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Abstract
Although the literature concerning statistical testing for genotype-
phenotype association in family-based and population-based 
studies is very extensive, until recently the sex chromosomes 
have received little attention. Here it is shown that the X 
chromosome in particular presents special problems with 
respect to efficient analysis of mixed-sex population studies, 
and as a result of X inactivation. This paper reviews recent 
developments in approaching these problems.

 
Introduction
The statistical problem of testing for association between 
phenotype and genetic markers on the sex chromosomes 
has received less attention than tests for autosomal 
markers. The advent of genome-wide association studies 
has hugely increased the number of studies of associations 
with the sex chromosomes and, in this context, it has 
recently been recognized that the X chromosome, in 
particular, poses special problems [1].

Firstly, in population-based case-control studies involving 
both male and female subjects, associations can be 
confounded by differences in sex ratio between cases and 
controls even when, as is usually the case, allele frequencies 
do not differ between the sexes. Conventional epidemio
logical approaches to deal with this confounding can be 
very inefficient.

Secondly, the phenomenon of X inactivation, which affects 
most loci on the X chromosome in females, means that the 
risk attributable to a single allele would generally be 
expected to be less in females than in males. An efficient 
statistical test would allow for this.

This review describes approaches to statistical testing for 
association with loci on the sex chromosomes, largely in 
the context of case-control studies of binary phenotypes. 
The X chromosome will be the focus of most of the review. 
Later sections will briefly discuss family-based association 
studies, quantitative phenotypes and methods for the Y 
chromosome.

Case-control studies
Before turning to the special problems presented by the X 
chromosome, we shall review simple methods of analysis 
for autosomal loci in case-control studies.

Autosomal loci
Counting chromosomes
Many early analyses of association between a binary 
phenotype and a genetic marker used simple tests for 
association in contingency tables in which cell entries were 
counts of chromosomes rather than people. Thus, for an 
autosomal locus, the total cell count is twice the number of 
subjects studied, and associations were tested simply by 
comparing allele frequencies between cases and controls. 
In the diallelic case, this reduces to the analysis of a 2 × 2 
table (Table  1). The most commonly used test was the 
familiar chi-squared test for association which, here, has 
one degree of freedom (df). The calculations of the chi-
squared test statistic, T say, can be broken down in a 
manner which aids later discussion as follows, where N is 
the total sample size and A and a the two alleles at the 
locus:

              NAN1  U = X ———— 
              

N
  

     NANaN1N0V = ———————
       N(N2 – 1)

       U2
T = ——

       V

Here, U is a test ‘score’ which, under the ‘null’ hypothesis 
of no association, has expected value zero; V is its variance, 
again under the null hypothesis. Note that U corresponds 
with the usual ‘observed minus expected’ frequency 
calculation for the top left-hand cell in the table. (The 
traditional test based on Σ(O – E)2/E over all four cells of 
the table is equivalent to the above but with a slightly 
biased variance estimate in which (N – 1) is replaced by N.) 
At first sight, doubling the sample size by counting 
chromosomes rather than people would seem questionable. 
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However, under the assumption of Hardy-Weinberg 
equilibrium (HWE), the two copies carried by each subject 
can be regarded as drawn randomly and independently 
from a population of chromosomes. Thus, with this 
assumption, the analysis is valid in the sense of main
taining the correct type 1 error rate [2].

Counting subjects
This analysis can be contrasted with testing for association 
in the 3  ×  2 contingency table of genotype (A/A, A/a, or 
a/a) against phenotype, in which the counts are of subjects. 
This makes no HWE assumption, but delivers a chi-
squared test on two df rather than on one df. The difference 
in df between these tests reflects the different alternative 
hypotheses against which they are powerful. The one-df 
test based on chromosome counts turns out to be most 
powerful against a rather restrictive ‘trend’ model in which 
the odds ratios between adjacent rows (that is, A/A versus 
A/a, and A/a versus a/a) are equal [2]. For a rare disease, 
these odds ratios correspond to relative risks for disease in 
the population, so that this alternative hypothesis 
corresponds to a model in which each copy of the A allele 
multiplies the risk by a constant (the ‘allelic’ odds ratio or 
relative risk). Since this test is a score test in the wider 
class of models in which the expected case:control ratio for 
the A/a genotype is intermediate between those for a/a 
and A/A genotypes, it is also locally most powerful against 
small effects in this wider class of models. In contrast, the 
two-df test is powerful against unrestricted alternatives 
but, in consequence, is considerably less powerful against 
the trend alternative.

