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Abstract: We show that the B̄ −→ Xsγ photon energy (Eγ) spectrum can be reli-

ably computed by resummed perturbation theory. Our calculation is based on Dressed

Gluon Exponentiation (DGE) incorporating Sudakov and renormalon resummation. It is

shown that the resummed spectrum does not have the perturbative support properties: it

smoothly extends to the non-perturbative region Eγ > m/2, where m is the quark pole

mass, and tends to zero near the physical endpoint. The calculation of the Sudakov factor,

which determines the shape of the spectrum in the peak region, as well as that of the

pole mass, which sets the energy scale, are performed using Principal–Value Borel summa-

tion. By using the same prescription in both, the cancellation of the leading renormalon

ambiguity is respected. Furthermore, in computing the Sudakov exponent we go beyond

the formal next–to–next–to–leading logarithmic accuracy using the large–order asymptotic

behavior of the series, which is accurately determined from the relation with the pole mass.

Upon matching the resummed result with the next–to–leading order expression we com-

pute the spectrum, obtain its moments as a function of a minimum photon energy cut,

analyze sources of uncertainty and show that our predictions are in good agreement with

Belle data.
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1. Introduction

Inclusive measurements of radiative, B̄ −→ Xsγ, and semileptonic decays in the B factories

have a great potential in putting stringent constraints on short–distance physics beyond

the Standard Model and in providing an accurate determination of the CKM parameters.

However, exploiting this potential crucially depends on our ability to extrapolate from the

experimentally accessible kinematic domain to the full phase space. This requires precise

theoretical predictions for inclusive decay spectra.

The main obstacle in the QCD calculation of inclusive decay spectra [1–15] — as

opposed to total rates — is their sensitivity to the momentum distribution of the heavy

quark in the meson [1,2], which is defined by

f(z,M ;µ) =

∫ ∞

−∞

dy−

4π
e−iz P+y− 〈B(P )| Ψ̄(y)Φy(0, y)γ+Ψ(0) |B(P )〉µ ; P 2 = M2,

(1.1)
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where M is the meson mass, µ is the renormalization scale of the operator, y is a lightlike

vector in the “−” direction and Φy(0, y) is a path–ordered exponential in this direction

connecting the points y and 0. Being a property of the bound state, this distribution

is of course non-perturbative. Although it can be analyzed using the Operator Product

Expansion (OPE) and written as an infinite sum over forward matrix elements of local

operators, quantitative information on this distribution is very limited.

The quark distribution function is directly relevant in the experimentally most accessi-

ble region near the endpoint of the spectrum, where the invariant mass of the hadronic jet

is small. In B̄ −→ Xsγ decays this corresponds to the photon energy Eγ (measured in the

B rest frame) being close to its maximal value M/2. This limit is inherently important as

the leading–order partonic process corresponds to a photon and an s-quark recoiling back

to back, with Eγ = m/2 (m is the quark pole mass). This results in a δ(1−x) distribution,

where x ≡ 2Eγ/m. This distribution is smeared by perturbative and non-perturbative

effects but it still peaks near x = 1. Because of the singular nature of this distribution,

it is convenient to consider the photon–energy moments. The perturbative expansion of

these moments is well defined to any order in perturbation theory, but it is dominated

by Sudakov logs, ln N (N is the moment index) and it therefore requires resummation.

The dominant non-perturbative contributions, which are associated with the momentum

distribution function of the heavy quark in the meson, appear as powers of NΛ/m. This

parametric enhancement of perturbative and non-perturbative contributions at large N

is important even if one considers only the first few moments that are measured experi-

mentally: the information encoded in high moments is absolutely essential to recover the

correct dependence of the partial decay rate on the minimal photon energy cut Eγ > E0.

Such a cut is experimentally unavoidable.

Being motivated by the OPE, most theoretical approaches to decay spectra have re-

lied on introducing a factorization scale, which is either a hard cutoff or a dimensional–

regularization scale, distinguishing between soft interaction that is associated with the

momentum distribution in the meson and harder interaction that depends on the details of

the decay process at hand. While the latter is described by perturbation theory the former

can be parametrized given sufficient experimental constraints. This analysis is analogous

to that of deep inelastic structure functions, but the analogy is restricted to a certain kine-

matic domain near the endpoint; moreover, it is incomplete since decay spectra contain an

additional source of double logarithmic corrections that is absent in structure functions.

Unfortunately, in practice the choice of factorization scale, and even more so the proce-

dure by which factorization (the separation between the perturbative and non-perturbative

regimes) is implemented, strongly affects the final answer for observable quantities. A good

example is provided by the first few moments of the photon energy in B̄ −→ Xsγ decays

with experimentally relevant cuts, where the factorization prescription has been the center

of a long lasting controversy, see e.g. [14,15].

In our approach [16, 17] separation between perturbative and non-perturbative cor-

rections is implemented without introducing any factorization scale. Instead, we strongly

rely on the resummation of the perturbative expansion. The starting point is the fact

that at the partonic level, moments of decay spectra are infrared and collinear safe; in-
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frared sensitivity (confinement effects) shows up only through power corrections. Applying

Dressed Gluon Exponentiation (DGE) [16,19–22] we resum Sudakov logarithms as well as

running–coupling effects. The conceptual step we make is to regard the perturbative cal-

culation of the Sudakov exponent (in moment space) as an asymptotic series. This series is

summed using Principal–Value Borel summation1. This amounts to parameter–free power-

like separation between perturbative and non-perturbative corrections. Non-perturbative

parameters controlling powers of NΛ/m are then defined in this prescription, and they

loose their immediate interpretation as local matrix elements2. This, however, does not

alter the fact that these corrections are associated with the quark distribution function

nor does it undermine their universal nature. On the other hand, it typically makes them

numerically small compared to any cutoff–based separation.

Sudakov resummation in inclusive decay spectra [4] closely parallels threshold resum-

mation in hard scattering processes [23–26]: perturbative corrections from real gluon emis-

sion are singular in the soft and the collinear limits; in inclusive observables such as the

spectral moments these singularities cancel out by virtual corrections, leaving behind finite

but large contributions ∼ Cn,k αn
s lnk N with 1 ≤ k ≤ 2n at any order in perturbation the-

ory. These corrections exponentiate. Standard techniques facilitate identifying their origin

in phase space and then systematically resumming them to a given logarithmic accuracy.

In inclusive decays Sudakov logarithms are associated with two independent subprocesses

(see Refs. [4,16], and Fig. 1 in Ref. [17]); each of them can be defined and computed to all

orders in a process–independent manner:

1. SN (m;µ), the soft function, which is the Sudakov factor of the heavy quark distri-

bution function, summing up radiation with momenta O(m/N) — often referred to

as the ‘soft scale’ — that influences the momentum of the heavy quark prior to its

decay. This function is defined by considering the z −→ 1 singular terms in

fPT(z,m;µ) =

∫ ∞

−∞

dy−

4π
e−iz p+y− 〈b(p)| Ψ̄(y)Φy(0, y)γ+Ψ(0) |b(p)〉µ ; p2 = m2,

(1.2)

which is the perturbative analogue of Eq. (1.1) where the external state |b(p)〉 is an

on-shell heavy quark. Upon taking moments one obtains

F PT

N (m;µ) ≡
∫ 1

0
dzfPT(z,m;µ)zN−1 = H(αs(m))SN (m;µ) + O(1/N), (1.3)

where SN (m;µ) sums up the log-enhanced terms to all orders and H(αs(m)) incor-

porates the finite terms at N −→ ∞. See Ref. [30] for further details.

2. JN (m,µ), the jet function, summing up radiation that is associated with an unre-

solved final–state quark jet of invariant mass squared O(m2/N). This function is

directly related to the large-x limit of deep inelastic structure functions. See Ref. [32]

for further details.
1It was shown in Ref. [18] that Principal–Value Borel summation is equivalent in principle to a hard

cutoff on some Euclidean momentum. On the other hand, it makes much less dramatic an impact on the

distribution. In particular, it is closer to truncating the perturbative expansion at the minimal term.
2The locality measure in a hard cutoff based approach is the scale. Here there is no such measure.
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The hard interaction mediating the decay is totally irrelevant for the Sudakov factor.

Ref. [16] has generalized the large-x factorization approach beyond the perturbative

(logarithmic) level. It has been shown that, when considered to all orders, the moments

corresponding to each of the above subprocesses contain infrared renormalons. The quark

distribution Sudakov factor SN has renormalon ambiguities scaling as integer powers of

NΛ/m, while the jet function JN contains ones that scale as integer powers of NΛ2/m2.

This implies that certain power corrections are inherent to these subprocesses. As soon as

these power corrections are important, Sudakov resummation ceases to be purely perturba-

tive. Ref. [16] has shown that running–coupling effects constitute a significant contribution

to the Sudakov exponent, and that their resummation necessarily links the calculation of

the Sudakov factor with the parametrization of power corrections. When treated separately

each of these ingredients is inherently ambiguous, but when combined, the ambiguities can-

cel out.

The leading non-perturbative corrections to inclusive decays are those associated with

the quark distribution function, Eq. (1.1). The moments of this non-perturbative function

can be expressed as [16]:

FN (M ;µ) ≃ F PT

N (m;µ)×exp

{
−(N − 1)Λ̄

M

}
× F((N−1)Λ/M); Λ̄ ≡ M−m, (1.4)

where F PT

N (m;µ) are the moments of the perturbative quark distribution in an on-shell

heavy quark, Eq. (1.2), the exponential factor stands for the “binding energy” effect, and

F sums up additional, quark–mass independent non-perturbative power corrections on the

soft scale M/N to all orders. Power corrections on the hard scale m are neglected here.

The exponential factor in Eq. (1.4) has an important role in computing decay spectra:

it converts spectral moments from partonic kinematics, where moments are defined with

respect to powers of x = 2Eγ/m, to hadronic kinematics. It is well known that the pole

mass m has an infrared renormalon corresponding to a linear O(Λ) ambiguity [27, 28].

In Ref. [16] it was shown that this ambiguity cancels out between the exponential factor

exp
{
−(N − 1)Λ̄/M

}
and the Sudakov factor SN in the perturbative quark distribution

F PT

N (m;µ). Thus, in the product in Eq. (1.4) one recovers an unambiguous result for the

quark distribution in the meson. In this work we make use of this observation in two ways:

• When computing the Sudakov factor we use the Principal–Value Borel sum. The

same prescription is then implied for Λ̄. This is implemented here when computing

the pole mass m from the short distance mass mMS.

• Our approximation for the Borel function in the Sudakov factor is improved based

on the observation that its ambiguity must cancel against that of the pole mass: the

known large–order behavior of the relation between the pole mass and mMS is used

to fix the large–order behavior of the Sudakov factor and in this way improve its

determination beyond what is known from fixed–order calculations.

The main purpose of the present paper is to provide a DGE–based prediction for the

photon–energy spectrum in B̄ −→ Xsγ decays, which can be confronted with experimental
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data and provide a baseline for parametrization of power corrections when the data become

precise enough. As opposed to previous attempts to describe the spectrum, here we refrain

from making any arbitrary parametrization of non-perturbative corrections. In Eq. (1.4)

we use F((N − 1)Λ/M) = 1. We only account for the “binding–energy” effect through

Λ̄ = M − m, where the pole mass is computed from mMS. Barring the uncertainty in

modeling perturbative corrections to all orders (see below), our prediction for the spectrum

depends only on αs and on the quark short–distance mass. The total rate depends on

additional parameters such as MW and the charm–quark mass, but the uncertainty in

these parameters makes a negligible effect on the distribution.

Recent progress in perturbative calculations [29,30] facilitates computing the Sudakov

factor with next–to–next–to–leading logarithmic (NNLL) accuracy. We therefore begin our

study in Sec. 2.1 by presenting the NNLL results. We investigate the convergence of the

perturbative expansion with increasing logarithmic accuracy and confirm the prediction of

Ref. [16] that this expansion breaks down early. Then, in Sec. 2.2 we recall the formulation

of the Sudakov exponent as a Borel sum and review the results obtained in Ref. [16] for

the Borel function in the large–β0 limit. In Sec. 2.3 we address one of the central issues

of this paper, namely the construction of an approximate Borel function for the exponent

that incorporates the exact analytic functions in the large–β0 limit on the one hand, and

has the exact expansion coefficients in the full theory to the NNLO on the other. We

examine in detail the sensitivity of the spectrum to the assumptions made on the Borel

function away from the origin and incorporate the constraint on the large–order behavior

of the exponent, which we determine from the relation with the pole mass. Sec. 3 deals

with the matching of the resummed Sudakov factor to the full NLO perturbative result

that incorporates contributions from all the relevant short–distance operators. In Sec. 4 we

address non-perturbative power corrections. Here we compute the pole mass mPV from the

short–distance mass and use it to translate the perturbative moments defined with respect

to x = 2Eγ/mPV into the spectrum in physical photon–energy units. We end up with

a parameter–free prediction for the spectrum, which includes all that is currently known

about the B̄ −→ Xsγ spectrum in perturbation theory. In Sec. 5 we present our numerical

results for the spectrum, compute its moments as a function of the photon–energy cut and

analyze sources of uncertainty. Finally, we compare the predictions with the available data

from Belle.

