were dried over MgSO4 and concentrated in vacuo to yield the 

crude acid 5 in quantitative yield as a viscous, colourless oil, which was used without further 

purification. 

 

Borane (1 M solution in THF, 1 mL, 0.98 mmol) was added dropwise to a solution of 5 (200 

mg, 0.98 mmol) in THF at -20 oC over 1 h. The reaction mixture was stirred at RT. After 4 h, 

water (10 mL) was cautiously added dropwise until no more gas evolved. Subsequently, 

sodium bicarbonate solution (10 mL) was added slowly with stirring. The resulting mixture 

was extracted with CH2Cl2 (2 x 30 mL). The combined organic layers were dried over 

MgSO4 and concentrated in vacuo. The crude product was purified by column 

chromatography (EtOAc/petrol, 1:2 to 1:1) to yield the desired alcohol D-3 (130 mg, 70 %) 

as a pale yellow oil. 

 

[$]D
25: +8.3˚ (c 0.53, CHCl3); vmax/cm-1 (film): 3485 , 2991, 2940, 1737, 1206, 1100; +H 

(400 MHz, CDCl3): 4.47 (1H, d, J 7.7, H2), 4.24  (1H, td, J 6.9, 3.4, H3), 3.95 (1H, dd, J 
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12.2, 3.1, H4), 3.80 (3H, s, CO2CH3), 3.75 (1H, dd, J 12.2, 3.8, H4’), 1.89 (1H, brs, OH), 

1.49 (3H, s, CH3), 1.45 (3H, s, CH3); +C (100 MHz, CDCl3): 171.6 (C1), 111.8 (qC), 79.6 

(CH), 75.3 (CH), 62.2 (CH2), 52.9 (CO2CH3), 27.2 (CH3), 26.0 (CH3); m/z: HRMS (ES+) 

found 191.0913; C8H14O5 [M+H]+ requires 191.0913. 

 

(4S,5R)-Methyl 2,2-dimethyl-5-((methylsulfonyloxy)methyl)-1,3-dioxolane-4-

carboxylate (6) 

 

1 2 3

4

O O

O

O
OMs  

 

Methanesulfonyl chloride (1.18 mL, 15.2 mmol) and triethylamine (2.64 mL, 18.9 mmol) 

were added to a stirred solution of alcohol D-3 (2.4 g, 12.6 mmol) in CH2Cl2 (25 mL) at 0 ˚C. 

After 10 mins the reaction mixture was diluted with CH2Cl2 (50 mL), washed with sat. 

NH4Cl (30 mL) and water (30 mL). The aqueous washes were extracted with CH2Cl2 (2 x 50 

mL). The combined organic layers were dried over MgSO4 and concentrated in vacuo to 

yield the desired product D-6 (3.3 g, 97 %) as a pale yellow coloured oil. A small quantity 

was purified by column chromatography (EtOAc/petrol, 1:2 to 1:1) for analytical purposes. 

 

[$]D
25: +20.4˚ (c 0.41, CHCl3); *max/cm-1 (film): 2992, 2942, 1759, 1733, 1296, 1168; +H 

(400 MHz, CDCl3): 4.54 (1H, d, J 10.2, H2), 4.45-4.40 (1H, m, H3), 4.38 (1H, dd, J 3.8, 

1.7, H4), 4.36 (1H, dd, J 2.9, 1.8, H4’), 3.82 (3H, s, CO2CH3), 3.08 (3H, s, SO2CH3), 1.49 

(3H, s, CH3), 1.45 (3H, s, CH3); +C (100 MHz, CDCl3): 170.2 (C1), 112.3 (qC), 76.5 (CH), 

75.0 (CH), 68.1 (CH2), 52.7 (CO2CH3), 37.8 (SO2CH3), 26.7 (CH3), 25.7 (CH3); m/z: HRMS 

(ES+) found 286.0955; C9H16O7S [M+NH4]+ requires 286.0955. 
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(4S,5R)-Methyl 5-(azidomethyl)-2,2-dimethyl-1,3-dioxolane-4-carboxylate (7) 

 

O O

O

O
N3

1
2 3

4  
 

Sodium azide (800 mg, 12.3 mmol) was added to a stirred solution of D-6 (3.3 g, 12.3 mmol) 

in DMF (25 mL). The reaction mixture was heated to 95 °C. After 3 h, the reaction mixture 

was diluted with ethyl acetate (50 mL) and washed with 10 % MgSO4 solution (50 mL). The 

aqueous layer was extracted with ethyl acetate (2 x 50 mL). The combined organic layers 

were dried over MgSO4 and concentrated in vacuo. The crude product was purified by 

column chromatography (EtOAc/petrol, 1:2 to 1:1) to yield D-7 (2.35 g, 87 %) over two 

steps as a yellow oil.  

 

[$]D
25: +84.9˚ (c 0.69, CHCl3); *max/cm-1 (film): 2991, 2956, 2100, 1762, 1733, 1205 1097; 

+H (400 MHz, CDCl3): 4.43 (1H, d, J 7.5, H2), 4.32 (1H, ddd, J 7.5, 4.5, 3.1, H3), 3.79 (3H, 

s, CO2CH3), 3.70 (1H, dd, J 13.3, 3.1, H4), 3.36 (1H, dd, J 13.3, 4.5, H4’), 1.52 (3H, s, CH3), 

1.44 (3H, s, CH3); +C (100 MHz, CDCl3): 170.6 (C1), 111.9 (qC), 77.9 (CH), 75.6 (CH), 

52.5 (CO2CH3), 51.6 (CH2), 26.6 (CH3), 25.7 (CH3); m/z: HRMS (ES+) found 233.1244; 

C8H13N3O4 [M+NH4]+ requires 233.1244. 
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(4S,5R)-Isopropyl 5-(azidomethyl)-2,2-dimethyl-1,3-dioxolane-4-carboxylate (8) 

 

O O
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4  
 

Potassium carbonate (1.42 g, 10.3 mmol) was added to a stirred solution of methyl ester D-7 

(2.0 g, 9.30 mmol) in isopropanol (83 mL). The reaction mixture was heated to 90 ˚C. After 

3 h, the reaction mixture was filtered, diluted with chloroform (100 mL) and washed with pH 

7 buffer (2 x 30 mL). The aqueous washes were extracted with chloroform (2 x 50 mL) and 

the combined organic layer was dried over MgSO4 and concentrated in vacuo. The crude 

product was purified by column chromatography (EtOAc/petrol, 1:1) to give isopropyl ester 

D-8 as a colourless liquid (1.73 g, 77 %). 

 

[$]D
25: +72.6˚ (c 0.43, CHCl3); *max/cm-1 (film): 2986, 2938, 2099, 1754, 1724, 1201, 1092; 

+H (400 MHz, CDCl3): 5.12 (1H, sept, J 6.3, iPr CH), 4.38 (1H, d, J 7.4, H2), 4.30 (1H, ddd, 

J 7.5, 4.6, 3.2, H3), 3.69 (1H, dd, J 13.3, 3.1, H4), 3.36  (1H, dd, J 13.3, 4.6, H4’), 1.53 (3H, 

s, CH3), 1.45 (3H, s, CH3), 1.29 (3H, d, J 2.3, iPr CH3), 1.27 (3H, d, J 2.3, iPr CH3); +C (100 

MHz, CDCl3): 170.6 (C1), 112.2 (qC), 78.4 (CH), 76.3 (CH), 69.8 (iPr CH), 52.2 (CH2), 

27.1 (CH3), 26.1 (CH3), 22.1 & 22.0 (iPr CH3); m/z: HRMS (ES+) found 261.1557; 

C10H17N3O4 [M+NH4]+ requires 261.1557. 
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(4S,5R)-Isopropyl 5-(aminomethyl)-2,2-dimethyl-1,3-dioxolane-4-carboxylate (9) 

 

O O

O

O
NH2

1
2 3

4  
 

Palladium on activated carbon 10 wt% (10 % w/w, 35 mg) was added to isopropanol and 

stirred under a hydrogen atmosphere for 30 mins. The isopropyl ester D-8 (350 mg, 1.44 

mmol) was dissolved in isopropanol and added slowly to the reaction mixture (still under a 

hydrogen atmosphere) via syringe. After 30 min, the reaction mixture was filtered through 

Celite, using isopropanol. The solvent was evaporated in vacuo to afford D-9 in quantitative 

yield, which was used without further purification. 