In modern complex disease genetics, most associations 
discovered to date have been of the trend type and one-df 
tests are therefore usually regarded as the most useful 
(although most analysts would also carry out a two-df test). 
However, chromosome counting in the 2  ×  2 table has 
largely been abandoned owing to its reliance on the HWE 
assumption, having been supplanted by the Cochran-
Armitage test for trend [3-5] in the 3  ×  2 tabulation of 
subjects by genotype and phenotype. Writing xi as the 
genotype for subject i, scored 0, 1 or 2; x̄   as its mean over 
all subjects; and M1, M0 and M =M1 + M0 as the numbers 

of cases, controls and subjects, respectively, this test can be 
calculated as follows:

                         –U = Σ xi – N1x
Cases

M1M0
                      

–V = ——————     Σ (xi – x)2

M(M – 1)  All subjects

       U2
T = ——

       V

In this test, the ‘score’, U, is identical to that for the test on 
chromosome counts. The difference between the two 
approaches is in the formula for its variance, V; the 
Cochran-Armitage test uses a variance estimate that does 
not assume HWE. (As for the simple 2 × 2 table, M – 1 is 
often replaced by M in most derivations, although this 
leads to a very slightly biased variance estimate.)

Control for confounding and interaction
When there is a danger of confounding, for example by 
population structure, these tests can be extended. Cases 
and controls are classified into strata, for example by a 
score based on the first few principal components in a 
genome-wide study [6]. Each stratum then provides a 2 × 2 
or 3 × 2 table. Extended tests which combine the evidence 
across strata may be carried out by:

•	 calculating U and V in each stratum,
•	 summing U and V values over strata to form a combined 

U and V, and
•	 calculating the test statistic in the usual way: T = U2/V.

The same method can be used to combine data from 
different studies in meta-analysis. The resultant tests still 
have one df and maintain high power against the trend 
alternative. However, this power is obtained at a cost of an 
additional assumption: that the effect of genotype on 
phenotype (as measured by the allelic odds ratio) does not 
vary across strata. In the case of a 2 × 2 table, this approach 
yields the Mantel-Haenszel test [7], while, for trend tests in 
3  ×  2 tables, it yields the Mantel-extension test [8]. The 
two-df test for the 3 × 2 table may be extended in a similar 
manner [5,9]. An alternative to the use of stratification to 
control for confounding is logistic regression analysis, with 
case-control status treated as the binary dependent 
variable [10].

When the assumption of constant genotype effect across 
strata is violated, there is said to be ‘interaction’, and the 
power of the above tests is reduced; in the rather unlikely 
case in which the effect is in opposite directions in males 
and females, little or no power would remain. An 
alternative way to combine evidence is to sum chi-squared 

Table 1

A 2 × 2 table of chromosome counts: counts of chromosomes 
for cases and controls according to allele of a diallelic marker 
locus where N is the total sample size and A and a the two 
alleles at the locus

Allele	 Cases	 Controls	 Total

A	 X	 NA – X	 NA

a	 N1 – X	 N – N1 – NA + X	 Na = N – NA

Total	 N1	 N0 = N – N1	 N
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values over strata, while summing df in the same way. Thus, 
if there are K strata, summing the one-df tests results in a 
test with K df, and summing the two-df tests leads to a 2K df 
test. Such tests preserve power in the case where there is 
strong interaction, although they are inefficient otherwise.

The X chromosome
In this section we consider the applicability of the above 
standard methods to loci on the X chromosome, and 
discuss some recently developed improvements. For 
simplicity we will concentrate on the case of a diallelic 
locus, although the methods described can be generalized. 
Most of the difficulties concern mixed-sex studies [11], 
particularly those in which the sex ratio differs, perhaps 
markedly, between cases and controls. Although in general 
one might consider this to be a failure of design, many 
large-scale genome-wide association studies make use of 
genotype data for standard control sets [1]. The sex ratio 
can then be very different between cases and controls.

