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markets. We estimate a composed error model, where the stochastic part of the firm’s pricing 

equation is formed by two random variables: the traditional error term, capturing random 

shocks, and a random conduct term, which measures the degree of market power. Treating 

firms’ conduct as a random parameter helps solving the issue that the conduct parameter can 

vary between firms and within firms over time. The empirical results from the California 

wholesale electricity market suggest that realization of market power varies over both time 

and firms, and reject the assumption of a common conduct parameter for all firms. 

Notwithstanding these differences, the estimated firm-level values of the conduct parameter 

are closer to Cournot than to static collusion across all specifications. For some firms, the 

potential for realization of the market power unilaterally is associated with lower values of the 

conduct parameter. 
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1. Introduction 

 

Starting from seminal research works of Iwata (1974), Gollop and Roberts (1979), and 

Appelbaum (1982), measuring the degree of competition in oligopolistic markets has become 

one of key activities in empirical industrial organization. A large and growing economic 

literature in New Empirical Industrial Organization (NEIO) relies on structural models to infer 

what types of firm behaviour (“conduct”) are associated with prices that exceed marginal 

costs.1 A typical structural model based on the conduct parameter approach for homogenous 

product markets starts with specifying a demand function and writing down the first-order 

condition of firm’s profit-maximization problem: 

  
0 itittitt q)Q´(P)q(mc)Q(P ,                       (1) 

where P(Qt) is inverse demand, Qt=iNqit is total industry’s output, qit is the firm’s output in 

period t, mc(qit) is the firm’s marginal cost, and θit is a “conduct” parameter that parameterizes 

the firm´s profit maximization condition. Under perfect competition, θit=0 and price equals 

marginal cost. In equilibrium, when θit=1/sit (where sit denotes firm’s market share of output) 

we face a perfect cartel, and when 0<θit<1/sit various oligopoly regimes apply. 2 In these models 

the (firm or industry) degree of market power is measured by a conduct parameter θ that is 

jointly estimated with other cost and demand parameters.3 

The conduct parameter θit may vary across time as market conditions change, and firms 

change their own pricing strategies.4 Moreover, the conduct parameter may also vary across 

                                                 
1
 For an excellent survey of other approaches to estimating market power in industrial organization literature, see 

Perloff et al. (2007).  
2 In a symmetric equilibrium, the upper bound of inequality 0<θit<1/sit would be equal to the number of firms, N.  
3 Some studies interpret estimated conduct parameter as a ‘conjectural variation’, i.e., how rivals’ output changes 
in response to an increase in firm i’s output. It is also sometimes argued that the conjectural variation parameter 
results from the reduced form of a more complex dynamic game, such as a tacit collusion game (see e.g., Itaya and  
Shimomura 2001, Itaya and  Okamura 2003, Figuieres et al. 2004, and references therein). Other studies 
(Bresnahan 1989, Reiss and Wolak 2007) argue that with an exception of limited number of special cases (e.g., 
perfect competition, Cournot-Nash, and monopoly) there is there is no satisfactory economic interpretation of this 
parameter as a measure of firm behaviour. Sorting out between these theoretical complications is beyond the 
scope of this study. We therefore interpret this parameter as a simple descriptive measure of firm’s degree of 
market power. 
4 As the problem of repeated oligopoly interaction has received greater attention, the estimation of time-varying 
conduct parameters that are truly dynamic has become an issue. Indeed, the Stigler’s (1964) theory of collusive 
oligopoly implies that, in an uncertain environment, both collusive and price-war periods will be seen in the data. 
Green and Porter (1984) predict a procyclical behaviour pattern for mark-ups because of price reversion during a 
period of low demand. Hence the conduct parameter changes from collusive value to competitive value when 
there is an unanticipated negative demand shock. On the contrary, Rotemberg and Saloner (1986) predict that 
prices and mark-ups are countercyclical, and hence the conduct parameter will decrease when demand is high. 
Moreover, Abreu et al. (1986) find that in complex cartel designs the length of price wars (i.e., changes in conduct 
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firms as “there is nothing in the logic of oligopoly theory to force all firms to have the same 

conduct” (Bresnahan, 1989, p. 1030).5 Obviously, allowing the conduct parameter to vary both 

by firms and time-series results in an overparameterized model. To avoid this problem, 

empirical studies in structural econometric literature always impose some restrictions on the 

way the value of conduct parameter varies across firms and time. The overparameterization is 

typically solved by estimating the average of the conduct parameters of the firms in the 

industry (Appelbaum 1982), reducing the time variation into a period of successful cartel 

cooperation and a period of price wars or similar breakdowns in cooperation (Porter 1983a), 

allowing for different conduct parameters between two or more groups of firms (Gollop and 

Roberts 1979), or assuming firm-specific, but time-invariant, conduct parameters in a panel 

data framework (Puller 2007). 

This study proposes a new econometric approach that deals with overparameterization 

problem and helps obtaining the values of firm’s conduct that vary across both time and 

market participants. Instead of estimating the firm’s conduct as a common parameter together 

with other parameters defining cost and demand, we propose treating firms’ behaviour θit as a 

random variable. Our approach is based on composed error model, where the stochastic part is 

formed by two random variables - traditional error term, capturing random shocks, and a 

random conduct term, which measures market power. The model is estimated in three stages.6 

In the first stage, all parameters describing the structure of the pricing equation (1) are 

estimated using appropriate econometric techniques. In the second stage, distributional 

assumptions on random conduct term are invoked to obtain consistent estimates of the 

parameters describing the structure of the two error components. In the third stage, market 

power scores are obtained for each firm by decomposing the estimated residual into a noise 

component and a market-power component. 

The main contribution of the proposed approach is about the way the asymmetry of the 

composed error term is employed to get firm-specific market power estimates. While the first 

                                                                                                                                                                    
parameter) is random because there are “triggers” for both beginning a price war and for ending one. It is 
therefore difficult to impose plausible structural conditions and estimate firms’ conduct over time. 
5 In many treatments of oligopoly as a repeated game, firms expect deviations from the collusive outcome. Firms 
expect that if they deviate from the collusive arrangement, other will too. This expectation deters them from 
departing from their share of the collusive output. Because these deviations are unobserved in an uncertain 
environment, each firm might have its own expectation about what would happen if it deviates from collusive 
output. 
6 As in Porter (1983b), Brander and Zhang (1993), and Gallet and Schroeter (1995), Maximum Likelihood 
techniques can be used to estimate all parameters of the model in a unique stage. However this does not allow us 
to address the endogeneity issues that appear when estimating the pricing equation (1). 
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stage of our model is standard, the following stages take advantage of the fact that the 

distribution of conduct term is truncated and is likely to be positively or negatively skewed. 

Though the idea of identification of structural econometric models through asymmetries in 

variance of error term is not new in applied econometric literature, 7 to our knowledge 

skewness of conduct parameter in oligopolistic industry settings is not examined explicitly in 

most (if any) of the previous studies. 

The proposed approach can be viewed as belonging to the same family as Porter 

(1983b), Brander and Zhang (1993), and Gallet and Schroeter (1995) who estimate a regime-

switching model where market power enters in the model as a supply shock. As in our model, 

the identification of market power in these studies relies on making assumptions about the 

structure of unobservable error term. However, while previous papers estimated the pricing 

relationship (1) assuming θit=θt to be a discrete random variable that follows a bimodal 

distribution (“price wars” vs. “collusion”), here θit varies both across firms and over time and is 

treated as a continuous random term. Therefore, while the switching regression models can 

only be estimated when there are discrete “collusive” and “punishment” phases that are either 

observable or could be inferred from the data, our model can be estimated in absence of 

regime switches.8 The continuous nature of our conduct random term thus allows us to capture 

gradual changes in firm behaviour.9 

Another feature that distinguishes our paper from previous studies is the attempt to 

estimate a double-bounded distribution that imposes both lower and upper theoretical bounds 

(i.e., 0≤θit≤1/sit) to a continuous random conduct term. To achieve this objective we have 

explored the stochastic frontier literature,10 and adapted the doubly truncated normal 

distribution recently introduced by Almanidis et al. (2011) to our framework. To our 

knowledge, this is the first time the stochastic frontier models are used to measure market 

power. Because our model relies on distributional assumptions on the stochastic part, firm-

specific market power estimates can be obtained just using cross-sectional data sets, unlike in 

                                                 
7 See Rigobon (2003), and references therein.  
8 The regime switches only occur when a firm´s quantity is never observed by other firm and, hence, deviations 
cannot be directly observed. This is not the case in the electricity generating industry analyzed in the empirical 
section as market participants had access to accurate data on rivals’ real-time generation.  
9 Kole and Lehn (1999) argue that for many firms the decision-making apparatus is slow to react to changes in the 
market environment within which it operates, due to the costs to reorient decision-makers to a new “game plan”. 
In particular, the existing culture or the limited experience of the firm in newly restructured markets may be such 
that strategies to enhance market power may not be immediately undertaken.  In addition, we would also expect 
gradual changes in firms conduct in a dynamic framework if firms are engaging in efficient tacit collusion and are 
pricing below the static monopoly level, and when there is a high persistence in regimes (Ellison, 1994). 
10 For a comprehensive survey of this literature, see Kumbhakar and Lovell (2000), and Fried et al. (2008). 
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previous papers that used a fixed effect treatment to estimate firm average conduct in a panel 

data framework. Therefore, our approach is especially useful when: i) no panel data sets are 

available;11 ii) the time dimension of the data set is short; 12 iii) the available instruments are 

valid when estimating a common pricing equation to all observations, but not when we try to 

estimate separable pricing equations for each firm; or iv) the assumption of time-invariant 

conduct is not reasonable. 

