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1. Introduction

High energy polarized e+e− colliders will be essential instruments in the search for the fun-

damental constituents of matter and their interactions. One such collider being designed

is the International Linear Collider (ILC) which is expected to run at centre-of-mass en-

ergies ≥ 500 GeV. At these energies there will be a significant proportion of top quark

pairs produced from the annihilation process so the ILC provides an impressive tool to

carry out detailed studies of top quark physics. The top quark radiates gluons both in its

production phase and its decay phase, thus it is useful to see how the leading order ex-

perimental analysis will be affected by these QCD corrections. There have been numerous

studies of top quark production and their decays both at leading order and next-to leading

order in QCD. Details can be found in [1–8] and many more besides. In this paper we

consider the process at next-to-leading order in the production and semi-leptonic decays

of the top pairs using the POWHEG method [9, 10] in conjunction with the Monte Carlo

event generator Herwig++ [11]. The POWHEG method has been successfully applied to Z

pair production [12], heavy flavour production [13], e+e− annihilation into hadrons and
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Drell-Yan vector boson production [14, 15]. We work in the narrow width approximation

and hence do not include interference between the production and decay emissions which

are negligible in this limit [16,17]. We also take account of the beam polarization and spin

correlations of the top pairs. Finally, we present plots of some relevant distributions.

2. Hardest emission generation: Production

The order-αs differential cross section for the process e+e− → V → tt̄g where V represents

a vector current, can be written as

R(x, y) = σV WV (x, y) =
σV

v

2αs

3π

[

(x + 2ρ)2 + (y + 2ρ)2 + ζV

(1 + 2ρ)(1 − x)(1 − y)
− 2ρ

(1 − x)2
− 2ρ

(1 − y)2

]

(2.1)

where σV is the Born cross section for heavy quark production, WV = R/σV , ρ = mt
2/s

where mt is the mass of the top quark and s is the square of the center of mass energy,

ζV = −8ρ(1 + 2ρ), v =
√

1 − 4ρ and x, y are the energy fractions of t and t̄ respectively.

In the case of the axial current contribution e+e− → A → tt̄g, we have

R(x, y) = σAWA(x, y) =
σA

v

2αs

3π

[

(x + 2ρ)2 + (y + 2ρ)2 + ζA

(1 − 4ρ)(1 − x)(1 − y)
− 2ρ

(1 − x)2
− 2ρ

(1 − y)2

]

(2.2)

where σA is the Born cross section for heavy quark production by the axial current, WA =

R/σA and ζA = 2ρ[(3 + xg)
2 − 19 + 4ρ] where xg = 2 − x − y.

Because of the top mass, the phase space for gluon emission is reduced and the collinear

divergences present in the massless quark cross-section are regularized here. However, the

infra-red divergence as the gluon momentum goes to zero is still present. We can write

down the cross-section for the hardest emission as

dσ =
∑

B̄(v)dΦv

[

∆
(NLO)
R (0) + ∆

(NLO)
R (pT )

R(v, r)

B(v)
dΦr

]

(2.3)

where B(v) is the Born cross section and v represents the Born variables, r represents

the radiation variables and dΦv and dΦr are the Born and real emission phase spaces

respectively. ∆NLO
R (pT ) is the modified Sudakov form factor for the hardest emission with

transverse momentum pT , as indicated by the Heaviside function in the exponent of (2.4),

∆NLO
R (pT ) = exp

[

−
∫

dΦr
R(v, r)

B(v)
Θ(kT (v, r) − pT )

]

. (2.4)

Furthermore,

B̄(v) = B(v) + V (v) +

∫

(R(v, r) − C(v, r))dΦr . (2.5)

B̄(v) is the sum of the Born, B(v), virtual, V (v) and real, R(v, r) terms, (with some

counter-terms, C(v, r)). It overcomes the problem of negative weights since in the region

where B̄(v) is negative, the NLO negative terms must have overcome the Born term and
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hence perturbation theory must have failed. It is used to generate the variables of the Born

subprocess to which the real-emission contributions factorize in the collinear limit.

Now explicitly for e+e− → tt̄g,

∆NLO
R (pT ) = exp

[

−
∫

dx dyW (x, y)Θ(kT (x, y)) − pT )

]

(2.6)

where

kT (x, y) =

√

s
(1 − x)(1 − y)(x + y − 1) − ρ(2 − x − y)2

max(x, y)2 − 4ρ
(2.7)

is the transverse momentum of the hardest emitted gluon relative to the splitting axis, as

illustrated in Figure 1 below.

q

q

kT

g

Figure 1: Transverse momentum, kT .

2.1 Generation of radiation variables, x and y

The radiation variables, x and y are to be generated according to the probability distribu-

tion

∆W (kT )W (x, y)dx dy (2.8)

where for e+e− annihilation via a vector and axial current, W (x, y) and ∆W (kT ) are defined

in (2.1),(2.2) and (2.6).

In the region where x > y, let us define the dimensionless variable, κ as

κ =
k2

T

s
=

(1 − x)(1 − y)(x + y − 1) − ρ(2 − x − y)2

x2 − 4ρ
. (2.9)

There are two solutions for y for each value of x and κ.

y1,2 =
x2 − 3x − 2ρx + 2 + 4ρ ±

√

(x2 − 4ρ)(4κ(x − 1 − ρ) + (x − 1)2)

2(1 + ρ − x)
. (2.10)
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Exchanging the y variable for κ, we find

∫

W (x, y)Θ(kT (x, y) − pT )dxdy =

∫ xmax

xmin

dx

∫ κmax

κ
dκ

2αs(κs)

3π

dy

dκ
W (x, y1,2)

=

∫

dx

∫

dκ
2αs(κs)

3π

√

x2 − 4ρ
√

(4κ(x − 1 − ρ) − (x − 1)2)
W (x, y1,2)

(2.11)

Now the integrand, W
′

=

√
x2−4ρ√

(4κ(x−1−ρ)−(x−1)2)
W (x, y1,2) in (2.11) yields a complicated

integral so we look for an upper bound on W
′

which we denote as V
′

= dy
dκV (x, y1,2) to

simplify the integration. We then generate the radiation variables as outlined below:

1. Set pmax = kT max.

2. For a random number, n between 0 and 1, solve the equation below for pT

n =
∆V (pT )

∆V (pmax)
(2.12)

where ∆V (pT ) = exp
[

−
∫

dx dκV
′

(x, κ)
]

3. Generate the variables x and y according to the distribution

V (x, y)δ(kT (x, y) − pT ) . (2.13)

4. Accept the generated value of pT with probability W/V . If the event is rejected set

pmax = pT and go to 2).

Using our knowledge of the form of the integrand in the massless quark case [18], we

guess that V
′

should take the form,

V
′

(x, κ) = Nκ
2αs(κs)

3π

4

(1 − x + γ(κ, x))γ(κ, x)
(2.14)

where

γ(κ, x) =

√

(1 − x)(1 − 2κ − 2
√

κ2 + ρκ) . (2.15)

and Nκ is a normalisation factor which depends on κ, which has to be tuned to ensure

that V
′

is an upper bound of W
′

. Both V
′

and W
′

have the same divergent behaviour at

xmax = 1 − 2κ − 2
√

κ2 + ρκ.

Table 1 shows the Nκ values for different ranges of κ and the two solutions for y used for

both axial and vector currents. The lower limit on κ was set by choosing kT = ΛQCD = 0.2

GeV thus setting a lower bound on the transverse momentum.

We now consider the specific case where mt = 175 GeV and
√

s = 500 GeV i.e.

ρ = 0.1225. For κ ≤ 0.024, there are two y solutions in the region of phase space where

x > y. This is illustrated in Figure 2 below for κ = 0.01. The red line denotes the phase

– 4 –



Range of κ Nκ(y1) Nκ(y2)

0.024 − 0.03 0.4 0.4

0.015 − 0.024 0.7 0.7

0.005 − 0.015 1.2 1.1

0.0005 − 0.005 4.0 2.6

0.0001 − 0.0005 9.0 6.0

0.00005 − 0.0001 13.0 7.0

0.00003 − 0.00005 17.0 10.0

0.00000016 − 0.00003 45.0 35.0

Table 1: Nκ for different values of κ for both axial and vector currents

x

y

0 1

1

xl xu xmax

Figure 2: Phase space and y solutions for κ = 0.01 in the region x > y.

space for gluon emissions. The two solutions lie on either side of the dashed line

y =
(2 − x)(1 − x + 2ρ)

2(1 − x + ρ)
(2.16)

and are equal when

x = xmax = 1 − 2κ − 2
√

κ2 + ρκ (2.17)

which lies on the dotted line. At κ = 0.024, the branches meet along the line y = x and

there is only one solution for y in the region (the lower branch). So for κ > 0.024, only

one y solution exists for x > y. This is illustrated in Figure 3 for κ = 0.028 . In addition

there are no y solutions for κ > 0.03 for x > y . Also note that for x < xu, there is only

one solution for y.
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lx xuxmax
0 1

1

x

y

Figure 3: Phase space and y solutions for κ = 0.028 in the region x > y.