2. The Sudakov exponent by Dressed Gluon Exponentiation

2.1 Sudakov resummation with fixed logarithmic accuracy

Sudakov resummation is based on the exponentiation of logarithmically–enhanced terms

in moment space. The spectral moments of the b −→ Xsγ decay occurring through the

magnetic–operator interaction O7 (see Eq. (3.2) below) can be expressed as

M̄PT,O7

N ≡
∫ 1

0
dx

1

ΓO7,PT

total

dΓO7,PT(x)

dx
xN−1 = CO7

N (αs(m)) × Sud(m,N), (2.1)
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where dΓO7,PT(x)/dx is the perturbative distribution in x ≡ 2Eγ/m, the superscript PT

stands for ‘perturbative’, meaning in particular that the initial state is an on-shell heavy

quark with mass m, and the bar indicates that the distribution is normalized by ΓO7,PT

total so

M̄N=1 ≡ 1. In Eq. (2.1) all the log–enhanced terms are resummed into the Sudakov factor

Sud(m,N). After the resummation has been performed, one can determine the spectrum

from the moments by inverting the Mellin transform:

1

ΓO7,PT

total

dΓO7,PT(x)

dx
=

∫

C

dN

2πi
x−N M̄PT,O7

N , (2.2)

where the contour C extends from c − i∞ to c + i∞ to the right of the singularities of the

integrand.

The Sudakov factor Sud(m,N) is independent of the details of the hard interaction.

Therefore, other operators contributing to the b −→ Xsγ process staring at NLO share the

same Sudakov factor. Their contribution will be taken into account in Sec. 3 and in the

numerical analysis; for simplicity, in this section we consider only O7.

Based on previous analysis of large-x factorization in b −→ Xsγ [4, 16] we know that

the Sudakov resummation formula takes the form3:

S̃ud(m,N) = exp

{∫ 1

0
dx

xN−1 − 1

1 − x

[ ∫ (1−x)m2

(1−x)2m2

dµ2

µ2
A
(
αs(µ

2)
)

+B
(
αs((1 − x)m2)

)
−D

(
αs((1 − x)2m2)

)]}
. (2.3)

This all–order formula depends on three anomalous dimensions: A is the universal cusp

anomalous dimension [53–55], which is also the large-x limit of the quark–quark splitting

function; B is the Sudakov anomalous dimension associated with an unresolved quark jet

with a given invariant mass, which (in combination with A) also determines the large-x limit

of deep inelastic structure functions [23,24,32]; and D is the Sudakov anomalous dimension

that is associated with the momentum distribution in an on-shell heavy quark [30]. Each

anomalous dimension can be expanded in αMS
s as follows:

A(αs(µ
2)) =

∞∑

n=1

An

(
αMS

s (µ2)

π

)n

,

B(αs(µ
2)) =

∞∑

n=1

Bn

(
αMS

s (µ2)

π

)n

,

D(αs(µ
2)) =

∞∑

n=1

Dn

(
αMS

s (µ2)

π

)n

. (2.4)

The first few orders in these expansions are known exactly. Higher orders are known only

in the large–β0 limit [16]. They will be discussed in the next section.

3S̃ud(m,N) differs from Sud(m, N) in Eq. (2.1) and in Eqs. (2.11) and (2.17) below just by finite terms

and terms that vanish in the N −→ ∞ limit. These terms will eventually be discarded from the Sudakov

factor and included in the matching coefficient CN (αs(m)).
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The known coefficients are the following. First, the cusp anomalous dimension was

recently computed to three–loop order [29]:

A1 = CF (2.5)

A2 =

[(
67

36
− π2

12

)
CA − 5Nf

18

]
CF

A3 =

(
1

2
ζ (3) − 55

96

)
Nf CF

2 +

[(
245

96
+

11

24
ζ (3) − 67π2

216
+

11π4

720

)
CA

2

+

(
−209

432
− 7

12
ζ (3) +

5π2

108

)
Nf CA − Nf

2

108

]
CF .

Second, the anomalous dimension of the jet function is known to two–loop order from

calculations in deep inelastic scattering, see e.g. Refs. [31,32]:

B1 = −3CF

4
(2.6)

B2 =

(
− 3

32
− 3

2
ζ (3) +

π2

8

)
CF

2 +

[(
−3155

864
+

11π2

72
+

5

2
ζ (3)

)
CA

+

(
247

432
− π2

36

)
Nf

]
CF .

Finally, the anomalous dimension appearing in the quark distribution function in an on-

shell heavy quark was recently computed to two–loop order [30]:

D1 = CF (2.7)

D2 =

[(
− 55

108
+

9

4
ζ (3) − π2

12

)
CA − Nf

54

]
CF .

These coefficients facilitate computing the Sudakov exponent with NNLL accuracy.

In order to obtain a fixed–logarithmic–accuracy formula to this order we first express the

running coupling in terms of αMS
s (m2),

αMS
s (µ2)

π
=

(
αMS

s (m2)

π

)
1

1 − σ
−
(

αMS
s (m2)

π

)2
β1

β0

ln(1 − σ)

(1 − σ)2
+

(
αMS

s (m2)

π

)3

× (2.8)

[(
1

(1 − σ)3
− 1

(1 − σ)2

)
βMS

2

β0
+

(
1

(1 − σ)2
− 1 + ln(1 − σ) − ln2(1 − σ)

(1 − σ)3

)
β2

1

β2
0

]
+ · · ·

where

σ =
αMS

s (µ2)

π
β0 ln

m2

µ2
,

and

β0 =
11

12
CA − 1

6
Nf (2.9)

β1 =
17

24
C2

A − 1

8
CF Nf − 5

24
CANf

βMS

2 =
1

64
C2

F Nf +

(
− 205

1152
CANf +

11

576
N2

f

)
CF +

2857

3456
C3

A +
79

3456
CAN2

f − 1415

3456
C2

ANf ,
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and then integrate the A term over µ2. The integration over x is then done (keeping only

logarithmically–enhanced terms to NNLL accuracy) using the general formula:

∫ 1

0
dx

xN−1 − 1

1 − x
F

(
β0α

MS
s (m2)

π
ln

1

1 − x

)
= − π

β0αMS
s (m2)

∫ λ

0
dωF (ω) (2.10)

− γEF (λ) − 1

2
F ′(λ)

(
π2

6
+ γ2

E

)
β0α

MS
s (m2)

π
+ · · · ,

where

λ ≡ αMS
s (m2)

π
β0 ln N.

The resulting Sudakov factor is:

Sud(m,N) = exp

{ ∞∑

n=0

gn(λ)

(
αMS

s (m2)

π

)n−1
}

, (2.11)

where the first three coefficients gn(λ), which sum up the logarithms to NNLL accuracy,

are4:

g0(λ) =
A1

β0
2

(
(1 − λ) ln (1 − λ) − 1

2
(1 − 2λ) ln (1 − 2λ)

)
(2.12)

g1(λ) =
A1γE

β0

(
− ln (1 − λ) + ln (1 − 2λ)

)
+ B1 ln (1 − λ) − 1

2
D1 ln (1 − 2λ)

+
A2

β0
2

(
− ln (1 − λ) +

1

2
ln (1 − 2λ)

)

+
A1 β1

β0
3

(
−1

2
ln (1 − 2λ) − 1

4
ln (1 − 2λ)2 +

1

2
ln (1 − λ)2 + ln (1 − λ)

)

g2(λ) = A1

(
1

2
− 1

1 − 2λ
+

1

−2λ + 2

) (
γ2

E +
π2

6

)

+B1 γE

(
1 − 1

1 − λ

)
+ D1 γE

(
1

1 − 2λ
− 1

)

+
1

β0

{(
1

1 − λ
− 1

1 − 2λ

)
A2γE +

(
1 − 1

1 − λ

)
B2 +

(
−1

2
− 1

4λ − 2

)
D2

}

+
1

β2
0

{[(
ln (1 − λ)

λ − 1
− ln (1 − 2λ)

2λ − 1
+

1

λ − 1
− 1

2λ − 1

)
A1γE

+

(
− 1

λ − 1
− ln (1 − λ)

λ − 1
− 1

)
B1 +

(
1

2
+

1

4λ − 2
+

1

2

ln (−2λ + 1)

2λ − 1

)
D1

]
β1

+

(
−1

4
+

1

8λ − 4
− 1

2λ − 2

)
A3

}

+
1

β3
0

{(
ln (1 − λ)

λ − 1
+

3

2 (λ − 1)
+

3

4
− 1

2

ln (1 − 2λ)

2λ − 1
− 3

4 (2λ − 1)

)
A2 β1

4An expression for g2(λ) was derived a few years ago [12] although the corresponding coefficients (A3,

D2 and B2) were not yet known. We find however that the terms proportional to A1 β2 in that expression

(Eq. (40) there) are incorrect.
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+

(
ln (1 − λ) − 1

2
ln (1 − 2λ) − 1

4
− 1

2λ − 2
+

1

8λ − 4

)
A1 β2

}

+
A1 β1

2

β0
4

{
− 1

2

ln2 (1 − λ)

λ − 1
− ln (1 − λ) λ

λ − 1
− 1

2λ − 2
+

1

4

ln2 (1 − 2λ)

2λ − 1

+
ln (1 − 2λ) λ

2λ − 1
+

1

8λ − 4
− 1

4

}
,

where the coefficients of the anomalous dimensions and the β function are in the MS

scheme. They are given by Eqs. (2.5) through (2.7) and Eq. (2.9), respectively.

N
5 10 15 20 25 30 35

0

0.2

0.4

0.6

0.8

1

1.2

LL
NLL
NNLL

Figure 1: The moment–space Sudakov factor Sud(m, N), computed using Eq. (2.11) to LL, NLL

and NNLL accuracy, plotted as dotdashes, dashes and dots, respectively. The curves end at N ≃ 33,

corresponding to λ = 1

2
, where the Landau singularity in gn(λ) appears.

Fig. 1 shows the Sudakov factor of Eq. (2.11) with increasing logarithmic accuracy:

g0(λ) only (LL accuracy), then g0(λ) and g1(λ) (NLL accuracy) and finally the first three

terms (NNLL accuracy). We observe that the convergence of the series in Eq. (2.11) is

poor. Non-negligible differences appear already in the first few moments. These will be

partially washed out by matching the results with the fixed–order calculation. However,

for N >∼ 10, where ln N starts to get large, the NNLL contribution of g2(λ) is already larger

than that of the NLL term; for N >∼ 18 the NNLL contribution becomes larger than the

leading-log term! This clearly indicates that the perturbative expansion breaks down. It

is known from previous studies [16, 19–22] that the asymptotic behavior of Sud(m,N) is

controlled by infrared renormalons. In Ref. [16] it was shown, based on the resummation
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of running–coupling effects in the large–β0 limit, that the expansion in Eq. (2.11) should

break down early (see Fig. 2 there). Having at hand the full NNLL result we confirm that

this is indeed so.

The conclusions are the following: first, it becomes obvious that the logarithmic accu-

racy criterion is, at best, insufficient. Moreover, since the poor convergence of the series

in Eq. (2.11) is associated with running–coupling effects, these must be resummed. Fi-

nally, since the latter brings about infrared renormalon ambiguities that scale as powers

of (NΛ/m) the resolution of this problem is directly linked to the question of separation

between perturbative and non-perturbative contributions: the calculation of the Sudakov

exponent cannot be considered as a purely perturbative matter. Similar observations in

different but analogous physics problems have led to the development of DGE [19–22] as

an alternative to resummation with fixed logarithmic accuracy.

Before moving on to DGE let us conclude our perturbative analysis by summarizing the

state–of–the–art fixed–order and fixed–logarithmic–accuracy results. First, in Appendix A

we derive explicit expressions for the log–enhanced terms at O(α2
s). These will be useful for

checking NNLO calculations. Finally, it is straightforward5 to invert the Mellin transform of

Sud(m,N) in Eq. (2.11) to obtain a resummation formula with NNLL accuracy in x space.

The integrated spectrum with Eγ > E0 = (1 − ∆)m/2,

Γ[b −→ Xsγ]O7

Eγ>E0
(∆) ≡

∫ 1

1−∆
dx

dΓO7,PT(x)

dx
, (2.13)

is then:

Γ[b −→ Xsγ]O7

Eγ>E0
(∆)

ΓO7,PT

total

= CO7
∞ (αs(m))

exp

{
g0(ω)

(
αMS

s (m)
π

)−1

+ g1(ω) + g2(ω)αMS
s (m)

π

}

Γ
(
1 − β0

(
g′0(ω) + g′1(ω)αMS

s (m)
π

))

×
[
1 +

1

2
g′′0 (ω)β2

0

αMS
s (m)

π

(
Ψ2
(
1 − β0g

′
0(ω)

)
− Ψ′ (1 − β0g

′
0(ω)

) )]
+ RO7

(∆), (2.14)

where

ω ≡ αMS
s (m2)

π
β0 ln

1

∆
.

Eq. (2.14) was matched to agree with the exact NLO expression upon expansion us-

ing Eq. (A.2):

CO7
∞ (αs(m)) ≃ 1 − CF

αMS
s (m)

π

(
γ2

E

2
+

π2

12
− 7

4
γE +

31

12

)
+ O(α2

s) (2.15)

incorporates finite terms in the N −→ ∞ limit, while the additive contribution

RO7
(∆) =

[
−1

6
∆3 +

(
1

4
ln ∆ +

1

4

)
∆2 +

(
5

2
− ln∆

)
∆

]
CF

αMS
s (m)

π
+ O(α2

s) (2.16)

completes the terms that vanish at ∆ −→ 0. Note that the currently unknown O(α2
s) term

in Eq. (2.15) influences NNLL terms in the spectrum (at O(α3
s) and beyond) by mixing

5The general algorithm is explained in Sec. 3.4 of Ref. [19].
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with the leading logarithms from the expansion of the exponential function in Eq. (2.14).

