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Abstract: The snail Bithynia siamensis goniomphalos acts as the first intermediate host for the human 
liver fluke Opisthorchis viverrini, the major cause of cholangiocarcinoma (CCA) in Northeast Thailand. 
The undisputed link between CCA and O. viverrini infection has precipitated efforts to understand the 
molecular basis of host-parasite interactions with a view to ultimately developing new control 
strategies to combat this carcinogenic infection. To date most effort has focused on the interactions 
between the parasite and its human host, and little is known about the molecular relationships 
between the liver fluke and its snail intermediate host. In the present study we analyse the protein 
expression changes in different tissues of B. siamensis goniomphalos induced by infection with larval 
O. viverrini using iTRAQ labelling technology. We show that O. viverrini infection downregulates the 
expression of oxidoreductases and catalytic enzymes, while stress-related and motor proteins are 
upregulated. The present work could serve as a basis for future studies on the proteins implicated in 
the susceptibility/resistance of B. siamensis goniomphalos to O. viverrini, as well as studies on other 
pulmonate snail intermediate hosts of various parasitic flukes that infect humans. 
 
 
 
 



Significance  1 

Despite the importance and high prevalence of opisthorchiasis in some regions of 2 

Southeast Asia and the direct relationship between infection by Opisthorchis viverrini 3 

and the incidence of cholangiocarcinoma, little is known of the modifications induced 4 

by this parasite in its snail intermediate hosts. This time-course study provides the 5 

first in-depth quantitative proteomic analysis of experimentally infected Bithynia 6 

siamensis goniomphalos. We show how motor and stress-related proteins are 7 

upregulated in infected snails, while O. viverrini infection downregulates the 8 

expression of oxidoreductases and catalytic enzymes. This work serves as a basis for 9 

the development of new strategies, focused on the invertebrate intermediate hosts, to 10 

control parasite transmission. 11 

 12 
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Highlights 1 

 Comparison of body and headfoot proteins from infected B. siamensis 2 

goniomphalos. 3 

 More differentially expressed proteins were found in the body of infected 4 

snails.  5 

 Upregulation of motor and stress-related proteins in infected snails 6 

 Downregulation of oxidoreductases and catalytic enzymes in infected snails 7 

 The study of snails is important for controlling snail-borne parasitosis 8 
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Abstract 28 

The snail Bithynia siamensis goniomphalos acts as the first intermediate host for the 29 

human liver fluke Opisthorchis viverrini, the major cause of cholangiocarcinoma (CCA) in 30 

Northeast Thailand. The undisputed link between CCA and O. viverrini infection has 31 

precipitated efforts to understand the molecular basis of host-parasite interactions with a view 32 

to ultimately developing new control strategies to combat this carcinogenic infection. To date 33 

most effort has focused on the interactions between the parasite and its human host, and little 34 

is known about the molecular relationships between the liver fluke and its snail intermediate 35 

host. In the present study we analyse the protein expression changes in different tissues of B. 36 

siamensis goniomphalos induced by infection with larval O. viverrini using iTRAQ labelling 37 

technology. We show that O. viverrini infection downregulates the expression of 38 

oxidoreductases and catalytic enzymes, while stress-related and motor proteins are 39 

upregulated. The present work could serve as a basis for future studies on the proteins 40 

implicated in the susceptibility/resistance of B. siamensis goniomphalos to O. viverrini, as 41 

well as studies on other pulmonate snail intermediate hosts of various parasitic flukes that 42 

infect humans.  43 

 44 

 45 

Significance  46 

Despite the importance and high prevalence of opisthorchiasis in some regions of 47 

Southeast Asia and the direct relationship between infection by Opisthorchis viverrini and the 48 

incidence of cholangiocarcinoma, little is known of the modifications induced by this parasite 49 

in its snail intermediate hosts. This time-course study provides the first in-depth quantitative 50 

proteomic analysis of experimentally infected Bithynia siamensis goniomphalos. We show 51 

how motor and stress-related proteins are upregulated in infected snails, while O. viverrini 52 



infection downregulates the expression of oxidoreductases and catalytic enzymes. This work 53 

serves as a basis for the development of new strategies, focused on the invertebrate 54 

intermediate hosts, to control parasite transmission. 55 

 56 
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1. Introduction 61 

The liver fluke, Opisthorchis viverrini, represents a major public health problem in 62 

the Greater Mekong sub-region (Thailand, Lao PDR, Cambodia and southern Vietnam), with 63 