Counting chromosomes
For markers on the X chromosome (other than those 
markers in the pseudo-autosomal region of the Y chromo
some), the derivation of association tests is more compli
cated. If all subjects were female, we would analyze the 
3  ×  2 table of subject counts. Conversely, if all subjects 
were male, each subject would contribute only one 
chromosome and the analysis would revert to that of 2 × 2 
tables. But what if the study contains both male and female 
subjects? There are several simple approaches to this 
difficulty. The first approach is to revert to chromosome 
counting, analyzing the 2  ×  2 table in which each female 
case has contributed two observations and each male case 
one. This has two obvious problems:

•	 it relies on the HWE assumption for females, and
•	 the association could be confounded by sex if (a) allele 

frequencies differ between the sexes, and (b) the sex 
ratio differs between cases and controls.

The second of these problems can be addressed by 
standard methods for control for confounding [7]. 
However, in the case where the sex ratio varies between 
cases and controls but allele frequencies do not differ by 
sex, sex is not truly a confounder and treating it as such 
can be very inefficient. To take an extreme example, in a 
study of breast cancer in which the available control 
sample contained both sexes, stratification by sex would 
effectively discard the data from male controls from the 
comparison. Although males rarely contract breast cancer, 
they nevertheless provide valuable information concerning 
allele frequencies in the population.

Counting subjects
It is not immediately obvious how one would apply methods 
based on comparing distributions of genotypes in mixed-

sex studies, since male and female genotypes are 
qualitatively different. One might decide to combine each 
of the two male genotypes with one of the three female 
genotypes (although quite how to do this is not obvious), or 
one could make the judgement that there are five distinct 
genotypes and analyze the 5 × 2 contingency table. Neither 
of these approaches is satisfactory, not least because any 
differences in the sex ratio between cases and controls 
would give rise to an apparent association, even when 
allele frequencies do not differ between the sexes.

An alternative approach is to stratify by sex. Females then 
contribute a 3 × 2 table and males a 2 × 2 table. Assuming 
no marked interaction between sex and genotype, a one-df 
trend test can be obtained by combining the trend tests for 
these tables as for autosomal loci, while, for the contri
bution of females, a variance estimate that allows for 
deviation from HWE is used. In the presence of strong 
interaction, better power would be obtained by adding the 
chi-squared values to yield a two-df test. Zheng et al. 
discussed these tests, and proposed two alternative ways of 
combining evidence across strata [11].

Only females allow calculation of a two-df genotype-based 
test. Assuming no interaction between sex and genotype, a 
combined two-df test test can be obtained by adding the 
difference between the one- and two-df tests in females to 
the combined one-df test. Alternatively, to allow for strong 
interaction with sex, the two-df chi-squared for females 
can be added to the one-df chi-squared for males, to obtain 
a three-df test.

Stratification by sex avoids the HWE assumption in 
females but, as for methods based on chromosome counts, 
can be very inefficient if the sex ratio differs between cases 
and controls. If the allele frequency also differs between 
sexes, then sex confounds the association and stratification 
is essential. Otherwise, this loss of efficiency is 
unnecessary; we shall describe how it can be avoided in the 
next section.

The role of X inactivation: ‘dosage compensation’
The above approaches suffer from a further, less obvious, 
problem. Unless male and female genotypes are to be 
regarded as completely different (as in an analysis of the 
5 × 2 table), the effect of an allele is implicitly assumed to 
be the same in males and females. Formally, the alternative 
hypothesis against which these approaches would be most 
powerful assumes that the allelic odds ratio would not 
differ between the sexes. This is unlikely to be the case; 
most loci on the X chromosome are subject to X inactiva
tion [12] in females; only one allele from each pair of alleles 
is expressed. Inactivation takes place at an early stage of 
fetal development and, except in rare circumstances, the 
inactivated allele in each cell is selected at random, so that, 
on an average, 50% of cells in the adult female will express 
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one allele and 50% of cells the other [13]. A consequence of 
this is that the effect of the A allele in males should be 
equivalent to the difference between a/a and A/A homozy
gous females. To preserve optimal power against this alter
native, males must be given twice the weight of females.

In the chromosome-counting analysis, we must either 
count each allele twice in males or, equivalently and more 
intuitively, count each allele in females as ½, reflecting a 
‘dosage compensation’ for X inactivation. This was the 
approach employed by the Wellcome Trust Case-Control 
Consortium [1] and described in detail by Clayton [14].