While economic theory imposes both lower and upper theoretical bounds to the 

random conduct term, the skewness of its distribution is an empirical issue. We argue, 

however, that the skewness assumption of the distribution of conduct term is reasonable 

because oligopolistic equilibrium outcomes often yield skewed conduct random terms where 

large (collusive) conduct values are either less or more probable than small (competitive) 

conduct values. For instance, the dominant firm theory assumes that one (few) firm(s) has 

enough market power to fix prices over marginal cost. This market power is, however, 

attenuated by a fringe of (small) firms that do not behave strategically.13 The most important 

characteristic of this equilibrium is that the modal value of the conduct random term (i.e., the 

most frequent value) is close to zero, and higher values of θit are increasingly less likely 

(frequent). In other markets all firms might be involved in perfect cartel scheme. In such a 

cartel-equilibrium, firms usually agree to sell “target” quantities, and the resulting market price 

is the monopoly price, which is associated with the maximum conduct value, e.g., θit = 1/sit. 

Smaller values of θit are possible due, for instance, to cheating behaviour.14 This means that the 

modal value of the conduct random term in this equilibrium is one, with smaller values of θit 

increasingly less likely. That is, firm-conduct is negatively skewed. In general, similar equilibria 

that yield asymmetric distributions for the firm-conduct parameter with modal values close to 

zero or to the number of colluding firms may also arise. 

We illustrate the model with an application to the California electricity generating 

market between April 1998 and December 2000. This industry is an ideal setting to apply our 

                                                 
11 In particular, our approach is useful in cross-section applications when there is not prior information about the 
identities of suspected cartel members and hence a benchmark of non-colluding firms is not available. 
12 The fixed-effect treatment is only consistent when long panel data sets are available (i.e., as T). In addition, 
the incidental parameter problem appears, i.e., the number of parameters grows with sample size (i.e., as N). 
13 This partial collusion equilibrium is reasonable in markets with many firms where coordination among all firms 
is extremely difficult to maintain as the number of firms in the collusive scheme is too high or other market 
characteristics make coordination too expensive, e.g., markets with differentiated products. 
14 It is well known that secret price cuts (or secret sales) by cartel members are almost always a problem in 
cartels. For instance, Ellison (1994) finds that secret price cuts occurred during 25% of the cartel period and that 
the price discounts averaged about 20%. See also Borenstein and Rose (1994). 
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model because there were high concerns regarding market power levels in California 

restructured electricity markets during that period, and detailed price, cost, and output data 

are available as a result of the long history of regulation and the transparency of the 

production technology. This data set allows us to compute directly hourly marginal cost and 

residual demand elasticities for each firm. We can therefore avoid complications from 

estimating demand and cost parameters and focus our research on market power, avoiding 

biases due inaccurate estimates of marginal cost and residual demand.15  Hence, this data set 

provides a proper framework to discuss methodological issues and to apply the empirical 

approach proposed in the present paper.  In addition, these data have been used in previous 

papers to evaluate market power in California electricity market. In particular, Borenstein et al. 

(2002) and Joskow and Kahn (2001) calculate hourly marginal cost for the California market 

and compare these estimates to wholesale prices. They find that, in certain time periods, prices 

substantially exceeded marginal cost. Wolak (2003) calculates the residual demand based on 

bidding data in California Independent System Operator’s (CAISO) real-time energy market. He 

concludes that the increase in market power in summer 2000 can be attributed to firms’ 

exercise of unilateral market power. Puller (2007) analyses the pricing behaviour of California 

electricity generating firms and finds that price-cost margins varied substantially over time. 

Our first-stage results are generally similar to previous findings of Puller (2007). The 

estimated market power values are closer to Cournot (θit =1) than to static collusion (θit=1/sit). 

We find an increase in collusive behavior of all firms above Cournot levels during the period of 

price run-up in June – November 2000, using the residual demand elasticities based on Puller 

(2007) but not using the residual demand elasticities based on PX data. The analysis of firm-

specific conduct parameters suggests that realization of market power varies over both time 

and firms, and rejects the assumption of a common conduct parameter for all firms. Estimated 

firm-specific conduct parameters generally tend to move in the same direction across time, 

suggesting that firms pursue similar market strategies as market conditions change. 

Finally, we use the estimates of firm-specific conduct parameters to clarify the extent to 

which firms’ potential for exercising market power unilaterally affects their market conduct. 

Similar to Wolak (2003) we compute the residual demand elasticities facing each firm 

individually on the California PX market, and use their reciprocals (Lerner indices) as a 

measure of the firms’ potential to exercise unilateral market power. We find strong negative 

                                                 
15 See Kim and Knittel (2006) using data from the California electricity market. See also Genesove and Mullin 
(1998) and Clay and Troesken (2003) for applications to the sugar and whiskey industries respectively. 
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correlation between Lerner indices and estimated conduct parameters for 3 out of 4 firms 

during the first period of our sample (before entry of Southern) and for 2 out of 5 firms during 

the second period of our sample. This result indicates that, for some firms the potential for 

realization of the market power unilaterally is associated with lower values of the conduct 

parameter. 

The rest of the paper is structured as follows. In Section 2 we describe the empirical 

specification of the model. In Section 3 we discuss the three-stage procedure to estimate the 

model. The empirical illustration of the model using California electricity data is described in 

Section 4. Section 5 concludes. 

 

2. Empirical Specification 

The traditional structural econometric model of market power is formed by a demand function 

and a pricing equation. Because we are interested in the estimation of industry or firm-specific 

market power scores, we only discuss here the estimation of the pricing equation (1), 

conditional on observed realization of residual demand.16 If the demand function parameters 

are not known, they should be estimated jointly with cost and market power parameters. 

In this section we develop a simple model where firms sell homogenous products (e.g., 

kilowatt-hours of electricity) and choose individual quantities each period so as to maximize 

their profits. Our model is static as we assume that firms maximize their profits each period 

without explicit consideration of the competitive environment in other periods.17  Firm i’s 

profit function in period t can be written as: 

),()·(  itittit qCqQP  ,           (2) 

                                                 
16 This is the strategy followed, for instance, by Brander and Zhang (1993), Nevo (2001) and Jaumandreu and 
Lorences (2002). 
17 Corts (1999) argues that traditional approaches to estimating the conduct parameter from static pricing 
equations yield inconsistent estimates of the conduct parameter if firms are engaged in an effective tacit collusion. 
The robustness of the conduct parameter approach depends, in addition, on the discount factor and the 
persistency of the demand. Puller (2009) derives and estimates a more general model that addresses the Corts 
critique. The results from estimating the more general model for the California market yielded estimates very 
similar to the static model. This similarity comes from the fact that “California market [can be] viewed as an 
infinitely repeated game with a discount factor between days very close to 1” Puller (2007, p.84). Our empirical 
application to California electricity market as a static model is therefore sufficient for estimating market power 
consistently. 
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where ̂  is a vector of previously estimated demand parameters, and  is a vector of cost 

parameters to be estimated. We assume that firms choose different quantities each period and 

their marginal cost varies across firms and over time. 

In a static setting, the firm’s profit maximization problem is 

),q(Cq)·ˆ,Q(Pmax ititt
qit


 
.          (3) 

The first order conditions (FOC’s) of the static model are captured by equation (1), that 

is: 

  itititt gqmcP   ),( , 

where ),q(mc it   stands for firm’s marginal cost, D

ittittit QqPg / , and ttt

D

it QPQP /)(  is the 

(observed) elasticity of product demand. The stochastic specification of the above FOC´s can be 

obtained by adding the error term, capturing measurement and optimization errors: 

ititititt vgqmcP  ),( .                     (4) 

Instead of viewing firm’s behaviour as a structural parameter to be estimated we here 

treat firms’ behaviour as a random variable. While retaining standard assumption that the 

error term itv  is i.i.d. and symmetric with zero mean, we also assume that θit follows a 

truncated distribution that incorporates the theoretical restriction that 0≤θit≤1/sit. The 

distinctive feature of our model is that the stochastic part is formed by two random variables - 

the traditional symmetric error term, vit, and an asymmetric random conduct term, git·θit, that 

reflects the market power. The restriction that the composed error term is asymmetric allows 

us obtaining separate estimates of θit and vit from an estimate of the composed error term. 

Our static model can be easily adapted to a dynamic framework following Puller (2009). 

He notices that the dynamic part of the FOC’s is common to all firms and, hence, Corts’ critique 

can be avoided by estimating the pricing equation (4) with a set of time-dummy variables. 

Because firm’s dynamic behaviour is affected by current demand, expected future demand, and 

expected future costs (Borenstein and Shephard, 1996), consistent estimates can be also 

obtained by replacing the set of dummy variables by a function of expected demand and cost 

shocks measured relative to current demand and costs.18 

                                                 
18 Kim (2006) proposes a similar solution to address Corts’ critique. He suggests modelling the conduct parameter 
as a core time-invariant conduct parameter, and a (linear) function of dynamic behaviour´s determinants, i.e., 
demand and cost shocks. 
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Challenges are greater if we want to estimate a general specification of the pricing equation 

that explicitly includes conduct determinants.19 If conduct determinants affect both the shape 

and magnitude of the asymmetric random conduct term, their coefficients must be estimated 

using maximum likelihood (ML) techniques. However, a method-of-moments (MM) estimator 

can still be used if θit satisfies the so-called scaling property, which implies that changes in 

conduct determinants affect the scale but not the shape of it.20 Whether or not the scaling 

property should hold is an empirical question, but if this property cannot be rejected, some 

attractive features arise (see Wang and Schmidt, 2002). 