Thus, although the Sudakov factor itself is known to NNLL accuracy, complete NNLL

accuracy of the spectrum is not yet available.

The resulting spectrum with the Sudakov factor computed at NNLL accuracy is shown

in Fig. 2 together with lower logarithmic accuracy results. We find that in spite of matching

the resummed result to the NLO expression (this compensates for some of the difference

observed in Fig. 1) differences between the three approximations to the spectrum are still

large. Note that the three curves are not plotted beyond x ≃ 0.97, where Eq. (2.14) becomes

complex owing to the presence of the Landau singularity6 at ω = 1/2. We observe that

with increasing logarithmic accuracy the differential spectrum widens up and gets shifted

to lower photon energies. While these features are intuitively expected, the instability of

the perturbative result makes it hard to rely on this spectrum and use it as a baseline for

parametrization of non-perturbative effects. An explicit separation criterion between the

perturbative and non-perturbative regimes is clearly missing here. As we shall see below,

these deficiencies are cured by DGE.

2.2 Borel representation of the exponent and the large–β0 limit

According to Ref. [16] the Sudakov factor in Eq. (2.1) can be expressed as the following

Borel sum:

Sud(m,N) ≡ exp

{
CF

β0

∫ ∞

0

du

u
T (u)

(
Λ2

m2

)u [
BS(u)Γ(−2u)

(
N2u − 1

)
−

BJ (u)Γ(−u) (Nu − 1)

]}
.(2.17)

Here we use the scheme–invariant Borel representation [33] where T (u) is the Laplace

transform of the ’t Hooft coupling:

A(µ) =
β0α

’t Hooft
s (µ)

π
=

∫ ∞

0
du T (u)

(
Λ2

µ2

)u

;
dA

d ln µ2
= −A2(1 + δA),

T (u) =
(uδ)uδe−uδ

Γ(1 + uδ)
; ln(µ2/Λ2) =

1

A
− δ ln

(
1 +

1

δA

)
(2.18)

with δ ≡ β1/β
2
0 , where the first two coefficients of the β function are given in Eq. (2.9).

The functions BS(u) and BJ (u) are the scheme invariant Borel representations of the

anomalous dimensions of the soft (quark distribution) and the jet functions, respectively.

Defining the Borel representation of the anomalous dimensions introduced in the previous

section, namely

A(αs(µ)) =
CF

β0

∫ ∞

0
duT (u)

(
Λ2

µ2

)u

BA(u),

B(αs(µ)) =
CF

β0

∫ ∞

0
duT (u)

(
Λ2

µ2

)u

BB(u),

6Ref. [13] suggested to remove these singularities by resumming a set of π2 terms that arise by evalu-

ating the coupling at time-like momentum. These terms, similarly to other running–coupling effects, are

resummed by DGE.
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Figure 2: The differential (top) and the integrated (bottom) spectra based on the fixed–

logarithmic–accuracy formula of Eq. (2.14), which is matched to NLO. The LL, NLL and NNLL

accuracy results are plotted as dotdashes, dashes and dots, respectively. The three curves end at

x ≃ 0.97, where the resummed results become complex owing to the Landau singularity at ω = 1/2.

D(αs(µ)) =
CF

β0

∫ ∞

0
duT (u)

(
Λ2

µ2

)u

BD(u), (2.19)
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we have:

BS(u) = BA(u) − uBD(u),

BJ (u) = BA(u) − uBB(u). (2.20)

These are exact relations.

Using the perturbative expansions in Eqs. (2.4) through (2.7), one obtains the following

expansions for the corresponding Borel functions at small u:

BA(u) = 1 +

(
5

3
+ c2

)
u

1!
+

(
−1

3
+ c3

)
u2

2!
+ · · · , (2.21)

where cn represent contributions that are subleading in β0; c2 and c3 are (see Appendix C

in [30]):

c2 =
CA

β0

(
1

3
− π2

12

)

c3 =
1

β0

[(
649

288
− 5

18
π2 +

7

2
ζ3

)
CA +

(
23

8
− 3ζ3

)
CF

]

+
1

β2
0

[(
251

288
+

7

144
π2 − 11

4
ζ3 +

11

720
π4

)
C2

A +

(
−235

96
+

11

4
ζ3 +

π2

16

)
CF CA − 3

32
C2

F

]

+
1

β3
0

[(
−301

512
− 7

192
π2

)
C3

A +

(
−11

64
− 11

192
π2

)
CF C2

A +
11

128
C2

F CA

]
. (2.22)

and

BD(u) = 1 +

[
1

9
+

CA

β0

(
9

4
ζ3 −

π2

12
− 11

18

)]
u + O(u2), (2.23)

BB(u) = −3

4
+

[
π2

6
− 247

72
+

CA

β0

(
− 73

144
+

5

2
ζ3

)
+

CF

β0

(
− 3

32
− 3

2
ζ3 +

π2

8

)]
u + O(u2).

Upon expanding the entire square brackets in Eq. (2.17) in powers of u using Eqs. (2.20)

through (2.23) one recovers the same log–enhanced terms presented in the previous section

to NNLL accuracy. However, upon performing the Borel integral (barring renormalon

singularities, see below) one can resum running–coupling effects to all orders. In the large–

β0 limit the Borel functions are given by [16,22]:

BS(u) = e
5
3
u(1 − u) + O(1/β0),

BJ (u) =
1

2
e

5
3
u

(
1

1 − u
+

1

1 − u/2

)
sinπu

πu
+ O(1/β0). (2.24)

Note that these are entire functions, free of singularities in the whole complex plane. In

the full theory, i.e. for finite β0, analytic expressions of this kind are, of course, not

known. In Sec. 2.3 we shall construct approximations to these unknown functions based

on their small-u expansions quoted above and some additional constraints. Because of

the significant contribution of running–coupling effects [16, 20–22] the difference between

performing the Borel integral (DGE) and extracting the leading logarithms to a fixed
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logarithmic accuracy is very significant. This will be explicitly demonstrated in the next

section.

Writing the Sudakov factor of Eq. (2.17) in a factorized form, i.e.

Sud(m,N) = SN (m;µ)JN (m;µ), (2.25)

requires subtraction of logarithmic singularities:

SN (m;µ) = exp

{
CF

β0

∫ ∞

0

du

u
T (u)

(
Λ2

m2

)u

× (2.26)

[
BS(u)Γ(−2u)

(
N2u − 1

)
+

(
m2

µ2

)u

BA(u) ln N

]}
,

JN (m;µ) = exp

{
− CF

β0

∫ ∞

0

du

u
T (u)

(
Λ2

m2

)u

× (2.27)

[
BJ (u)Γ(−u) (Nu − 1) +

(
m2

µ2

)u

BA(u) ln N

]}
,

where, as above, BA(u) is the Borel representation of the cusp anomalous dimension. This

anomalous dimension determines the factorization scale (µ) dependence of the separate

soft and the jet functions, while Sud(m,N) is independent of µ:

d ln SN (m;µ)

d ln µ2
= −d ln JN (m;µ)

d ln µ2
≡ −CF

β0
A(αs(µ)) ln N. (2.28)

Finally, note that the Sudakov factors Eq. (2.26) and Eq. (2.27) (and likewise Eq. (2.17))

have infrared renormalon singularities. As usual these singularities occur at integer (in both

JN and SN ) and half integer (in SN ) values of the Borel variable u. To properly define

these resummed Sudakov factors one needs to deform the integration contour off the real u

axis or take the Principal–Value prescription. We shall adopt the latter, which guaranties

that Sud(m,N) is a real–valued function, namely

Sud(m,N) =

[
Sud(m,N∗)

]∗
, (2.29)

and, in particular, that it is real for real positive N , as it is at any finite order in perturbation

theory. By choosing this prescription we have made an explicit separation between what

will be regarded as resummed perturbation theory and additional non-perturbative power

corrections, which we shall discuss in Sec. 4 below.

2.3 Renormalons beyond the large–β0 limit

The all–order structure of the Sudakov exponent is summarized by Eq. (2.17). DGE makes

use of this structure in spite of the limited knowledge of the functions BS(u) and BJ (u).

In the large–β0 limit these functions, given by Eq. (2.24), are free of infrared renormalon

singularities. Being anomalous dimensions they are expected to be free of renormalons also

in the full theory. Similarly to other cases [19–22,32], infrared renormalons appearing in the
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Sudakov exponent (2.17) have a very specific origin: the integration over the longitudinal

momentum fraction z in the z −→ 1 limit. This integration gives rise to the factors Γ(−2u)

and Γ(−u) in Eq. (2.26) and Eq. (2.27), respectively.

Eq. (2.26) therefore implies that the soft Sudakov exponent has simple renormalon

poles7 at all integer and half integer values of u, except where BS(u) vanishes. Similarly,

according to Eq. (2.27), the jet function has simple renormalon poles at all integer values

of u, except where BJ (u) vanishes. It turns out that in the large–β0 limit these functions

do vanish at some of the would-be renormalon positions: BS(u) vanishes at u = 1 while

BJ (u) at all integers u ≥ 3. It is not known whether the corresponding renormalons do

appear in the full theory.

The theoretical interest aside, the renormalon structure of the Sudakov exponent,

and in particular, that of the soft function, is important for phenomenology. Obviously,

the most important renormalon singularity is the one at u = 1
2 . It has been shown in

Ref. [16] that the associated ambiguity cancels out between the soft Sudakov exponent and

the leading non-perturbative correction Λ̄ = M − m. For this cancellation to be realized

— thus avoiding a spurious O(NΛ/m) artifact — both quantities need to be computed

as asymptotic expansions, regularizing the u = 1
2 renormalon in the same manner. As

explained in the introduction, in this paper we shall implement this idea. We shall use

the Cauchy Principal–Value prescription in the calculation of Λ̄ from the MS mass (see

Sec. 4.2) and in the calculation of the Sudakov exponent.

Power accuracy is, however, not easy to achieve. The difficulty is that in order to

accurately compute the Principal Value of the Borel integral, say in Eq. (2.26), the renor-

malon structure, including its overall normalization (the residue) must be known. Standard

perturbative expansions of BS(u) as in Eq. (2.23), yield power series in u, which may not

be reliable near u = 1
2 . In the following we will address this problem. Higher renormalon

singularities in the soft function scaling as higher powers of NΛ/m are also relevant. One

expects that these effects will mainly be important in the endpoint region. However, it is

hard to know a priori how far from endpoint their influence extends. For the jet function

the situation is different: the sensitivity to the functional form of BJ (u) away from the

origin is small. This correspond to the fact that power corrections on the scale m2/N are

smaller. In what follows we therefore concentrate on BS(u) and, first of all, on its value

at u = 1
2 which determines the corresponding renormalon residue in Eq. (2.26) and in

Eq. (2.17).

We first note that direct evaluation of the available NNLO expansion of BS(u) at u = 1
2

using Eq. (2.20) with Eqs. (2.21) and (2.23) is unreliable. The apparent convergence of

the series (in the Borel plane) at the first three orders is slow: for example with Nf = 4

the terms of increasing powers of u are: 1, −0.0188 and −0.3415. As the expansion of an

anomalous dimension this series is expected to converge, but since the NNLO is sizable

while the large–order behavior is not known, it appears that such a direct evaluation of

7Simple poles appear only in the scheme invariant formulation of the Borel transform, where the Borel

variable is conjugate to the logarithm of the scale. In the standard formulation, where the Borel variable

z is conjugate to 1/A (where A ≡ αsβ0/π), the singularity transforms into a cut which is controlled by

δ = β1/β2
0 owing to Eq. (B.13).
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the residue cannot be accurate.

Next, we note that the exact result of the large–β0 limit, Eq. (2.24), constrains the

anomalous dimensions to O(u0) only, and that the corrections to BS(u) at O(u) and O(u2),

which are subleading in β0, are large. Thus, a naive non-Abelianization approach, in which

O(1/β0) terms are neglected, is not sufficiently accurate8. A similar conclusion was reached

before [32] considering the case of the jet function.

Fortunately, indirect information on BS(u) at u = 1
2 is available owing to the exact

cancellation [16] of the corresponding renormalon ambiguity with the one in Λ̄, or in the

pole mass. We note that the singularity structure of the u = 1
2 renormalon in the pole

mass [34] — a simple pole in the scheme invariant Borel function — matches exactly the one

of the soft Sudakov exponent, as it should. As discussed in Appendix B, the normalization

of the pole–mass renormalon at 1
2 is well under control. This allows us to fix the value of

the Borel function:

BS(u)|u= 1
2

=
q

2
eδ/2. (2.30)

The normalization constant q — see Eq. (B.6) — has been computed from the perturbative

relation between the pole mass and the MS mass by several authors [35–38], obtaining good

numerical convergence already at the available NNLO. In Appendix B we summarize our

own study of this renormalon. Previous work on the subject was restricted to the standard

Borel representation and to the MS scheme. We extend this analysis using the scheme–

invariant formulation of the Borel transform. This provides an independent check of the

accuracy of this calculation and facilitates the comparison with the Sudakov exponent.

The result for the normalization of the pole–mass renormalon at 1
2 is shown in Fig. 13 in

Appendix B. The close agreement between different calculational procedures based on the

expansion of m/mMS(mMS) demonstrates the reliability of this determination. We conclude

that the residue can be computed with ∼ 2 − 3% accuracy over a wide range of β0 values,

in agreement with Refs. [35–38]. As anticipated, the determination that relies on the soft

Sudakov exponent is less accurate. Nevertheless, it does yield similar values.