In the sex-stratified analysis, differential weighting of males 
and females is straightforward. The score, UF, for the 3 × 2 
table of genotype frequencies in females is weighted by ½, 
while the score, UM, for the 2 × 2 table of allele frequencies is 
unweighted. The combined, stratified test is given by:

U = ½UF + UM

V = ¼VF + VM

and the chi-squared test statistic is given by T  =  U2/V 
as usual.

As pointed out above, stratification by sex loses power and 
should be avoided when, as will almost always be the case, 
allele frequencies can be assumed not to differ between the 
sexes. In Clayton’s test, U is calculated from allele counts 
pooled across the two sexes, in females counting each allele 
as ½, as described above, and a variance estimate is used 
which allows for deviation from HWE in females. Clayton 
also proposed a two-df test in which the additional degree 
of freedom is based on data from females alone [14]. 
Although this test employed dosage compensation for X 
inactivation, it could easily be adapted for loci in which X 
inactivation is thought to be unlikely.

Regression generalizations
To control for an additional extraneous factor, the tests 
described in the previous section may be extended to allow 
for a stratification of the data; as before, the score statistics U, 
and their variances, V, are calculated for each stratum and 
simply added over strata. However, some situations may call 
for use of regression models, for example when multiple 
covariates are involved. Regression programs also potentially 
provide a way of carrying out tests similar to those described 
above when specialist software is not available. Regression 
generalization of the testing problem may be approached in 
two ways, depending on whether the genotype or the 
phenotype is treated as the dependent variable.

Genotype as dependent variable
The natural regression generalization of the chromosome-
counting approach for autosomal loci is to treat the 

measured genotype score, xi, as representing the number 
of ‘successes’ in two binomial trials. This is declared as the 
dependent variable in a logistic regression model in which 
case/control status appears as one of the explanatory 
variables. The coefficient of case/control status is then the 
allelic odds ratio. This approach assumes HWE (condi
tional upon explanatory variables), but this assumption 
can be relaxed by use of ‘robust’ estimates of the variance 
of regression coefficients [15,16]. These are available in 
many computer packages. This approach generalizes the 
one-df testing procedure, but does not lead to natural 
generalization of the two-df test.

For the X chromosome, the genotype in a female could be 
treated in exactly the same way, while treating the genotype 
for a male as the outcome of a single trial. However, this 
would make no allowance for X inactivation. The alternative 
approach is to treat the male genotypes as either a/a or A/A 
(xi  =  0 or 2), but giving them weight ½ in the regression 
analysis in view of their greater variance. Use of robust 
variance estimates for coefficients is then obligatory.

Phenotype as dependent variable
In epidemiological studies of disease outcome, it is more 
usual to treat phenotype (disease status) as the dependent 
variable in a logistic regression, even when the data have 
been obtained by case/control sampling [17]. A generaliza
tion of the one-df test can be obtained using this approach 
by entering genotype codes, xi, as an explanatory variable 
in a logistic regression with case/control status as depen
dent variable. X inactivation can be taken into account by 
scoring xi as 0, 1 or 2 in females, and 0 or 2 in males. If the 
sex ratio varies between cases and controls, the disease 
status depends on sex and it would be natural to include 
sex as an additional explanatory variable. This mirrors the 
simple analysis in which sex is introduced as a stratification 
and, as we have seen, this can be inefficient. If allele 
frequency does not depend on sex, sex can be omitted from 
the regression without compromising the test of the 
regression coefficient for genotype, but, if sex and disease 
status are truly related, omission of sex means that the 
model is mis-specified and it is necessary to use robust 
variance estimates for coefficients. An attraction of this 
method of analysis is that it allows several markers to be 
entered into the regression simultaneously in analyses 
whose aim is to narrow down potential causal variants 
when several markers in linkage disequilibrium with one 
another are all related to phenotype.

At first sight, this approach could also provide a two-df test 
by adding an explanatory indicator variable that contrasts 
the heterozygous genotype from the two homozygous 
genotypes (males again being coded as homozygous). 
Unfortunately, this indicator variable is related to sex and, 
if sex and disease status are related but sex has been 
omitted from the regression in the interest of efficiency, its 
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coefficient is confounded and the test is not valid. Clayton 
suggests that the contribution to the test of the second 
degree of freedom can be estimated from a second 
regression analysis carried out only in females [14].