In the region where there are two solutions, the integral (with V
′

in place of W
′

) in

(2.11) is performed along both branches independently and summed. For the upper branch,

x runs from xu to xmax = 1 − 2κ − 2
√

κ2 + ρκ while for the lower branch, x runs from xl

to xmax where if we define

xa = 39κ − 1 + 12ρ − 168ρκ − 48ρ2 + κ3 + 15κ2 + 12ρκ2 + 48ρ2κ + 64ρ3 ,

xb = 6(−33κ2 + 3κ − 3κ3 + 288ρ2κ − 768ρ3κ − 48ρκ + 168ρκ3 − 204ρ2κ2 + 300ρκ2

+ 12ρκ4 + 768ρ4κ + 144ρ2κ3 + 486ρ3κ2)
1
2 ,

xc =
√

xa
2 + xb

2 ,

xd = tan−1

(

xb

xa

)

,

xe = − 1

12
x

1
3
c cos

(xd

3

)

,

xf =
(−1 − κ2 − 10κ + 8ρ − 2ρκ − 16ρ2) cos

(

xd

3

)

12x
1
3
c

,

xg =
κ + 5 + 4ρ

6
,

xh =

√
3

12
sin
(xd

3

)

(

x
1
3
c +

1 + κ2 + 10κ − 8ρ + 2ρκ + 16ρ2

x
1
3
c

)

, (2.18)

we can write xu and xl as

xu = xe + xf + xg + xh ,

xl = xe + xf + xg − xh ; (2.19)
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In the region where there is only one solution for y, x runs from xl to xu.

The κ integration can then be performed numerically. Having performed the integration,

values for κ and hence kT are then generated according to steps 1 and 2 in Section 2.1.

The variables x and y are then to be distributed according to W
′

(x, y)δ(kT (x, y) − pT ).

This is the subject of the next section.

2.2 Distributing x and y according to W (x, y)

To generate x and y values with a distribution proportional to V (x, y)δ(kT (x, y) − pT ),

where from (2.11), V (x, y) is the V
′

dy/dκ , we can use the δ function to eliminate the y

variable by computing

D(x) =

∫

dyδ(kT − pT )V (x, y) =
V (x, y)

∂kT

∂y

∣

∣

∣

∣

∣

y=ȳ

(2.20)

where ȳ is such that kT (x, ȳ) = pT . Note that ∂kT

∂y is the same for both y solutions. We

then generate x values with a probability distribution proportional to D with hit-and-miss

techniques as described below. All events generated have uniform weights.

1. Randomly sample x, Nx times (we used Nx = 105) in the range [xmin : xmax] for the

selected value of κ.

2. For each value of x, evaluate D̄ = D(x, y1) + D(x, y2) if there are 2 solutions for the

selected κ and D̄ = D(x, y2) if there is only one solution. Also, if κ < 0.024 and

x < xu (see Figure 2), there is only one y solution so evaluate D̄ = D(x, y2).

3. Find the maximum value D̄max of D̄ for the selected value of κ.

4. Next, select a value for x in the allowed range and evaluate D̄.

5. If D̄ > rD̄max (where r is a random number between 0 and 1), accept the event,

otherwise go to 4.) and generate a new value for x.

6. If for the chosen value of x, there are two solutions for y, select a value for y in the

ratio D(x, y1) : D(x, y2).

7. Compare V
′

(x, y) with the true integrand, W
′

(x, y). If the event fails this veto, set

κmax = κ and regenerate a new κ value as discussed in Section 2.1.

NB: For the region y > x, exchange x and y in the above discussion. In this way, the

smooth phase space distribution in Figure 5 below was obtained for the hardest emission

events for an axial current. The plot show 2,500 of these events.
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Figure 4: Phase space and distribution of hardest emissions for axial (left) and vector(right)

currents with ρ = 0.1225.
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Figure 5: Phase space and distribution of hardest emissions for an axial current with ρ = 0.0625

(left) and ρ = 0.01361 (right).

The procedure was repeated for
√

s = 700 GeV, ρ = 0.0625 and
√

s = 1500 GeV,

ρ = 0.01361 and the corresponding plots are shown below. As can be seen, the method is

stable as ρ → 0. This is not surprising because the upper bound function V (x, κ) in (2.14)

is stable as ρ → 0 and tends to W
′

, the true value of the integrand in this limit.
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3. Hardest emission generation: Decays

In addition to gluon emission in top production, we also studied the emission in its decay,

t(p1) → W+(w1)b(r1)g(k) . (3.1)

The procedure for generating the hardest emission in this case follows the same lines as

discussed in Section 2. We parameterize the phase space for the decay in terms of variables

x and y defined as

y =
2w1 · p1

m2
t

− a

x =
2k · p1

m2
t

(3.2)

where a = m2
w/m2

t with mw and mt the masses of the W boson and top quark respectively.

(y + a)/2 and x/2 are the energy fractions of the W boson and gluon in the top frame.

Therefore the corresponding energy fraction of the b quark in this frame is given by

xb

2
=

2 − y − a − x

2
. (3.3)

In this paper, we neglect the b mass and work in the narrow-width approximation so that

the top quarks and W boson are on-shell. The t → Wbg differential decay rate is given by:

1

Γ0

d2Γ

dxdy
=

αS

π

CF

(1 − y)x2

[

x − (1 − y)(1 − x) + x2

1 − a
+ x

(y + x − 1)2

2(1 − a)2
+

2a(1 − y)x2

(1 − a)2(1 + 2a)

]

,

(3.4)

where Γ0 is the leading order decay rate. The phase space limits for the decay are:

ax

1 − x
+ (1 − x) < y < 1 ,

0 < x < 1 − a . (3.5)

Working in the rest frame of the top quark where the parton shower is formulated in

Herwig++, we identify the splitting axis corresponding to the original b − W boson axis

and therefore the relative transverse momentum for gluon emission is:

kT (x, y) = mt

√

(1 − y)(y + x(2 − y − a) − x2 − 1)

(y + a)2 − 4a
. (3.6)

Now defining a dimensionless variable κ =
k2

T

m2
t
, we find that in analogy to the production

case, there are 2 solutions for y for each value of x and κ.

y1,2 =
x2 + ax + 2 − 3x − 2aκ ±

√

(x2 − 4κ(1 + a))(x − 1)2 + 4aκ(4κ + 1 − a) + x2(a + 2x − 2)

2(κ + 1 − x)
.

(3.7)

These solutions may be identified with either initial state gluon emission from the top

quark (y2) or final state radiation from the bottom quark (y1). A plot of the phase space

– 9 –



x
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y

0.75

0.80

0.85

0.90

0.95

1.00

Figure 6: Phase space(solid), y
′

(dot-dash) and solutions y1 (dots) and y2 (dashes).

and the 2 solutions for κ = 0.01 is shown in Figure 6. We then construct the modified

Sudakov form factor for the generation of the hardest emission. The exponent of the form

factor is given by
∫

W (x, y)Θ(kT (x, y) − pT )dxdy =

∫ xmax

xmin

dx

∫ κmax

κ
dκ

αS(κm2
t )CF

π

dy

dκ
W (x, κ) , (3.8)

where W (x, κ) is the differential cross-section (3.4) and dy
dκ is the Jacobian for the change

of variables from y to κ. Note that κ = κmax = (1−
√

a)2

4 when the W boson is at rest and

x = 1 −√
a, y = 2

√
a. For a given κ, xmin and xmax are also given by

xmin = 2
√

κ

xmax = 1 − a − 2
√

κa . (3.9)

To make the integral simpler, we again look for an upper bound V
′

(x, κ) on the integrand

as we did for the production case. To do this we replace the Jacobian with the simpler

expression,

dy
′

dκ
=

d

dκ

(

x2 − 3x − 2κa + 2 + xa

2(κ + 1 − x)

)

=
−a

κ + 1 − x
− x2 − 3x − 2κa + 2 + xa

2(κ + 1 − x)2
, (3.10)

where y
′

lies in between y1 and y2 and is indicated in Figure 6. We also overestimate the

differential cross-section by replacing (3.4) with

U(x, y) = Nκ
αSCF

π

1 − a

2x2(1 − y′)
, (3.11)

where Nκ is a normalisation factor dependent on κ and is chosen such that V
′

= U dy
′

dκ is

greater than the integrand in (3.8). The Nκ values are given in Table 2 for the 2 solutions.