As explained above, in order to evaluate the Sudakov exponent of Eq. (2.17) using

the Principal–Value prescription we must know BS(u) (and BJ (u)) as a function of u

away from the origin. Any uncertainty would translate into uncertainty in the computed

spectrum, and an ambiguity in the separation between perturbative and non-perturbative

corrections. To gauge the numerical significance of this issue, let us construct a few models,

which we generically call NNLL–DGE, that all share the same expansion in powers of u

up to the NNLO but differ away from the origin.

A natural possibility [19, 20, 22, 32] is to start with the analytic form of the large–β0

limit, Eq. (2.24), and include a multiplicative correction factor that modifies the expansion

coefficients at O(u) and at O(u2) by terms that are subleading in β0, so as to match the

exact coefficients given by Eq. (2.20) with Eq. (2.23).

8In general the naive non-Abelianization approach works well for perturbative expansions that are dom-

inated by renormalons, not for anomalous dimensions.
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At O(u) (NLL–DGE) this was already done in Ref. [16] following Refs. [19–22] as

follows:

BNLL−DGE
S (u) = e(

5
3
+c2)u(1 − u) + O(u2), (2.31)

and

BNLL−DGE
J (u) =

1

2
e(

5
3
+c2)u

(
1

1 − u
+

1

1 − u/2

)
sin πu

πu
+ O(u2). (2.32)

Proceeding to O(u2) (NNLL–DGE) one can write:

B
(a)
S (u) = e

5
3
u(1 − u) × exp

{
c2u +

[
c3 − c2

2 +
CA

β0

(
5

18
π2 +

7

9
− 9

2
ζ3

)]
u2

2!
+ O(u3)

}
,

B
(a)
J (u) =

1

2
e

5
3
u

(
1

1 − u
+

1

1 − u/2

)
sin πu

πu
× (2.33)

exp

{
c2u +

[
c3 − c2

2 +
CA

β0

(
29

72
π2 − 43

72
− 5ζ3

)
+

CF

β0

(
−π2

4
+

3

16
+ 3ζ3

)]
u2

2!
+ O(u3)

}
.

It is straightforward to check that the this model coincides with the exact analytic functions

in the large–β0 limit on the one hand, and has the exact expansion coefficients to the NNLO

on the other.

Let us recall that a similar exercise has already been done for the jet function in

Ref. [32], in the context of the large–x limit of deep inelastic structure functions. Since in

the case of decay spectra the soft function plays a dominant role, we shall adopt the model

of Eq. (2.33) for BJ (u) and not consider here other possibilities.

An alternative model for the soft function is given by

B
(b)
S (u) = e

5
3
u(1 − u) ×

{
1 + c2u +

[
c3 +

CA

β0

(
5

18
π2 +

7

9
− 9

2
ζ3

)]
u2

2!
+ O(u3)

}
. (2.34)

The main difference between B
(a)
S (u) and B

(b)
S (u) is that the former inherently suppresses

contributions from the large–u region, which is, in any case, not well controlled. While in

general the large–u region is suppressed in the Borel integral (2.17) by (Λ2/m2)u, at large

N this is replaced by (N2Λ2/m2)u. This suppression is relevant up to N ∼ m/Λ. Beyond

this region the Borel integral still converges thanks to the suppression by the factor Γ(−2u),

however, the perturbative result is no more a valid approximation; the power expansion

breaks down.

For N <∼ m/Λ the perturbative calculation by DGE is under control. Nevertheless,

non-negligible contributions may still arise from the vicinity of the renormalon positions

where the factor Γ(−2u) is singular. These are power suppressed terms. Indeed, looking

in Fig. 3 at the contributions to the Sudakov exponent from different sections along the

Borel integration axis for N = 20, models (a) and (b) appear rather different: while model

(a) is characterized by very small contributions beyond u ∼ 1.5, in model (b) these are

not small up to u of a few tens. This directly reflects the (exponential) suppression of the

large–u region in B
(a)
S (u) versus its enhancement in B

(b)
S (u). We note, however, that the
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Figure 3: Top: the Borel representation of the soft anomalous dimension, BS(u), as a function

of u for Nf = 4. Vertical lines indicate potential renormalon locations. Bottom: Contributions to

the Principal–Value integral over u in the Sudakov exponent of Eq. (2.17) for N = 20 from the

corresponding sections, each containing one renormalon (or none). In each figure the five curves

corresponds to the different models described in the text: NLL–DGE as thin full line and NNLL–

DGE: (a) as dotdashes, (b) as dashes, (c) as thick full line, and (d) as dots.

NLL–DGE model of Eq. (2.31) does not generate significant contributions from u values

beyond u ∼ 1.5, although it has no inherent exponential suppression of the large–u region.

To draw conclusions with regards to the net effect of the behavior of the models for

BS(u) away from the origin we now examine the value of the Sudakov factor Sud(m,N)

of Eq. (2.17). The result, shown in Fig. 4, is clear: models (a) and (b) as well as the

NLL–DGE one are close up to very high moments. This means that the total effect of

the large–u region of BS(u), which is not under control, is moderate; in model (b) this

is owing to cancellations between contributions from the different sections in Fig. 3. On

the whole the DGE result is stable. Nevertheless, the differences between the models are

non-negligible.

Fig. 4 also shows that some difference between DGE and the conventional Sudakov–

resummation procedure (with NNLL accuracy) develops already at low moments N < 10,

and that it becomes very significant for N ∼ 10− 20. One qualitative difference is that the

latter has a Landau singularity (N ≃ 33) whereas the former does not [22].

A shortcoming of the models constructed so far is that they are inaccurate around

u = 1
2 : Eq. (2.30) is not fulfilled. In order to incorporate the knowledge of BS(u) at u = 1

2
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Figure 4: The moment–space Sudakov factor Sud(m, N), as computed by DGE with perturbative

expansions of NLL and NNLL accuracy (in the latter case the four models (a) through (d) are

shown) and by conventional Sudakov resummation with NNLL accuracy.

we consider the following model:

B
(c)
S (u) = e

5
3
u(1 − u) × exp

{
c2u +

1

2

[
c3 − c2

2 +
CA

β0

(
5

18
π2 +

7

9
− 9

2
ζ3

)]
u2

}
× W (u),

(2.35)

which, similarly to models (a) and (b), has the exact coefficients through O(u2) and the

correct large–β0 limit. Here, however, the additional factor

W (u) ≡ ew1u+ 1
2
w2u2

(
1 − w1u +

1

2
(w2

1 − w2)u
2

)
= 1 + O(u3),

is constructed such that correct value of BS(u) at u = 1
2 would be reproduced, at least for

the physically relevant values of Nf . To this end we set:

w1 = 1.144CA/β0, w2 = −2.8CA/β0. (2.36)

The values of BS(u) at u = 1
2 in the different models are shown as a function of 1/β0

in Fig. 5. Returning to Fig. 4, we observe that fixing the value at u = 1
2 makes a large

effect on high moments N >∼ 20. This shows that this information is relevant for the final

spectrum. Nevertheless, the fact that differences with the other models are moderate for

N <∼ 20 is reassuring.
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Figure 5: The value of the Borel representation of the soft anomalous dimension BS(u) at u = 1

2
,

which is proportional to the residue of the u = 1

2
renormalon in the pole mass, plotted as a function

of 1/β0. The exact result of the large–β0 limit is denoted by a cross. The calculation relying on

perturbative expansion of m/mMS(mMS) using the scheme–invariant Borel transform as determined

using Eq. (B.20) is shown by plus signs. The four curves corresponds to the different models for

NNLL–DGE described above: (a) dotdashes, (b) dashes, (c) full line and (d) dots. Model (c)

matches the computed value of BS(u = 1

2
) at Nf = 4 by construction.

Finally, let us focus on the peculiar feature of the large–β0 result for BS(u), namely

its vanishing at u = 1, leading to the absence of a corresponding renormalon ambiguity. In

the models considered so far we assumed that this property is shared by the full theory.

This, however, has not been proven. Moreover, in Ref. [43] it has been shown that a u = 1

renormalon appears in the kinetic–energy operator once terms that are subleading in 1/β0

are taken into account. This suggest that the same might occur in the Sudakov exponent,

although this should be checked explicitly. In order to estimate the numerical significance

of this issue, let us construct another model, (d), which has B
(d)
S (u = 1) 6= 0:

B
(d)
S (u) = exp

{(
2

3
+ c2

)
u +

1

2

[
c3 − c2

2 +
CA

β0

(
5

18
π2 +

7

9
− 9

2
ζ3

)
− 1

]
u2

}
. (2.37)

While B
(d)
S (u) does not respect the large–β0 limit result, it does have the correct NNLO

expansion at u = 0. Returning again to Fig. 4, we observe that the effect of this modification

is moderate, although probably not negligible.

Finally, let us compare between the different calculations of the resummed Sudakov

exponent described above at the level of the normalized differential spectrum. To this
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Figure 6: The perturbative differential spectrum in b −→ Xsγ with different approximations for

the Sudakov factor as a function of x = 2Eγ/m, normalized by the total rate with Eγ > m/20.

The different curves correspond to conventional Sudakov resummation with NNLL accuracy (thin

dashed line) and DGE with perturbative expansions of NLL (thin full line) and NNLL accuracy

(thick lines) where the three models (a), (c) and (d) are shown by dotdashed, full and dotted lines,

respectively.

end we match the resummed expression for the Sudakov factor with the full NLO result as

explained in Sec. 3 below. Both the Borel integration in the Sudakov exponent in Eq. (2.17)

and the inverse–Mellin integration in Eq. (2.2) are performed numerically, avoiding any

further approximation. The results are shown in Fig. 6. Using DGE, the differences

between different models with NLL or NNLL accuracy are moderate. On the other hand

the result obtained by conventional NNLL Sudakov resummation is entirely different in

spite of having the same formal logarithmic accuracy!

It is interesting to note that the DGE result does not have the perturbative support

properties: while the perturbative coefficients at any given order vanish for Eγ > m/2, the

DGE–resummed spectrum does not. It peaks for Eγ <∼ m/2 and then smoothly crosses the

perturbative endpoint Eγ = m/2 and drops to zero at Eγ = (m + O(Λ)) /2. The resummed

expression having different analytic properties than the coefficients is not surprising given

that, strictly speaking, the sum does not exist. Nevertheless, it is remarkable that by

taking the Principal–Value prescription in moment space we obtain a spectrum, which

qualitatively corresponds to the decay of a higher–mass state.
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3. Matching the resummed spectrum to the full NLO result

In the previous section we discussed the QCD description of the endpoint region neglecting

O(1/N) corrections. In order to recover the correct spectrum away from the endpoint

region, the resummed result must be systematically matched onto the fixed–order pertur-

bative expansion, which is available in full at NLO — see Refs. [45–47] and references

therein.

3.1 The NLO result

The NLO calculation in the Standard Model is based on the effective Hamiltonian

Heff =
4GF√

2
V ∗

tsVtb

8∑

k=1

CkOk (3.1)

where Ck are the Wilson coefficients and Ok are local operators of dimension 5 or 6.

The most important operator contributing at leading order corresponds to the magnetic

interaction,

O7 =
emMS

16π2
(s̄LσµνbR) Fµν , (3.2)

where mMS is the running quark mass in the MS scheme and Fµν is the photon field strength.

The complete basis of operators can be found for example in Refs. [45,47].

Sudakov logarithms originate in the universal soft and collinear limits in which the

specific structure of the hard interaction is irrelevant. Therefore, the calculation in Ref. [16]

and the formulae of the previous section, although derived starting with O7, apply to all

operators. Terms that are finite (or vanish) at large N , e.g. those of Eq. (A.2), are different

between the different operators. These terms will now be incorporated in the process of

matching the Sudakov exponent to the full NLO result.

Our treatment of the endpoint region is based on moment space. On the other hand

contributions that are non-singular at x = 1 may be included either in moment space

or directly in x space. Since b −→ sγg contributions associated with O8 are singular at

x −→ 0 (when the photon gets soft) full NLO analysis in moment space is excluded. We

therefore choose a mixed matching procedure where the dominant contribution at large

x is taken into account in moment space, but some terms, which vanish at x −→ 1, are

included directly in x space.

Let us express the partonic decay rate with photon energy above some fixed energy

cut E0 = (1 − ∆)m/2 as:

Γ[b −→ Xsγ]Eγ>E0
= ΓLO ×

[
|MV |2 θ(∆ > 0) + R(∆)

]
, (3.3)

where θ(∆ > 0) is the heaviside function and

ΓLO =
G2

F m3m2
MS

(m)

32π4
|V ∗

tsVtb|2
(
C

(0) eff
7 (µb)

)2
, (3.4)

where m ≡ mb, the b-quark pole mass, mMS(m) is the running mass evaluated at m and,

finally, µb ≃ m. In Eq. (3.3) MV corresponds to the amplitude of the process b −→ sγ so
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it begins at O(α0
s) and includes all the purely virtual corrections at higher orders, while

R(∆) corresponds to partonic processes with at least one gluon in the final state, and it

therefore begins at O(αs) and depends on ∆. At NLO one has [45]:

MV = 1 +
αs

4π

(
C

(1) eff

7 (µb)

C
(0) eff

7 (µb)
+
∑

i=1..8

C
(0) eff

i (µb)

C
(0) eff

7 (µb)

[
ri + γ

(0) eff

i7 ln
m

µb

])
+ · · ·

R(∆) =
CF αs

π

(
− 1

2
ln2 ∆ − 7

4
ln ∆ +

∑

i, j = 1..8

i ≤ j

cij φij(∆)

)
+ · · · , (3.5)

where

cij ≡
C

(0) eff

i (µb)C
(0) eff

j (µb)
(
C

(0) eff

7 (µb)
)2 .