>10 million people estimated to be infected with this parasite. In addition to a spectrum of 64 

clinical signs associated with the infection, which include cholangitis, obstructive jaundice, 65 

hepatomegaly, periductal fibrosis, cholecystitis and cholelithiasis [1, 2], opisthorchiasis by O. 66 

viverrini is unequivocally associated with the development of cholangiocarcinoma (CCA) in 67 

infected individuals [3-5]. Incidence rates of CCA range from 93.8 to 317.6 per 100,000 68 

people/year in some districts of Northeast Thailand alone and prognosis is poor [3, 6]. O. 69 

viverrini is characterised by a complex life cycle, involving developmental phases in the 70 

definitive human host as well as intermediate prosobranch snail and cyprinid fish hosts. 71 

Piscivorous mammals, including dogs, cats and humans, serve as definitive hosts and become 72 

infected by eating raw or fermented fish harbouring the metacercariae of the parasite [7]. 73 

Metacercariae then excyst in the duodenum and migrate as juvenile flukes to the intra-hepatic 74 

biliary tree, where they develop to adult hermaphrodite flukes within ~4 weeks; mature 75 

flukes shed embryonated eggs into water through the faeces. Eggs are ingested by 76 

prosobranch snails of the genus Bithynia and hatch in the snail‟s digestive tract where the 77 

motile embryos (miracidia) develop into sporocysts. The sporocysts undergo asexual 78 

reproduction through the stages of rediae and cercariae, the latter of which exit the snail 6 to 79 

8 weeks later and infect a cyprinid fish. In the fish host the parasite encysts in the muscle to 80 

form metacercariae, the stage that is infective to humans upon ingestion of raw or 81 

undercooked fish.  82 

Despite the high prevalence of O. viverrini infection in humans and fish in endemic 83 

areas (i.e. up to 90% and 97%, respectively), prevalence in the snail intermediate host is 84 

surprisingly low (<1%) [8-12], and this observation has led to speculation that parasite 85 



infections may cause the activation of snail immune pathways aimed at eliminating and/or 86 

limiting the infection itself [13]. Indeed, both cellular and humoral factors have been reported 87 

to play important roles in „defending‟ snails against trematode infections [14, 15]; fibrinogen-88 

related proteins (FREPs) expressed by Biomphalaria glabrata, the intermediate snail host of 89 

Schistosoma mansoni, have been shown to precipitate parasite antigens, possibly playing a 90 

role in protective responses against parasite infections [16-19], and snail lectins and opsonins 91 

have also been shown to impact on trematode infections [20-23].  92 

 93 

The biological interactions between trematodes and their intermediate hosts are 94 

crucial events that determine the success of a parasite‟s infective process; the study of such 95 

interactions is currently attracting significant attention, particularly in relation to the 96 

development of strategies aimed at interrupting parasite transmission [24-26]. Recently, we 97 

used RNA-Seq of cDNA libraries to characterize the entire transcriptome of B. siamensis 98 

goniomphalos [25], and investigated gene expression changes associated with O. viverrini 99 

infection [13]. Despite these advances, information on the proteome of B. siamensis 100 

goniomphalos, and consequently protein expression changes induced by fluke infection, is 101 

scarce. Since proteins represent the primary interface of molecular interactions between 102 

snails and trematode parasites, this information is crucial to assist future investigations of 103 

snail-focused approaches to parasite control. Herein we characterized the changes in protein 104 

expression of B. siamensis goniomphalos upon experimental infection with O. viverrini using 105 

a combination of quantitative and qualitative proteomic approaches. Knowledge of the 106 

molecular basis of immune processes that are regulated in B. siamensis goniomphalos after 107 

parasite infection could be of importance for the design of new control strategies against liver 108 

fluke infection and CCA. 109 

 110 



2. Materials and Methods 111 

2.1 Ethics statement 112 

The protocols used for animal experimentation were approved by the Animal Ethics 113 

Committee of Khon Kaen University, based on the ethics of animal experimentation of the 114 

National Research Council of Thailand (Ethics clearance number AEKKU11/2555). All the 115 

snails and hamsters used in this study were maintained at the animal facilities at the Faculty 116 

of Medicine, Khon Kaen University, Thailand. 117 

 118 

2.2 Snail preparation 119 

  Adult B. siamensis goniomphalos snails were collected from public freshwater ponds 120 

located in the Muang district, Khon Kaen Province, Thailand, kept in laboratory ceramic 121 

aquaria containing de-chlorinated tap water and fed with synthetic snail food [27]. 122 