Family-based studies
Association tests for loci on the X chromosome have received 
rather more attention in the context of family-based studies.

Case-parent trios
The case-parent trio design has been widely advocated as 
providing protection against false associations due to 
confounding by population structure. The transmission/
disequilibrium test (TDT) [18] is a one-df test for asso
ciation, which is optimal against the same alternative 
hypothesis as the one-df test for population-based studies, 
which was discussed in the first section of this review. 
Transmissions of alleles from heterozygous parents are 
counted, and the TDT tests whether counts of trans
missions of A or a alleles depart from a 1:1 ratio. If these 
counts are denoted XA and Xa, respectively, a chi-squared 
test on one df may be calculated as follows:

                 XA + XaU = XA – ——————
                 2

       XA + XaV = ——————
       4

       U2
T = ——

       V

More general derivations [19-21] lead also to a two-df test 
against the wider class of alternative hypotheses, by 
comparing transmissions of genotypes from parent to 
affected offspring against expected frequencies based on 
Mendelian transmission.

For the X chromosome, transmissions from fathers are 
confounded with the sex of the affected offspring and are 
therefore uninformative; only transmissions from hetero
zygous mothers contribute to the test, which has been 
termed the XTDT [22] (such acronyms are used liberally in 
this literature but serve to confuse rather than illuminate; 
they will not be used further in this review). Note that 
mother-son transmission can be determined unambigu
ously without knowledge of the father’s genotype but, for 
mother-daughter transmissions, the father’s genotype 
must also be available in order to determine which of the 
daughter’s two copies was received from the mother and 
hence how to score the maternal transmission. Calculation 
of a one-df test follows that for the TDT, except that, to 
allow for X inactivation, mother-son transmissions should 
be given twice the weight given to mother-daughter 
transmissions [23]. Thus, transmissions are counted 

separately for male and female affected offspring and, 
using subscripts M and F to denote male and female 
contributions to the test, we calculate U = UF/2 + UM and 
V = VF/4 + VM. This mirrors the analysis of a population-
based study stratified by sex.

As for population-based studies, a two-df test may be 
calculated by adding an additional contribution reflecting 
deviation from the trend model which underlies the one-df 
test. Only mother-daughter transmissions contribute to 
this. The counts of transmissions of allele A or allele a to 
daughters are further subdivided according to whether the 
father carries A or a on his X chromosome, thus yielding a 
2  ×  2 table. The chi-squared test for association in this 
table provides the additional contribution which, when 
added to the one-df test, provides the two-df test.

Discordant sib pairs
An alternative to the case-parent trio design, often 
advocated for late-onset diseases in which parents are not 
available, is to compare genotypes of sib pairs discordant 
for disease status. This design is simply an example of the 
one-to-one matched case-control study which is widely 
used in epidemiology and, for autosomal loci, its analysis 
follows standard methods [10]. In effect these are stratified 
analyses in which each sib pair forms a stratum [7]. Here 
the difference referred to earlier between M and M1 in the 
variance formulae in tests such as the Cochran-Armitage 
test is important (since M = 2).

For loci on the X chromosome, the methods discussed 
above can readily be adapted by stratification by sib pair. 
However, a complication is presented by unlike-sex sib 
pairs. The conditional argument requires one to argue 
conditionally on both genotypes, the information for 
association coming from whether the male sib was affected 
and the female sib unaffected, or vice versa. But, as pointed 
out by Horvath et al [22], the probabilities of these 
outcomes are also affected by sex differences in disease 
risk. Horvath et al. discussed inclusion of an additional 
parameter in the model, but were concerned about possible 
model mis-specification and advocated omission of such 
sib pairs, as have later authors [24,25].