The expressions for the LO coefficients C
(0) eff

i , the NLO coefficients C
(1) eff

i and the (com-

plex) constants ri as well as the anomalous dimensions γ
(0) eff

i7 can be found e.g. in [44,45].

In R(∆) we exhibited explicitly the terms9 that are singular at the phase–space boundary

∆ −→ 0 (or x −→ 1). These terms must be resummed to all orders incorporating the

cancellation of divergences between real emission and virtual corrections. All the functions

φij(∆) vanish at ∆ = 0 — see Appendix C for explicit expressions.

3.2 The matching procedure

Our goal is to improve the determination of Γ[b −→ Xsγ]Eγ>E0=(1−∆)m/2 in Eq. (3.3)

for small values of ∆ by performing Sudakov resummation. At the same time we require

that upon expansion the matched expression would coincide with the fixed–order result

for any ∆. To perform the matching we first split the real–emission terms into two parts,

writing

1

ΓLO

Γ[b −→ Xsγ]Eγ>E0=xm/2 = |MV |2
[
θ(x < 1) + G1(x)

]
+ G2(x), (3.6)

where both G1,2(x) begin at O(αs) and we require that G1(x) contains all the singular

terms for x −→ 1 whereas G2(x) = O((1 − x)2) so that it does not contribute to the

differential rate near x = 1:

1

ΓLO

dΓPT(x)

dx
= |MV |2

[
δ(1 − x) − dG1(x)

dx

]
− dG2(x)

dx
. (3.7)

Finally, we replace the square brackets by a matched Sudakov resummation (or DGE)

formula in moment space while the G2 term is left in x space,

1

ΓLO

dΓPT(x)

dx
= |MV |2

∫ c+i∞

c−i∞

dN

2πi
x−NMPT

N − dG2(x)

dx
, (3.8)

9These specific terms originate in O7. However, at higher orders there are similarly singular terms from

all operators.
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where MPT

N is proportional to the Sudakov factor Sud(N) in Eq. (2.17). Here we used the

inverse Mellin transform formula of Eq. (2.2).

Eq. (3.8) is, by construction, consistent with both the fixed–order expansion and the

resummed expression in the x −→ 1 limit. From Eqs. (3.6), (3.7) and (3.8) it follows that

MPT

N = 1 + G1(x = 0) −
∫ 1

0
dxxN−1

{
dG1(x)

dx

}

+

, (3.9)

where { }+ stand for the “+” prescription (see Eq. (A.5)). Note that the contribution to

the N = 1 moment from the integral vanishes, so MN=1 = 1 + G1(x = 0). We emphasize

that, in contrast with our definition of M̄N in Sec. 2, MN=1 6= 1: the distribution is not

normalized.

3.3 Matching formulae at NLO

This matching procedure can be applied at any order10. Specifically, at NLO we have:

G1(x) =
CF αs

π

(
− 1

2
ln2(1 − x) − 7

4
ln(1 − x) +

∑

i, j = 1..8

i ≤ j

cij ηij(∆ = 1 − x)

)
+ O(α2

s),

G2(x) =
CF αs

π

∑

i, j = 1..8

i ≤ j

cij ξij(∆ = 1 − x) + O(α2
s), (3.10)

where φij(∆) = ηij(∆) + ξij(∆) with ξij(∆) = O(∆2); the explicit expressions for ηij and

ξij appear in Appendix C. Using Eq. (3.9) with Eq. (3.10) we then get:

MPT

N = 1 +
CF αs

π

{∫ 1

0
dxxN−1

[
− ln(1 − x)

1 − x
− 7

4

1

1 − x
+

∑

i, j = 1..8

i ≤ j

cij
dηij(∆)

d∆

∣∣∣∣
∆=1−x

]

+

+
∑

i, j = 1..8

i ≤ j

cij ηij(∆ = 1)

}
+ O(α2

s)

Performing the x-integration and extracting the single and double lnN terms which are

included in the Sudakov exponent we finally obtain the matched Sudakov–resummed mo-

ments:

MPT

N =

[
1 +

CF αs

π

(
f(N) +

∑

i, j = 1..8

i ≤ j

cij µij(N)

)]
× Sud(m,N), (3.11)

where

f(N) = −1

2
(Ψ(N) + γE)2 +

1

2
Ψ1(N) − π2

12
+

7

4
(Ψ(N) + γE) +

1

2
ln2 N −

(
7

4
− γE

)
ln N

10Note that at NLO one simply has R(∆ = 1 − x) = G1(x) + G2(x), however, starting at NNLO the

relation is more complicated.
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Figure 7: The differential spectrum according to Eq. (3.13) with MPT
N computed by NNLL–

DGE using Eq. (3.11) (where the Sudakov factor is evaluated by Eq. (2.17) using model (c) of

Eq. (2.35)). We show the spectrum matched to the full NLO result (full line) together with the

separate contributions in Eq. (3.13) that are taken into account in moment space (dashed line) and

in x space (dotted line), respectively. The latter is significant only for x −→ 0.

and

µij(N) ≡
∫ 1

0
dxxN−1 dηij(∆)

d∆

∣∣∣∣
∆=1−x

. (3.12)

It is straightforward to verify that, upon expanding Eq. (3.11) to O(αs), Eq. (3.8) repro-

duces the full NLO result. The x −→ 1 singular terms in −dG1(x)
dx are taken into account

through the Sudakov factor: they coincide with the O(αs) terms in Eq. (A.4); the finite

terms are incorporated into MPT

N , and the remaining terms, which vanish at x = 1, appear

explicitly in −dG2(x)
dx .

The explicit expressions for µij(N) appear in Appendix C. Having extracted the factor

|MV |2 which contains the constants at O(αs) in Eq. (3.8), µij(N) vanish at large N and

the information needed to compute the O(α2
s ln N) term in MPT

N is fully contained in f(N)

and the NNLL contributions to the exponent in Sud(m,N).

Having matched the result at NLO only, non-singular terms at O(α2
s) are not under

control. These terms depend on the details of the matching procedure. The particular

choice we made gives preference to the moment–space treatment: as reflected in Fig. 7 the

contribution of G2 is very small.

To conclude this section we summarize the result. The Sudakov–resummed differential
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rate, matched to the exact NLO result, takes the form:

1

ΓNLO

dΓPT(x)

dx
=

∫ c+i∞

c−i∞

dN

2πi
x−NMPT

N +
CF αs(mb)

π

∑

i, j = 1..8

i ≤ j

cij
dξij(∆)

d∆

∣∣∣∣
∆=1−x

(3.13)

where the moments MPT

N are given by Eq. (3.11) and the normalization is fixed by ΓNLO,

which is defined such that:

Γ[b −→ Xsγ]Eγ>E0=(1−∆)m/2 = ΓNLO × [θ(∆ > 0) + R(∆)] , (3.14)

with

ΓNLO =
G2

F m3m2
MS

(m)

32π4
|V ∗

tsVtb|2
(
Ceff

7γ(µb)
)2 ×

{
1 +

αs

2π

∑

i=1..8

C
(0) eff

i (µb)

C
(0) eff

7 (µb)

[
Re{ri} + γ

(0) eff

i7 ln
m

µb

]}
,

where Ceff
7γ(µb) = C

(0) eff

7 (µb) + αs

4πC
(1) eff

7 (µb). We emphasize that the contribution of the

ξij terms, which is treated in x space, vanishes linearly with (1 − x) at large x and it is

numerically very small in the experimentally relevant region of x.

Finally, the corresponding formula for the total rate with an energy cut Eγ > E0 =

(1 − ∆)m/2 is:

1

ΓNLO

Γ[b −→ Xsγ]Eγ>E0
=

∫ c+i∞

c−i∞

dN

2πi

(1 − ∆)1−N

N − 1
MPT

N +
CF αs(mb)

π

∑

i, j = 1..8

i ≤ j

cijξij(∆), (3.15)

where c > 1. Note that at ∆ −→ 1 (completely inclusive measurement) the inverse Mellin

integral in Eq. (3.15) becomes trivial: it equals MN=1.

4. Power corrections

The perturbative analysis of decay spectra in the endpoint region [4, 16] exposes the pres-

ence of three different scales: (1) hard, corresponding to virtual corrections with momenta

O(m); (2) final–state dynamics of the jet with invariant mass squared O(m2/N); and

(3) soft radiation, with momenta O(m/N), that determines the heavy–quark momentum

distribution function. Naturally, there is also non-perturbative dynamics on each of these

scales, which brings about power corrections. The largest power corrections are clearly

those on the soft scale. Smaller power corrections, which nevertheless become increasingly

important near the endpoint, are the ones corresponding to the jet–mass scale. Their com-

bined effect is related to the appearance of resonances when the jet mass is sufficiently

small. In the following we address power corrections on the soft scale only.

4.1 Power corrections on the soft scale

The classical approach to the quark distribution function [1, 2] is based on the OPE. Ex-

panding the non-local lightcone operator in Eq. (1.1) in powers of the lightcone separa-

tion y− one obtains local operators with a corresponding number of iD+ derivatives. The
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matrix elements of these operators in the meson define non-perturbative parameters fn,

which, similarly to the non-local operator in Eq. (1.1), require renormalization. In the

endpoint region all of these powers are relevant, and need to be summed. One arrives at

the following result:

1

2
〈B(P )| Ψ̄(y)Φy(0, y)γ+Ψ(0) |B(P )〉 ≃ exp

{
iP+y−m

M

}
×
[
1 +

∞∑

n=2

fn

n!
(iP+y−/M)n

]

(4.1)

where the square brackets define the so called “shape function”. Up to O(1/N) corrections,

the Mellin integral is the inverse of the Fourier integral in Eq. (1.1), so one gets the moment–

space result by analytic continuation: iP+y− −→ N . This leads to Eq. (1.4).

A complementary point of view was presented in Ref. [16]. One begins by computing

the quark distribution in an on-shell heavy quark, Eq. (1.2), which differs from the object

of interest, Eq. (1.1), by the external states. Moments of this distribution are infrared safe:

all logarithmic singularities cancel out between real and virtual corrections. However, the

all–order result for these moments has infrared renormalons11, which indicate power–like

sensitivity to large distance physics. As discussed in Sec. 2.2 above and in Refs. [16, 30],

the Sudakov factor SN of Eq. (2.26) has infrared renormalons with ambiguities that scale

as integer powers of NΛ/m:

SN = SPV

N × exp





∞∑

j=1

Kj

(
NΛ

m

)j


 , (4.2)

where Kj represent O(1) ambiguities. It was shown in detail in Ref. [16] that K1 has a

special status: it is directly related to the leading renormalon ambiguity in the definition

of the pole mass. This relation is realized in Eq. (1.4) by the fact that the normalization

of the O(N/M) term in the exponent is the difference between the meson mass and the

quark pole mass. Higher–order terms in the exponential factor in Eq. (4.2) are reflected in

Eq. (1.4) by F .

Therefore, in principle the non-perturbative function F can be thought of in terms of

the OPE or from the renormalon perspective. What is important in practice however, is the

way the separation between the perturbative and non-perturbative regimes is implemented.

Here we choose the Principal–Value prescription. We believe that this facilitates making

maximal use of perturbation theory thus minimizing the role of power corrections.

Based on Eq. (1.4), the physical photon–energy moments can be computed from their

perturbative counterparts by

MN = MPT,PV

N ×exp

{
−(N − 1)Λ̄PV

M

}
×F((N−1)Λ/M); Λ̄PV ≡ M−mPV, (4.3)

with the matched expression for MPT,PV

N given by Eq. (3.11), where the Sudakov factor of

Eq. (2.17) is defined in the Principal–Value prescription. This implies of course the same

prescription for Λ̄ and for the higher–power ambiguities in F . In the numerical analysis that

11See Ref. [30] for the large–β0 limit result.
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follows we shall simply drop the unknown non-perturbative function F . Its parametrization

would be worthwhile doing once stringent theoretical constrains are available or when

experimental data become sufficiently precise.

In this approximation we get the following DGE result for the differential spectrum in

physical units:

1

ΓNLO

dΓ(Eγ)

dEγ
=

M

2

∫ c+i∞

c−i∞

dN

2πi

(
2Eγ

M

)−N

MN (4.4)

≃ mPV

2

∫ c+i∞

c−i∞

dN

2πi

(
2Eγ

mPV

)−N

MPT,PV

N ,

where12 MN in the first line is given by Eq. (4.3) with F = 1 whereas MPT,PV

N in the second

is given by Eq. (3.11), where the Sudakov factor of Eq. (2.17) is defined in the Principal–

Value prescription. While the two lines in Eq. (4.4) are trivially equivalent — the equality

is violated by terms O(Λ/M) — they reflect two different physical interpretations: in the

first line the moments are the physical spectral moments which are free of any prescription

dependence whereas in the second these are resummed perturbative moments in a given

prescription.

The equality of the two formulations in Eq. (4.4) indicates that the accuracy at which

the meson mass is known is irrelevant for the calculation of the spectrum. On the other

hand, no matter which of the two is chosen, an accurate determination of the pole mass in

the Principal–Value prescription is crucial.