 

(4S,5R)-5-(Azidomethyl)-2,2-dimethyl-1,3-dioxolane-4-carboxylic acid (10) 

 

O O

O

HO
N3

1
2 3

4  
 

1 M Aqueous NaOH (21 mL, 20.9 mmol) was added to a stirred solution of azido ester D-7 

(1.5 g, 6.97 mmol) in ethanol (35 mL) at RT. After 15 mins, the solvent was removed under 

reduced pressure and the resulting residue was dissolved in water (25 mL) and acidified to 

pH 2-3 with 3 N aqueous HCl. The resulting mixture was extracted with CH2Cl2 (3 x 50 mL) 

and the combined organic layers were dried over MgSO4 and concentrated in vacuo to give 

the azido acid D-10 (1.34 g, 96 %) as a yellow solid.  

 

[$]D
25: +77.4˚ (c 0.795, CHCl3); *max/cm-1 (film): 3112, 2991, 2937, 1733, 1210, 1095; +H 

(400 MHz, CDCl3): 5.76 (1H, brs, CO2H), 4.48 (1H, d, J 7.7, H2), 4.36 (1H, ddd, J 7.5, 4.4, 

2.9, H3), 3.74 (1H, dd, J 4.9, 2.1, H4), 3.40 (1H, dd, J 13.4, 4.4, H4’), 1.54 (3H, s, CH3), 

1.47 (3H, s, CH3); +C (100 MHz, CDCl3): 173.4 (C1), 112.3 (qC), 78.0 (CH), 75.1 (CH), 

51.4 (CH2), 26.7 (CH3), 25.7 (CH3); m/z: (ES+) [M+H]+ 201.1. 
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3.2 Experimental procedures and data for heterochiral oligomers 

 

(4S,5R)-Isopropyl 5-(((4R,5S)-5-(azidomethyl)-2,2-dimethyl-1,3-dioxolane-4-

carboxamido)methyl)-2,2-dimethyl-1,3-dioxolane-4-carboxylate (11) 

 

O O
O

O N
H

O O

N3O

1
2 3

4

AB  
 

DIPEA (0.16 mL, 0.92 mmol) and TBTU (224 mg, 0.69 mmol) were added to a stirred 

solution of crude amino ester D-9 (100 mg, 0.46 mmol) and crude azido acid L-10 (93 mg, 

0.46 mmol) in CH2Cl2 (1 mL). After 10 mins the reaction mixture was diluted with CH2Cl2 

(20 mL) and washed with water (2 x 15 mL). The aqueous washes were extracted with 

CH2Cl2 (2 x 20 mL) and the combined organic layers were dried over MgSO4 and 

concentrated in vacuo. The residue was purified by column chromatography (EtOAc/petrol, 

1:1) to yield the desired dimer 11 (152 mg, 83 % from D-8). 

 

[$]D
25: -35.2˚ (c 0.165, CHCl3); *max/cm-1 (film): 3424, 2987, 2938, 2101, 1752, 1726, 1676, 

1526, 1209, 1094; m/z: HRMS (ES+) found 401.2030; C17H28N4O7 [M+H]+ requires 

401.2031. 
 

1H (500 MHz, 5.6 mM in benzene-d6 @ 7.15 ppm) & 13C (125 MHz, benzene-d6 @ 128.0 

ppm) 

Residue Position +H (ppm) Multiplicity J (Hz) +C (ppm) 
C-1 - - - 169.9 
C-2 4.19 d 8.22 76.3 
C-3 4.02 ddd 8.2, 4.4, 2.6 79.2 

4 3.30 dd 13.5, 2.6 
A 

C-4 4’ 3.08 dd 13.5, 4.4 51.8 

C-1 - - - 170.1 
C-2 4.15 d 7.2 77.1 
C-3 4.25 ddd 7.1, 5.1, 4.1 78.1 

4 3.53 ddd 14.0, 6.9, 5.1 C-4 4’ 3.41 ddd 13.8, 5.0, 4.2 40.5 
B 

NH 6.65 s - - 
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Residue Position +H (ppm) Multiplicity J (Hz) +C (ppm) 
CH(CH3)2 4.95 sept 6.3 69.0 

iPr Me 1.00 (3H) d 6.3 21.5 
iPr Me 0.99 (3H) d 6.3 21.5 

Isopropylidene 
qC(CH3)2 

- - - 111.4, 111.0 Others 

Isopropylidene 
CH3 groups 

1.35, 1.35 
1.30, 1.18 s - 27.0, 26.7, 

26.0, 25.6 
 

(4S,5R)-Isopropyl 5-(((4R,5S)-5-(aminomethyl)-2,2-dimethyl-1,3-dioxolane-4-

carboxamido)methyl)-2,2-dimethyl-1,3-dioxolane-4-carboxylate (12) 

 

O O
O

O N
H

O O

NH2O

1
2 3

4  
 

Palladium on activated carbon, 10 wt% (10 % w/w, 20 mg) was added to isopropanol and 

stirred under a hydrogen atmosphere for 30 mins. The isopropyl ester 11 (200 mg, 0.50 

mmol) was dissolved in isopropanol and added to the reaction mixture (still under a 

hydrogen atmosphere) via syringe. After 1 h, the mixture was filtered through Celite, using 

isopropanol. The solvent was evaporated in vacuo to afford desired product 12 in 

quantitative yield, which was used without further purification. 
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(4S,5R)-5-(((4R,5S)-5-(Azidomethyl)-2,2-dimethyl-1,3-dioxolane-4-carboxamido) 

methyl)-2,2-dimethyl-1,3-dioxolane-4-carboxylic acid (13) 

 

O O
HO

O N
H

O O

N3O

1
2 3

4  
 

1 M Aqueous NaOH (1.5 mL, 1.5 mmol) was added to a stirred solution of azido ester 11 

(200 mg, 0.50 mmol) in ethanol (2.5 mL) at RT. After 15 mins, the solvent was removed 

under reduced pressure and the resulting residue was dissolved in water (30 mL) and acidified 

to pH 2-3 with 3 N aqueous HCl. The resulting mixture was extracted with CH2Cl2 (2 x 50 

mL) and the combined organic layers were dried over MgSO4 and concentrated in vacuo to 

give the crude azido acid 13 which was used without further purification. 

 

(4S,5R)-Isopropyl 5-(((4R,5S)-5-(((4S,5R)-5-(azidomethyl)-2,2-dimethyl-1,3-dioxolane-

4-carboxamido)methyl)-2,2-dimethyl-1,3-dioxolane-4-carboxamido)methyl)-2,2-

dimethyl-1,3-dioxolane-4-carboxylate (15) 

 

O O
O

O N
H

O O

N
HO

O O

N3O

1
2 3

4

ABC  
 

DIPEA (90 µL, 0.53 mmol) and TBTU (129 mg, 0.40 mmol) were added to a stirred solution 

of crude amino ester 12 (100 mg, 0.27 mmol ) and crude azido acid D-10 (53 mg, 0.27 mmol) 

in CH2Cl2 (0.5 mL). After 10 mins, the reaction mixture was diluted with CH2Cl2 (20 mL) 

and washed with water (2 x 15 mL). The aqueous washes were extracted with CH2Cl2 (2 x 20 

mL) and the combined organic layers were dried over MgSO4 and concentrated in vacuo. The 

residue was purified by column chromatography (EtOAc) to yield the desired trimer 15 (105 

mg, 70 % from 11). 
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[$]D
25: +37.4˚ (c 0.265, CHCl3); *max/cm-1 (film): 3425, 2987, 2938, 2102, 1752, 1726, 

1670, 1526, 1210, 1087; m/z: HRMS (ES+) found 558.2771; C24H40N5O10 [M+H]+
 requires 

558.2770. 