More general pedigrees
The above methods can be generalized to allow integration 
of information from nuclear families including both parents 
and disease-discordant siblings, those containing more than 
two sibs, and in more general pedigrees. The general idea is 
to combine contributions to a score-type statistic, U, for all 
trios and discordant sib pairs first within each pedigree, and 
then over all pedigrees. The variance of the test statistic is 
then estimated using an estimator robust to associations 
between the contributions within pedigrees - for example, in 
the ‘pedigree disequilibrium test’ [26], by the sum of the 
squared contributions of each pedigree.
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A practical problem with such tests is incomplete data. 
Horvath et al. [22] discussed extension of the ‘reconstruc
tion combined’ TDT [27] to the X chromosome. This test 
fills in missing genotypes when they can be inferred from 
other family members, correcting for the biases that occur 
as a result. Ding et al. [24] extended the pedigree dis
equilibrium test to the X chromosome, using a Monte Carlo 
approach to deal with missing genotypes. This approach to 
missing data used estimates of allele frequencies without 
allowing for their uncertainty, a deficiency later corrected 
in the approach of Chung et al. [25]. Finally, Schneiter et 
al. [28] described an extension to X loci, of the Rabinowitz 
and Laird approach to family-based association testing in 
the presence of incomplete data [29]. None of these methods 
employed dosage compensation for X inactivation.

Quantitative traits
Analysis of population-based studies of quantitative traits 
may be carried out by conventional regression methods, 
with or without dosage compensation. This follows similar 
lines to the analysis of case-control studies by logistic 
regression methods as discussed in the last section. 
Alternatively, Clayton’s test discussed above, with a change 
of notation, can be applied to quantitative phenotypes [14]. 
However, analysis of family-based studies is more 
challenging, requiring achievement of two aims:

•	 partition of the information for association into 
between-family and within-family components, where 
only the latter is robust to confounding by hidden 
population structure [30], and

•	 allowance for correlations within family.

Zhang et al. proposed such a method, dealing with the 
problem of correlation by using a mixed model [31]. This 
method also allows analysis of effects of two-locus 
haplotypes, using the Expectation-Maximization (EM) 
algorithm to reconstruct missing parental genotypes and to 
impute haplotype phase in females. Zhang et al. also 
discussed implementation of their method both with and 
without dosage compensation, since not all loci on the X 
chromosome are subject to X inactivation. They suggested 
using both tests in a sequential procedure, with the dosage-
compensated test used first. Since most loci are subject to 
X inactivation, they suggested choosing an α level for the 
dosage-compensated test four times that for the non-
compensated test.

The Y chromosome
The Y chromosome presents none of the problems dis
cussed above. Loci in the pseudo-autosomal region can be 
treated as autosomal, while marker loci in the non-
homologous region only occur in males, who each carry 
just one copy inherited from their father. A similar 
situation applies for mitochondrial loci, in which there is a 
single copy inherited from the mother.

Analysis of single loci on the Y chromosome is straight
forward. However, since cross-over recombination cannot 
occur, linkage disequilibrium extends across the entire 
chromosome and association data provide no information 
about the location of the causal variant or variants. Perhaps 
partly because of this, and partly because there are no 
problems of haplotype phase uncertainty on the Y 
chromosome, most studies of disease associations with the 
Y chromosome do not stop at single marker analyses, but 
go on to perform cladistic analyses of haplotype risk. Since 
such analyses can be carried out for markers on other 
chromosomes, albeit with some extra difficulty due to 
phase uncertainty, they will not be discussed further here.

Studies of case-parent trios are uninformative about 
associations on the Y chromosome.

Conclusion
In conclusion, it has been demonstrated that testing for 
genetic associations with loci on the X chromosome is not 
as straightforward as was often imagined. Although in 
population-based studies involving single sexes there is no 
difficulty in applying standard methods, in mixed-sex 
studies difficulties are encountered, both in finding a way 
to combine evidence from the two sexes without necessarily 
assuming that sex is a confounder (that is, that allele 
frequencies differ between sexes, an assumption that can 
lead to substantial loss of power), and in appropriately 
weighting the evidence taking account of the likely effect of 
X inactivation.

For family-based association studies, design and analysis 
can also be modified when the interest is in the X 
chromosome. For affected sons, it is necessary only to 
genotype the mother in order to obtain all relevant 
transmission data and, as for population-based studies, the 
evidence from affected sons and daughters should be 
differentially weighted. Taking account of both of these 
considerations, it follows that mother-son pairs would be 
expected to be more informative than daughter-parent 
trios. In studies of disease-discordant sib pairs, mixed-sex 
pairs are particularly problematic and are best avoided.
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