4.2 Calculation of Λ̄PV

In principle, Λ̄PV, or the Principal–Value pole mass mPV, can be determined from the

relation with any other well–defined mass. A natural choice is the relation with the MS

mass because it is reasonably well measured [48]

mMS(mMS) = 4.19 ± 0.05, GeV (4.5)

and the corresponding perturbative expansion is known to the NNLO [45], while the nor-

malization of the leading infrared renormalon is well under control — see Appendix B and

Refs. [35–38].

Let us begin by defining mPV through the Principal Value of the standard Borel sum

(see Appendix B):
mPV

mMS

= 1 +
CF

β0
PV

∫ ∞

0
dzB(z) e−z/Ā, (4.6)

where Ā = β0αs(mMS)/π. Owing to the dominance of the first infrared renormalon, which

is apparent already at low orders, and to the fact that the singularity structure of this

renormalon is exactly known [34], it is possible to accurately estimate the normalization of

the renormalon singularity [35–38] and thus construct a bilocal expansion of the form:

B(z) =

nmax∑

n=0

bnzn +
q

(1 − 2z)1+
1
2
δ

[
1 +

kmax∑

k=1

ck(1 − 2z)k

]
, (4.7)

12For simplicity, we dropped the ξ terms appearing in Eq. (3.13); while small, these terms are included

in all the numerical results that follow.
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where, as before, δ = β1/β
2
0 . Here the first sum is known to the NNLO and we therefore

use nmax = 2. The coefficients in the second term depend only on the coefficients of the

MS β function (see e.g. [35]) which sets kmax = 2.

An accurate determination of the normalization constant q is essential for Eq. (4.7)

to be useful for the calculation of mPV from Eq. (4.6). Clearly, also the convergence of

the sums in Eq. (4.7) is relevant; but assuming that q is known, both series in Eq. (4.7)

are free of any z = 1
2 renormalon singularity13 and thus their convergence is much better

than that of the original m/mMS expansion. Therefore, the accuracy at which mPV can be

determined is comparable to the one at which mMS is known.

According to Refs. [35–38] and Appendix B, q can be accurately computed. Using

Eq. (B.20) we obtain:

CF q(Nf = 3)/π = 0.560; CF q(Nf = 4)/π = 0.536. (4.8)

This determination can be trusted within ∼ 2 − 3%. Proceeding to evaluate mPV from

Eq. (4.7) we obtain

mPV

mMS

∣∣∣∣
Nf =3

= 1.161 ± 0.005;
mPV

mMS

∣∣∣∣
Nf =4

= 1.164 ± 0.005, (4.9)

where we used the values in Eq. (4.8) for q, αs(m
MS

b ) = 0.226, and estimated the error

based on the NNLO contribution. Taking into account the effect of the finite charm mass

we shall use mPV/mMS = 1.163 ± 0.005. Thus, based on Eq. (4.5) and the measured value

of the mason mass, M = 5.279GeV, we conclude that

mPV = 4.874 ± 0.050GeV; Λ̄PV = M − mPV = 0.405 ± 0.050GeV, (4.10)

where the error is dominated by that of the short–distance mass determination, Eq. (4.5).

5. Numerical results and comparison with data

The state–of–the–art analysis of the total B̄ −→ Xsγ branching ratio is based on the NLO

calculation [44,46,47]. According to Ref. [44] the integrated spectrum above mb/20 is:

BR[B̄ −→ Xsγ]Eγ>E0=mb/20 ≃ 3.73 · 10−4. (5.1)

This prediction has ∼ 10% accuracy. It is well known that a much higher cut on the

photon energy is experimentally unavoidable. Realistic measurements in the B factories

can be done with Eγ > E0 = 1.815GeV [56], but higher cuts are advantageous and lead

to smaller experimental errors. Moreover, it turns out to be useful to measure spectral

moments over this limited energy domain. In this section we show that direct comparison

of such measurements to theory is now possible.

To describe the total rate we follow Ref. [44]. In this approach, instead of evaluating

ΓNLO in Eq. (3.15) directly from its definition in Eq. (3.14), one uses the experimental value

13Higher renormalons are present in the first sum. In [36] the convergence of this sum was further

improved using conformal mapping, which we do not use here.
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for the B̄ −→ Xceν̄ branching ratio avoiding explicit dependence on the b-quark pole mass.

In addition, by an appropriate choice of mass scheme, Ref. [44] accounted for some charm–

mass effects associated with charm quark loops in the O2 operator. These effects are

formally NNLO in the strong coupling, but they are numerically important. Comparing

the result of Ref. [44] with E0 = mb/20, Eq. (5.1), to our calculation at the corresponding

cut value ∆ = 0.9, we fix the normalization of the branching ratio BR0:

BR[B̄ −→ Xsγ]Eγ>E0
=BR0

[∫ c+i∞

c−i∞

dN

2πi

(1 − ∆)1−N

N − 1
MPT,PV

N +
CF αs(mb)

π

∑

i, j = 1..8

i ≤ j

cijξij(∆)

]
,

with BR0 = 2.86 ± 0.29. (5.2)

This formula will now be used to predict the dependence on ∆ = 1−2E0/mPV. Throughout

this analysis we shall use the central value14 of BR0 in Eq. (5.2).

Recall that MPT,PV

N in Eq. (5.2) is given by Eq. (3.11), where the DGE Sudakov fac-

tor (2.17) is defined in the Principal–Value prescription. As discussed in Sec. 4.1 the use

of the corresponding Principal–Value mass mPV in the definition of ∆ guaranties consis-

tency at the level of the “binding energy”; it effectively accounts for the exponential factor

in Eq. (4.3). On the other hand, additional power corrections O
(
((N − 1)Λ/M)2

)
cor-

responding to F in Eq. (4.3) are ignored. We are assuming that they are numerically

small when using DGE with the Principal–Value prescription. Some evidence that this

assumption is sensible is:

• The DGE prediction is perturbatively stable: as shown in Fig. 8 the change from NLL–

DGE to NNLL–DGE is moderate. This feature is best seen in moment space, see

Fig. 4. Perturbative stability is of course only a necessary condition, not a sufficient

one, as not all sources of power corrections can be probed by perturbative means.

• The predicted spectrum smoothly extends beyond the perturbative endpoint and tends

to zero for Eγ = (m + O(Λ)) /2, close to the physical endpoint Eγ = M/2. In this

respect the differences between the various models shown in Fig. 8 are less than 100

MeV. This is quite remarkable given that in the close vicinity of the endpoint all power

corrections on the soft scale are a priori important. On the other hand, this should not

be taken as an indication that all power corrections are small: they may be large, yet

conspire to cancel. Moreover, in the close vicinity of the endpoint the approximation

based on keeping power corrections on the soft scale only breaks down: the non-

perturbative structure of the jet becomes important; in our formulation resonances

are simply ignored.

These are, of course, qualitative arguments. In the long run data will hopefully allow

quantifying these power corrections.

The immediate advantage of the DGE calculation of the spectrum is the possibility

to provide a reliable estimate of the partial branching fraction and higher moments with
14This is phenomenologically sensible because the sources of uncertainty in the distribution are different

from those of the total branching fraction.
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Figure 8: The dependence of the differential (top) and integrated (bottom) B̄ −→ Xsγ spectrum

as predicted by DGE on the model assumed for the Borel function of the soft Sudakov exponent

(see Sec. 2.3).

experimentally relevant cuts. To assess the remaining theoretical uncertainty in this pre-

diction let us first compare the chosen model (c) for BS(u) (Eq. (2.35)) to other models
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Figure 9: The dependence of the differential (top) and integrated (bottom) B̄ −→ Xsγ spectrum

as predicted by DGE on the value of the strong coupling.

for the soft15 Sudakov factor introduced in Sec. 2.3. Recall that the differences between

these models are associated with the structure of the Borel function away from the origin,

and are therefore equivalent in principle to the power corrections on the soft scale (m/N)

15Note that closer to the endpoint also the behavior of BJ (u) away from the origin becomes relevant.
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Figure 10: The dependence of the differential (top) and integrated (bottom) B̄ −→ Xsγ spectrum

as predicted by DGE on the assumed value for Λ̄.

that would be parametrized by F . On the other hand, using the differences between the

models as an error estimate is rather conservative16, since only model (c) is, by construc-

tion, consistent with the large–order behavior of the Sudakov exponent. Fig. 8 shows the

16A more precise uncertainty estimate can be obtained by comparing different models that are consistent
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differential and integrated spectra according to the various models for BS(u). Differences

between models for the differential spectrum near the peak exceed 20%. For the integrated

spectrum, however, this translates into less than 10% difference for practically any cut

(excluding, of course, the immediate vicinity of the endpoint, E0 > 2.4 GeV).

αMS
s (MZ) αMS

s (mPV) ΛNf =4 GeV Λ̄PV = M − mPV GeV

0.113 0.198 0.265 0.392

0.1182 0.216 0.353 0.405

0.120 0.222 0.385 0.455

Table 1: Variation of the parameters entering the calculation of the spectrum with αs(MZ).

Another theoretical–uncertainty estimate can be obtained by varying the input pa-

rameters αs and mMS within their error ranges. The sensitivity of the DGE spectrum to

these parameters is higher than in typical short–distance calculations. The precise value

of the coupling is important since αs is probed at low scales O(m/N). The value of the

short–distance mass mMS directly influences the pole mass mPV (Sec. 4.2), which sets the

scale for the spectrum in physical units, see Eq. (4.4). Table 1 details the values of the

parameters entering the calculation for the central and the two extreme choices we made

for αMS
s (MZ). Fig. 9 shows the corresponding differential and integrated spectra. Fig. 10

shows the spectrum for the central value of of the coupling, αs(m) = 0.216, while varying Λ̄

by ±50 MeV. This corresponds, to a good approximation, to varying mMS within its error

range. Note that while the variation in the coupling influences all the moments (the shape

of the distribution gets modified) the variation of mMS mainly affects the average energy:

it generates a global shift of the distribution.

A word of caution is due regarding the interpretation of the theoretical uncertainty

reflected in the figures. As usual, uncertainty estimates are based on corrections that

are known, e.g. degrading the NNLL–DGE to NLL–DGE. In this paper we have not

parametrized non-perturbative power corrections, whose influence would increase towards

the endpoint. Our analysis only reflects these effects through the different models for

BS(u). Such differences might not capture all possible power corrections. In this case, the

uncertainty may be underestimated near the endpoint.

Next, let us consider the average of the photon energy with a cut, namely

〈Eγ〉Eγ>E0
≡

∫

E0

dEγ
dΓ(Eγ)

dEγ
Eγ

∫

E0

dEγ
dΓ(Eγ)

dEγ

(5.3)

with the NNLO expansion of BS(u) as well as with BS(1/2). Since the differences between the models

introduced in Sec. 2.3 are of the same order of magnitude as other sources of uncertainty (e.g. the values

of short–distance parameters) we postpone such detailed analysis to future work.
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Figure 11: The first two truncated moments of the B̄ −→ Xsγ spectrum: 〈Eγ〉 (top) and〈
(〈Eγ〉 − Eγ)2

〉
(bottom), as a function of the minimum photon energy cut E0, as calculated by

DGE using model (c) of Eq. (2.35) while varying αs and mMS within their error ranges. In each

plot we show a few curves representing the dominant source of uncertainty considering the various

models for BS(u) and the values of αs and mMS. The DGE result is compared to the available data

from Belle [56] with a cut E0 = 1.815 GeV.

and, similarly, higher truncated moments:

〈(
〈Eγ〉Eγ>E0

− Eγ

)n〉
Eγ>E0

≡

∫

E0

dEγ
dΓ(Eγ)

dEγ

(
〈Eγ〉Eγ>E0

− Eγ

)n

∫

E0

dEγ
dΓ(Eγ)

dEγ

. (5.4)
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Figure 12: DGE results for the first ten truncated moments of the B̄ −→ Xsγ spectrum,

〈(〈Eγ〉 − Eγ)n〉, with a cut Eγ > E0 = 1.815 GeV. All moments are presented in energy units

(GeV) by taking the corresponding n-th root. The n = 2 result is compared with Belle data, where

the internal and external shaded regions represent statistical and statistical plus systematic errors,

respectively.

Note that these moments differ from the standard Mellin moments discussed so far in two

respects: first, they are defined over a limited photon–energy range, and second, these are

“central moments” in the sense that they depend of the difference between the photon

energy and the average energy in this range.

For sufficiently high E0 cuts and low enough n these moments are accessible experi-

mentally. Results for the average energy, Eq. (5.3), and the variance (n = 2 in Eq. (5.4))

were recently published by Belle [56,57] with E0 = 1.815 GeV. In Fig. 11 we compare this

experimental result to our calculation while providing additional theoretical predictions for

the dependence on the cut value. We find very good agreement. The experimental error is

somewhat larger than the theoretical one. Note that the dominant source of uncertainty

in the theoretical prediction for the average energy is the value of mMS, affecting the cal-

culation of the pole mass mPV or Λ̄PV. In the future it may even be possible to get an

accurate measurement of mMS from experimental data for 〈Eγ〉Eγ>E0
. On the other hand,

the dominant source of uncertainty in the variance is the value of the strong coupling.

More interesting comparison can hopefully be done in the future with experimental data

having higher cuts, where the systematic experimental errors are expected to be smaller.

The possibility to make comparison between theory and data as a function of the cut has
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an important added value: clearly, at sufficiently high E0 values the theoretical prediction,

which is lacking any non-perturbative corrections, will fail.

Finally, in Fig. 12 we show the theoretical prediction for the first ten moments. Going

to higher moments the finer details of the shape become important. The expectation is,

of course, that power corrections will become increasingly important at high n. Having

excluded power corrections, the dominant source of uncertainty in Fig. 12 is the value of αs.