– 10 –



Range of κ Nκ(y1) × 104 Nκ(y2) × 104

0.01 − 0.0737 0.005 0.006

0.005 − 0.01 0.0175 0.02

0.001 − 0.005 0.03 0.045

0.0001 − 0.001 0.08 0.12

0.00005 − 0.0001 0.2 0.2

0.000025 − 0.00005 0.3 0.2

0.0000075 − 0.000025 1.0 0.9

0.000005 − 0.0000075 2.0 0.9

0.0000025 − 0.000005 3.0 0.9

0.0000013 − 0.0000025 6.0 0.9

Table 2: Nκ for different values of κ
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 0.8

 0.85

 0.9

 0.95

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

y

x

’/r20/theory/seyi/tbWg589.dat’

Figure 7: Phase space distribution of POWHEG events

The lower limit on κ is 1.3 × 10−6 and was set by choosing kT = ΛQCD = 0.2 GeV thus

setting a lower bound on the transverse momentum. We then generate the values of κ and

distribute x and y according to the true differential (3.4) using vetoes as described for the

production case in Sections 2. Figure 7 shows the phase space distribution obtained.

4. Spin Correlations and the distribution of Born variables

In [19], it was observed that the lepton matrix element for the production process

e+(p) + e−(q) → t(p1) + t̄(p2) + g(p3) → W+(w1) + b(r1) + W−(w2) + b(r2) + g(p3)

→ l+(k1) + ν(x1) + b(r1) + l−(k2) + ν(x2) + b̄(r2) + g(p3) (4.1)
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is bounded from above in the narrow width approximation by the undecayed matrix ele-

ment obtained by eliminating the decay products i.e. W+,W−, b, b̄ and putting the parent

particles i.e. t, t̄ on-shell, multiplied by a process dependent constant. We can then use the

undecayed matrix elements to perform computer-intensive tasks such as event generation

and finally, by using the hit-and-miss method, replace the parent particles with their decay

products. This procedure is outlined below:

1. Evaluate the undecayed matrix elements which are proportional to the upper bounds

on the lepton matrix elements. Generate hard events using the POWHEG method

described above with the top and anti-top quarks in the final state.

2. For each event, generate the decay products and their four-momenta according to

the phase space.

3. Evaluate the leptonic decay matrix element for each event. If the decay matrix

element divided by the corresponding upper bound is less than a random number r

between 0 and 1, throw away the decay momenta and return to step 2.

4. Otherwise, replace the top and anti-top momenta with the decay momenta and shower

the event.

4.1 Undecayed matrix elements

At the ILC, the electron and positron beams will be polarized i.e. either e−Le+
R or e−Re+

L

where the subscripts L and R represent the left-handed and right-handed helicity states

respectively. The corresponding undecayed matrix element for e−Le+
R annihilation is:

M̃ (e−L (p)e+
R(q) → tst

(p1)t̄st̄
(p2)g(p3)) =

[ ¯v(q)γµLu(p)]ū(p1, st)

[

1

2p2 · p3

(aLL

2
γµ

L +
aLR

2
γµ

R

)

(−p̂2 − p̂3 + mt)γν

+
1

2p1 · p3
γν(p̂1 + p̂3 + mt)

(aLL

2
γµ

L +
aLR

2
γµ

R

)

]

T av(p2, st̄)ǫ
ν
a(p3) (4.2)

where ǫ is the polarization vector of the gluon, T a is the colour matrix, p̂ = pµγµ and

γµ
R/L = γµ(1± γ5)/2. For e−Re+

L annihilation, interchange L,R in the above equation. st, st̄

are the spin vectors of the top and anti-top quarks respectively and satisfy the relations:

st · p1 = 0

st̄ · p2 = 0

st · st = −1

st̄ · st̄ = −1 (4.3)
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The massive spinors u(p, s), v(p, s) are given in terms of the massless spinors u(p), v(p) by

u(p, ↑) =
1 + γ5ŝ

2
u(p)

u(p, ↓) =
1 − γ5ŝ

2
u(p)

v(p, ↑) =
1 + γ5ŝ

2
v(p)

v(p, ↓) =
1 − γ5ŝ

2
v(p)

(4.4)

The coupling constants aIJ are given by

aIJ =
e2g

s

[

−Qt + QI
eQ

J
t

1

sin2 θW

s

s − M2
Z + iMZΓZ

]

(4.5)

where MZ is the Z boson mass, ΓZ is the width of the Z boson, θW is the Weinberg angle,

Qt is the electric charge of the top in units of the electric charge e, g =
√

4παS and s is

the center of mass energy squared. The couplings to the Z boson are given by

QL
e =

2 sin2 θW − 1

2 cos θW

QR
e =

sin2 θW

cos θW

QL
t =

3 − 4 sin2 θW

6 cos θW

QR
t = −2 sin2 θW

3 cos θW
(4.6)

In Section 2.2, we distributed our events according to the vector and axial vector

current matrix elements separately using the POWHEG method. To obtain a full unpolar-

ized distribution we can select events from either current distribution according to their

contributions to the full cross-section given below.

σ = 3β(1 + 2ρ)
(

1 + c1
αS

π

)

σV V + 3β3
(

1 + d1
αS

π

)

σAA

σV V =
4πα2

em

s

[

Q2
t − 2QtVeVtχ1(s) + (A2

e + V 2
e )V 2

t χ2(s)
]

σAA =
4πα2

em

s

[

(A2
e + V 2

e )A2
t χ2(s)

]

, (4.7)

where β =
√

1 − ρ, αem is the electromagnetic coupling, At, Ae and Vt, Ve are the axial and

vector coupling constants of the top t and electron e to the Z boson and c1 = 3.5 and

d1 = 2.25 are the QCD correction coefficients defined at mt = 175 GeV and
√

s = 500 GeV
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i.e. ρ = 0.1225 [20]. χ1(s) and χ2(s) are given by

χ1(s) = κ
s(s − M2

Z)

(s − M2
Z)2 + Γ2

ZM2
Z

χ2(s) = κ2 s2

(s − M2
Z)2 + Γ2

ZM2
Z

κ =

√
2GF M2

Z

16παem
, (4.8)

where GF is the Fermi constant and MZ and ΓZ are the mass and decay width of the Z

boson respectively.

Explicit expressions for the Born, virtual and real polarization dependent squared

matrix elements for the production process are given in [5] in terms of the energy fractions

x, y of the top and anti-top quarks and the polar angle and azimuthal angles orienting

the tt̄g plane relative to the e+e− beam axis. For each initial polarization, we then assign

final-state polarizations to each event in proportion to the squared matrix elements and

distribute the polar and azimuthal angles of the top/anti-top pairs accordingly using well-

known Monte Carlo techniques.

4.2 Decay matrix elements

Next, we investigate the decays of the top and anti-top pair. The leptonic matrix elements

for the process in (4.1) are dependent on the spins of the top and anti-top quark. This

dependence can be written in the form of a decay density matrix. The decay density matrix

ρλ,λ′ , for an on-shell top quark is given by

ρλ,λ
′ =

4g4
wV 2

tb

(w2
1 − m2

w)2 + (mwΓW )2
×

[

(r1 · x1)(p1 · k1) − (st · k1)(r1 · x1)mt −(k1 · n)(x1 · r1)mt − iǫ(p1, k1, st, n)(x1 · r1)

−(k1 · n)(x1 · r1)mt + iǫ(p1, k1, st, n)(x1 · r1) (r1 · x1)(p1 · k1) + (st · k1)(r1 · x1)mt

]

where λ, λ
′

are spin labels, st is the top spin vector, n is a spacelike vector perpendicular to

st and p1 and mw,ΓW are the mass and width of the W boson respectively. In this paper

we work in the helicity basis for which the top quark spin is defined along its direction

of motion. A similar matrix can be derived for t̄ decay. The spin-specific decay matrix

elements are therefore of the form:

S
λtλt̄λ

′

t
λ
′

t̄

= M̃λtλt̄
ρ

λtλ
′

t̄

ρ
λt̄λ

′

t̄

M̃∗

λ
′

t
λ
′

t̄

(4.9)

where λt, λt̄ are spin labels for the top and anti-top respectively and M̃ is the matrix

element for the undecayed process introduced in Section 4.1. By diagonalizing the density

matrix, we can obtain the largest possible value of the matrix elements and hence the upper

bound. An explicit computation gives this upper bound | M t
ub |2 on the top decay as [19],

| M t
ub |2=

4g4
w | Vtb |2 (r1 · x1)(p1 · k1)

[(w2
1 − m2

w)2 + (mwΓW )2][(p2
1 − m2

t )
2 − (mtΓt)2]

| M̃ |2 (4.10)
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where | M̃ |2 is the undecayed matrix element for unpolarized tt̄g production. A similar

expression | M t̄
ub |2 can be obtained for the decay of the top anti-quark by interchanging

the labels 1 and 2 and t and t̄ in (4.10). Hence the full upper bound can be written as:

| M tt̄
ub |2=

| M t
ub |2| M t̄

ub |2
| M̃ |2

(4.11)

Having obtained the decay matrix elements and their upper bounds, we then proceed

to generate events with leptons in the final state as outlined at the beginning of this section.