 

3. Estimation strategy 

We now turn to explaining how to estimate the pricing relationships presented in the previous 

section. Two estimation methods are possible: a method-of-moments (MM) approach and 

maximum likelihood (ML). The MM approach involves three stages. In the first stage, all 

parameters describing the structure of the pricing equation (i.e., cost, demand and dynamic 

parameters) are estimated using appropriate econometric techniques. In particular, because 

some regressors are endogenous, a generalized method of moments (GMM) method should be 

employed to get consistent estimates in this stage.21 This stage is independent of distributional 

assumptions on either error component. In the second stage of the estimation procedure, 

distributional assumptions are invoked to obtain consistent estimates of the parameter(s) 

describing the structure of the two error components, conditional on the first-stage estimated 

parameters. In the third stage, market power scores are estimated for each firm by 

decomposing the estimated residual into an error-term component and a market-power 

component. 

The ML approach uses maximum likelihood techniques to obtain second-stage estimates of the 

parameter(s) describing the structure of the two error components, conditional on the first-

                                                 
19 Because estimating the pricing equation does not require any distributional assumptions on either error 
component, this issue can be easily handled later on (see next section) once distributional assumptions are 
invoked to estimate the structure of the two error components, provided first-stage parameters are consistently 
estimated.  
20 The scaling property corresponds to a multiplicative decomposition of θit into a scaling function h(zit,) times a 
random variable uit that does not depend on zit, where zit is a vector are of firms’ behaviour covariates. An 
alternative that has sometimes been proposed in the literature on frontier production functions (Huang and Liu, 
1994; Battese and Coelli, 1995) is an additive decomposition of the form θit(zit,) = h(zit,) + τit. However, this can 
never actually be a decomposition into independent parts, because θit(zit,) ≥ 0 requires τit ≤ h(zit,). 
21 The GMM estimator has the additional advantage over ML in that it does not require a specific distributional 
assumption for the errors, which makes the approach robust to nonnormality and heteroskedasticity of unknown 
term (Verbeek, 2000, p. 143). 
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stage estimated parameters. It can be also used to estimate simultaneously both types of 

parameters, if the endogenous regressors in the pricing equation are previously instrumented. 

In this case, the ML approach combines the two first stages of the method of moments 

approach into one. 

While the first-stage is standard in the NEIO literature, the second and third stages take 

advantage of the fact that the conduct term is likely positively or negatively skewed, depending 

on the oligopolistic equilibrium that is behind the data generating process. Models with both 

symmetric and asymmetric random terms of the form in Section 2 have been proposed and 

estimated in the stochastic frontier analysis literature.22 

 

3.1. First Stage: Pricing Equation Estimates 

 

Let us rewrite the pricing equation (4) as: 

itititt gqmcP   ),( ,    (5) 

where  is the vector of cost parameters,23  =E(it) can be interpreted as a measure of the 

industry market power, and 

       itititit gv .    (6) 

The possible endogeneity of some regressors will lead to least squares being biased and 

inconsistent. This source of inconsistency can be dealt with by using GMM. Though first-step 

GMM parameter estimates are consistent, they are not efficient by construction because the 

vit’s are not identically distributed. Indeed, assuming that it and vit are distributed 

independently of each other, the second moment of the composed error term can be written as: 

    
2222 )(   itvit gE ,    (7) 

where E(vit2)=v2, and Var(it)=
2. Equation (8) shows that the error in the regression 

indicated by (5) is heteroskedastic. Therefore an efficient GMM estimator is needed. Suppose 

that we can find a vector of m instruments Mit that satisfy the following moment condition: 

                                                 
22 See, in particular, Simar, Lovell and Vanden Eeckaut (1994), and the references in Kumbhakar and Lovell 
(2000). 
23 In the empirical illustration below we include a dummy variable for binding capacity constraints that helps 
explaining the differential of prices over marginal costs. This variable is interpreted here as a determinant of 
marginal cost. 
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         0),(),(··   ititittititit mEgqmcPMEME . (8) 

The efficient two-step GMM estimator is then the parameter vector that solves: 

  
     ),('),(minargˆ,ˆ

1  ittiitti mWm   ,   (9) 

where W is an optimal weighting matrix obtained from a consistent preliminary GMM 

estimator.24 

 

3.2. Second Stage: Variance Decomposition 

 

The pricing equation (5) estimated in the first stage is equivalent to standard 

specification of a structural market power econometric model, where an industry-average 

conduct is estimated (jointly with other demand and cost parameters in most applications). As 

we mentioned earlier in the introduction section, our paper aims to exploit the asymmetry of 

the composed error term (i.e., the skewness of the conduct random variable) to get firm-

specific market power estimates in the second and third stages. These stages therefore are 

central to our analysis. 

In the second stage of the estimation procedure, distributional assumptions are invoked 

to obtain consistent estimates of the parameter(s) describing the variance of it and vit (i.e.,  

and v), conditional on the first-stage estimated parameters. This stage is critical as it allows us 

to distinguish variation in market conduct, measured by , from variation in demand and 

costs, measured by v. We can estimate v and 
 using either MM or ML. 25 Given that we have 

assumed a particular distribution for the conduct term, the ML estimators are obtained by 

maximizing the likelihood function associated to the error term itititit gv ~  that can be 

obtained from an estimate of the first-stage pricing equation (5). 

The MM estimators are derived using the second and third moments of the error term it 

in equation (5). 26 The third moment of it can be written as: 

                                                 
24 This optimal weighting matrix can take into account both heteroskedasticity and autocorrelation of the error 
term. 
25 Olson et al. (1980) showed that the choice of estimator (ML versus MM) depends on the relative values of the 
variance of both random terms and the sample size. When the sample size is large (as in our application) and the 
variance of the one-sided error component, compared to the variance of the noise term, is small, then ML 
outperforms MM in a mean-squared error sense. 
26 Note that 

it
~ is simply the error term in equation (5), plus itg , and hence both 

it
~ and 

it  have the same third 

moments.  
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  333 )(   ititit EgE .     (10) 

Equation (10) shows that the third moment of it is simply the third moment of the 

random conduct term, adjusted by 3

itg . That is, while the second moment (7) provides 

information about both v and , the third moment (10) only provides information about the 

asymmetric random conduct term. Now, if we assume a specific distribution for it, we can 

infer  from (10), and then v from (7). In practice, the MM approach has two potential 

problems. First, it is possible that, given our distribution assumptions, it has the “wrong” 

skewness implying a negative . The second problem arises when it has the “right” skewness, 

but the implied  is sufficiently large to cause v<0. Because earlier versions of the present 

study resulted in negative values using the MM approach in some time-periods and 

specifications, in Section 4 we only report the results using the ML approach. 

Whatever the approach we choose in the present stage, we need to choose a distribution 

for it. The selected distribution for the random conduct term reflects the researcher’s beliefs 

about the underlying oligopolistic equilibrium that generates the data. Therefore, different 

distributions for the conduct random term can be estimated to test for different types of 

oligopolistic equilibrium. The pool of distribution functions is, however, limited as we need to 

choose a simple distribution for the asymmetric term to be able to estimate the empirical 

model, while satisfying the restrictions of the economic theory The need for tractability 

prevents us from using more sophisticated distributions that, for instance, would allow us to 

model industries formed by two groups of firms with two different types of behaviour, i.e., an 

industry with two modes of the conduct term. 

 The distribution for the asymmetric term adopted in this study is the double-bounded 

distribution that imposes both lower and upper theoretical bounds on the values of the 

random conduct term, i.e., 0≤θit≤1/sit. In doing so, we follow Almanidis et al. (2011) who 

propose a model where the distribution of the inefficiency (here, the conduct) term is a normal 

distribution N(μ,u) that is truncated at zero on the left tail and at 1/sit on the right tail.27 The 

model is estimated by maximizing a well-defined likelihood function associated to the error 

term that can be obtained from an estimate of the first-stage pricing equation.28 

                                                 
27 Table A.1 and Figure A.1 in the technical appendix illustrate the density function of this double-bounded 
distribution. 
28 An important caveat in estimating doubly truncated normal models is whether it is globally identifiable. 
Almanidis et al. (2011) show that when both the mean and the upper-bound of the pre-truncated normal 
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As it is well known in the stochastic frontier literature, neglected heteroskedasticity in 

either or both of the two random terms causes estimates of inefficiency (here, the market 

power scores) to be biased.29 To address this problem we propose estimating our model 

allowing for firm-specific and/or heteroskedastic random terms. In particular, we extend the 

classical homoscedastic model by assuming that variation in the error term is an exponential 

function of an intercept term, the day-ahead forecast of total demand and its square (i.e., FQ, 

FQ2), that are included in the model in order to capture possible demand-size effects, and a 

vector of days-of-the-week dummies (DAY). These variables allow for time-varying 

heteroskedasticity in the error term. In addition, firm-specific dummy variables (FIRM) are 

included to test whether variation of the error term is correlated with (unobservable) 

characteristics of firms/observations. Therefore, the variation in the noise term can be written 

in logs as:30 

  . FIRMDAYFQFQ i

N

i

id

d

dttitv ··ln
2

7

2

2

210, 


   (11) 

Regarding the conduct random term, we assume that its variation is also an exponential 

function of several covariates. Because the upper bounds are firm-specific, we should expect a 

higher variation in θit for those firms with lower market share, and vice versa. For this reason, 

we include sit as a determinant of variation in market conduct and we expect a negative 

coefficient for this variable. Since Porter (1983), who estimates a regime-switching model, 

there is a large tradition in the empirical industrial organization literature that extended 

Porter’s model by adding a Markov structure to the state (i.e., discrete) random variable 

capturing periods of either price wars or collusion (see, for instance, Ellison, 1994, and Fabra 

and Toro, 2005). Under this structure, the regimes are not independent and they are correlated 

over time, so that a collusion state today can be likely to lead to another collusion state next 

day. 