Trematode-naïve snails, as confirmed by cercarial shedding once a week for 8 weeks, were 123 

used for experimental infections.  124 

 125 

2.3 O. viverrini egg preparation 126 

  Syrian golden hamsters (Mesocricetus auratus) were experimentally infected with 127 

metacercariae of O. viverrini (50 metacercariae/animal) obtained from naturally infected 128 

cyprinid fish. After 4 months the infected animals were euthanized with ether and adult 129 

worms were recovered from the hamsters‟ livers and washed in 0.85% sodium chloride 130 

solution. The worms were subsequently dissected under a stereomicroscope to isolate eggs 131 

from the distal sections of the uteri as described previously [28]. Prior to experimental 132 

infection, the eggs were washed several times with distilled water and kept at room 133 

temperature for 2 weeks to undergo full maturation [29]. 134 

 135 



2.4 Experimental infection 136 

  Fully matured uterine-eggs of O. viverrini were fed to 40 (20 male and 20 female) B. 137 

siamensis goniomphalos maintained in the laboratory as previously described [29]. Briefly, 138 

snails were placed individually in transparent plastic containers with 6 ml of de-chlorinated 139 

tap water and exposed to 50 embryonated O. viverrini eggs for 24 h. After washing, the snails 140 

were placed in a new plastic container and kept at room temperature (RT) under dark and 141 

light in natural conditions and fed on synthetic snail food [27]. The plastic containers were 142 

checked daily and dead snails were removed. Each snail was subsequently examined for 143 

trematode infection by testing cercarial shedding and examination of hatched eggs in the snail 144 

faeces twice within a week as described previously [9, 30]. 145 

Four individuals (2 male and 2 female snails) were collected at 1, 7, 14, 28 and 56 146 

days post-infection (p.i.), and 4 uninfected snails were used as controls. From all the 147 

collected snails, soft bodies were removed from their shells, separated into headfoot and 148 

body, snap frozen in liquid nitrogen and kept at -80 °C until use. 149 

 150 

2.5 Sample preparation and protein extraction 151 

  Two biological replicates from each studied time point with two headfoot and body 152 

samples from two male and two female snails were pooled and placed in a 2 ml 153 

microcentrifuge tube with 600 μl of lysis buffer containing 5M urea, 2M thiourea, 0.1% SDS, 154 

1% Triton X-100 and 40 mM Tris (pH 7.4). Each sample was ground with a TissueLyser II 155 

(QIAGEN) using a 5 mm stainless bead at 4°C for 10 min followed by incubation on ice for 156 

30 min, and centrifugation at 12,000 g, at 4 °C for 20 min. The pellet was discarded and 157 

protein supernatant was subsequently precipitated with 10 volumes of cold methanol at -20°C 158 

overnight, centrifuged at 8,000 g for 10 min at 4°C, and air-dried for 5-10 min. Dried protein 159 

pellet was re-dissolved in buffer solution containing 0.5 M triethylammonium bicarbonate 160 



(TEAB) and 0.05% SDS, centrifuged at 12,000 g for 10 min at 4°C and protein content was 161 

determined by Bradford assay using BSA as a standard. One hundred (100) μg of protein was 162 

dried under vacuum before trypsin digestion. Protein extraction from the body portion was 163 

performed similarly. Headfoot and body samples from uninfected snails were used as 164 

controls and compared with experimentally infected tissues. 165 

 166 

2.6 Protein digestion and iTRAQ labeling  167 

  Dried protein samples were re-suspended in 20 μl of dissolution buffer (0.5 TEAB) 168 

prior to reduction, alkylation, digestion and iTRAQ labeling according to the manufacturer‟s 169 

protocol (AB Sciex). Briefly, each protein sample was denatured with 2% SDS, reduced with 170 

50 mM Tris-(2-carboxyethyl)-phosphine (TCEP) at 60°C for 1 h, and cysteine residues were 171 

alkylated with 10 mM methyl methanethiosulfate (MMTS) solution at RT for 10 min 172 

followed by tryptic digestion using 2 μg of trypsin (Sigma-Aldrich) at 37°C for 16 h. 173 

Digested peptide solutions were individually labeled with one vial of iTRAQ reagent at RT 174 

for 2 h. Each sample was labeled with different iTRAQ reagents having distinct isotopic 175 

compositions and all samples were subsequently combined into one tube for OFFGEL 176 

fractionation and LC-MS/MS analysis. 177 

 178 

2.7 Peptide OFFGEL fractionation 179 

  A 3100 OFFGEL Fractionator (Agilent Technologies) with a 24 well setup was used 180 

for peptide separation based on pI. Prior to electrofocusing, desalting of samples was 181 

performed using a HiTrap SP HP column (GE Healthcare) and a Sep-Pak C18 cartridge 182 