For the POWHEG decays, we apply the same method where in this case the undecayed

matrix elements |M̃ | are the leading order matrix elements for the process

e+ + e− → t + t̄ . (4.12)

We then use the next-to-leading order decay matrix for which the helicity amplitudes can

be found in [5]. These are given in terms of the polar and azimuthal angles of the decay

w.r.t the top/anti-top axis and we distribute them as described for the production process

in Section 4.1. Note that in this case, we generate two decay gluons, one each from the top

and anti-top quark.

In addition, we also consider POWHEG radiations in both the production and decay

process by independently generating the emission and distributing the Born variables of

the production process first and then generating the emission and distributing the Born

variables of the decay process to yield three gluons in the final state.

5. Decay NLO lepton spectra comparisons

Extensive studies have been carried out on the lepton angular and energy distributions

from the semi-leptonic decays of polarized top and anti-top quarks at next-to-leading order

in αS [1, 3].

t → W+ + b + g → e+ + νe + b + g

t̄ → W− + b̄ + g → e− + ν̄e + b̄ + g . (5.1)

In the top rest frame, we define θ as the angle between the spin 3-vectors st, st̄ of the

decaying quark and the lepton. We also defined the scaled energies xl,n of the charged

lepton and the neutrino respectively as

xl =
2El

mt

xn =
2En

mt
(5.2)

where El and En are the energies of the charged lepton and neutrino in the top rest

frame. In these variables, the NLO double differential distribution of the charged lepton
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and neutrino in the decay of a heavy top or anti-top quark with polarization S has been

shown to be of the form

dΓl,n

dxl,nd cos θ
=

G2
F m5

t

32π3

[

F l,n
0 (xl,n, a) + S cos θJ l,n

0 (xl,n, a)

− 2αS

3π
(F l,n

1 (xl,n, a) + S cos θJ l,n
1 (xl,n, a))

]

, (5.3)

in the narrow width limit for the decay of the W boson. Expressions for F l,n
0,1 and J l,n

0,1 can

be found in [3]. Integrating over cos θ gives us the differential energy distribution,

dΓl,n

dxl,n
=

G2
F m5

t

16π3

[

F l,n
0 (xl,n, y) − 2αS

3π
F l,n

1 (xl,n, y)

]

. (5.4)

We compared this theoretical prediction with the distribution obtained from the POWHEG

method before interfacing with the Herwig++ parton shower. The best fit distributions

shown in Figure 8 were obtained by setting αS to 0.1 in (5.4).

Figure 8: Scaled energy fractions of the charged lepton (left) and neutrino (right) from top decay.

Black(solid)= Theory, Blue(dashes)= Decay.

6. Truncated Shower

The POWHEG method requires the addition of a ‘truncated shower’ before the hardest gluon

emission in order to simulate the soft radiation distribution [21]. Due to angular ordering,

the ‘truncated’ radiation is emitted at a wider angle than the angle of the hardest emission

but at a lower pT . This means the ‘truncated’ radiation does not appreciably degrade
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the energy entering the hardest emission and justifies our decision to generate the hardest

emission first.

In [18], there is a description of a method to generate a truncated shower of at most

one gluon for the case of light quark production from e+e− annihilation. In this section,

we extend the discussion to top pair production. Below is an outline of how the ‘truncated

shower’ was generated. We will consider the case in which at most one extra gluon is

emitted by the top or anti-top before the hardest emission. The outline closely follows

the Herwig++ parton shower evolution method described in [22, 23] where the evolution

variables z, the momentum fractions, and q̃, the evolution scale, determine the kinematics

of the shower.

i) Having generated the pT of the hardest emission as discussed in Section 2 and the

energy fractions x and y, calculate the light-cone momentum fractions z and 1 − z of

the partons involved in the hardest emission. We will assume henceforth that x > y

and that y is the energy fraction of the quark, i.e. the quark is involved in the hardest

emission. Then

z =
αb

αb + αg
(6.1)

where if we define

b =
m2

t

s

λ =
√

(1 − 4b) (6.2)

we have

αb =
x(1 + λ) +

√

x2(1 + λ)2 − 8(b + κ)(1 + λ − 2b)

2(1 + λ − 2b)

αc =
y(1 + λ) −

√

y2(1 + λ)2 − 8b(1 + λ − 2b)

2(1 + λ − 2b)

αg =
2

1 + λ
− αb − αc (6.3)

ii) Next generate the light-cone momentum fraction zt of the ‘truncated’ radiation within

the range
mt

q̃i
< zt < 1 − Qg

q̃i
(6.4)

and distributed according to the massive splitting function, PQQ = CF

[

1+z2
t

1−zt
− 2m2

t

zt(1−zt)q̃2

]

.

q̃i is the initial evolution scale, i.e.
√

s = 500 GeV, and Qg is a cutoff introduced to

regularize soft gluon singularities in the splitting functions. In this report, a Qg value

of 0.75 GeV was used. zt is the momentum fraction of the quark after emitting the

‘truncated’ gluon with momentum fraction 1 − zt.
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iii) Determine the scale q̃h of the hardest emission from

q̃h =

√

pT
2

z2(1 − z)2
+

m2
t

z2
+

Qg
2

z(1 − z)2
(6.5)

iv) Starting from an initial scale q̃i, the probability of there being an emission next at the

scale q̃ is given by

S(q̃i, q̃) =
∆(q̃c, q̃i)

∆(q̃c, q̃)
(6.6)

where

∆(q̃c, q̃) = exp

[

−
∫ q̃

q̃c

dq̃2

q̃2

∫

dz
αs

2π
PQQΘ(0 < pt

T < pT )

]

. (6.7)

q̃c is the lower cutoff of the parton shower which was set to the default value of 0.631

GeV in this report, αs is the running coupling constant evaluated at z(1 − z)q̃, PQQ

is the Q → Qg splitting function and pT is the transverse momentum of the hardest

emission. The Heaviside function ensures that the transverse momentum, pt
T of the

truncated emission is real and is less than pT . To evaluate the integral in (6.7), we

overestimate the integrands and apply vetoes with weights as described in [22]. With

r a random number between 0 and 1, we then solve the equation

S(q̃i, q̃) = r (6.8)

for q̃. If q̃ > q̃h, the event has a ‘truncated’ emission. If q̃ < q̃h , there is no ‘truncated’

emission and the event is showered from the scale of the hardest emission.

v) If there is a ‘truncated’ emission, the next step is to determine the transverse momen-

tum pt
T of the emission. This is given by

pt
T =

√

(1 − zt)2(z2
t q̃2 − m2

t ) − ztQg
2 . (6.9)

If pt
T

2
< 0 or pt

T > pT go to ii).

vi) We now have values for zt, the momentum fraction of the quark after the first emission,

pt
T , the transverse momentum of the first emission, z, the momentum fraction of the

hardest emission and pT , the transverse momentum of the hardest emission. We can

then reconstruct the momenta of the partons as described in [22]. The orientation of

the quark, antiquark and hardest emission with respect to the beam axis is determined

as explained there for the hard matrix element correction.

In this paper, we consider only truncated emissions in the production process, not in the

decay.
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7. Parton shower distributions

Next we interface the generated events with the Herwig++ 2.2.0 [24] parton shower and

veto the hardest emissions in the production and decay of the top and anti-top pairs. In

this section we will consider collisions at
√

s = 500 GeV and only include the truncated

shower for the production emissions. We considered four cases:

1. Leading Order (LO): No POWHEG emissions.

2. Production (Pr): Only POWHEG emissions in the production are allowed including the

truncated shower.

3. Decay (Dc): Only POWHEG emissions in the decays of the top/anti-top pairs are al-

lowed.

4. Production + Decay (PrDc): Both production and decay emissions are allowed.

The following distributions were investigated in the lab frame for the two different e+e−

initial polarizations:

i) The angle between the lepton from the decay of the top anti-quark and the top quark

are presented in Figure 9.

ii) The angle between the lepton and anti-lepton from the decays of the top pairs are

presented in Figure 10.

iii) The energy distributions of the b quark and b anti-quark before hadronization are

presented in Figures 11 and 12.

iv) The transverse momenta w.r.t the beam axis of the b quark and b anti-quark before

hadronization are presented in Figures 13 and 14.

v) The longitudinal momenta (along the beam axis) of the b quark and b anti-quark before

hadronization are presented in Figures 15 and 16.
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Figure 9: Angle between the lepton from the decay of the top anti-quark and the top quark.

Figure 10: Angle between the lepton and anti-lepton from the decays of the top pairs.
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Figure 11: Energy of the b-quark before hadronization.

Figure 12: Energy of the b anti-quark before hadronization.
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Figure 13: Transverse momentum of the b quark before hadronization.

Figure 14: Transverse momentum of the b anti-quark before hadronization.
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Figure 15: Longitudinal momentum of the b quark before hadronization.