 
1H (500 MHz, 5.6 mM in benzene-d6 @ 7.15 ppm) and 13C (125 MHz, benzene-d6 @ 128.0 

ppm) 

Residue Position +H (ppm) Multiplicity J (Hz) +C (ppm) 
C-1 - - - 170.0 
C-2 4.29 d 8.2 76.7 
C-3 4.13-4.16 m - 79.3 

4 3.37 dd 13.4, 2.6  
A 

C-4 4’ 3.12 dd 13.4, 4.7 52.0 

C-1 - - - 170.3 
C-2 3.93 d 7.7 79.0 
C-3 3.97-4.00 m - 77.9 

4 4.01-4.05 m - C-4 4’ 3.18-3.23 m - 41.4 
B 

NH 7.33 dd 9.9, 6.1 - 
C-1 - - - 170.1 
C-2 4.12 d 7.1 77.1 
C-3 4.23-4.26 m - 77.9 

4 3.52 ddd 14.0, 6.9, 5.1 C-4 4’ 3.40 td 8.3, 5.1  40.6 
C 

NH 6.74 t 5.8 - 
CH(CH3)2 4.96 sept 6.3 69.0 

iPr Me 1.02 (3H) d 6.3 21.6 
iPr Me 0.99 (3H) d 6.3 21.5 

Isopropylidene 
qC(CH3)2 

- - - 111.4, 111.1, 
110.5 Others 

Isopropylidene  
CH3 groups 

1.39, 1.37, 
1.35, 1.34, 
1.21, 1.17 

s - 
27.0, 26.9, 
26.8, 26.1, 
25.8, 25.5 
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DMSO titration for (15) (addition of 2 µL aliquots of DMSO-d6 to a 5.6 mM solution of 

trimer 15 in benzene-d6, 400 MHz, referenced to TMS @ 0 ppm) 

 
 

(4S,5R)-Isopropyl 5-(((4R,5S)-5-(((4S,5R)-5-(((4R,5S)-5-(azidomethyl)-2,2-dimethyl-1,3-

dioxolane-4-carboxamido)methyl)-2,2-dimethyl-1,3-dioxolane-4-carboxamido)methyl)-

2,2-dimethyl-1,3-dioxolane-4-carboxamido)methyl)-2,2-dimethyl-1,3-dioxolane-4-

carboxylate (14) 

 

AB

O O
O

O N
H

O O

N
HO

O O

N
H

O O

N3OO

1
2 3

4

CD  
 
DIPEA (85 µL, 0.50 mmol) and TBTU (120 mg, 0.374 mmol) were added to a stirred 

solution of crude amino ester 12 (94 mg 0.25 mmol) and crude azido acid 13 (90 mg, 0.25 

mmol) in CH2Cl2 (0.5 mL). After 10 mins, the reaction mixture was diluted with CH2Cl2 (20 

mL) and washed with water (2 x 15 mL). The aqueous washes were extracted with CH2Cl2 (2 

x 20 mL) and the combined organic layers were dried over MgSO4 and concentrated in vacuo. 

The residue was purified by column chromatography (EtOAc) to yield the desired tetramer 

14 (105 mg, 59 % from 11). 

 

[$]D
25: -19.0˚ (c 0.105, CHCl3); *max/cm-1 (film): 3426, 2987, 2937, 2102, 1751, 1726, 1667, 

1525, 1210, 1087; m/z: HRMS (ES+) found 715.3506; C31H50N6O13 [M+H]+ requires 

715.3509. 
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1H (700 MHz, 5.6 mM in benzene-d6 @ 7.15 ppm) & 13C (175 MHz, benzene-d6 @ 128.0 

ppm) 

Residue Position +H (ppm) Multiplicity J (Hz) +C (ppm) 

C-1 - - - 170.1 
C-2 4.30 d 8.2 76.8 
C-3 4.18-4.20 m - 79.3 

4 3.41 dd 13.4, 2.6  
A 

C-4 4’ 3.15 dd 13.4, 4.8  52.1 

C-1 - - - 170.4 
C-2 4.03 d 7.9 79.6 
C-3 4.08-4.11 m - 77.9 

4 4.13-4.16 m - C-4 4’ 3.22 ddd 13.4, 7.1, 3.6 41.6 
B 

NH 7.55 dd 7.3, 3.0  - 
C-1 - - - 170.3 
C-2 3.90 dd 14.7, 7.5  79.1 
C-3 3.96-3.99 m - 77.7 

4 4.00-4.04 m - C-4 4’ 3.17-3.19 m - 41.5 
C 

NH 7.45 dd 7.2, 3.2  - 
C-1 - - - 170.1 
C-2 4.12 d 7.1 77.1 
C-3 4.25 ddd 7.1, 5.0, 4.3 77.9 

4 3.53 ddd 7.1, 6.9, 5.1 C-4 4’ 3.38 dd 9.4, 4.6  40.7 
D 

NH 6.74 t 6.0 - 
CH(CH3)2 4.97 sept 6.3 69.1 

iPr Me 1.03 (3H) d 6.3 21.6 
iPr Me 1.00 (3H) d 6.3 21.5 

Isopropylidene 
qC(CH3)2 

- - - 111.5, 111.3, 
110.7, 110.6 Others 

Isopropylidene 
CH3 groups 

1.42, 1.40, 
1.36, 1.35, 
1.34, 1.30, 
1.23, 1.18 

s - 

27.1, 27.0, 
27.0, 26.8, 
26.1, 25.9, 
25.8, 25.5 
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Residue Position NOEs to 
H-2 3A, 4A, 4’A, C(CH3)2 
H-3 2A, 4A, 4’A, C(CH3)2 
H-4 2A, 3A, 4’A A 

H-4’ 2A, 3A, 4A 
H-2 3B, 4B, 4’B, C(CH3)2 
H-3 2B, 4B, 4’B, C(CH3)2 

H-4 2B, 3B, 4’B 
H-4’ 2B, 3B, 4B 

B 

NHB H2
B, H3

B, H4
B, H4’

B 
H-2 3C, 4C, 4’C, C(CH3)2 
H-3 2C, 4C, 4’C, C(CH3)2 

H-4 2C, 3C, 4’C 
H-4’ 2C, 3C, 4C 

C 

NHC H2
C, H3

C, H4
C, H4’

C 
H-2 3D, 4D, 4’D, C(CH3)2 

H-3 2D, 4D, 4’D, C(CH3)2 
H-4 2D, 3D, 4’D 
H-4’ 2D, 3D, 4D 

D 

NHD H2
C (w), H2

D, H3
D, H4

D, H4’
D 

 

(4S,5R)-Isopropyl 5-(((4R,5S)-5-(((4S,5R)-5-(((4R,5S)-5-(aminomethyl)-2,2-dimethyl-

1,3-dioxolane-4-carboxamido)methyl)-2,2-dimethyl-1,3-dioxolane-4-carboxamido) 

methyl)-2,2-dimethyl-1,3-dioxolane-4-carboxamido)methyl)-2,2-dimethyl-1,3-

dioxolane-4-carboxylate (14a) 

 

AB

O O
O

O N
H

O O

N
HO

O O

N
H

O O

NH2OO

1
2 3

4

CD  
 
Palladium on activated carbon, 10 wt% (10 % w/w, 20 mg) was added to iPrOH and stirred 

under a hydrogen atmosphere for 30 mins. The isopropyl ester 14 (200 mg, 0.28 mmol) was 

dissolved in iPrOH and added to the reaction mixture (still under a hydrogen atmosphere) via 

syringe. After 1 h, the mixture was filtered through Celite, using iPrOH. The solvent was 

evaporated in vacuo to afford desired product 14a in quantitative yield, which was used 

without further purification. 
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(4S,5R)-Isopropyl 5-(((4R,5S)-5-(((4S,5R)-5-(((4R,5S)-5-(((4S,5R)-5-(azidomethyl)-2,2-

dimethyl-1,3-dioxolane-4-carboxamido)methyl)-2,2-dimethyl-1,3-dioxolane-4-

carboxamido)methyl)-2,2-dimethyl-1,3-dioxolane-4-carboxamido)methyl)-2,2-dimethyl-

1,3-dioxolane-4-carboxamido)methyl)-2,2-dimethyl-1,3-dioxolane-4-carboxylate (16) 

 

O O
O

O N
H

O O

N
HO

O O

N
H

O O

OO

O O
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H O
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4

ABCDE  
 

DIPEA (85 µL, 0.50 mmol) and TBTU (120.4 mg, 0.374 mmol) were added to a stirred 

solution of crude amino ester 14a (172 mg 0.25 mmol) and crude azido acid 13 (51 mg, 0.25 

mmol) in CH2Cl2 (0.5 mL). After 10 mins, the reaction mixture was diluted with CH2Cl2 (20 

mL) and washed with water (2 x 15 mL). The aqueous washes were extracted with CH2Cl2 (2 

x 20 mL) and the combined organic layers were dried over MgSO4 and concentrated in vacuo. 

The residue was purified by column chromatography (EtOAc) to yield the desired pentamer 

16 (132 mg, 63 % from 14). 