Although imposing an autoregressive structure on the conduct term θit might be a more 

realistic assumption, in this study we still assume that θit is independent over time. There are 

                                                                                                                                                                    
distribution are estimated simultaneously, and the combination of these two parameters yield a (post-truncated) 
symmetric distribution identification problems may arise. Fortunately, these problems vanish in a structural 
model of market power because the upper-bound is fixed by the theory and it does not need to be estimated in 
practice. 
29 See Kumbhakar and Lovell (2000), for more details about this important issue in the stochastic frontier analysis 
framework. 
30 In empirical application we have scaled the day-ahead forecast of total demand dividing it by its sample mean in 
order to put all explanatory variables in a similar scale. 
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two reasons for doing so. First, in our model, random conduct parameter θit varies across both 

firms and over time, and is treated as a continuous random term that, in addition, it is 

truncated twice. This makes it difficult to allow for correlation over time in the random 

conduct term. In a finite-state framework, the model can be estimated by maximizing the joint 

likelihood function of vit and θit if a Markov structure is not imposed. When this structure is 

added, the computation of the likelihood function of the model is much more complicated 

because it necessities to integrate out θi1,…,θi1T. Several filtering methods have been proposed 

(e.g., Hamilton, 1989) to make tractable the likelihood function, and to jointly estimate the 

hidden states and the parameters of the model. As pointed out by Emvalomatis et al. (2011), 

these filtering methods cannot be easily adapted to a continuous and non-negative random 

variable. For instance, the traditional Kalman filtering techniques cannot be used in our 

framework when the latent variable (here θit) is not normally distributed, and a one-to-one, 

non-linear transformation of θit should be used before putting θit in an autoregressive form. It 

is clearly out of scope of the present paper to extend the proposed approach to double 

truncated random variables. Second, Alvarez et al. (2006) pointed out that we can still get 

consistent parameter estimates if the correlation of unobserved conduct term over time is 

ignored. The justification is based on a quasi-maximum likelihood argument, where the density 

of a firm’s efficiency score at time t, could still be correctly specified, marginally with respect to 

the efficiency score in previous periods. 

Although we do not explicitly incorporate autoregressive specification of unobserved 

conduct term θit, we do attempt to control for observed past behaviour in some target 

variables.31 In particular, and following Fabra and Toro’s (2005) application to the Spanish 

electricity market, we include the lagged first-difference of market shares, i.e., sit-1=sit-1-sit-2,  

as a target variable A negative value of sit-1 indicates that other strategic rivals have got 

yesterday a higher market share than the day before.  If the increase in rivals’ market share is 

taken as a signal of weakness of a potential tacit collusion arrangement among firms, it might 

encourage firm i to behave more aggressive next day.  If this is the case, we should expect a 

                                                 
31 Since these variables in a regime-switching framework mainly affect the probability of starting a price war, they 
are label as “trigger” variables or “triggers”. We prefer using the term “target” because in our model we do not 
have collusion and price-war regimes, and hence we do not have to estimate transition probabilities from one 
discrete regime to another. 
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positive sign of the coefficient associated to this variable.32 Hence, our final specification of the 

conduct variation is: 

i

N

i

iitititu FIRMss ·ln
2

1210, 


     (12) 

 

3.3. Third Stage: Obtaining Firm-Specific Market Power Estimates 

In the third stage we obtain the estimates of market power for each firm.  From previous 

stages we have estimates of itititititit vgv  ~~ , which obviously contain information 

on θit. The problem is to extract the information that it
~ contains on θit. Jondrow et al. (1982) 

face the same problem in the frontier production function literature and propose using the 

conditional distribution of the asymmetric random term (here it
~

) given the composed error 

term (here it
~ ). In the technical appendix, Table A.2 we provide distributional assumptions for 

the analytical form for )~|~( ititE  , which is the best predictor of the conduct term (see 

Kumbhakar and Lovell, 2000, and Almanidis et al., 2011).33 Once we have a point estimator 

for it
~

, the conduct parameter θit can be obtained using the identity ./
~

ititit g  34 

 

4. Empirical Application to California Electricity Market 

 

In this section we illustrate the proposed approach with an application to the California 

electricity generating market.  This market was opened to competition in 1998 allowing firms 

to compete to supply electricity to the network. The wholesale prices stayed at “normal” levels 

from 1998 to May 2000, and then skyrocketed during summer and fall 2000, resulting in the 

breakdown of the liberalized electricity market by the end of 2000. While the California 

                                                 
32 We have also included other variables in order to capture the influence of past behaviour on actual market 
conduct. In particular, we have also used week-differences and other lags of the first-differences of market shares. 
Following Ellison (1994) we have also created more sophisticated target variables, such as, deviations with 
respect it predicted value, using the average of the same variable for the previous seven days. The results were 
almost the same as those obtained using sit-1. 
33 Both the mean and the mode of the conditional distribution can be used as a point estimator for the conduct 
term

it
~ . However, the mean is, by far, the most employed in the frontier literature. 

34 Although 
it̂  is the minimum mean squared error estimate of θit, and it is unbiased in the unconditional sense 

[ 0)ˆ(  ititE ], it is a shrinkage of θit toward its mean (Wang and Schmidt, 2009). An implication of shrinkage is 

that on average we will overestimate θit when it is small and underestimate θit when it is large. This result, 
however, simply reflects the familiar principle that an optimal (conditional expectation) forecast is less variable 
than the term being forecasted. 
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electricity crisis was a complex situation affected by a number of factors, such as poor 

wholesale market design, absence of long-term contracting, unexpected increase in generation 

input costs, and hike in end-use electricity demand due to unusually hot weather, a number of 

studies pointed to the evidence of significant market power in this restructured market. 

Borenstein (2002) and Wolak (2005) are two excellent surveys of the California electricity 

market restructuring disaster. 

Our empirical application analyzes the competitive behavior of five strategic large firms 

from Puller’s (2007) study of monopoly power in California restructured electricity markets 

using the same sample period (from April 1998 to November 2000). Following Borenstein et al. 

(2002), Kim and Knittel (2006), and Puller (2007), we define five large firms that owned fossil-

fueled generators (AES, DST, Duke, Reliant and Southern) as ‘strategic’ firms, i.e., pricing 

according to equation (1). The competitive fringe includes generation from nuclear, 

hydroelectric, and small independent producers, and imports from outside California. Puller 

(2007, p.77) argues that these suppliers were either relatively small or did not face strong 

incentives to influence the price.35 Other studies (Bushnell and Wolak 1999, Borenstein et al 

2008), however, find that competitive fringe occasionally did have incentives to act 

strategically and bid elastic supply and demand schedules to counter exercise of market power 

by the strategic firms. Because electricity storage is prohibitively costly,36 both strategic and 

non-strategic firms had to produce a quantity equal to demand at all times.37 The five large 

                                                 
35 Specifically, Puller (2007) argued that independent and nuclear units were paid under regulatory side 
agreements, so their revenues were independent of the price in the energy market. The owners of hydroelectric 
assets were the same utilities that were also buyers of power and had very dulled incentives to influence the price. 
Finally, firms importing power into California were likely to behave competitively because most were utilities 
with the primary responsibility of serving their native demand and then simply exporting any excess generation.  

36 One of the ways of storing electricity for load balancing is through pumped-storage hydroelectricity. The 
method stores energy in the form of water, pumped from a lower elevation reservoir to a higher elevation. Low-
cost off-peak electric power is used to run the pumps. During periods of high electrical demand, the stored water 
is released through turbines to produce electric power. In California, there is a significant amount of hydropower 
including some pumped storage. Notwithstanding relative abundance pumped storage in California, it’s potential 
for load balancing is limited as hydropower schedules are relatively fixed in part due to environmental (low flow 
maintenance, etc.) rules. 
37 Modelling of market power in wholesale electricity markets becomes more complex if firms forward-contract 
some of their output. As Puller (2007, p.85) notes, in the presence of unobserved contract positions the estimate 
of conduct parameters would be biased. This was generally not an issue in California wholesale electricity market 
during sample period. As Borenstein (2002, p. 199) points out, “Although the investor owned utilities had by 2000 
received permission to buy a limited amount of power under long-term contracts, they were […] still procuring 
about 90 percent of their “net short” position […] in the Power Exchange’s day-ahead or the system operator’s 
real-time market. Puller (2007, p. 85) argues that “there is a widespread belief that in 2000 Duke forward-
contracted some of its production.” If data on contract positions were available, one could correct this bias by 
adjusting infra-marginal sales by the amount that was forward-contracted. Unfortunately, as in earlier studies on 
market power in California wholesale electricity market the contract positions are not observable in our dataset.    
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firms and a competitive fringe interacted daily in a market where rivals’ costs were nearly 

common knowledge, which created strong incentives for tacit collusion (Puller, 2007). And the 

residual demand for electricity was highly inelastic, which, given institutional weaknesses of 

California Power Exchange, allowed individual firms to raise prices unilaterally (Wolak, 2003). 

We first carry out a standard econometric exercise and estimate consistently by GMM the 

parameters of the pricing equation (1). In particular, and in order to be sure that our first stage 

is sound, we try to reproduce Puller’s (2007) results, using the same dataset, and the same 

specification for the pricing equation (1), and the same set of dependent and explanatory 

variables.38 Unlike Puller (2007) we use a different estimate of the elasticity of residual hourly 

demand function of the five strategic firms. This is because Puller (2007) does not observe 

actual residual demand schedules. Instead, he estimates the supply function of competitive 

fringe, and calculates the slope of the fringe supply, “which has the same magnitude but 

opposite sign of the slope of the residual demand faced by the five strategic firms” (Puller 

2007, p. 78). This is problematic because Puller’s (2007) estimates are correct if and only if the 

fringe firms act non-strategically (i.e., bid perfectly inelastic supply and demand schedules). As 

we noted above, this assumption is questioned by a number of studies. Instead we use the 

estimates of residual demand elasticities based on actual bids from California Power Exchange 

(PX) as suggested by Wolak (2003). For comparison purposes we also report the results based 

on Puller’s (2007) elasticity estimates using the same definition of strategic/non-strategic 

firms. 