Figure 16: Longitudinal momentum of the b anti-quark before hadronization.
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At leading order, the leptonic correlations in Figures 9 and 10 are as expected with

higher correlations seen for e−Re+
L annihilation than for e−Le+

R annihilation. At next-to-

leading order, it can be observed that the POWHEG emissions do not change the shapes of

the distributions much except for a slight broadening of the peaks.

Also at leading order, the distributions in Figures 11-16 have the expected shapes with

the b quarks and anti-quarks having softer (harder) energy, longitudinal momentum and

transverse momentum spectra for e−Re+
L (e−Le+

R) annihilation.

Now comparing the POWHEG production and decay distributions for the b quark in

Figures 11-16, we observe that the decay emissions soften the spectra more than the pro-

duction emissions and therefore these have the greater effect in the production + decay

distributions. This is expected since the scale range available for the production emissions

≈ log(
√

s/mt) is less than the range available for the decay emissions ≈ log(mt/mb).

8. Conclusions

Using the Monte Carlo event generator Herwig++, we have successfully applied the POWHEG

method to investigate angular correlation distributions at next-to-leading order in top pair

production and decays at ILC energies. In all distributions studied, the POWHEG emissions

have the effect of broadening the peaks of the leading order predictions slightly. We also

compared momentum distributions of the b quarks and anti-quarks before hadronization

and observe that the decay emissions soften the spectra more at next-to-leading order as

expected.
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prodution [14, 15℄. We work in the narrow width approximation and hene do not in-lude interferene between the prodution and deay emissions whih are negligible in thislimit [16, 17℄. We also take aount of the beam polarization and spin orrelations of thetop pairs. Finally, we present plots of some relevant distributions.2. Hardest emission generation: ProdutionThe order-�s di�erential ross setion for the proess e+e� ! V ! t�tg where V representsa vetor urrent, an be written asR(x; y) = �VWV (x; y) = �Vv 2�s3� "(x+ 2�)2 + (y + 2�)2 + �V(1 + 2�)(1� x)(1 � y) � 2�(1� x)2 � 2�(1� y)2#(2.1)where �V is the Born ross setion for heavy quark prodution, WV = R=�V , � = mt2=swhere mt is the mass of the top quark and s is the square of the enter of mass energy,�V = �8�(1 + 2�), v = p1� 4� and x; y are the energy frations of t and �t respetively.In the ase of the axial urrent ontribution e+e� ! A! t�tg, we haveR(x; y) = �AWA(x; y) = �Av 2�s3� "(x+ 2�)2 + (y + 2�)2 + �A(1� 4�)(1� x)(1 � y) � 2�(1� x)2 � 2�(1� y)2#(2.2)where �A is the Born ross setion for heavy quark prodution by the axial urrent, WA =R=�A and �A = 2�[(3 + xg)2 � 19 + 4�℄ where xg = 2� x� y.Beause of the top mass, the phase spae for gluon emission is redued and the ollineardivergenes present in the massless quark ross-setion are regularized here. However, theinfra-red divergene as the gluon momentum goes to zero is still present. We an writedown the ross-setion for the hardest emission asd� =X �B(v)d�v ��(NLO)R (0) + �(NLO)R (pT )R(v; r)B(v) d�r� (2.3)where B(v) is the Born ross setion and v represents the Born variables, r representsthe radiation variables and d�v and d�r are the Born and real emission phase spaesrespetively. �NLOR (pT ) is the modi�ed Sudakov form fator for the hardest emission withtransverse momentum pT , as indiated by the Heaviside funtion in the exponent of (2.4),�NLOR (pT ) = exp ��Z d�rR(v; r)B(v) �(kT (v; r)� pT )� : (2.4)Furthermore, �B(v) = B(v) + V (v) + Z (R(v; r) � C(v; r))d�r : (2.5)�B(v) is the sum of the Born, B(v), virtual, V (v) and real, R(v; r) terms, (with someounter-terms, C(v; r)). It overomes the problem of negative weights sine in the regionwhere �B(v) is negative, the NLO negative terms must have overome the Born term and{ 2 {



hene perturbation theory must have failed. It is used to generate the variables of the Bornsubproess to whih the real-emission ontributions fatorize in the ollinear limit.Now expliitly for e+e� ! t�tg,�NLOR (pT ) = exp ��Z dx dyW (x; y)�(kT (x; y))� pT )� (2.6)where kT (x; y) =ss(1� x)(1� y)(x+ y � 1)� �(2� x� y)2max(x; y)2 � 4� (2.7)is the transverse momentum of the hardest emitted gluon relative to the splitting axis, asillustrated in Figure 1 below.
q

q

kT

gFigure 1: Transverse momentum, kT .2.1 Generation of radiation variables, x and yThe radiation variables, x and y are to be generated aording to the probability distribu-tion �W (kT )W (x; y)dx dy (2.8)where for e+e� annihilation via a vetor and axial urrent,W (x; y) and �W (kT ) are de�nedin (2.1),(2.2) and (2.6).In the region where x > y, let us de�ne the dimensionless variable, � as� = k2Ts = (1 � x)(1 � y)(x+ y � 1)� �(2� x� y)2x2 � 4� : (2.9)There are two solutions for y for eah value of x and �.y1;2 = x2 � 3x� 2�x+ 2 + 4��p(x2 � 4�)(4�(x � 1� �) + (x� 1)2)2(1 + �� x) : (2.10)
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Exhanging the y variable for �, we �ndZ W (x; y)�(kT (x; y)� pT )dxdy = Z xmaxxmin dxZ �max� d�2�s(�s)3� dyd�W (x; y1;2)= Z dxZ d�2�s(�s)3� px2 � 4�p(4�(x � 1� �)� (x� 1)2)W (x; y1;2)(2.11)Now the integrand, W 0 = px2�4�p(4�(x�1��)�(x�1)2)W (x; y1;2) in (2.11) yields a ompliatedintegral so we look for an upper bound on W 0 whih we denote as V 0 = dyd�V (x; y1;2) tosimplify the integration. We then generate the radiation variables as outlined below:1. Set pmax = kTmax.2. For a random number, n between 0 and 1, solve the equation below for pTn = �V (pT )�V (pmax) (2.12)where �V (pT ) = exp h� R dx d�V 0(x; �)i3. Generate the variables x and y aording to the distributionV (x; y)Æ(kT (x; y) � pT ) : (2.13)4. Aept the generated value of pT with probability W=V . If the event is rejeted setpmax = pT and go to 2).Using our knowledge of the form of the integrand in the massless quark ase [18℄, weguess that V 0 should take the form,V 0(x; �) = N� 2�s(�s)3� 4(1� x+ (�; x))(�; x) (2.14)where (�; x) =q(1� x)(1� 2�� 2p�2 + ��) : (2.15)and N� is a normalisation fator whih depends on �, whih has to be tuned to ensurethat V 0 is an upper bound of W 0 . Both V 0 and W 0 have the same divergent behaviour atxmax = 1� 2�� 2p�2 + ��.Table 1 shows the N� values for di�erent ranges of � and the two solutions for y used forboth axial and vetor urrents. The lower limit on � was set by hoosing kT = �QCD = 0:2GeV thus setting a lower bound on the transverse momentum.We now onsider the spei� ase where mt = 175 GeV and ps = 500 GeV i.e.� = 0:1225. For � � 0:024, there are two y solutions in the region of phase spae wherex > y. This is illustrated in Figure 2 below for � = 0:01. The red line denotes the phase{ 4 {



Range of � N�(y1) N�(y2)0:024 � 0:03 0:4 0:40:015 � 0:024 0:7 0:70:005 � 0:015 1:2 1:10:0005 � 0:005 4:0 2:60:0001 � 0:0005 9:0 6:00:00005 � 0:0001 13:0 7:00:00003 � 0:00005 17:0 10:00:00000016 � 0:00003 45:0 35:0Table 1: N� for di�erent values of � for both axial and vetor urrents
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xl xu xmaxFigure 2: Phase spae and y solutions for � = 0:01 in the region x > y.spae for gluon emissions. The two solutions lie on either side of the dashed liney = (2� x)(1� x) + 2�)2(1 � x+ �) (2.16)and are equal when x = xmax = 1� 2�� 2p�2 + �� (2.17)whih lies on the dotted line. At � = 0:024, the branhes meet along the line y = x andthere is only one solution for y in the region (the lower branh). So for � > 0:024, onlyone y solution exists for x > y. This is illustrated in Figure 3 for � = 0:028 . In additionthere are no y solutions for � > 0:03 for x > y . Also note that for x < xu, there is onlyone solution for y. { 5 {
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Figure 3: Phase spae and y solutions for � = 0:028 in the region x > y.In the region where there are two solutions, the integral (with V 0 in plae of W 0) in(2.11) is performed along both branhes independently and summed. For the upper branh,x runs from xu to xmax = 1� 2� � 2p�2 + �� while for the lower branh, x runs from xlto xmax where if we de�nexa = 39�� 1 + 12�� 168�� � 48�2 + �3 + 15�2 + 12��2 + 48�2�+ 64�3 ;xb = 6(�33�2 + 3�� 3�3 + 288�2�� 768�3�� 48��+ 168��3 � 204�2�2 + 300��2+ 12��4 + 768�4�+ 144�2�3 + 486�3�2) 12 ;x = pxa2 + xb2 ;xd = tan�1�xbxa� ;xe = � 112x 13 os�xd3 � ;xf = (�1� �2 � 10� + 8�� 2��� 16�2) os �xd3 �12x 13 ;xg = �+ 5 + 4�6 ;xh = p312 sin�xd3 � x 13 + 1 + �2 + 10�� 8�+ 2��+ 16�2x 13 ! ; (2.18)we an write xu and xl as xu = xe + xf + xg + xh ;xl = xe + xf + xg � xh ; (2.19){ 6 {