 

[$]D
25: -4.6˚ (c 0.22, CHCl3); *max/cm-1 (film): 3424, 2987, 2937, 2103, 1747, 1664, 1529, 

1211, 1087; m/z: HRMS (ES+) found 872.4246; C38H62N7O16 [M+H]+
 requires 872.4248. 
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1H (700 MHz, 5.6 mM in benzene-d6 @ 7.15 ppm) & 13C (175 MHz, benzene-d6 @ 128.0 

ppm) 

Residue Position +H (ppm) Multiplicity J (Hz) +C (ppm) 

C-1 - - - 168.5 
C-2 4.31 d 8.2 76.8 
C-3 4.21 ddd 8.1, 4.9, 2.6 79.2 

4 3.44 dd 13.4, 2.6  
A 

C-4 4’ 3.17 dd 6.0, 2.7 52.2 

C-1 - - - 170.5 
C-2 4.06 d 7.9 79.7 
C-3 4.11 ddd 15.0, 7.2, 4.6 77.8 

4 4.16 dd 3.8, 1.8  C-4 4’ 3.22 ddd 13.4, 7.1, 3.5 41.6 
B 

NH 7.62 dd 7.5, 3.1 - 
C-1 - - - 170.5 
C-2 4.01 d 1.9 79.7 
C-3 4.04 dd 7.6, 3.9 77.8 

4 4.14 dd 5.9, 3.7 C-4 4’ 3.15 dd 7.4, 3.5 41.6 
C 

NH 7.68 dd 7.9, 3.2 - 
C-1 - - - 170.4 
C-2 3.93 d 7.7 78.9 
C-3 4.00 ddd 7.7, 6.2, 2.9 77.7 

C-4 4 4.04 dd 7.6, 3.9  
 4’ 3.18 dd 9.0, 4.4 41.4 

D 

NH 7.45 dd 7.4, 3.5 - 
C-1 - - - 170.2 
C-2 4.15 d 7.0 77.2 
C-3 4.28 ddd 5.1, 3.5, 2.1 77.8 

C-4 4 3.57 ddd 13.9, 6.9, 5.2 
 4’ 3.44 dd 13.4, 2.6 40.8 

E 

NH 6.80 t 5.9 - 
CH(CH3)2 4.97 sept 6.3 69.1 

iPr Me 1.04 (3H) d 6.3 21.6 
iPr Me 1.01 (3H) d 6.3 21.5 

Isopropylidene 
qC(CH3)2 

- - - 
111.5, 111.3, 
110.8, 110.7, 

110.6  
Others 

Isopropylidene 
CH3 groups 

1.45, 1.44, 
1.36, 1.35, 
1.32, 1.29, 
1.24, 1.20, 
1.20, 1.16 

s - 

27.0, 26.9, 
26.8, 26.1, 
25.9, 25.9, 
25.7, 25.5  
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(4S,5R)-Isopropyl 5-(((4R,5S)-5-(((4S,5R)-5-(((4R,5S)-5-(((4S,5R)-5-(((4R,5S)-5-

(azidomethyl)-2,2-dimethyl-1,3-dioxolane-4-carboxamido)methyl)-2,2-dimethyl-1,3-

dioxolane-4-carboxamido)methyl)-2,2-dimethyl-1,3-dioxolane-4-carboxamido)methyl)-

2,2-dimethyl-1,3-dioxolane-4-carboxamido)methyl)-2,2-dimethyl-1,3-dioxolane-4-

carboxamido)methyl)-2,2-dimethyl-1,3-dioxolane-4-carboxylate (17) 

 

ABCDE
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DIPEA (40 µL, 0.24 mmol) and TBTU (56 mg, 0.18 mmol) were added to a stirred solution 

of crude amino ester 14a (80 mg, 0.12 mmol) and crude azido acid 13 (40.5 mg, 0.12 mmol) in 

CH2Cl2 (0.25 mL). After 10 mins, the reaction mixture was diluted with CH2Cl2 (20 mL) and 

washed with water (2 x 15 mL). The aqueous washes were extracted with CH2Cl2 (2 x 20 

mL) and the combined organic layers were dried over MgSO4 and concentrated in vacuo. The 

residue was purified by column chromatography (EtOAc) to yield the desired hexamer 17 

(85 mg, 59 % from 14). 

 

[$]D
25: -12.6˚ (c 0.475, CHCl3); *max/cm-1 (film): 3471, 2987, 2935, 2103, 1747, 1656, 1530, 

1212, 1085; m/z: HRMS (ES+) found 1046.5250; C45H76N9O19 [M+NH4]+
 requires 

1046.5252. 
 

1H (700 MHz, 5.6 mM in benzene-d6 @ 7.15 ppm) and 13C (125 MHz, benzene-d6 @ 128.0 

ppm) 

Residue Position +H (ppm) Multiplicity J (Hz) +C (ppm) 

C-1 - - - 170.1 
C-2 4.30 d 8.2 76.8 
C-3 4.22 dd 4.8, 2.6 79.2 

4 3.46 dd 13.5, 2.6 
A 

C-4 4’ 3.19 dd 13.5, 4.8 52.2 

C-1 - - - 170.5 
C-2 4.04 d 8.3 79.7 
C-3 4.06-4.09 m - 77.8 

C 

C-4 4 4.16-4.19 m - 41.6 
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Residue Position +H (ppm) Multiplicity J (Hz) +C (ppm) 

 4’ 3.15-3.18 m -   
NH 7.74 dd 7.6, 3.6 - 
C-1 - - - 170.5 
C-2 4.01-4.03 m - 79.7 
C-3 4.27-4.29 m - 77.8 

4 4.13-4.15 m - C-4 4’ 3.13-3.16 m - 41.6 
B* 

NH 7.64 m - - 
C-1 - - - 170.4 
C-2 4.02-4.04 m - 78.9 
C-3 4.06-4.08 m - 77.7 

4 4.11-4.14 m - C-4 4’ 3.23-3.26 m - 41.4 
D* 

NH 7.64 m - - 
C-1 - - - 170.4 
C-2 3.99 d 7.8 79.7 
C-3 4.02-4.04 m - 77.8 

4 4.06-4.08 m - C-4 4’ 3.23-3.26 m - 41.5 
E 

NH 7.51 dd 7.6, 3.3 - 
C-1 - - - 170.1 
C-2 4.15 d 7.0 77.2 
C-3 4.27-4.29 m - 77.8 

4 3.56-3.60 m - C-4 4’ 3.41-3.44 m - 41.4 
F 

NH 6.82 t 6.0 - 
CH(CH3)2 4.97 sept 6.3 69.1 

iPr Me 1.04 (3H) d 6.3 21.6 
iPr Me 1.01 (3H) d 6.3 21.5 

Isopropylidene 
qC(CH3)2 

- - - 
111.5, 111.3, 
110.9, 110.8, 
110.8, 110.6  

Others 

Isopropylidene 
CH3 groups 

1.47, 1.44, 
1.43, 1.42, 
1.37, 1.37, 
1.35, 1.33, 
1.31, 1.31, 
1.25, 1.21 

s - 

27.1, 27.0, 
27.0, 26.9, 
26.8, 26.1, 
26.0, 26.0, 
25.9, 25.8, 
25.8, 25.6  

 
*Due to resonance overlap, unambiguous sequence-specific assignments were not possible (though each 
individual spin system can be identified) and so these are tentative assignments based on the available data. 
Consequently, the sequence of these residues may be reversed. 
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(4R,5S)-Isopropyl 5-(((2R,3S,5R,6R)-3-(azidomethyl)-5,6-dimethoxy-5,6-dimethyl-1,4-

dioxane-2-carboxamido)methyl)-2,2-dimethyl-1,3-dioxolane-4-carboxylate (20) 

 

AB
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1
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DIPEA (160 µL, 0.92 mmol) and TBTU (221 mg, 0.69 mmol) were added to a stirred 

solution of crude amino ester 9 (100 mg, 0.46 mmol) and crude azido acid 19 (127 mg, 0.46 

mmol) in CH2Cl2 (1.0 mL). After 10 mins, the reaction mixture was diluted with CH2Cl2 (20 

mL) and washed with water (2 x 15 mL). The aqueous washes were extracted with CH2Cl2 (2 

x 20 mL) and the combined organic layers were dried over MgSO4 and concentrated in vacuo. 

The residue was purified by column chromatography (EtOAc) to yield the desired dimer 20 

(112 mg, 58 % from 8). 