After estimating the parameters of the pricing equation, we carry out the second and third 

stages assuming particular distributions for the conduct random term, all of them imposing the 

conduct term to be positive and less than the number of strategic firms. 

4.1. Pricing Equation and Data 

Following Puller (2007, eq. 3) the pricing equation to be estimated in the first stage of 

our procedure is: 

  itD

tstrat

S

tstratitt

itit

QqP
CAPBINDmcP 


 

,

,
)( ,   (13) 

where  and =E(it) are parameters to be estimated, Pt is market price, mcit is firm’s marginal 

costs, qit is firm’s output, CAPBINDit is a dummy variable that is equal to 1 if capacity 

                                                 
38 Careful description of the dataset can be found in the technical appendix of Puller (2007, pp.86-87).  
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constraints are binding and equal to 0 otherwise, and QSstrat,t is total electricity supply by the 

strategic firms and Dstrat,t is the elasticity of residual hourly demand function of the five 

strategic firms. 

We use hourly firm-level data on output and marginal cost. As in Puller (2007), we focus 

on an hour of sustained peak demand from 5 to 6 p.m. (hour 18) each day, when inter-temporal 

adjustment constraints on the rate at which power plants can increase or decrease output are 

unlikely to bind. Following Borenstein et al. (2002), we calculate the hourly marginal cost of 

fossil-fuel electricity plants as the sum of marginal fuel, emission permit, and variable 

operating and maintenance costs.39 We assume the marginal cost function to be constant up to 

the capacity of the generator. A firm’s marginal cost of producing one more megawatt hour of 

electricity is defined as the marginal cost of the most expensive unit that it is operating and 

that has excess capacity. 

Our measure of output is the total production by each firm’s generating units as 

reported in the Continuous Emissions Monitoring System (CEMS), that contains data on the 

hourly operation status and power output of fossil-fuelled generation units in California. We 

use the California Power Exchange (PX) day-ahead electricity price, because 80%–90% of all 

transactions occurred in the PX. Prices vary by location when transmission constraints 

between the north and south bind.40 Most firms own power plants in a single transmission 

zone, so we use a PX zonal price. Table A.4 in the technical appendix reports the summary 

statistics for all these variables. 

We compute the value of the residual demand elasticity facing the five large suppliers 

evaluated at the hourly market clearing price, Ph, as described in Wolak (2003). We first 

compute the aggregate demand for electricity in the PX day-ahead energy market and subtract 

from that the total amount supplied at different prices in the neighborhood of the Ph by all 

market participants besides five strategic firms. As the resulting residual demand curve is a 

step function, computing the slope of the residual demand curve at the Ph involves some 

approximation. Wolak (2003) argues the approximation of the step function is reasonably 

                                                 
39

 We do not observe the spot prices for natural gas for California hubs in 1998 and 1999, and use prices from 
Henry Hub instead. The difference between natural gas prices between these hubs before 2000 (for which we 
have the data available) was relatively small (see Woo et al., 2006, p. 2062, Fig. 2). 
40 An important implication of transmission congestions is that they cause the slope of residual demand to differ 
for firms in the north and south of California. Puller (2007) estimated his model based on a subsample of 
uncongested hours and found smaller conduct parameter estimates relative to full sample (though his qualitative 
conclusions did not change). Our choice of residual demand elasticities based on PX data (see below) captures the 
effect of transmission constraints.   
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accurate as there are large numbers of steps in the residual demand curve, particularly in the 

neighborhood of the market-clearing price. To compute the slope of the residual demand curve 

at the hourly market-clearing price, we find the closest price above Ph, such that the residual 

demand is less than the value at Ph. Following the notation in Wolak (2003), let Ph(low) be this 

price, and DRstrat,h(Ph(low)) be the associated value of the residual demand facing five strategic 

firms at Ph(low). Next, we find the closest price below Ph such that residual demand is greater 

than the value at Ph. Let Ph(high) be this price, and DRstrat,h(Ph(high)) be the associated value of 

the residual demand facing five strategic firms at Ph(high). The elasticity of the residual 

demand curve facing five strategic firms jointly during hour h at price Ph is equal to the arc 

elasticity, computed as 
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Following Wolak (2003) we set Ph(low) and Ph(high) equal to $1 below and above Ph. 41 For 

comparison purposes we also replicate Puller’s (2007) residual demand elasticity estimates to 

compute the expected value of the random conduct term. Puller (2007) computes residual 

demand elasticity as 

   S

tstrat

S

tfringetstrat
D QQ ,,, ̂  ,     (15) 

where QSfringe,t is electric power supply by the competitive fringe, and 
S

tfringet

t

QP

P

,

'
ˆ   is the price 

elasticity of the fringe supply. We obtain the estimates of ̂  from Puller (2007, Table 3, p. 83). 

Figure A.2 in the technical appendix shows calculated price-cost margins. This figure is almost 

identical to Figure 1 in Puller (2007), and shows that margins vary considerably over sample 

period. They are also higher during the third and fourth quarters of each year, when total 

demand for electricity is high. Figure A.3 in the technical appendix shows variation across time 

of the residual demand elasticities based on California PX bidding data and from Puller (2007). 

While both series exhibit similar trend, the elasticities based on PX data are considerably 

                                                 
41 Wolak (2003) notes that this procedure does not guarantee that the difference between DRstrat,h(Ph(high)) and 
DRstrat,h(Ph(low)) is positive and therefore can produce zero values of D

strat,t. We used $0.50, $1, and $5 to 
determine Ph(low) and Ph(high), and, similar to Wolak (2003), did not find noticeably different distributions of 
nonzero values of D

strat,t.  
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higher (in absolute terms) and more volatile. We next analyze the extent to which higher 

margins resulted from less competitive pricing behavior rather than from less elastic demand. 

4.2. Pricing Equation Estimates 

This section describes estimation results of pricing equation (5), which result in the first-stage 

parameter estimates. We consider different specifications, estimation methods, and time-

periods. First, we estimate equation (5) using elasticities of residual demand, calculated based 

on PX data and based on Puller’s (2007) estimates. 

Second, we allow for output to be an endogenous variable as the error term it in (5) 

could include marginal cost shocks that are observed by the utility.42 To account for 

endogeneity of output we estimate equation (5) by the ordinary least squares (OLS), treating 

Pt·qit/QSstrat,t (hereafter xit) as exogenous variable, and by GMM using instruments for xit. We use 

four instruments for xit: the inverse of the day-ahead forecast of total electricity output, 1/FQt, 

the dummy variable for binding capacity constraints, CAPBINDit, the ratio of one week lagged 

output to current output, tt QQ 7 , and firm´s generation capacity, kit. The first two instruments 

are from Puller (2007).43 We assume that the ratio of one week lagged output to current output 

is exogenous based on the standard argument in economic literature that unpredictable 

random variables do not affect realizations of firms’ past planning decisions (Hall, 1988). We 

assume that firm´s generation capacity is orthogonal to the error term because it can be viewed 

as a quasi-fixed variable, independent of current levels of operation. We then perform Hansen’s 

(1982) J test, F-test for weak instruments (Staiger and Stock, 1997) and Hausman’s (1978) 

specification test to test for overidentifying restrictions, instruments’ strength, and consistency 

of the OLS estimates. 

Finally, we estimate equation (6) over two periods described in Puller (2007). The first 

period from July 1998 to April 1999 covers four strategic firms (AES, DST/Dynegy, Duke, and 

Reliant). The second period from May 1999 to November 2000 covers five strategic firms 

following Southern entry.44 

                                                 
42 Puller (2007) makes similar point. 
43 Puller (2007) adopts the day-ahead forecast of total electricity output, rather than it’s inverse. We do not use 
the day-ahead forecast of total electricity output here as an instrument because it failed Hansen’s (1982) J test. 
Notwithstanding this difference, the economic interpretation of using this instrument is the same as in Puller 
(2007).         
44 Puller (2007) also reports estimates for the period from June 2000 to November 2000, which covers the price 
run-up preceding collapse of California liberalized electricity market. We chose not report these estimates 
because though the incentives of some market particip period (Borenstein et al. 2008), the market structure itself 
was not fundamentally different.    
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Table 1a. Pricing equation estimates (July 1, 1998 - April 15, 1999) 

Dependent variable: (P-mc)it; No. of strategic firms: 4; Method: OLS and Two-step GMM (a) 

  Elasticities based on Puller (2007) Elasticities based on PX bids 

Explanatory variables Coef. OLS GMM(b) OLS GMM(b) 

CAPBINDit Α -4.98 10.74*** 36.67*** 8.11 
  (3.70) (4.21) (6.08) (10.63) 

S

tstrat

D

tstratittit QqPx ,,   1.42*** 0.95*** 0.125*** 0.74*** 
  (0.07) (0.06) (0.04) (0.11) 

  
    

Observations  864 864 864 864 

Mean of the dependent variable  8.56 8.56 8.56 8.56 

Standard error of residuals  13.14 14.18 20.28 28.34 

Hausman test  (c)   61.4***  41.64*** 

Hansen test (c)   4.48**  1.78 

Test for weak instruments  (c)   226.5***  32.6*** 

Notes: 
(a) Standard errors robust to heteroskedasticity in parenthesis. *(**)(***) stands for statistically significance at 10%(5%)(1%). 
(b) Instruments: CAPBINDit, kit, 1/FQt , where FQ is day-ahead forecast of total (perfectly inelastic) demand and kit is capacity. 
(c) Both Hausman and Hansen tests follow a 2 distribution with 1 degree of freedom. The Hausman test is sometimes based in only 
one parameter in order to provide a positive value. The test for weak instruments follows F distribution with 2 and (obs-3) degrees 
of freedom. 
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Table 1b. Pricing equation estimates (April 16, 1999 – November 30, 2000) 