In the region where there is only one solution for y, x runs from xl to xu.The � integration an then be performed numerially. Having performed the integration,values for � and hene kT are then generated aording to steps 1 and 2 in Setion 2.1.The variables x and y are then to be distributed aording to W 0(x; y)Æ(kT (x; y) � pT ).This is the subjet of the next setion.2.2 Distributing x and y aording to W (x; y)To generate x and y values with a distribution proportional to V (x; y)Æ(kT (x; y) � pT ),where from (2.11), V (x; y) is the V 0dy=d� , we an use the Æ funtion to eliminate the yvariable by omputingD(x) = Z dyÆ(kT � pT )V (x; y) = V (x; y)�kT�y �����y=�y (2.20)where �y is suh that kT (x; �y) = pT . Note that �kT�y is the same for both y solutions. Wethen generate x values with a probability distribution proportional to D with hit-and-misstehniques as desribed below. All events generated have uniform weights.1. Randomly sample x, Nx times (we used Nx = 105) in the range [xmin : xmax℄ for theseleted value of �.2. For eah value of x, evaluate �D = D(x; y1) +D(x; y2) if there are 2 solutions for theseleted � and �D = D(x; y2) if there is only one solution. Also, if � < 0:024 andx < xu (see Figure 2), there is only one y solution so evaluate �D = D(x; y2).3. Find the maximum value �Dmax of �D for the seleted value of �.4. Next, selet a value for x in the allowed range and evaluate �D.5. If �D > r �Dmax (where r is a random number between 0 and 1), aept the event,otherwise go to 4.) and generate a new value for x.6. If for the hosen value of x, there are two solutions for y, selet a value for y in theratio D(x; y1) : D(x; y2).7. Compare V 0(x; y) with the true integrand, W 0(x; y). If the event fails this veto, set�max = � and regenerate a new � value as disussed in Setion 2.1.NB: For the region y > x, exhange x and y in the above disussion. In this way, thesmooth phase spae distribution in Figure 5 below was obtained for the hardest emissionevents for an axial urrent. The plot show 2,500 of these events.{ 7 {
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Figure 4: Phase spae and distribution of hardest emissions for axial (left) and vetor(right)urrents with � = 0:1225.
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Figure 5: Phase spae and distribution of hardest emissions for an axial urrent with � = 0:0625(left) and � = 0:01361 (right).The proedure was repeated for ps = 700 GeV, � = 0:0625 and ps = 1500 GeV,� = 0:01361 and the orresponding plots are shown below. As an be seen, the method isstable as �! 0. This is not surprising beause the upper bound funtion V (x; �) in (2.14)is stable as �! 0 and tends to W 0 , the true value of the integrand in this limit.
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3. Hardest emission generation: DeaysIn addition to gluon emission in top prodution, we also studied the emission in its deay,t(p1)!W+(w1)b(r1)g(k) : (3.1)The proedure for generating the hardest emission in this ase follows the same lines asdisussed in Setion 2. We parameterize the phase spae for the deay in terms of variablesx and y de�ned as y = 2w1 � p1m2t � ax = 2k � p1m2t (3.2)where a = m2w=m2t withmw and mt the masses of the W boson and top quark respetively.(y + a)=2 and x=2 are the energy frations of the W boson and gluon in the top frame.Therefore the orresponding energy fration of the b quark in this frame is given byxb2 = 2� y � a� x2 : (3.3)In this paper, we neglet the b mass and work in the narrow-width approximation so thatthe top quarks and W boson are on-shell. The t!Wbg di�erential deay rate is given by:1�0 d2�dxdy = �S� CF(1� y)x2 �x� (1� y)(1� x) + x21� a + x(y + x� 1)22(1� a)2 + 2a(1 � y)x2(1� a)2(1 + 2a)� ;(3.4)where �0 is the leading order deay rate. The phase spae limits for the deay are:ax1� x + (1� x) < y < 1 ;0 < x < 1� a : (3.5)Working in the rest frame of the top quark where the parton shower is formulated inHerwig++, we identify the splitting axis orresponding to the original b �W boson axisand therefore the relative transverse momentum for gluon emission is:kT (x; y) = mts(1� y)(y + x(2� y � a)� x2 � 1)(y + a)2 � 4a : (3.6)Now de�ning a dimensionless variable � = k2Tm2t , we �nd that in analogy to the produtionase, there are 2 solutions for y for eah value of x and �.y1;2 = x2 + ax+ 2� 3x� 2a��p(x2 � 4�(1 + a))(x� 1)2 + 4a�(4� + 1� a) + x2(a+ 2x� 2)2(�+ 1� x) :(3.7)These solutions may be identi�ed with either initial state gluon emission from the topquark (y2) or �nal state radiation from the bottom quark (y1). A plot of the phase spae{ 9 {
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Figure 6: Phase spae(solid), y0(dot-dash) and solutions y1 (dots) and y2 (dashes).and the 2 solutions for � = 0:01 is shown in Figure 6. We then onstrut the modi�edSudakov form fator for the generation of the hardest emission. The exponent of the formfator is given byZ W (x; y)�(kT (x; y)� pT )dxdy = Z xmaxxmin dxZ �max� d��S(�m2t )CF� dyd�W (x; �) ; (3.8)where W (x; �) is the di�erential ross-setion (3.4) and dyd� is the Jaobian for the hangeof variables from y to �. Note that � = �max = (1�pa)24 when the W boson is at rest andx = 1�pa; y = 2pa. For a given �, xmin and xmax are also given byxmin = 2p�xmax = 1� a� 2p�a : (3.9)To make the integral simpler, we again look for an upper bound V 0(x; �) on the integrandas we did for the prodution ase. To do this we replae the Jaobian with the simplerexpression,dy0d� = dd� �x2 � 3x� 2�a+ 2 + xa2(� + 1� x) � = �a�+ 1� x � x2 � 3x� 2�a+ 2 + xa2(� + 1� x)2 ; (3.10)where y0 lies in between y1 and y2 and is indiated in Figure 6. We also overestimate thedi�erential ross-setion by replaing (3.4) withU(x; y) = N��SCF� 1� a2x2(1� y0) ; (3.11)where N� is a normalisation fator dependent on � and is hosen suh that V 0 = U dy0d� isgreater than the integrand in (3.8). The N� values are given in Table 2 for the 2 solutions.{ 10 {



Range of � N�(y1)� 104 N�(y2)� 1040:01 � 0:0737 0:005 0:0060:005 � 0:01 0:0175 0:020:001 � 0:005 0:03 0:0450:0001 � 0:001 0:08 0:120:00005 � 0:0001 0:2 0:20:000025 � 0:00005 0:3 0:20:0000075 � 0:000025 1:0 0:90:000005 � 0:0000075 2:0 0:90:0000025 � 0:000005 3:0 0:90:0000013 � 0:0000025 6:0 0:9Table 2: N� for di�erent values of �
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Figure 7: Phase spae distribution of POWHEG eventsThe lower limit on � is 1:3 � 10�6 and was set by hoosing kT = �QCD = 0:2 GeV thussetting a lower bound on the transverse momentum. We then generate the values of � anddistribute x and y aording to the true di�erential (3.4) using vetoes as desribed for theprodution ase in Setions 2. Figure 7 shows the phase spae distribution obtained.4. Spin Correlations and the distribution of Born variablesIn [19℄, it was observed that the lepton matrix element for the prodution proesse+(p) + e�(q) ! t(p1) + �t(p2) + g(p3)!W+(w1) + b(r1) +W�(w2) + b(r2) + g(p3)! l+(k1) + �(x1) + b(r1) + l�(k2) + �(x2) + �b(r2) + g(p3) (4.1){ 11 {