Since for higher moments the coupling is probed at lower scales ∼ O(m/n), this uncertainty

gradually increases with n. Following Belle [56] we have chosen Eγ > E0 = 1.815GeV.

Fig. 12 shows the comparison with Belle data for the variance; there is no data to compare

with for n ≥ 3.

6. Conclusions

Inclusive B–decay spectra present a special challenge to theory: because of their inclusive

nature the details of the hadronic wave function are largely irrelevant, but on the other

hand, the soft scales involved prohibit a straightforward perturbative approach.

• The clearest manifestation of the non-perturbative nature of the B̄ −→ Xsγ spectrum

is that any fixed–order perturbative result has support only for Eγ < m/2 while the

physical spectrum extends to Eγ = M/2. The gap between the quark pole mass and

the meson mass is related to non-perturbative dynamic of the bound state.

• Moreover, the perturbative endpoint region is characterized by parametrically large

corrections. The conventional approach to Sudakov resummation, which relies on the

dominance of logarithmic corrections in the large–N limit where αs(m) ln N is fixed,

fails because of large running–coupling effects. The breakdown of the perturbative

expansion with increasing logarithmic accuracy is demonstrated in Fig. 2 (see also

Fig. 2 in [16]).

In this paper we showed that DGE provides a solution to both these problems. Al-

though it is based on resummation of perturbation theory the DGE–resummed spec-

trum does not have perturbative support. By taking the Principal–Value prescription

in moment space this inherent limitation of any fixed–order approximation is removed.

The spectrum smoothly extends to the non-perturbative regime and tends to zero for

Eγ = (m + O(Λ)) /2, qualitatively as expected in the meson decay (see Fig. 6).

Of course, the DGE spectrum does not have correct non-perturbative support proper-

ties: it does not strictly vanish for Eγ > M/2. Moreover, is not necessarily positive definite

for any Eγ < M/2 (see e.g. Fig. 8). Indeed, the close vicinity of the endpoint is beyond

theoretical control as it involves an infinite number of non-perturbative power corrections

on the soft scale m/N , and eventually also the non-perturbative structure of the jet.

In this work we presented perturbative predictions and refrained from making any

parametrization of non-perturbative power corrections. It is conceivable that there exist a

region where a few non-perturbative corrections on the soft scale are phenomenologically

relevant, while corrections on the jet–mass scale can be ignored. Once experimental data
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are precise enough, power corrections on the soft scale will be worthwhile parametrizing be-

cause of their universal nature: they are related exclusively to the quark distribution in the

meson. Therefore, fixing their magnitude can be instrumental to precision measurements

of Vub from charmless semileptonic B decays. The DGE spectrum presented here provides

a baseline for systematic parametrization of such non-perturbative power corrections. Per-

turbative stability is imperative in this respect. The remarkable stability of the DGE result

(compare Fig. 4 to Fig. 1) is largely thanks to the resummation of running–coupling effects.

It should be emphasized that the difference between DGE and any fixed–logarithmic–

accuracy approach is a qualitative one. Recall, that an accurate value of mPV (or Λ̄PV) is

essential for the calculation of the photon–energy spectrum in physical units (see Sec. 4). As

opposed to the general concept of the pole mass, mPV has no linear O(Λ) ambiguity. It can

be determined with roughly the same accuracy as short–distance masses (∼ 50 MeV). It is

only because the Sudakov exponent was defined using the Principal–Value prescription that

mPV becomes the relevant mass. This is a manifestation of the cancellation of renormalon

ambiguities between the quark–distribution subprocess in the Sudakov factor and the pole

mass [16]. In a fixed–logarithmic–accuracy approach the renormalon in the Sudakov factor

is hidden — it is realized through the divergence of the expansion in Eq. (2.11) — so the

choice of mass scheme when computing the spectrum in physical units becomes ad hoc.

Experimentally–favorable observables are moments of the photon–energy spectrum

defined over a limited range, Eγ > E0, Eqs. (5.3) and (5.4). Having obtained a stable

prediction in Mellin space over a wide domain in the complex N plane, we can reliably

compute the truncated moments over a range of experimentally–relevant cut values. We

showed that our calculation nicely agrees with the recent data from Belle [56]. Furthermore,

a great variety of possibilities for comparison between data and theory is now open, e.g.

studying the dependence on the cut value and higher truncated moments. In this way

more detailed information on the distribution can be systematically extracted. This is, in

particular, imperative to quantifying power corrections.

The qualitative success of the DGE calculation presented here, which does not involve

any non-perturbative parameters, and the good agreement with the available data from

Belle, indicate that additional power corrections in this framework are indeed small. This

approach is therefore promising for extracting Vub from charmless semileptonic B decays.

Note added

A few weeks after the submission of this paper, the BaBar collaboration has presented [58]

new preliminary data for the partial branching ratio, as well as the average energy and the

variance as a function of the cut. Comparison of the predictions in Figs. 10 and 11 above

with these measurements can be found in Ref. [59].
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A. Singular terms at NNLO

Let us expand the Sudakov exponent in Eq. (2.11) to O
(
α2

s

)
. We get:

Sud(m,N) = exp

{(
αMS

s (m)

π

)[
− 1

2
ln2 N A1 + (−γE A1 − B1 + D1) ln N

]
(A.1)

+

(
αMS

s (m)

π

)2[
− 1

2
β0 ln3 N A1 +

((
−3

2
γE A1 + D1 −

1

2
B1

)
β0 −

1

2
A2

)
ln2 N

+

((
−γE B1 + 2 γE D1 −

3

2
A1 γ2

E − 1

4
A1 π2

)
β0 − γE A2 − B2 + D2

)
ln N

]
+ · · ·

}

To get M̄PT, O7

N in Eq. (2.1) one needs the matching coefficient, which is currently

known only to O(αs). It is given by [16]:

CO7

N (αs(m)) = 1 +
CF αs

2π

{[(
7

2
− 1

N (N + 1)
+

2

N

)
(Ψ(N) + γE) + Ψ1(N) − π2

6

− (Ψ(N) + γE)2 − 31

6
+

9

2N
+

1

(N + 1)2
− 1

N + 2
− 1

2N + 2
+

1

N2

]

−
[
− ln2 N +

(
7

2
− 2γE

)
ln N

]}
+ O

(
α2

s

)
. (A.2)

Let us note that having fixed the anomalous dimensions as above, the only missing ingredi-

ent for Sudakov resummation of decay spectra with NNLL accuracy is the N–independent

term at O(α2
s).

For easy comparison with future two–loop calculations of the decay process, we sum-

marize below the log–enhanced terms to order α2
s. Expanding the exponent and taking into

account the constant terms at order αs in Eq. (A.2) we obtain the following log-enhanced

terms at O
(
α2

s

)
:

M̄PT, O7

N = 1 +

{(
7

4
− 1

2N (N + 1)
+

1

N

)
(Ψ(N) + γE) +

1

2
Ψ1(N) − 1

2
(Ψ(N) + γE)2

−π2

12
− 31

12
+

9

4N
+

1

2(N + 1)2
− 1

2(N + 2)
− 1

4 (N + 1)
+

1

2N2

}
αMS

s (m)

π

+

{
C2

F

8
ln4 N +

[
1

12
CF Nf +

(
γE

2
− 7

8

)
C2

F − 11

24
CF CA

]
ln3 N

+

[(
− 13

144
+

γE

4

)
CF Nf +

(
−21

8
γE +

3

4
γ2

E +
271

96
+

1

24
π2

)
C2

F

+

(
95

288
− 11 γE

8
+

π2

24

)
CA CF

]
ln2 N +

[(
−13

72
γE − 85

144
+

1

4
γ2

E +
5

72
π2

)
CF Nf

+

(
−13π2

48
+

3

2
ζ3 +

γE π2

12
− 425

96
+

γ3
E

2
− 21 γ2

E

8
+

271 γE

48

)
C2

F (A.3)
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+

(
−1

4
ζ3 −

67π2

144
+

γE π2

12
+

95 γE

144
+

905

288
− 11 γ2

E

8

)
CA CF

]
ln N

}(
αMS

s (m)

π

)2

+ · · · .

Note that the normalization of the rate influences not only constant terms at O(αs) but

also the contributions to the ln2 N and the ln1 N terms at O(α2
s) that are proportional

to C2
F . Here we present the expansion of M̄PT, O7

N , where the N = 1 moment is exactly

1 by definition. It is straightforward to convert this expansion to other normalization

conventions (Eqs. (C.2) and (3.14) may be useful).

Converting Eq. (A.3) to x space, the x → 1 singular terms in the b −→ Xsγ distribution

(from O7) up to O(α2
s) are:

1

Γtotal

dΓ

dx

∣∣∣∣
PT, O7

= δ(1 − x) +

{
− ln(1 − x)

1 − x
− 7

4

1

1 − x
− 1

2
(1 − x)2

+

(
1

2
ln(1 − x) +

3

4

)
(1 − x) − ln(1 − x) +

3

2

}

+

CF
αMS

s (m)

π

+

{
C2

F

2

ln3(1 − x)

1 − x
+

[
− 1

4
CF Nf +

11

8
CF CA +

21

8
C2

F

]
ln2(1 − x)

1 − x

+

[
− 13

72
CF Nf +

(
−π2

6
+

271

48

)
C2

F +

(
95

144
+

π2

12

)
CA CF

]
ln(1 − x)

1 − x

+

[(
85

144
− π2

36

)
CF Nf +

(
−1

2
ζ3 −

π2

6
+

425

96

)
C2

F (A.4)

+

(
1

4
ζ3 −

905

288
+

17π2

72

)
CA CF

]
1

1 − x

}

+

(
αMS

s (m)

π

)2

+ · · · .

We checked that the terms that are leading in β0 in Eq. (A.4) agree with the large–x

expansion of Ref. [8].

In Eq. (A.4) { }+ stand for the standard “+” prescription, i.e.

{p(z)}+ = p(z) − δ(1 − z)

∫ 1

0
p(z)dz, (A.5)

so, writing

1

Γtotal

dΓPT

dx
(x) = δ(1 − x) + {p(x)}+ (A.6)

the convolution with a smooth test function f(x) (representing non-perturbative correc-

tions) takes the form:

1

Γtotal

dΓ

dx
(x) = f(x)

[
1 −

∫ x

0
p(z)dz

]
+

∫ 1

x
dzp(z)

(
f(x/z)

z
− f(x)

)
, (A.7)

where both terms are well defined. In moment space, this is equivalent to multiplying

the moments of the perturbative distribution MPT

N by the moments on the test function:

FN =
∫ 1
0 dzzN−1f(z).
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B. The u =
1
2

renormalon in the pole mass

In this Appendix we determine the normalization of the u = 1
2 renormalon in the pole mass.

This result is used for the calculation of the pole mass in the Principal–Value prescription

in Sec. 4.2 and for the comparison with the soft Sudakov exponent in Sec. 2.3.

Remarkably, the structure of the leading renormalon ambiguity in the pole mass is

known exactly. Ref. [34] has shown that, owing to the vanishing of the anomalous dimen-

sion of the h̄vhv operator, the linear ultraviolet divergence in the self energy of a static

quark has a very simple structure: it is just proportional to the QCD scale Λ without

any logarithmic corrections. Consequently, the imaginary part associated with the u = 1
2

infrared renormalon in the pole mass has the same property:

Im {m} = const × Λ. (B.1)

This means that, up to an overall normalization constant, the large–order behavior of the

relation between the pole mass and any short–distance mass (which is induced by this

renormalon) depends only on the coefficients of the β function.

Owing to the dominance of the u = 1
2 renormalon, which sets in already at low orders,

the normalization constant can be computed from the perturbative expansion with accuracy

of a few percent [35–38].

The renormalon in the standard Borel representation

Let us first briefly review the standard analysis (more details can be found in [49]). To

make use of Eq. (B.1) one first integrates the renormalization–group equation,

da

d ln µ2
= −a2

[
1 + δa +

∞∑

k=2

δka
k
]
, (B.2)

where a(µ) = β0αs(µ)/π and δk = βk/β
k+1
0 , writing Λ as:

Λ = µ exp

{
− 1

2a
− δ

2
ln(aδ)

}
×
[
1 +

∞∑

k=1

c̄ka
k

]
, (B.3)

where c̄k are specific combinations of the coefficients of the β function; for example:

c̄1 =
1

2

[
− δ2 + δ2

]

c̄2 =
1

8

[
− 2 δ3 + 4 δ2 δ − 2 δ3 + δ2

2 − 2 δ2 δ2 + δ4
]

c̄3 =
1
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[
− 8 δ4 + 6 δ2 δ3 − δ2

3 + 8 δ2
2 + (16 δ3 − 12 δ2

2) δ

+(3 δ2
2 − 6 δ3 − 24 δ2) δ2 + 18 δ3 δ2 + (8 − 3 δ2) δ4 − 6 δ5

]
. (B.4)

Then, writing the perturbative relation between the pole mass and the MS mass in the

standard Borel representation (where the Borel variable z is conjugate to a),

m/mMS(mMS) = 1 +
CF

β0

∫ ∞

0
dzB(z) e−z/a, (B.5)
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the singular part of B(z) near z = 1
2 can be explicitly written using Eqs. (B.1) and (B.3):

B(z) = regular +
q

(1 − 2z)1+
1
2
δ

[
1 +

∞∑

k=1

ck(1 − 2z)k

]
, (B.6)

where

ck ≡ Γ(1 + δ
2 − k)

2k Γ(1 + δ
2 )

c̄k. (B.7)

To see this one inserts Eq. (B.6) into Eq. (B.5) and takes the imaginary part of the integral,

getting:

Im
{

m/mMS(mMS)
}

=
CF

β0

q

Γ(1 + δ
2)

π

2
(2a)−δ/2 e−1/(2a) ×

[
1 +

∞∑

k=1

c̄ka
k

]
. (B.8)

In this calculation one uses the following formula:

Iz0
(a) ≡ Im

∫ ∞

0
dz

e−z/a

(1 − z/z0)1+κ
= π

(z0

a

)κ z0 e−z0/a

Γ(1 + κ)
, (B.9)

which is derived assuming that z0 has an infinitesimally small positive imaginary part.