Dependent variable: (P-mc)it; No. of strategic firms: 5; Method: OLS and Two-step GMM (a) 

  Elasticities based on Puller (2007) Elasticities based on PX bids 

Explanatory variables Coef. OLS GMM(b) OLS GMM(b) 

CAPBINDit Α -5.16 30.01*** 76.591*** 50.39*** 

  (4.19) (6.69) (10.78) (13.19) 

S

tstratPullerittit QqPx ,   1.363*** 0.80*** 0.065*** 1.05*** 

  (0.059) (0.034) (0.021) (0.123) 

Observations  2300 2300 2300 2300 

Mean of the dependent variable  18.43 18.43 18.43 18.43 

Standard error of residuals  27.83 34.80 57.69 80.76 

Hausman test  (c)   20.51***  66.28*** 

Hansen test (c)   0.65  1.41 

Test for weak instruments  (c)   412.5***  71.6*** 

Notes: 
(a) Standard errors robust to heteroskedasticity in parenthesis. *(**)(***) stands for statistically significance at 10%(5%)(1%). 
(b) Instruments: CAPBINDit, kit, Q(-7)/Q, where Q(-7) is total demand lagged one week, and kit is capacity. 
(c) Both Hausman and Hansen tests follow a 2 distribution with 1 degree of freedom. The Hausman test is sometimes based in only 
one parameter in order to provide a positive value. Test for weak instruments follows F distribution with 2 and (obs-3) degrees of 
freedom. 
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Tables 1a and 1b summarize the specification, estimation and fit of the pricing equation 

(5) using different set of instruments and calculated elasticities of residual demand, over the 

periods analyzed in Puller (2007). All estimated values of the conduct parameter are 

statistically significant from zero. The results of Hansen’s J test and F-test for weak instruments 

indicate that the chosen instruments are generally valid45, whereas Hausman’s (1978) 

specification test indicates that the OLS results are biased and inconsistent. The size of this OLS 

bias, (measured by the difference between OLS and GMM estimates) is large indicating a 

significant correlation between the term xit and unobserved error term. 

The columns 4 and 5 of Tables 1a and 1b shows the estimated coefficients for the 

pricing equation (5) using residual demand elasticities calculated based on PX data. The GMM 

estimates of the conduct parameter are quite similar to those obtained by Puller (2007). 

Compared to Puller’s (2007) estimates (see columns 2 and 3 of Tables 1a and 1b), the 

estimated value of the conduct parameter is smaller over the period from July 1998 to April 

1999 (0.74 vs. 0.95) and larger over the period May 1999 to November 2000 (1.05 vs. 0.80). 

However, in both cases it is not statistically different from Puller’s (2007) estimate of 0.97. 

 

4.3. Variance Decomposition 

 

Once all parameters of the pricing equation (5) are estimated, we can get estimates of 

the parameters describing the structure of the two error components included in the 

composed random term it (second-stage). Conditional on these parameter estimates, market 

power scores can be then estimated for each firm by decomposing the estimated residual into a 

noise component and a market-power component (third-stage). 

Following the discussion in the section 3.2, to obtain the estimates of the parameters 

describing the structure of error components we first need to specify the distribution of the 

unobserved random conduct term. We must also impose both lower and upper theoretical 

bounds on the values of the random conduct term, i.e., 0≤θit≤1/sit. 

                                                 
45

 Chosen Instruments fail Hansen’s J test at 5% level of significance over the period from July 1998 - April 1999 
using residual demand elasticities calculated based on Puller’s (2007) estimates. 
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Table 2. Second-stage Parameter Estimates.(a) 

 Elasticities based on Puller (2007) Elasticities based on PX bids 

Component / Parameter July, 1998 –April, 1999 April, 1998 –November, 2000 July, 1998 –April, 1999 April, 1998 -November, 2000 

Symmetric component, v        

Intercept 1.14*** (0.07) 1.88*** (0.04) 2.27*** (0.03) 3.62*** (0.02) 

FQt -1.82*** (0.45) -1.26*** (0.20) 3.78*** (0.16) 5.04*** (0.04) 

0.5·FQt2 11.7*** (2.81) 3.35*** (1.27) 3.28*** (0.87) 2.51*** (0.58) 

DDST 0.03 (0.07) 0.29*** (0.06) 0.01 (0.04) 0.05*** (0.02) 

DDuke -0.18** (0.07) 0.47*** (0.05) -0.07* (0.04) -0.01 (0.02) 

DReliant 0.10 (0.08) 0.05 (0.05) 0.01 (0.04) 0.02 (0.02) 

DSouthern   -0.37*** (0.07)   -0.14*** (0.02) 

Dtuesday 0.23 (0.15) 0.25** (0.11) -0.19 (0.16) -0.96*** (0.08) 

Dwednesday 0.74*** (0.10) 0.17 (0.20) 0.44*** (0.12) -0.47*** (0.06) 

Dthuersday 0.58*** (0.13) 0.22** (0.11) 0.41*** (0.10) -0.26*** (0.05) 

Dfriday -0.23 (0.24) -0.09 (0.12) -0.40** (0.20) 0.01 (0.04) 

DSaturday 0.32 (0.31) 0.07 (0.13) -0.17 (0.20) -0.51*** (0.05) 

DSunday 0.19 (0.30) 0.16 (0.14) -0.60*** (0.18) -0.11** (0.05) 

Asymmetric component,         

Intercept 0.78*** (0.13) 1.22*** (0.09) 0.86*** (0.31) 1.12*** (0.25) 

sit -2.59*** (0.39) -6.45*** (0.37) -3.33*** (0.78) -6.23*** (1.06) 

DDST 1.69*** (0.15) -0.15** (0.07) 1.06*** (0.33) -0.49 (0.30) 

DDuke 0.43*** (0.15) -0.08 (0.08) 0.61*** (0.30)   

DReliant 0.16 (0.10) -0.04 (0.07) 0.12 (0.27) -0.13 (0.24) 

DSouthern   0.08 (0.07)   0.58*** (0.16) 

sit-1-sit-2 0.17 (0.49) -0.19 (0.45) 1.22 (1.29) 0.85 (1.12) 

Mean log-likelihood -3.24 -3.93 -3.77 -5.03 

Observations 864 2300 864 2300 

Note: (a) Standard errors in parenthesis. *(**)(***) stands for statistically significance at 10%(5%)(1%). 
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To achieve this objective, we consider the doubly truncated normal model 

introduced by Almanidis et al. (2011) that allows us to impose both theoretical 

restrictions.46 For robustness grounds, several specifications of the doubly 

truncated normal model were estimated, corresponding to different levels of  , 

i.e., the mean of the pre-truncated random term that, after truncation, yields θit. For 

all models, we examine the values of μ, equal to 0, 1, and 2 because the value of the 

conduct parameter estimated in the first stage of our procedure is around one. We 

then estimate the model using maximum likelihood and choose the preferred level 

of truncation based on the lowest value of the Akaike information criterion (AIC) 

from estimated specifications. In the technical appendix, Table A.4, we show the 

results of the test to select the value of the mean of the pre-truncated normal 

distribution, . Table A.4 in the technical appendix shows that the preferred level 

of truncation is 0 across all specifications. This implies that the conduct random 

term can be modeled using the truncated half normal distribution that assumes 

zero modal value of θit. 

Table 2 describes the parameter estimates of the doubly truncated normal 

model describing the structure of it and vit (i.e.,  and v) across different 

specifications, conditional on the first-stage estimated parameters. In all cases, the 

variance of asymmetric component (the conduct term) is lower than the variance 

of the symmetric component (traditional error term). This outcome indicates that 

both demand and cost random shocks, which are captured by the traditional error 

term, explains most of the overall variance of the composed error term, . 

In all models we reject the hypothesis of homoscedastic variation in both 

the noise term and the conduct term (see Table A.5 in the technical appendix). 

Many of the day-of-the-week dummy variables are statistically significant in most 

periods. As expected, variation in conduct decreases with firms’ market shares, sit. 

The coefficient of the target variable sit-1 is not significant at all in all periods and 

                                                 
46

 To measure the convenience of using double-bounded distributions in practice, in previous 
versions of the present paper we also estimated the traditional half-normal distribution, which only 
imposes the conduct term be positive. The market power scores for the half-normal distributions 
were, on average, much higher than the upper-bound indicated by the theory, indicating  that the 
one-sided specifications, traditional in the stochastic frontier literature, should not be used in the 
present application, and theory-consistent double-bounded distributions need to be estimated. 



EPRG WP 1210 

 

 

26 

using elasticities based either on Puller or PX bids. This result is robust to the 

inclusion of other alternative variables to capture the influence of the past 

behaviour on the present market conduct, such as week-differences and other lags 

of the first-differences of market shares. The coefficient of dummy for DST in the 

conduct term part of the model has a large positive and significant coefficient in 

the first period. This result and the fact that the average market share of DST in the 

first period is much less than the average market share of its rivals explain our 

subsequent finding that DST market power scores are much higher than those 

obtained for the other strategic firms. 

 

4.4. Firm-specific market power scores 

Based on the previous estimates, the third stage allows us to obtain firm-

specific market power scores. Table 3 provides the arithmetic average scores of 

each firm obtained using ML estimates of doubly truncated normal model. For 

comparison purposes we also report the firm-specific estimates of Puller (2007). 

Table 3 illustrates several interesting points that are worth mentioning. 

First, like in Puller (2007), the estimated firm-level values of the conduct 

parameter are closer to Cournot (θit =1) than to static collusion (θit =1/sit) across 

all specifications. A notable exception is DST, whose average market power score is 

much larger than the other averages during this period. Puller (2007, p.84) finds 

similar result and argues that from these high conduct parameter estimates may 

result from incomplete quantity data for some of Dynegy’s small peaker units. 