is bounded from above in the narrow width approximation by the undeayed matrix ele-ment obtained by eliminating the deay produts i.e. W+;W�; b;�b and putting the parentpartiles i.e. t; �t on-shell, multiplied by a proess dependent onstant. We an then use theundeayed matrix elements to perform omputer-intensive tasks suh as event generationand �nally, by using the hit-and-miss method, replae the parent partiles with their deayproduts. This proedure is outlined below:1. Evaluate the undeayed matrix elements whih are proportional to the upper boundson the lepton matrix elements. Generate hard events using the POWHEG methoddesribed above with the top and anti-top quarks in the �nal state.2. For eah event, generate the deay produts and their four-momenta aording tothe phase spae.3. Evaluate the leptoni deay matrix element for eah event. If the deay matrixelement divided by the orresponding upper bound is less than a random number rbetween 0 and 1, throw away the deay momenta and return to step 2.4. Otherwise, replae the top and anti-top momenta with the deay momenta and showerthe event.4.1 Undeayed matrix elementsAt the ILC, the eletron and positron beams will be polarized i.e. either e�Le+R or e�Re+Lwhere the subsripts L and R represent the left-handed and right-handed heliity statesrespetively. The orresponding undeayed matrix element for e�Le+R annihilation is:~M (e�L (p)e+R(q)! tst(p1)�ts�t(p2)g(p3)) =[ �v(q)�Lu(p)℄�u(p1; st) � 12p2 � p3 �aLL2 �L + aLR2 �R� (�p̂2 � p̂3 +mt)�+ 12p1 � p3�(p̂1 + p̂3 +mt)�aLL2 �L + aLR2 �R��T av(p2; s�t)��a(p3) (4.2)where � is the polarization vetor of the gluon, T a is the olour matrix, p̂ = p�� and�R=L = �(1� 5)=2. For e�Re+L annihilation, interhange L;R in the above equation. st; s�tare the spin vetors of the top and anti-top quarks respetively and satisfy the relations:st � p1 = 0s�t � p2 = 0st � st = �1s�t � s�t = �1 (4.3){ 12 {



The massive spinors u(p; s); v(p; s) are given in terms of the massless spinors u(p); v(p) byu(p; ") = 1 + 5ŝ2 u(p)u(p; #) = 1� 5ŝ2 u(p)v(p; ") = 1 + 5ŝ2 v(p)v(p; #) = 1� 5ŝ2 v(p) (4.4)The oupling onstants aIJ are given byaIJ = e2gs ��Qt +QIeQJt 1sin2 �W ss�M2Z + iMZ�Z � (4.5)where MZ is the Z boson mass, �Z is the width of the Z boson, �W is the Weinberg angle,Qt is the eletri harge of the top in units of the eletri harge e, g = p4��S and s isthe enter of mass energy squared. The ouplings to the Z boson are given byQLe = 2 sin2 �W � 12 os �WQRe = sin2 �Wos �WQLt = 3� 4 sin2 �W6 os �WQRt = �2 sin2 �W3 os �W (4.6)In Setion 2.2, we distributed our events aording to the vetor and axial vetorurrent matrix elements separately using the POWHEG method. To obtain a full unpolar-ized distribution we an selet events from either urrent distribution aording to theirontributions to the full ross-setion given below.� = 3�(1 + 2�)�1 + 1�S� � �V V + 3�3 �1 + d1�S� � �AA�V V = 4��2ems �Q2t � 2QtVeVt�1(s) + (A2e + V 2e )V 2t �2(s)��AA = 4��2ems �(A2e + V 2e )A2t�2(s)� ; (4.7)where � = p1� �, �em is the eletromagneti oupling, At; Ae and Vt; Ve are the axial andvetor oupling onstants of the top t and eletron e to the Z boson and 1 = 3:5 andd1 = 2:25 are the QCD orretion oeÆients de�ned at mt = 175 GeV and ps = 500 GeV{ 13 {



i.e. � = 0:1225 [20℄. �1(s) and �2(s) are given by�1(s) = = � s(s�M2Z)(s�M2Z)2 + �2ZM2Z�2(s) = = �2 s2(s�M2Z)2 + �2ZM2Z� = p2GFM2Z16��em ; (4.8)where GF is the Fermi onstant and MZ and �Z are the mass and deay width of the Zboson respetively.Expliit expressions for the Born, virtual and real polarization dependent squaredmatrix elements for the prodution proess are given in [5℄ in terms of the energy frationsx; y of the top and anti-top quarks and the polar angle and azimuthal angles orientingthe t�tg plane relative to the e+e� beam axis. For eah initial polarization, we then assign�nal-state polarizations to eah event in proportion to the squared matrix elements anddistribute the polar and azimuthal angles of the top/anti-top pairs aordingly using well-known Monte Carlo tehniques.4.2 Deay matrix elementsNext, we investigate the deays of the top and anti-top pair. The leptoni matrix elementsfor the proess in (4.1) are dependent on the spins of the top and anti-top quark. Thisdependene an be written in the form of a deay density matrix. The deay density matrix��;�0 , for an on-shell top quark is given by��;�0 = 4g4wV 2tb(w21 �m2w)2 + (mw�W )2 �" (r1 � x1)(p1 � k1)� (st � k1)(r1 � x1)mt �(k1 � n)(x1 � r1)mt � i�(p1; k1; st; n)(x1 � r1)�(k1 � n)(x1 � r1)mt + i�(p1; k1; st; n)(x1 � r1) (r1 � x1)(p1 � k1) + (st � k1)(r1 � x1)mt #where �; �0 are spin labels, st is the top spin vetor, n is a spaelike vetor perpendiular tost and p1 and mw;�W are the mass and width of the W boson respetively. In this paperwe work in the heliity basis for whih the top quark spin is de�ned along its diretionof motion. A similar matrix an be derived for �t deay. The spin-spei� deay matrixelements are therefore of the form:S�t��t�0t�0�t = ~M�t��t��t�0�t���t�0�t ~M��0t�0�t (4.9)where �t; ��t are spin labels for the top and anti-top respetively and ~M is the matrixelement for the undeayed proess introdued in Setion 4.1. By diagonalizing the densitymatrix, we an obtain the largest possible value of the matrix elements and hene the upperbound. An expliit omputation gives this upper bound jM tub j2 on the top deay as [19℄,jM tub j2= 4g4w j Vtb j2 (r1 � x1)(p1 � k1)[(w21 �m2w)2 + (mw�W )2℄[(p21 �m2t )2 � (mt�t)2℄ j ~M j2 (4.10)
{ 14 {



where j ~M j2 is the undeayed matrix element for unpolarized t�tg prodution. A similarexpression j M �tub j2 an be obtained for the deay of the top anti-quark by interhangingthe labels 1 and 2 and t and �t in (4.10). Hene the full upper bound an be written as:jM t�tub j2= jM tub j2jM �tub j2j ~M j2 (4.11)Having obtained the deay matrix elements and their upper bounds, we then proeedto generate events with leptons in the �nal state as outlined at the beginning of this setion.For the POWHEG deays, we apply the same method where in this ase the undeayedmatrix elements j ~M j are the leading order matrix elements for the proesse+ + e� ! t+ �t : (4.12)We then use the next-to-leading order deay matrix for whih the heliity amplitudes anbe found in [5℄. These are given in terms of the polar and azimuthal angles of the deayw.r.t the top/anti-top axis and we distribute them as desribed for the prodution proessin Setion 4.1. Note that in this ase, we generate two deay gluons, one eah from the topand anti-top quark.In addition, we also onsider POWHEG radiations in both the prodution and deayproess by independently generating the emission and distributing the Born variables ofthe prodution proess �rst and then generating the emission and distributing the Bornvariables of the deay proess to yield three gluons in the �nal state.5. Deay NLO lepton spetra omparisonsExtensive studies have been arried out on the lepton angular and energy distributionsfrom the semi-leptoni deays of polarized top and anti-top quarks at next-to-leading orderin �S [1, 3℄. t!W+ + b+ g ! e+ + �e + b+ g�t! W� +�b+ g ! e� + ��e +�b+ g : (5.1)In the top rest frame, we de�ne � as the angle between the spin 3-vetors st; s�t of thedeaying quark and the lepton. We also de�ned the saled energies xl;n of the hargedlepton and the neutrino respetively as xl = 2Elmtxn = 2Enmt (5.2)where El and En are the energies of the harged lepton and neutrino in the top restframe. In these variables, the NLO double di�erential distribution of the harged lepton{ 15 {



and neutrino in the deay of a heavy top or anti-top quark with polarization S has beenshown to be of the formd�l;ndxl;nd os � = G2Fm5t32�3 hF l;n0 (xl;n; a) + S os �J l;n0 (xl;n; a)� 2�S3� (F l;n1 (xl;n; a) + S os �J l;n1 (xl;n; a))� ; (5.3)in the narrow width limit for the deay of the W boson. Expressions for F l;n0;1 and J l;n0;1 anbe found in [3℄. Integrating over os � gives us the di�erential energy distribution,d�l;ndxl;n = G2Fm5t16�3 �F l;n0 (xl;n; y)� 2�S3� F l;n1 (xl;n; y)� : (5.4)We ompared this theoretial predition with the distribution obtained from the POWHEGmethod before interfaing with the Herwig++ parton shower. The best �t distributionsshown in Figure 8 were obtained by setting �S to 0:1 in (5.4).