 

[$]D
25: -30.7˚ (c 0.28, CHCl3); *max/cm-1 (film): 3426, 2987, 2997, 2097, 1753, 1678, 1524, 

1206, 1097; m/z: HRMS (ES+) found 475.2395; C20H34N4O9 [M+H]+ requires 475.2399. 

 
1H (500 MHz, 5.6 mM in benzene-d6 @ 7.15 ppm) and 13C (125 MHz, benzene-d6 @ 128.0 

ppm) 

Residue Position +H (ppm) Multiplicity J (Hz) +C (ppm) 

C-1 - - - 168.4 
C-2 4.31 d 10.2 69.9 
C-3 3.96 ddd 10.0, 7.4, 2.4 70.3 

4 3.66 ddd 7.6, 2.3, 1.4 
A 

C-4 4’ 3.52 dd 13.2, 7.4  51.7 

C-1 - - - 170.1 
C-2 4.23 d 4.5 77.2 
C-3 4.20-4.25 m - 78.0 

4 3.68-3.72 m - C-4 4’ 3.25-3.29 m - 40.2 

 
B 

NH 7.02 dd 6.5, 4.5 - 
CH(CH3)2 4.94 sept 6.2 68.9 

iPr Me 0.98 (3H) d 6.3 21.6 
 

Others 
iPr Me 0.99 (3H) d 6.3 21.5 
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Residue Position +H (ppm) Multiplicity J (Hz) +C (ppm) 

Isopropylidene 
qC(CH3)2 

- - - 111.3 

Isopropylidene 
CH3 groups 1.24, 1.20 s - 17.5, 17.4 

C(CH3)(OCH3) 1.36, 1.34 s - 27.0, 25.8 

C(CH3)(OCH3) 3.02, 2.89 s - 47.9 

 

C(CH3)(OCH3) - - - 99.5, 99.0 

 

 

(4R,5S)-Isopropyl 5-(((2R,3S,5R,6R)-3-(((4R,5S)-5-(((2R,3S,5R,6R)-3-(azidomethyl)-5,6-

dimethoxy-5,6-dimethyl-1,4-dioxane-2-carboxamido)methyl)-2,2-dimethyl-1,3-

dioxolane-4-carboxamido)methyl)-5,6-dimethoxy-5,6-dimethyl-1,4-dioxane-2-

carboxamido)methyl)-2,2-dimethyl-1,3-dioxolane-4-carboxylate (23) 

 

ABCD

O O
O

O N
H

OO

MeO OMe

N
HO

O O

N
H

OO

MeO OMe

N3OO

1
2 3

4

 
 

DIPEA (54 µL, 0.32 mmol) and TBTU (75 mg, 0.24 mmol) were added to a stirred solution 

of crude amino ester 21 (70 mg, 0.16 mmol) and crude azido acid 22 (67 mg, 0.16 mmol) in 

CH2Cl2 (1.0 mL). After 10 mins, the reaction mixture was diluted with CH2Cl2 (20 mL) and 

washed with water (2 x 15 mL). The aqueous washes were extracted with CH2Cl2 (2 x 20 

mL) and the combined organic layers were dried over MgSO4 and concentrated in vacuo. The 

residue was purified by column chromatography (EtOAc) to yield the desired tetramer 23 

(75 mg, 59 % from dimer azido ester). 

 

[$]D
25: -51.7˚ (c 0.145, CHCl3); *max/cm-1 (film): 3426, 2989, 2943, 2097, 1753, 1673, 1523, 

1209, 1115; m/z: HRMS (ES+) found 863.4237; C37H62N6O17 [M+H]+ requires 863.4244. 
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1H (700 MHz, 5.6 mM in benzene-d6 @ 7.15 ppm) and 13C (175 MHz, benzene-d6 @ 128.0 

ppm) 

Residue Position +H (ppm) Multiplicity J (Hz) +C (ppm) 

C-1 - - - 168.4 
C-2 4.41 d 10.1 69.6 
C-3 4.14 ddd 9.9, 7.3, 2.3 70.3 

4 3.86 dd 13.1, 2.2  
A 

C-4 4’ 3.63 dd 13.1, 7.3 52.0 

C-1 - - - 169.9 
C-2 3.98 d 7.9 79.9 
C-3 3.92 ddd 7.9, 7.8, 3.8 77.9 

4 4.20 dd 8.8, 4.5 C-4 4’ 3.14 ddd 13.2, 7.7, 2.9 41.4 
B 

NH 7.93 dd 7.9, 2.5  - 
C-1 - - - 169.0 
C-2 4.25 d 3.2 71.9 
C-3 3.90-3.92 m - 69.2 

4 4.02 ddd 13.7, 5.8, 4.0,  C-4 4’ 3.68 dd 7.4, 3.8  40.6 

 
C 

NH 7.30 t 6.2, 6.2 - 
C-1 - - - 170.1 
C-2 4.27 d 6.7 53.3 
C-3 4.23 dd 7.0, 4.0  77.2 

4 3.72 dd 9.6, 4.3 C-4 4’ 3.32 td 13.9, 4.5  40.4 

 
D 
 

NH 7.06 dd 7.1, 4.7  - 
CH(CH3)2 4.95 sept 6.2 69.0 

iPr Me 1.00 (3H) d 6.3 21.6 
iPr Me 0.98 (3H) d 6.3 21.5 

Isopropylidene 
qC(CH3)2 

- - - 111.4, 110.5 

Isopropylidene 
CH3 groups 

1.38, 1.35, 
1.27, 1.25 s - 27.1, 27.0, 

26.0, 25.8 

C(CH3)(OCH3) 
1.46, 1.32, 
1.23, 1.20 s - 17.6, 17.5, 

17.5, 17.4 

C(CH3)(OCH3) 
3.21, 3.08, 
3.04, 2.90 s - 48.4, 47.9 

 
Others 

C(CH3)(OCH3) - - - 99.0, 99.0 
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Residue Position NOE’s to 
H-2 3A, 4A, 4’A 
H-3 2A, 4A, 4’A 
H-4 2A, 3A, 4’A A 

H-4’ 2A, 3A, 4A 
H-2 3B, 4B, 4’B 
H-3 2B, 4B, 4’B 
H-4 2B, 3B, 4’B 
H-4’ 2B, 3B, 4B 

B 

NHB H2
A, H3

A, H2
B, H3

B, H4
B, H4’

B 
H-2 3C, 4C, 4’C 
H-3 2C, 4C, 4’C 
H-4 2C, 3C, 4’C 
H-4’ 2C, 3C, 4C 

C 

NHC H2
B, H3

B, H2
C, H3

C, H4
C, H4’

C 
H-2 3D, 4D, 4’D 
H-3 2D, 4D, 4’D 
H-4 2D, 3D, 4’D 
H-4’ 2D, 3D, 4D 

D 

NHD H2
C, H3

C, H2
D, H3

D, H4
D, H4’

D 
 

 

 



References 

 164 

CHAPTER 4: REFERENCES 

 

(1) Fleming, I. Pericyclic Reactions; Oxford University Press, 1999; p 57 

(2) Woodward, R. B.; Hoffmann, R. J. Am. Chem. Soc. 1965, 87, 395. 

(3) Woodward, R. B. In Aromaticity; Chemical Society Special Publication: London, 

1967; Vol. 21, p 217. 

(4) Woodward, R. B.; Hoffmann, R. Angew. Chem. Int. Ed. 1969, 8, 781. 

(5) Bandaranayake, W. M.; Banfield, J. E.; Black, D. S. C. J. Chem. Soc., Chem. 

Commun. 1980, 902. 

(6) Havinga, E.; de Kock, R. J.; Rappoldt, M. P. Tetrahedron 1960, 11, 276. 

(7) Hortmann, A. G.; Daniel, D. S.; Martinelli, J. E. J. Org. Chem. 1973, 38, 728. 

(8) Ireland, C.; Faulkner, J. Tetrahedron 1981, 37, 233. 

(9) Rickards, R. W.; Skropeta, D. Tetrahedron 2002, 58, 3793. 

(10) Corey, E. J. Angew. Chem. Int. Ed. 2002, 41, 1650. 

(11) Nicolaou, K. C.; Snyder, S. A.; Montagnon, T.; Vassilikogiannakis, G. Angew. Chem. 

Int. Ed. 2002, 41, 1668. 

(12) Majumdar, K. C.; Alam, S.; Chattopadhyay, B. Tetrahedron 2008, 64, 597. 