Eq. (B.8) clearly has exactly the same dependence on the coupling as Eq. (B.3), so the

requirement of Eq. (B.1) is satisfied.

The pole mass (and its imaginary part) is renormalization–scheme invariant. Several

authors have computed the normalization constant q using the perturbative expansion of

m/mMS(mMS) in the MS scheme [35–38]. This perturbative relation is available to O(α3
s)

— see Eq. (10) in [41] (the MS mass anomalous dimension has been computed before [42]).

Knowing that z = 1
2 is the nearest singularity to the origin and using Eq. (B.6) one can

extract the residue by first multiplying [39, 40] the available n-th order approximation

of B(z) by (1 − 2z)1+
1
2
δ, then expanding in powers of z and truncating at order n and

finally substituting z = 1
2 . We performed this calculation and we agree with previous

results. The residue is shown in Fig. 13 as a function of β0. For example, we obtained:

CF q(Nf −→ ∞)/π ≃ 0.935 and CF q(Nf = 4)/π ≃ 0.551. We estimate the error on this

determination as ∼ 3%. This estimate is based on comparison with a similar calculation

using the scheme invariant Borel transform (see below) and on the one point where the

exact value of the normalization constant has been computed [27], the large–β0 limit. There

B(z) is

B(z)|largeβ0
= regular +

3

2
e

5
3
z (1 − z)Γ(z)Γ(1 − 2z)

Γ(3 − z)
. (B.10)

where the regular terms are related with the renormalization of the MS mass. Thus the

exact value is CF q(Nf −→ ∞)/π = CF e
5
6 /π ≃ 0.9766.

To clarify the relation between the normalization constant in the scheme–invariant

Borel transform and in the standard one, let us first consider the latter in different renor-

malization schemes. First, let us stress that having fixed the definition of Λ in Eq. (B.3),

the scheme (and thus the value of the coupling at the scale µ) depend on all the β–function
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Figure 13: The normalization constant of the u = 1

2
renormalon of the pole mass (CF q/π) as a

function of 1/β0. The exact result of the large–β0 limit is denoted by a cross. Calculations relying

on the perturbative expansion of m/mMS(mMS): standard Borel transform of the mass ratio in MS

(dotdashes); scheme–invariant Borel transform of the mass ratio (full line); the latter optimized

using Eq. (B.20) (plus signs). Squares represent the calculation relying on the scheme–invariant

Borel transform of the soft Sudakov exponent and on the cancellation of the ambiguity (i.e. on

Eq. (2.30)). This calculation uses an optimization procedure similar to the one of Eq. (B.20).

coefficients βk with k ≥ 2. We note that while the sum in Eq. (B.6) converges, the signi-

ficance of subleading terms there strongly depends on the scheme. In particular, we find

that in a scheme (RS) where the β–function coefficients are characterized by geometrical

progression, daRS/d ln µ2 = −a2
RS

/ (1 − δaRS), all the coefficients ck vanish. On the other

hand in the ’t Hooft scheme of Eq. (2.18), one obtains c’t Hooft

k = (δ/2)k/k!, so the singular

part of the Borel function sums up into:

B(z) = regular +
q eδ( 1

2
−z)

(1 − 2z)1+
1
2
δ
. (B.11)

and

c̄’t Hooft

k =
δk Γ(1 + δ

2)

Γ(k + 1)Γ(1 + δ
2 − k)

,
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so17 the imaginary part in Eq. (B.8) sums up into:

Im
{

m/mMS(mMS)
}

=
CF

β0

q

Γ(1 + δ
2)

π

2

(
1 + δA

2A

)δ/2

e−1/(2A), (B.12)

where the ’t Hooft coupling A is evaluated at mMS(mMS). The same result can be obtained

by substituting Eq. (B.11) into Eq. (B.5) (where a is replaced by the ’t Hooft coupling A)

and evaluating the integral using the relation:

∫ ∞

0
duT (u)

(
Λ2/µ2

)u 1

u − u0
= − 1

u0

∫ ∞

0
dze−z/A e−zδ

(
1 − z

u0

)1+u0δ
, (B.13)

where T (u) and the relation between A and ln µ2/Λ2 are given in Eq. (2.18). The imaginary

part of the l.h.s. is simply −π times the residue at u = 1
2 . This exercise also shows that the

scheme invariant formulation is most natural for the problem at hand: the singular part of

the corresponding Borel function is just a simple pole.

The renormalon in the scheme–invariant Borel representation

Let us turn now to consider the pole–mass renormalon in the scheme–invariant formulation

of the Borel transform. The mass ratio is expressed as

m/mMS(mMS) = 1 +
CF

β0

∫ ∞

0
duT (u)B(u)

(
Λ2

m2
MS

(mMS)

)u

, (B.14)

where as in Eq. (2.18), T (u) corresponds to the ’t Hooft scheme.

Taking the imaginary part of Eq. (B.14) we obtain:

Im
{
m/mMS(mMS)

}
= −CF

β0
R × J 1

2

(
mMS(mMS)

)
(B.15)

where the residue is

R ≡ lim
u→ 1

2

(
u − 1

2

)
B(u) (B.16)

and

Ju0
(µ) ≡ Im

∫ ∞

0
duT (u)

(
Λ2

µ2

)u
1

u − u0 − iǫ
= πT (u0)

(
Λ2

µ2

)u0

= π

(
u0

Ã

)u0δ e−u0/Ã

Γ(1 + u0δ)

(B.17)

where ǫ > 0 is infinitesimally small; the two expressions were obtained based on the residue

theorem and Eq. (B.13), respectively. In the second expression Ã(µ) is defined by

1

Ã
=

1

A
+ δ, (B.18)

17Note that using these coefficients in Eq. (B.3) one recovers the definition of Λ in Eq. (2.18).
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or, equivalently, ln
(
µ2/Λ2

)
= 1/Ã − δ + δ ln(δÃ). Comparing Eq. (B.15) with Eq. (B.12)

we find that

q = −2R e−δ/2. (B.19)

The approximate calculation of the residue R based on the perturbative expansion

proceeds similarly to the standard Borel transform: one multiplies by (1
2 − u) expands

and uses the truncated series to compute the value at u = 1
2 . The result is shown in as

a function of 1/β0 in Fig. 13, where the comparison with the standard Borel transform is

available. One can repeat the calculation by first multiplying the truncated series by an

arbitrary function f(u) (which has a Taylor expansion at u = 0 that converges at least for

|u| ≤ 1
2), then taking the limit, and finally dividing by the exact value f(1

2),

Ropt ≡
1

f(1
2)

lim
u→ 1

2

(
u − 1

2

)
B(u)f(u). (B.20)

We have chosen the set of functions: f(u) = exp(τu) where τ is arbitrary. A reliable

approximation should be independent of variations of the function f(u). Therefore, the

procedure can be improved by finding a saddle point with respect to τ . The result of this

optimized calculation of R are shown in Fig. 13 as well. It turns out that the result is quite

stable so the difference between the optimized calculation and the simple one is small, for

example, for CF q(Nf = 4)/π we get 0.5355 and 0.5363 in the two, respectively.

In conclusion, the normalization of the u = 1
2 renormalon in the pole mass can be

determined from the perturbative relation with the MS mass within a few percent. The

difference between the determination using the scheme–invariant Borel representation and

the one using the standard Borel representation is somewhat larger than the variation of

the results within each of the two approaches.

C. NLO results for b −→ sγg and the matching procedure

We begin with the well-known expressions for the b −→ sγg contributions [45]:

φ22(∆) =
4z

9

[
∆

∫ (1−∆)/z

0
dt (1 − zt)

∣∣∣∣
G(t)

t
+

1

2

∣∣∣∣
2

+

∫ 1/z

(1−∆)/z
dt (1 − zt)2

∣∣∣∣
G(t)

t
+

1

2

∣∣∣∣
2
]

,

φ27(∆) = −2z2

3

[
∆

∫ (1−∆)/z

0
dt Re

(
G(t) +

t

2

)
+

∫ 1/z

(1−∆)/z
dt (1 − zt)Re

(
G(t) +

t

2

)]
,

φ77(∆) =
5

2
∆ +

1

4
∆2 − 1

6
∆3 +

1

4
∆(∆ − 4) ln ∆, (C.1)

φ78(∆) =
2

3

[
Li2(1 − ∆) − π2

6
− ∆ ln∆ +

9

4
∆ − 1

4
∆2 +

1

12
∆3

]
,

φ88(∆) =
1

36

{
−2 ln

mb

ms

[
∆2 + 2∆ + 4 ln(1 − ∆)

]

+4Li2(1 − ∆) − 2π2

3
− ∆(2 + ∆) ln ∆ + 8 ln(1 − ∆) − 2

3
∆3 + 3∆2 + 7∆

}
,

φ11 =
1

36
φ22, φ12 = −1

3
φ22, φ17 = −1

6
φ27, φ18 =

1

18
φ27, φ28 = −1

3
φ27,
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where

G(t) =





−2 arctan2
√

t
4−t , for t < 4

−π2

2 + 2 ln2
√

t+
√

t−4
2 − 2iπ ln

√
t+

√
t−4

2 , for t ≥ 4.

and where, following [44], we use z ≡ mMS
c (µ)/mb ≃ 0.22 ± 0.04.

As explained in Sec. 3 our matching procedure involves splitting some of these func-

tions, φij(∆) = ηij(∆)+ξij(∆), such that ηij(∆) dominates the small–∆ limit. We require:

ξij(∆) = O(∆2).

For φ77, which is conveniently transformed to moment space we simply define η77(∆) =

φ77(∆) and ξ77(∆) = 0. It then follows from Eq. (3.12) that

µ77(N) =
1

2

[
(Ψ(N) + γE)

(
1

1 + N
+

1

N

)
− 1

2

1

N + 1
− 1

N + 2
+

9

2N
+

1

(N + 1)2
+

1

N2

]
.

Note that in Eq. (3.11) the full O7 contribution is reproduced by f(N) + µ77(N) plus the

single and double logs from the expansion of Sud(m,N) (these are the O(αs) terms in

Eq. (A.3)). Note also that f(N) + µ77(N) differs from CO7

N of Eq. (A.2) by the constant

term 31
12 , the reason being that the latter corresponds to the moments M̄PT, O7

N (of the

normalized rate) while the former corresponds to the moments MPT, O7

N ; indeed µ77(N =

1) = φ77(∆ = 1) = 31
12 so

MO7

N = M̄O7

N ×
(

1 +
CF αs

π

31

12
+ O(α2

s)

)
. (C.2)

Similarly, for φ78, we define: η78(∆) = φ78(∆) and ξ78(∆) = 0, so

µ78(N) =
2

3

[
− 1

(N − 1)N
(Ψ(N) + γE) +

1

N2
+

1

4

1

N + 2
+

1

N

]
. (C.3)

As explained in the text, the treatment of the other contributions involves splitting

the real–emission terms into two. For all the contributions associated with the operators

O1 and O2 and their interference with O7 and O8 (this includes φ22, φ27, φ11, φ12 φ17, φ18

and φ28) we define

φ̇ij ≡
dφij(∆)

d∆

∣∣∣∣
∆=0

and write:

ηij(∆) = φ̇ij ∆,

ξij(∆) = φij(∆) − φ̇ij ∆.

Since the derivative of ηij(∆) is a constant, the moments in Eq. (3.12) are pure 1/N terms:

µij(N) =
φ̇ij

N
. (C.4)
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Finally, the contribution of φ88 it taken into account by extracting the leading term

at ∆ −→ 0 (which makes the corresponding contribution to the differential rate singular)

and incorporating it in moment space:

η88(∆) =
1

9

[
ln

mb

ms
− 5

4
+

1

2
ln∆

]
∆,

ξ88(∆) = φ88(∆) − η88(∆),

so

µ88(N) =
1

3N

[
1

3
ln

mb

ms
− 1

4
− 1

6
(Ψ(N) + γE) − 1

6

1

N

]
. (C.5)

As follows from their definition all µij(N) vanish at large N .

Finally, let us summarize the result for the first moment which enters the expression

for the total rate (Eq. (3.15) with ∆ −→ 1):

MPT

N=1 = 1 +
CF αs(mb)

π

∑

i, j = 1..8

i ≤ j

cij µij(N = 1) (C.6)

with

µ77(N = 1) =
31

12

µ78(N = 1) =
25

18
− π2

9

µ88(N = 1) =
1

9

(
ln

mb

ms
− 5

4

)

µ22(N = 1) =
4z

9

∫ 1/z

0
dt (1 − zt)

∣∣∣∣
G(t)

t
− 1

2

∣∣∣∣
2

µ27(N = 1) = −2z2

3

∫ 1/z

0
dt Re

(
G(t) +

t

2

)
; (C.7)

The remaining µij(N = 1) values can be obtained from the above using the relations in

the last line in Eq. (C.1).
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