Unlike Puller (2007), we do not find an increase in market power if we compare 

the average values in the first period with those obtained in the second, regardless 

of which residual demand elasticity measure we use. 

Second, we find notable differences among utilities in terms of market 

power. This suggests that assuming a common conduct parameter for all firms is 

not appropriate. For instance, firms with smaller market shares (e.g., DST) have 

consistently higher market power scores, whereas firms with larger market share 

(e.g., Duke) have consistently lower market power scores, compared to other firms. 

These results seem to indicate that the traditional 1st-stage parameter estimate 
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tends to overweight the market power of larger firms and underweight the market 

power of smaller firms.47 

Table 3. Firm-Specific Conduct Parameter Estimates 

Firm 
Market 
Share (sit) 

Elasticities based 
on Puller (2007) 

Elasticities based 
on PX bids 

Puller 
(2007) 

 
Mean St. Dev. Mean St. Dev. Mean St. Dev.  

 
July 1, 1998 - April 15, 1999 
 

 

AES 0.28 0.15 0.92 0.53 0.83 0.45 0.99 
DST 0.07 0.08 6.89 4.58 4.29 1.67 5.15 
Duke 0.48 0.20 0.83 0.56 0.78 0.53 1.02 

Reliant 0.19 0.10 1.30 0.74 1.17 0.49 1.48 

        
Industry average  2.49  1.77  2.16 
Industry average (excl. DST) 1.02  0.93  1.16 
1st stage mean   0.95  0.74  0.97 
 
April 16, 1999 – November 30, 2000 

    

        
AES 0.17 0.09 1.02 0.70 0.94 0.48 0.82 
DST 0.12 0.05 1.11 0.65 0.72 0.20 1.75 
Duke 0.31 0.12 0.48 0.53 0.47 0.41 0.81 
Reliant 0.20 0.07 0.76 0.47 0.66 0.27 1.01 
Southern 0.20 0.08 0.93 0.54 1.38 0.66 1.21 
        
Industry average 0.86  0.83  1.12 

1st stage mean   0.80  1.05  0.97 

 

Third, as illustrated in the technical appendix, Figure A.4, our approach 

based on the estimated distribution of the random conduct yields similar firm-

specific market power scores to those of Puller (2007) using a fixed-effect 

approach. This result demonstrates that both approaches are, in practice, 

equivalent or interchangeable. Our procedure has the advantage over Puller’s 

approach that it can be applied with cross-sectional data sets; when the time 

                                                 
47 Interesting enough, the average industry score for the first period (July 1, 1998 - April 15, 1999) 
are much larger than the 1st-stage common conduct parameter in all models. If we exclude DST in 
all models, the averages are again similar. This also happens in Puller (2007). This suggests that the 
common parameter is not the simple average of individual conduct parameters. For this reason, we 
have not imposed this condition when estimating the structure of the error term in the second 
stage of our procedure.  
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dimension of the data set is short; or when the available instruments are valid to 

estimate a common pricing equation to all observations (see Hansen tests in 

Tables 1a and 1b), but they are not valid when a separable pricing equation is 

estimated for each firm. 

In a panel data setting the most important advantage of our methodology is 

that we can analyze changes in market conduct over time. Because our approach 

does not impose the restrictions on the temporal path of these scores they are 

allowed to change from one day to another. In Figures 1a-1b, and 2a-2b we show 

the temporal evolution of the average market power scores of the four/five 

strategic firms during the periods analyzed in the present paper.48 Our results 

indicate that the estimated firm-specific conduct parameters do vary significantly 

across time. Notwithstanding these differences, firm-specific conduct parameters 

generally tend to move in the same direction across time. This result indicates that 

firms tend to pursue similar market strategies across time, and is consistent with 

the implied equilibrium behaviour of repeated dynamic games in homogenous 

product market setting. The notable exception is Duke, whose market strategies 

are occasionally different from other firms. Puller (2007) notes that there is a 

widespread belief that Duke violated California electricity market rules and 

forward-contracted some of its production, which in part explains observed Duke’s 

behaviour. 

Figures 1a and 1b show the intertemporal variation in estimated conduct 

parameters over the period from July 1, 1998 to April 15, 1999. Both figures show 

that during this period firms electricity pricing were at (or slightly above) Cournot 

levels. The most notable exception is DST/Dynegy, whose conduct was well above 

Cournot level during summer 1998 and close to full collusion in winter 

1998/1999. As explained above, high estimates of the conduct parameter for DST 

during these periods may reflect the bias from incomplete generation asset data 

for this firm. Another notable observation is rapid increase in the conduct term for 

Reliant and DST in winter 1998/1999. 

                                                 
48 To smooth the variation across time, we report the monthly moving averages of the estimated 
conduct parameter.  
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Figure 1b. Firm-Specific Conduct Parameter Estimates       
(Monthly Averages over July 1, 1998 – April 15, 1999, 
Elasticities based on PX Data)                  

Figure 1a.  Firm-Specific Conduct Parameter Estimates       
(Monthly Averages over July 1, 1998 – April 15, 1999, 
Elasticities based on Puller 2007)                  



EPRG WP 1210 

 

 

30 

 

 

           

 

 

 

 

 

 

Figure 2a.  Firm-Specific Conduct Parameter Estimates       
(Monthly Averages over April 16, 1999 – May 30, 2000, 
Elasticities based on Puller 2007)                  

Figure 2b.  Firm-Specific Conduct Parameter Estimates       
(Monthly Averages over April 16, 1999 – May 30, 2000, 
Elasticities based on PX Data)                  
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Figures 2a and 2b show the intertemporal variation in estimated conduct 

parameters over the period from April 16, 1999 to May 30, 2000 following the 

entry of Southern. Both figures demonstrate that firms’ pricing strategies are still 

close to Cournot levels for most of this period. On average, over this period, the 

new entrant Southern tends to have a higher value of the estimated conduct 

parameter, whereas Duke tends to have a lower value of the estimated conduct 

parameter. 

Firms’ pricing strategies exhibit a larger variation during this period. For example, 

the market conduct of Southern increases above Cournot levels in summer 1999, 

and the market conduct of Southern, Reliant, and AES increases above Cournot 

levels in summer 1999. There is also a difference in the inferred firms’ conduct for 

the results using the residual demand elasticities based on Puller (2007) and the 

residual demand elasticities based on PX bid data. The results using the residual 

demand elasticities based on Puller (2007) show that the conduct parameter of all 

firms (and most notably, DST) increases above Cournot levels during the notorious 

price run-up period of summer 2000. On the contrary, the results using the 

residual demand elasticities based on PX bid data show that pricing strategies of all 

firms, except for Southern, are at Cournot levels. As regards Southern, though 

pricing strategy is above Cournot levels, it is not different from its strategy in 

summer 1999. These results indicate that correctly specified residual demand 

elasticities are critical to understanding market conduct. 

 

4.5. Unilateral vs. Coordinated Market Power 

 

Wolak (2003) used the actual bids submitted to the California Independent 

System Operator’s real-time energy market, and demonstrated that residual 

demand curves facing five largest electric power suppliers were steep enough so 

that it was “unilaterally expected-profit-maximizing for each firm to bid to raise 

prices significantly in excess of the marginal cost of their highest-cost unit 

operating.”49 Based on that finding, Wolak (2003) argued that the potential for 

                                                 
49

 Wolak (2003, p.430) 
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exercising market power unilaterally “made collusive behavior on the part of 

suppliers to the California market unnecessary to explain the enormous increase in 

market power exercised starting in June 2000,”50 although these considerations 

cannot rule out the possibility that collusive behavior took place. 

We use the results of the analysis carried out in this paper to clarify the 

extent to which firms’ potential for exercising market power unilaterally affects 

their market conduct. In doing so, we follow Wolak (2003) and apply equation (15) 

to compute the residual demand elasticities facing each firm individually on the 

California PX market, and use their reciprocals (Lerner indices) as a measure of the 

firms’ potential to exercise unilateral market power.51 We then compare estimated 

firms’ conduct parameters to calculated Lerner indices52 to deduct whether firms’ 

conduct is correlated with higher potential for exercising of unilateral market 

power. 

Figures 3a and 3b show the variation of calculated Lerner indices across 

time over the periods from July 1, 1998 to April 15, 1999 (preceding entry of 

Southern), and from April 16, 1999 to November 30, 2000. For most of the sample 

period their values fluctuate between 0.05 and 0.15, and are close to the averages 

reported in Wolak (2003, Table 1). However, for some periods, such as summers of 

1998, 1999, and 2000, and the winters of 1998 and 1999 the values of calculated 

Lerner indices exceed 0.2, indicating substantial potential for the unilateral 

exercise of market power. 

                                                 
50 Ibid. 
51 It is important to point out that because suppliers had the opportunity to sell their capacity in the 
CAISO ancillary services markets and the real-time energy market, the calculated Lerner indices are 
not the actual measure of the unilateral market power, unlike in Wolak (2003). Rather, we use this 
measure as a (maximum) potential for the unilateral exercise of the market power. However, given 
that PX market accounted for 85% of all electricity delivered in the CAISO control area, whereas 
CAISO’s real time market accounted for just 5% (Borenstein et al. 2002), the ancillary services 
market was very small, and there was no substantial divergence between PX and ISO market 
clearing prices for the most of the time covered in this study (Borenstein et al. 2008) we believe our 
measure provides a reasonable approximation for the exercise of the unilateral market power.          
52 Wolak (2003, p.426) points out that regardless of the residual-demand realization, the following 
equation holds for each hour of the day, h, and each supplier, j:(Ph-MCjh)/Ph=-1/hj where where Ph is 
the market price in hour h, MCjh is the marginal cost of the highest cost produced by firm j in hour h, 
and hj is elasticity of the residual demand curve facing firm j during hour h evaluated at Ph. 
Following Wolak (2003) we define the Lerner index for firm j in hour h as. Lhj=-1/hj. 
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We then examine the relationship between firms’ abilities to exercise 

unilateral market power, measured by Lerner index, and engage in collusive 

practices, measured by the conduct parameter. Figures 4a and 4b show the 

variation of both unilateral and coordinated market power across time over the 

periods from July 1, 1998 to April 15, 1999, and from April 16, 1999 to November 

30, 2000. The shaded areas in these figures indicate that both sources of market 

power roughly move in opposite directions, and hence the non-shaded areas 

indicate co-movements of unilateral and coordinated market power scores.  