(13) Rueping, M.; Antonchick, A. P. Angew. Chem. Int. Ed. 2008, 47, 10090. 

(14) Ilardi, E. A.; Stivala, C. E.; Zakarian, A. Chem. Soc. Rev. 2009, 38, 3133. 

(15) Sweeney, J. B. Chem. Soc. Rev. 2009, 38, 1027. 

(16) Brandange, S.; Leijonmarck, H. Chem. Commun. 2004, 292. 

(17) Denmark, S. E. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds.; 

Pergamon: Oxford, 1991; Vol. 5, p 51. 

(18) Denmark, S. E.; Jones, T. K. J. Am. Chem. Soc. 1982, 104, 2642. 

(19) Jones, T. K.; Denmark, S. E. Helv. Chim. Acta 1983, 66, 2377. 

(20) Denmark, S. E.; Klix, R. C. Tetrahedron 1988, 44, 4043. 

(21) Pridgen, L. N.; Huang, K.; Shilcrat, S.; Tickner-Eldridge, A.; DeBrosse, C.; 

Haltiwanger, R. C. Synlett 1999, 1999, 1612. 

(22) Giese, S.; West, F. G. Tetrahedron 2000, 56, 10221. 

(23) Harrington, P. E.; Tius, M. A. Org. Lett. 2000, 2, 2447. 

(24) Browder, C. C.; Marmsater, F. P.; West, F. G. Org. Lett. 2001, 3, 3033. 

(25) Harrington, P. E.; Tius, M. A. J. Am. Chem. Soc. 2001, 123, 8509. 

(26) Harrington, P. E.; Murai, T.; Chu, C.; Tius, M. A. J. Am. Chem. Soc. 2002, 124, 

10091. 



References 

 165 

(27) Charmant, J. P. H.; Dyke, A. M.; Lloyd-Jones, G. C. Chem. Commun. 2003, 380. 

(28) Aggarwal, V. K.; Belfield, A. J. Org. Lett. 2003, 5, 5075. 

(29) Liang, G.; Gradl, S. N.; Trauner, D. Org. Lett. 2003, 5, 4931. 

(30) Cui, H. F.; Dong, K. Y.; Zhang, G. W.; Wang, L.; Ma, J. A. Chem. Commun. 2007, 

2284. 

(31) Nie, J.; Zhu, H. W.; Cui, H. F.; Hua, M. Q.; Ma, J. A. Org. Lett. 2007, 9, 3053. 

(32) Rueping, M.; Ieawsuwan, W.; Antonchick, A. P.; Nachtsheim, B. J. Angew. Chem. 

Int. Ed. 2007, 46, 2097. 

(33) Walz, I.; Togni, A. Chem. Commun. 2008, 4315. 

(34) Liang, G.; Trauner, D. J. Am. Chem. Soc. 2004, 126, 9544. 

(35) He, W.; Sun, X.; Frontier, A. J. J. Am. Chem. Soc. 2003, 125, 14278. 

(36) Rueping, M.; Ieawsuwan, W. Adv. Synth. Catal. 2009, 351, 78. 

(37) Magomedov, N. A.; Ruggiero, P. L.; Tang, Y. J. Am. Chem. Soc. 2004, 126, 1624. 

(38) Magomedov, N. A.; Ruggiero, P. L.; Tang, Y. Org. Lett. 2004, 6, 3373. 

(39) Greshock, T. J.; Funk, R. L. J. Am. Chem. Soc. 2006, 128, 4946. 

(40) Marvell, E. N.; Hilton, C.; Cleary, M. J. Org. Chem. 1983, 48, 4272. 

(41) Evanseck, J. D.; Iv, B. E. T.; Spellmeyer, D. C.; Houk, K. N. J. Org. Chem. 1995, 60, 

7134. 

(42) Niwayama, S. J. Org. Chem. 1996, 61, 640. 

(43) Guner, V. A.; Houk, K. N.; Davies, I. W. J. Org. Chem. 2004, 69, 8024. 

(44) Yu, T. Q.; Fu, Y.; Liu, L.; Guo, Q. X. J. Org. Chem. 2006, 71, 6157. 

(45) Bishop, L. M.; Barbarow, J. E.; Bergman, R. G.; Trauner, D. Angew. Chem. Int. Ed. 

2008, 47, 8100. 

(46) Grigg, R. Chem. Soc. Rev. 1987, 16, 89. 

(47) Hunter, D. H.; Steiner, R. P. Can. J. Chem. 1975, 53, 355. 

(48) Klötgen, S.; Fröhlich, R.; Würthwein, E. U. Tetrahedron 1996, 52, 14801. 

(49) Gerdes, K.; Sagar, P.; Fröhlich, R.; Wibbeling, B.; Würthwein, E. U. Eur. J. Org. 

Chem. 2004, 2004, 3465. 

(50) Speckamp, W. N.; Veenstra, S. J.; Dijkink, J.; Fortgens, R. J. Am. Chem. Soc. 1981, 

103, 4643. 

(51) Veenstra, S. J.; Speckamp, W. N. J. Am. Chem. Soc. 1981, 103, 4645. 

(52) Veenstra, S. J.; Speckamp, W. N. J. Chem. Soc., Chem. Commun. 1982, 369. 

(53) Dijkink, J.; Zonjee, J. N.; Dejong, B. S.; Speckamp, W. N. Heterocycles 1983, 20, 

1255. 



References 

 166 

(54) Speckamp, W. N. Heterocycles 1984, 21, 211. 

(55) Veenstra, S. J.; Fortgens, H. P.; Vijn, R. J.; de Jong, B. S.; Speckamp, W. N. 

Tetrahedron 1987, 43, 1147. 

(56) Taylor, E. C.; Turchi, I. J. Chem. Rev. 1979, 79, 181. 

(57) Huisgen, R. Angew. Chem. Int. Ed. 1980, 19, 947. 

(58) Griss, R.; Gunaratne, H. Q. N. Tetrahedron Lett. 1983, 24, 1201. 

(59) Grigg, R.; Nimal Gunaratne, H. Q.; Henderson, D.; Sridharan, V. Tetrahedron 1990, 

46, 1599. 

(60) Vijn, R. J.; Speckamp, W. N.; Jong, B. S. D.; Hiemstra, H. Angew. Chem. Int. Ed. 

1984, 23, 165. 

(61) Müller, S.; List, B. Angew. Chem. Int. Ed. 2009, 48, 9975. 

(62) McNally, A.; Evans, B.; Gaunt, M. J. Angew. Chem. Int. Ed. 2006, 45, 2116. 

(63) Heiss, C.; Phillips, R. S. J. Chem. Soc., Perkin Trans. 1 2000, 2821. 

(64) Tambar, U. K.; Kano, T.; Stoltz, B. M. Org. Lett. 2005, 7, 2413. 

(65) Tambar, U. K.; Kano, T.; Zepernick, J. F.; Stoltz, B. M. Tetrahedron Lett. 2007, 48, 

345. 

(66) Ma, S.; Lu, X.; Li, Z. J. Org. Chem. 1992, 57, 709. 

(67) Wagner, J.; (Smith group, University of Cambridge) unpublished summer project 

2007. 

(68) Kim, K. M.; Park, I. H. Synthesis 2004, 2004, 2641. 

(69) Easton, C. J.; Heath, G. A.; Hughes, C. M. M.; Lee, C. K. Y.; Savage, G. P.; 

Simpson, G. W.; Tiekink, E. R. T.; Vuckovic, G. J.; Webster, R. D. J. Chem. Soc., 

Perkin Trans. 1 2001, 1168. 

(70) Nair, V.; Augustine, A.; George, T. G.; Nair, L. G. Tetrahedron Lett. 2001, 42, 6763. 

(71) Matsuda, T.; Shigeno, M.; Makino, M.; Murakami, M. Org. Lett. 2006, 8, 3379. 

(72) Lipshutz, B. H.; Zcaron; Boscaronkovi, A. V.; cacute; Aue, D. H. Angew. Chem. Int. 

Ed. 2008, 47, 10183. 

(73) Nelson, S. G.; Wang, K. J. Am. Chem. Soc. 2006, 128, 4232. 

(74) Spino, C.; Thibault, C.; Gingras, S. J. Org. Chem. 1998, 63, 5283. 

(75) Yoshida, K.; Imamoto, T. J. Am. Chem. Soc. 2005, 127, 10470. 