Figure 8: Saled energy frations of the harged lepton (left) and neutrino (right) from top deay.Blak(solid)= Theory, Blue(dashes)= Deay.6. Trunated ShowerThe POWHEG method requires the addition of a `trunated shower' before the hardest gluonemission in order to simulate the soft radiation distribution [21℄. Due to angular ordering,the `trunated' radiation is emitted at a wider angle than the angle of the hardest emissionbut at a lower pT . This means the `trunated' radiation does not appreiably degradethe energy entering the hardest emission and justi�es our deision to generate the hardestemission �rst. { 16 {



In [18℄, there is a desription of a method to generate a trunated shower of at mostone gluon for the ase of light quark prodution from e+e� annihilation. In this setion,we extend the disussion to top pair prodution. Below is an outline of how the `trunatedshower' was generated. We will onsider the ase in whih at most one extra gluon isemitted by the top or anti-top before the hardest emission. The outline losely followsthe Herwig++ parton shower evolution method desribed in [22, 23℄ where the evolutionvariables z, the momentum frations, and ~q, the evolution sale, determine the kinematisof the shower.i) Having generated the pT of the hardest emission as disussed in Setion 2 and theenergy frations x and y, alulate the light-one momentum frations z and 1� z ofthe partons involved in the hardest emission. We will assume heneforth that x > yand that y is the energy fration of the quark, i.e. the quark is involved in the hardestemission. Then z = �b�b + �g (6.1)where if we de�ne b = m2ts� = p(1� 4b) (6.2)we have �b = x(1 + �) +px2(1 + �)2 � 8(b+ �)(1 + �� 2b)2(1 + �� 2b)� = y(1 + �)�py2(1 + �)2 � 8b(1 + �� 2b)2(1 + �� 2b)�g = 21 + � � �b � � (6.3)(6.4)ii) Next generate the light-one momentum fration zt of the `trunated' radiation withinthe range mt~qi < zt < 1� Qg~qi (6.5)and distributed aording to the massive splitting funtion, PQQ = CF h1+z2t1�zt � 2m2tzt(1�zt)~q2 i.~qi is the initial evolution sale, i.e. ps = 500 GeV, and Qg is a uto� introdued toregularize soft gluon singularities in the splitting funtions. In this report, a Qg valueof 0:75 GeV was used. zt is the momentum fration of the quark after emitting the`trunated' gluon with momentum fration 1� zt.iii) Determine the sale ~qh of the hardest emission from~qh =s pT 2z2(1� z)2 + m2tz2 + Qg2z(1� z)2 (6.6)
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iv) Starting from an initial sale ~qi, the probability of there being an emission next at thesale ~q is given by S(~qi; ~q) = �(~q; ~qi)�(~q; ~q) (6.7)where �(~q; ~q) = exp ��Z ~q~q d~q2~q2 Z dz �s2�PQQ�(0 < ptT < pT )� : (6.8)~q is the lower uto� of the parton shower whih was set to the default value of 0:631GeV in this report, �s is the running oupling onstant evaluated at z(1 � z)~q, PQQis the Q ! Qg splitting funtion and pT is the transverse momentum of the hardestemission. The Heaviside funtion ensures that the transverse momentum, ptT of thetrunated emission is real and is less than pT . To evaluate the integral in (6.8), weoverestimate the integrands and apply vetoes with weights as desribed in [22℄. Withr a random number between 0 and 1, we then solve the equationS(~qi; ~q) = r (6.9)for ~q. If ~q > ~qh, the event has a `trunated' emission. If ~q < ~qh , there is no `trunated'emission and the event is showered from the sale of the hardest emission.v) If there is a `trunated' emission, the next step is to determine the transverse momen-tum ptT of the emission. This is given byptT =q(1� zt)2(z2t ~q2 �m2t )� ztQg2 : (6.10)If ptT 2 < 0 or ptT > pT go to ii).vi) We now have values for zt, the momentum fration of the quark after the �rst emission,ptT , the transverse momentum of the �rst emission, z, the momentum fration of thehardest emission and pT , the transverse momentum of the hardest emission. We anthen reonstrut the momenta of the partons as desribed in [22℄. The orientation ofthe quark, antiquark and hardest emission with respet to the beam axis is determinedas explained there for the hard matrix element orretion.In this paper, we onsider only trunated emissions in the prodution proess, not in thedeay. { 18 {



7. Parton shower distributionsNext we interfae the generated events with the Herwig++ 2.2.0 [24℄ parton shower andveto the hardest emissions in the prodution and deay of the top and anti-top pairs. Inthis setion we will onsider ollisions at ps = 500 GeV and only inlude the trunatedshower for the prodution emissions. We onsidered four ases:1. Leading Order (LO): No POWHEG emissions.2. Prodution (Pr): Only POWHEG emissions in the prodution are allowed inluding thetrunated shower.3. Deay (D): Only POWHEG emissions in the deays of the top/anti-top pairs are al-lowed.4. Prodution + Deay (PrD): Both prodution and deay emissions are allowed.The following distributions were investigated in the lab frame for the two di�erent e+e�initial polarizations:i) The angle between the lepton from the deay of the top anti-quark and the top quarkare presented in Figure 9.ii) The angle between the lepton and anti-lepton from the deays of the top pairs arepresented in Figure 10.iii) The energy distributions of the b quark and b anti-quark before hadronization arepresented in Figures 11 and 12.iv) The transverse momenta w.r.t the beam axis of the b quark and b anti-quark beforehadronization are presented in Figures 13 and 14.v) The longitudinal momenta (along the beam axis) of the b quark and b anti-quark beforehadronization are presented in Figures 15 and 16.
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Figure 9: Angle between the lepton from the deay of the top anti-quark and the top quark.

Figure 10: Angle between the lepton and anti-lepton from the deays of the top pairs.
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Figure 11: Energy of the b-quark before hadronization.

Figure 12: Energy of the b anti-quark before hadronization.
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Figure 13: Transverse momentum of the b quark before hadronization.

Figure 14: Transverse momentum of the b anti-quark before hadronization.
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Figure 15: Longitudinal momentum of the b quark before hadronization.

Figure 16: Longitudinal momentum of the b anti-quark before hadronization.
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At leading order, the leptoni orrelations in Figures 9 and 10 are as expeted withhigher orrelations seen for e�Re+L annihilation than for e�Le+R annihilation. At next-to-leading order, it an be observed that the POWHEG emissions do not hange the shapes ofthe distributions muh exept for a slight broadening of the peaks.Also at leading order, the distributions in Figures 11-16 have the expeted shapes withthe b quarks and anti-quarks having softer (harder) energy, longitudinal momentum andtransverse momentum spetra for e�Re+L (e�Le+R) annihilation.Now omparing the POWHEG prodution and deay distributions for the b quark inFigures 11-16, we observe that the deay emissions soften the spetra more than the pro-dution emissions and therefore these have the greater e�et in the prodution + deaydistributions. This is expeted sine the sale range available for the prodution emissions� log(ps=mt) is less than the range available for the deay emissions � log(mt=mb).8. ConlusionsUsing the Monte Carlo event generator Herwig++, we have suessfully applied the POWHEGmethod to investigate angular orrelation distributions at next-to-leading order in top pairprodution and deays at ILC energies. In all distributions studied, the POWHEG emissionshave the e�et of broadening the peaks of the leading order preditions slightly. We alsoompared momentum distributions of the b quarks and anti-quarks before hadronizationand observe that the deay emissions soften the spetra more at next-to-leading order asexpeted.9. AknowledgementsWe are grateful to the other members of the Herwig++ ollaboration for developing theprogram that underlies the present work and for helpful omments. We are partiularlygrateful to Bryan Webber for onstrutive omments and disussions throughout. Thisresearh was supported by the Siene and Tehnology Failities Counil, formerly thePartile Physis and Astronomy Researh Counil and the European Union Marie CurieResearh Training Network MCnet.Referenes[1℄ M. Jezabek and J. H. Kuhn, \QCD Corretions to Semileptoni Deays of Heavy Quarks,"Nul. Phys. B314 (1989) 1.[2℄ M. Jezabek and J. H. Kuhn, \Lepton spetra from heavy quark deay," Nul. Phys. B320(1989) 20.[3℄ A. Czarneki, M. Jezabek, and J. H. Kuhn, \Lepton spetra from deays of polarized topquarks," Nul. Phys. B351 (1991) 70{80.[4℄ W. Bernreuther et al., \Top quark physis: Theoretial aspets,". Prepared for Workshops onFuture e+e� Colliders, Hamburg, Germany, Sep 2-3, 1991 and Saariselka, Finland, Sep 9-14,1991. { 24 {
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