Figures A.5 and A.6 in the technical appendix show firm-level correlations between 

calculated Lerner indices and estimated conduct parameters over two periods 

covered in this study. Figure 4a demonstrates that, with the exception of Duke, 

unilateral and coordinated market power scores move in opposite directions most 

of the period between July 1, 1998 and April 15, 1999. This is confirmed by Figure 

A.5 in the appendix where a strong negative correlation has found between Lerner 

indices and conduct parameters for all firms but Duke over the period between 

July 1, 1998 and April 15, 1999. This finding implies that firms were more likely to 

engage in collusive practices when their potential for unilateral market power was 

limited. 

Figure 4b shows a slight change in firms’ conduct after the entry of Southern. With 

the exception of DST where both unilateral and coordinated market power scores 

clearly move in opposite directions during most of the period between April 16, 

1999 and November 30, 2000, there are not a clear relationship between both 

sources of market power. This is confirmed by Figure A.6 that shows a strong 

negative correlation between Lerner indices and conduct parameters for only two 

firms out five – DST and Reliant (R2 is 0.24 and 0.08 respectively) over the period 

between April 16, 1999 and November 30, 2000. For other three firms, such 

correlation is weak or does not exist. This result indicates that firms’ market 

conduct is not necessarily affected by its potential to exercise unilateral market 

power.
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Figure 3a.  Firm-Specific Lerner Indices        
(Monthly Averages over July 1, 1998 – April 15, 1999, 
Elasticities based on PX data)                  

Figure 3b.  Firm-Specific Lerner Indices        
(Monthly Averages over April 16, 1999 – November 30, 2000,  
Elasticities based on PX data)                  
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Figure 4b. Unilateral vs. coordinated conduct scores       
(Monthly Averages over April 16, 1999 – November 30, 
2000)                  

Figure 4a.  Unilateral vs. coordinated conduct scores       
(Monthly Averages over July 1, 1998 – April 15, 1999)                  
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5. Conclusions 

 

This study contributes to the literature on estimating market power in 

homogenous product markets. Our econometric approach allows for the value of 

estimated conduct parameter to vary across both firms and time. We estimate a 

composed error model, where the stochastic part of the firm’s pricing equation is 

formed by two random variables: the traditional error term, capturing random 

shocks, and a random conduct term, which measures the degree of market power. 

Treating firms’ behaviour as a random parameter helps solving the over-

parameterization problem in the continuous time. Other advantages of our 

approach are its applicability to cross-sectional or short data sets, and to cases in 

which individual pricing equations cannot be consistently estimated with the 

available instruments. In addition, by imposing upper bound on the value of 

estimated conduct parameter we ensure that estimated market power scores are 

always consistent with the economic theory. 

The model can be estimated in three stages using either cross-sectional or 

panel data sets. While the first stage of our model is the same as in the previous 

literature, the second and the third stages allow us to distinguish variation in 

market power from volatility in demand and cost, and get firm-specific market 

power scores, conditional on the first-stage parameter estimates. Model 

identification is based on the assumption that the conduct term is asymmetrically 

distributed, which, to our best knowledge, has not been previously used in the 

empirical industrial organization literature. 

We illustrate the proposed approach with an application to the California 

wholesale electricity market using a well-known dataset from Puller (2007). We 

supplement the dataset with a different, and more accurate measure of the 

elasticity of residual hourly demand function of the five strategic firms, calculated 

based on California Power Exchange bidding data. After estimating the parameters 

of the pricing equation, we implement the second and third stages based on the 

truncated normal distributions, which imposes both lower and upper theoretical 

bounds on the values of the random conduct term. 
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Our first-stage results based on the estimated distribution of the random 

conduct are generally similar to previous findings of Puller (2007) using a fixed-

effect approach. This result demonstrates that both approaches are, in practice, 

equivalent or interchangeable for estimating firms’ pricing equation. However, our 

approach yields more reasonable market power scores than a fixed-effect 

treatment as estimated market power scores are always consistent with the 

economic theory. 

Similar to Puller (2007) our average conduct parameter estimates are 

closer to Cournot than to static collusion. We find an increase in collusive behavior 

of all firms above Cournot levels during the period of price run-up in June – 

November 2000, using the residual demand elasticities based on Puller (2007) but 

not using the residual demand elasticities based on PX data. The analysis of firm-

specific conduct parameters suggests that realization of market power varies 

significantly over both time and firms. We find strong negative correlation between 

Lerner indices and estimated conduct parameters for 3 out of 4 firms during the 

first period of our sample (before entry of Southern) and for 2 out of 5 firms during 

the second period of our sample. This result indicates that, for some firms the 

potential for realization of the market power unilaterally is associated with lower 

values of the conduct parameter. 
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Technical Appendix 
 
 
 

Table A.1. Double-bounded density functions (0uB) 
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Source: Almanidis et al. (2011) 

 
 
 

Table A.2. Conditional means for selected distributions 
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Source: Almanidis et al. (2011) 
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Table A. 3. Summary statistics (hour 18) 
 

 Mean St.dev. Min Max Obs 

 
July 1, 1998 - April 15, 1999 

     

      
Price (Pt) 35.2 21.0 4.9 180.4 864 
Marginal cost (mcit) 26.6 3.1 19.5 33.7 864 
Margin (P t -mc it) 8.6 21.0 -25.0 158.6 864 
CAPBINDit 0.05 0.22 0.00 1.00 864 
Capacity (kit) 2463 1054 670 3879 864 
Output (qit) 813 844 0 3720 864 
Market demand (Qt) 30395 4146 20057 43847 864 
Elasticities based on PX bids 6.91 6.36 0.05 24.65 864 
Elasticities based on Puller 
(2007) 

2.12 1.33 0.56 10.77 864 

 
April 16, 1999 – November 30, 2000 
 

   

Price (Pt) 61.2 68.4 9.5 750.0 2300 
Marginal cost (mcit) 42.7 22.9 22.3 214.5 2300 
Margin (P t -mc it) 18.4 57.3 -33.4 697.1 2300 
CAPBINDit 0.05 0.21 0.00 1.00 2300 
Capacity (kit) 2955 769 1020 3879 2300 
Output (qit) 1223 793 0 3317 2300 
Market demand (Qt) 30604 3658 22076 42404 2300 
Elasticities based on PX bids 4.02 4.35 0.01 24.89 2300 
Elasticities based on Puller  
(2007) 

1.02 0.68 0.35 5.26 2300 
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Table A.4. Selection of Pre-truncated Mean 
 

  Elasticities based on Puller (2007)  Elasticities based on PX bids 
       
Null Hypothesis  Average log-likelihood AIC  Average log-likelihood AIC 
       

July 1, 1998 - April 15, 1999     

       

μ=0  -3.24 5601.4  -3.77 6517.4 

μ=1  -3.30 5702.5  -3.80 6565.4 

μ=2  -3.37 5829.0  -3.83 6610.1 

Obs.  864   864  

       

April 16, 1999 – November 30, 2000 
 

  

μ=0  -3.93 18092.3  -5.03 23135.8 

μ=1  -4.09 18833.8  -5.06 23284.6 

μ=2  -4.42 20319.6  -5.08 23396.4 

Obs.  2300   2300  

 
Note: AIC: Akaike Information Criterion; Obs.: number of observations. The values, 
which correspond to the minimal value of AIC are shown in bold. 
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Table A.5. Likelihood Ratio Tests for Heteroscedasticity in Composed Error Term 

 

  Elasticities based  
on Puller (2007)  
  

Elasticities based  
on PX bids 
  

Null Hypothesis Average 

log-

likelihood 

LR Test, 

 

Average 

log-

likelihood 

LR test,  
 

July 1, 1998 - April 15, 1999  

     

 -3.42 306.9
***

 (5) -3.79 88.4
***

 (5) 

     

 -3.49 117.5
***  

(11) -4.16 1710.3
***  

(11) 

     

     

Unrestricted model -3.24  -3.77  

 

April 16, 1999 – November 30, 2000 

   

     

 -4.04 197.1
*** 

(6) -5.04 59.11
***   

(5) 

     

 -4.09 78.3
***

 (12) -5.47 1948.1
***  

(12) 

     

   

Unrestricted model -3.93  -5.03  

Notes: Tests are based on equations (11) and (12). (***) indicate that the null 
hypothesis is rejected at 1% level; degrees of freedom in parentheses. 
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Figure A.1. Double-bounded distributions 
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Figure A.2. Price-cost margins in hour 18 (July 3, 1998 – November 30, 2000) 

 

 
 
 
 

Figure A.3. Residual Demand Elasticities Facing Strategic Firms in hour 18 
(Median Monthly Absolute Values, July, 1998 – November, 2000) 
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Figure A.4. Comparison of market power scores using elasticities based on Puller (2007). 

 

 
 
 

Figure A.5. Firm-Specific Conduct Parameter Estimates vs. Firm-Specific Lerner Indices 
(over July 1, 1998 – April 15, 1999, elasticities based on PX data) 
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Figure A.6. Firm-Specific Conduct Parameter Estimates vs. Firm-Specific Lerner Indices 

(over April 16, 1999 – November 30, 2000, elasticities based on PX data) 
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