(76) Zhang, D.; Yum, E. K.; Liu, Z.; Larock, R. C. Org. Lett. 2005, 7, 4963. 

(77) Matos, K.; Soderquist, J. A. J. Org. Chem. 1998, 63, 461. 

(78) Wright, S. W.; Hageman, D. L.; McClure, L. D. J. Org. Chem. 1994, 59, 6095. 



References 

 167 

(79) Castanet, A. S.; Colobert, F.; Broutin, P. E.; Obringer, M. Tetrahedron: Asymmetry 

2002, 13, 659. 

(80) Stille, J. K. Angew. Chem. Int. Ed. 1986, 25, 508. 

(81) Mitchell, T. N. Synthesis 1992, 1992, 803. 

(82) Tatsuta, K.; Yamaguchi, T. Tetrahedron Lett. 2005, 46, 5017. 

(83) Miao, R.; Li, S.; Chiu, P. Tetrahedron 2007, 63, 6737. 

(84) Cai, M.; Wang, Y.; Hao, W. Eur. J. Org. Chem. 2008, 2008, 2983. 

(85) Trost, B. M.; Li, C. J. Synthesis 1994, 1994, 1267. 

(86) Betzer, J. F.; Delaloge, F.; Muller, B.; Pancrazi, A.; Prunet, J. J. Org. Chem. 1997, 

62, 7768. 

(87) Maciver, E. E.; Thompson, S.; Smith, M. D. Angew. Chem. Int. Ed. 2009, 48, 9979. 

(88) O'Donnell, M. J. Catalytic Asymmetric Synthesis; Wiley-VCH: New York, 2000. 

(89) Ooi, T.; Maruoka, K. Angew. Chem. Int. Ed. 2007, 46, 4222. 

(90) Akiyama, T.; Itoh, J.; Fuchibe, K. Adv. Synth. Catal. 2006, 348, 999. 

(91) Mayer, S.; List, B. Angew. Chem. Int. Ed. 2006, 45, 4193. 

(92) Taylor, M. S.; Jacobsen, E. N. Angew. Chem. Int. Ed. 2006, 45, 1520. 

(93) Hamilton, G. L.; Kang, E. J.; Mba, M.; Toste, F. D. Science 2007, 317, 496. 

(94) Rueping, M.; Sugiono, E.; Azap, C.; Theissmann, T.; Bolte, M. Org. Lett. 2005, 7, 

3781. 

(95) Baldwin, J. E. J. Chem. Soc., Chem. Commun. 1976, 734. 

(96) Baldwin, J. E.; Thomas, R. C.; Kruse, L. I.; Silberman, L. J. Org. Chem. 1977, 42, 

3846. 

(97) Corey, E. J.; Xu, F.; Noe, M. C. J. Am. Chem. Soc. 1997, 119, 12414. 

(98) Kitamura, M.; Shirakawa, S.; Maruoka, K. Angew. Chem. Int. Ed. 2005, 44, 1549. 

(99) Lygo, B.; Allbutt, B.; Beaumont, D. J.; Butt, U.; Gilks, J. A. R. Synlett 2009, 2009, 

675. 

(100) Dado, G. P.; Gellman, S. H. J. Am. Chem. Soc. 1994, 116, 1054. 

(101) Gellman, S. H. Acc. Chem. Res. 1998, 31, 173. 

(102) Hill, D. J.; Mio, M. J.; Prince, R. B.; Hughes, T. S.; Moore, J. S. Chem. Rev. 2001, 

101, 3893. 

(103) Appella, D. H.; Christianson, L. A.; Klein, D. A.; Powell, D. R.; Huang, X. L.; 

Barchi, J. J.; Gellman, S. H. Nature 1997, 387, 381. 

(104) Werder, M.; Hauser, H.; Abele, S.; Seebach, D. Helv. Chim. Acta 1999, 82, 1774. 

(105) Cheng, R. P.; Gellman, S. H.; DeGrado, W. F. Chem. Rev. 2001, 101, 3219. 



References 

 168 

(106) Seebach, D.; Hook, D. F.; Glättli, A. Pept. Sci. 2006, 84, 23. 

(107) Seebach, D.; Overhand, M.; K¸hnle, F. N. M.; Martinoni, B.; Oberer, L.; Hommel, 

U.; Widmer, H. Helv. Chim. Acta 1996, 79, 913. 

(108) Hintermann, T.; Gademann, K.; Jaun, B.; Seebach, D. Helv. Chim. Acta 1998, 81, 

983. 

(109) Chung, Y. J.; Christianson, L. A.; Stanger, H. E.; Powell, D. R.; Gellman, S. H. J. 

Am. Chem. Soc. 1998, 120, 10555. 

(110) Krauthauser, S.; Christianson, L. A.; Powell, D. R.; Gellman, S. H. J. Am. Chem. Soc. 

1997, 119, 11719. 

(111) Abele, S.; Seiler, P.; Seebach, D. Helv. Chim. Acta 1999, 82, 1559. 

(112) Claridge, T. D. W.; Goodman, J. M.; Moreno, A.; Angus, D.; Barker, S. F.; 

Taillefumier, C.; Watterson, M. P.; Fleet, G. W. J. Tetrahedron Lett. 2001, 42, 4251. 

(113) Appella, D. H.; Christianson, L. A.; Klein, D. A.; Richards, M. R.; Powell, D. R.; 

Gellman, S. H. J. Am. Chem. Soc. 1999, 121, 7574. 

(114) Appella, D. H.; Christianson, L. A.; Karle, I. L.; Powell, D. R.; Gellman, S. H. J. Am. 

Chem. Soc. 1996, 118, 13071. 

(115) Appella, D. H.; Christianson, L. A.; Karle, I. L.; Powell, D. R.; Gellman, S. H. J. Am. 

Chem. Soc. 1999, 121, 6206. 

(116) Martinek, T. A.; Mandity, I. M.; Fulop, L.; Toth, G. K.; Vass, E.; Hollosi, M.; Forro, 

E.; Fulop, F. J. Am. Chem. Soc. 2006, 128, 13539. 

(117) Martinek, T. A.; Toth, G. K.; Vass, E.; Hollosi, M.; Fülöp, F. Angew. Chem. Int. Ed. 

2002, 41, 1718. 

(118) Doerksen, R. J.; Chen, B.; Yuan, J.; Winkler, J. D.; Klein, M. L. Chem. Commun. 

2003, 2534. 

(119) Pol, S. D.; Zorn, C.; Klein, C. D.; Zerbe, O.; Reiser, O. Angew. Chem. Int. Ed. 2004, 

43, 511. 

(120) Dado, G. P.; Gellman, S. H. J. Am. Chem. Soc. 2002, 116, 1054. 

(121) Seebach, D.; Brenner, M.; Rueping, M.; Schweizer, B.; Jaun, B. Chem. Commun. 

2001, 207. 

(122) Seebach, D.; Brenner, M.; Rueping, M.; Jaun, B. Chem. Eur. J. 2002, 8, 573. 

(123) Vasudev, P. G.; Shamala, N.; Ananda, K.; Balaram, P. Angew. Chem. Int. Ed. 2005, 

44, 4972. 

(124) Sharma, G. V. M.; Jayaprakash, P.; Narsimulu, K.; Sankar, A. R.; Reddy, K. R.; 

Krishna, P. R.; Kunwar, A. C. Angew. Chem. Int. Ed. 2006, 45, 2944. 



References 

 169 

(125) Yang, D.; Zhang, D. W.; Hao, Y.; Wu, Y. D.; Luo, S. W.; Zhu, N. Y. Angew. Chem. 

Int. Ed. 2004, 43, 6719. 

(126) Baldauf, C.; G¸nther, R.; Hofmann, H. J. Helv. Chim. Acta 2003, 86, 2573. 

(127) Baldauf, C.; Gunther, R.; Hofmann, H. J. J. Org. Chem. 2005, 70, 5351. 

(128) Farrera-Sinfreu, J.; Zaccaro, L.; Vidal, D.; Salvatella, X.; Giralt, E.; Pons, M.; 

Albericio, F.; Royo, M. J. Am. Chem. Soc. 2004, 126, 6048. 

(129) Baruah, P. K.; Sreedevi, N. K.; Gonnade, R.; Ravindranathan, S.; Damodaran, K.; 

Hofmann, H. J.; Sanjayan, G. J. J. Org. Chem. 2006, 72, 636. 

(130) Batsanov, A. S.; Begley, M. J.; Fletcher, R. J.; Murphy, J. A.; Sherburn, M. S. J. 

Chem. Soc., Perkin Trans. 1 1995, 1281. 

(131) Barros, M. T.; Maycock, C. D.; Phillips, A. M. F. Eur. J. Org. Chem. 2004, 2004, 

1820. 

(132) Beck, E.; (Smith group, University of Cambridge) unpublished Pt III project 2004. 

(133) Kothari, A.; Qureshi, M. K. N.; Beck, E. M.; Smith, M. D. Chem. Commun. 2007, 

2814. 

(134) Qureshi, M. K. N., (Smith group, University of Cambridge), PhD thesis 2009. 

(135) Jones, E. (Smith group, University of Cambridge) unpublished Pt III project 2007. 

(136) Khurram, M.; Qureshi, N.; Smith, M. D. Chem. Commun. 2006, 5006. 

(137) Jones, C. R.; Qureshi, M. K. N.; Truscott, F. R.; Hsu, S. T. D.; Morrison, A. J.; 

Smith, M. D. Angew. Chem. Int. Ed. 2008, 47, 7099. 

(138) Jones, C. R.; Panto, G. D.; scedil; Morrison, A. J.; Smith, M. D. Angew. Chem. Int. 

Ed. 2009, 48, 7391. 

(139) Kazmaier, U.; Lucas, S.; Klein, M. J. Org. Chem. 2006, 71, 2429. 

(140) Harrowven, D. C.; Pascoe, D. D.; Guy, I. L. Angew. Chem. Int. Ed. 2007, 46, 425. 

 

 



Appendix 

 170 

CHAPTER 5: APPENDIX 

1. HPLC Data: 

(2R,3S)-Triisopropyl 2-phenyl-2,3-dihydro-1H-indene-1,1,3-tricarboxylate (128) 
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Chiral HPLC (Chiralpak OD, 2.5 % IPA, 97.5 % hexane, 1.0 mL.min-1, ! = 210)  
 
Racemic 

 
 
§ 
 
 
 
 
 
 
 
 
 
 
 
 
Asymmetric 

 
 
 
 
 
 
 
 
 
 
 
 
 

No.  Ret.Time  Height  Area  Rel.Area  

  min mAU mAU*min % 

1 6.10 293.511 43.445 47.85 

2 10.81 156.239 47.352 52.15 

No.  Ret.Time  Height  Area  Rel.Area  

  min mAU mAU*min % 

1 6.12 748.048 111.155 65.58 

2 10.91 206.616 58.334 34.42 
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(2S,3R)-Triisopropyl 2-phenyl-2,3-dihydro-1H-indene-1,1,3-tricarboxylate (136) 
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Chiral HPLC (Chiralpak OD, 2.5 % IPA, 97.5 % hexane, 1.0 mL.min-1, ! = 210)  
 
Racemic 

 
 
 
 
 
 

 
 
 
 
 

 
 
 
Asymmetric 

 
 
 
 
 
 
 
 
 
 
 
 
 
  

No.  Ret.Time  Height  Area  Rel.Area  

  min mAU mAU*min % 

1 4.91 197.152 35.169 51.84 

2 7.62 106.498 32.673 48.16 

No.  Ret.Time  Height  Area  Rel.Area  

  min mAU mAU*min % 

1 4.90 289.850 55.111 19.52 

2 7.57 720.137 227.206 80.48 
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(2S,3R)-Triisopropyl 2-(3-methoxyphenyl)-2,3-dihydro-1H-indene-1,1,3-tricarboxylate 

(138) 
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Chiral HPLC (Chiralpak OD, 2.5 % IPA, 97.5 % hexane, 1.0 mL.min-1, ! = 210)  
 
Racemic 

 

 
 

 
 
 
 
 
Asymmetric 

 

 
 
 

No.  Ret.Time  Height  Area  Rel.Area  

  min mAU mAU*min % 

1 5.21 526.586 110.692 50.13 

2 7.11 284.195 110.123 49.87 

No.  Ret.Time  Height  Area  Rel.Area  

  min mAU mAU*min % 

1   5.29       194.443  38.911  14.70     

2   7.22       415.098  225.798  85.30     
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(2S,3R)-Triisopropyl 2-(4-methoxyphenyl)-2,3-dihydro-1H-indene-1,1,3-tricarboxylate 

(137) 
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Chiral HPLC (Chiralpak OD, 2.5 % IPA, 97.5 % hexane, 1.0 mL.min-1, ! = 210)  
 
Racemic 

 

 
 
 
Asymmetric 

 

 
 

No.  Ret.Time  Height  Area  Rel.Area  

  min mAU mAU*min % 

1 6.05 882.691 193.053 50.24 

2 11.19 431.908 191.236 49.76 

No.  Ret.Time  Height  Area  Rel.Area  

  min mAU mAU*min % 

1   6.05       102.967  21.010  26.02     

2   11.17       134.103  59.738  73.98     
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(2S,3R)-Triisopropyl 2-(naphthalen-2-yl)-2,3-dihydro-1H-indene-1,1,3-tricarboxylate 

(139) 
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Chiral HPLC (Chiralpak OD, 2.5 % IPA, 97.5 % hexane, 1.0 mL.min-1, ! = 210)  
 
Racemic 

 
 

 
 
Asymmetric 

 
 

 
 

No.  Ret.Time  Height  Area  Rel.Area  

  min mAU mAU*min % 

1 5.62 734.466 147.920 47.61 

2 9.28 478.209 162.760 52.39 

No. Ret.Time Height Area Rel.Area 

 min mAU mAU*min % 

1 5.71 125.073 24.084 24.10 

2 9.53 236.054 75.868 75.90 
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(2S,3R)-Triisopropyl 2-(benzo[d][1,3]dioxol-5-yl)-2,3-dihydro-1H-indene-1,1,3-

tricarboxylate (140) 
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Chiral HPLC (Chiralpak OD, 2.5 % IPA, 97.5 % hexane, 1.0 mL.min-1, ! = 210)  
 
Racemic 
 

 
 
 
Asymmetric 

 

 
 

No. Ret.Time Height Area Rel.Area 

 min mAU mAU*min % 

1 7.43 102.730 29.623 49.22 

2 15.68 40.750 30.563 50.78 

No. Ret.Time Height Area Rel.Area 

 min mAU mAU*min % 

1 7.43 154.573 43.270 31.20 

2 15.47 117.827 95.411 68.80 
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2. X-ray crystallography Data 

 

(Z)-(2-bromo-2-nitrovinyl)benzene  

 

NO2

Br

5
 

 

Table 5.1: Key data and refinment for the crystal structure MS0703 

Identification code  MS0703 
Empirical formula  C8H6BrNO2  
Formula weight  228.05  
Temperature  180(2) K 
Crystal system Orthorhombic  
Space group  pbca 
Unit cell dimensions  a = 11.4061(3) Å    " = 90˚ 

b = 7.3133(2) Å      # = 90˚ 
c = 19.5573(4) Å    $ = 90˚ 

Volume  1633.06(7) Å3 
Z  8 
Density (calculated)  1.855 Mgm-3 
Absorption coefficient  4.987 mm-1 
F (000) 896 
Reflections collected 15191 
Independent reflections  2831 [R(int) = 0.0770] 
Final R indices [I>2sigma (I)]  R1 = 0.0427, wR2 = 0.0906 
R indices (all data)  R1 = 0.0659, wR2 = 0.1015  
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(E)-3-(3-oxohex-1-en-1-yl)-2H-chromen-2-one 

O O

28

O

 
 
 
 

Table 5.2: Key data and refinment for the crystal structure MS0716 

Identification code  MS0716 
Empirical formula  C15H14O3  
Formula weight  242.26  
Temperature  180(2) K 
Crystal system Monoclinic  
Space group  P2(1)/c 
Unit cell dimensions  a = 5.0697(2) Å    " = 90˚ 

b = 28.6462(1) Å      # = 94.93(2)˚ 
c = 7.5162(2) Å    $ = 90˚ 

Volume  1203.36(5) Å3 
Z  4 
Density (calculated)  1.337 Mgm-3 
Absorption coefficient  0.093 mm-1 
F (000) 512 
Reflections collected 6365 
Independent reflections  2307 [R(int) = 0.0319] 
Final R indices [I>2sigma (I)]  R1 = 0.0524, wR2 = 0.1311 
R indices (all data)  R1 = 0.0729, wR2 = 0.1443  

 