(Waters) was used to remove excess of iTRAQ labeling according to the manufacturer‟s 183 

instructions. A total of 3.6 ml of OFFGEL peptide sample solution was used to dissolve the 184 

samples. The 24 cm long, 3-10 linear pH range IPG gel strips (GE Healthcare) were 185 



rehydrated with IPG Strip Rehydration Solution for 15 min, and 150 μl of dissolved sample 186 

was loaded in each well. The samples were focused with a maximum current of 50 μA until 187 

50 kVh was reached. Every peptide fraction was harvested and each well rinsed with 150 μl 188 

of a solution of water/methanol/formic acid (49%/50%/1%). After 15 min, rinsing solutions 189 

were pooled with their corresponding peptide fraction and all fractions were evaporated using 190 

a vacuum concentrator. Prior to LC-MS/MS analysis, peptide fractions were desalted using 191 

ZipTip (Millipore) according to manufacturer‟s protocol followed by centrifugation under 192 

vacuum. 193 

 194 

2.8 Reverse-Phase (RP) LC-MS/MS analysis 195 

  Each dried fraction was reconstituted in 12 μl of 5% formic acid and 3 µl of the 196 

resulting suspension was injected into a trap column (LC Packings, PepMap C18 pre-column; 197 

5 mm 300 m i.d.; LC Packings) using an Ultimate 3000 HPLC (Dionex Corporation, 198 

Sunnyvalle, CA) via an isocratic flow of 0.1% formic acid in water at a rate of 20 µl/min for 199 

3 minutes. Peptides were then eluted onto the PepMap C18 analytical column (15 cm 75 µm 200 

i.d.; LC Packings) at a flow rate of 300 nl/min and separated using a linear gradient of 4-80% 201 

solvent B over 120 min. The mobile phase consisted of solvent A (0.1% formic acid 202 

(aqueous)) and solvent B (0.1% formic acid (aqueous) in 90% acetonitrile). The column 203 

eluates were subsequently ionized using the NanoSpray II of a QSTAR Elite instrument 204 

(Applied Biosystems) operated in information-dependent acquisition mode, in which a 1-s 205 

TOF MS scan from 300-2000 m/z was performed, followed by 2-s product ion scans from 206 

100-2000 m/z on the three most intense doubly or triply charged ions. Analyst 2.0 software 207 

was used for data acquisition and analysis.  208 

 209 

2.9 Database searching and bioinformatics analysis 210 



  A predicted protein database containing transcriptome data for B. siamensis 211 

goniomphalos described previously [25] was used for amino acid sequence comparison. The 212 

database search was performed using Protein Pilot v4.0.8085 (Applied Biosystems) using the 213 

default parameters. Only proteins with a ProteinPilot unused scored above 1.3, which is 214 

equivalent to a protein confidence threshold greater than 95%, and for which there was at 215 

least one unique peptide match with a confidence >95% were selected. Under these 216 

conditions the calculated false discovery rate (FDR) using a reverse decoy database was 217 

<1%. The iQuantitator software was used to analyse the differentially expressed proteins in 218 

all replicates [31]. This software infers sample-dependent changes in protein expression using 219 

Markov Chain Monte Carlo and Bayesian statistical methods. Using iQuantitator, median and 220 

95% confidence intervals were generated for each component peptide and integrating data 221 

across replicates. As described previously [31-33], for proteins whose iTRAQ ratios were 222 

downregulated in infected snails, the extent of downregulation was considered further if the 223 

null value of 1 was above the upper limit of credible interval. Conversely, for proteins whose 224 

iTRAQ ratios were upregulated in infected snails, the extent of upregulation was considered 225 

further if the lower limit of the credible interval had a value >1. The width of these credible 226 

intervals depends on the data available for a given protein. Since the number of peptides 227 

observed and the number of spectra used to quantify the change in expression for a given 228 

protein are taken into consideration, it is possible to detect small but significant changes in 229 

up- or downregulation when many peptides are available. For each protein and each peptide 230 

associated with a given protein, the mean, median, and 95% credible intervals were computed 231 

for each of the protein and peptide level treatment effects [32, 33]. In addition, only proteins 232 

with a fold change of at least 1.5 (log2=0.6) were considered for further analysis [34]. 233 

 234 



 Proteins were classified according to GO categories using the program Blast2Go [35] 235 

and pie charts were generated using the second level of the GO hierarchy. Heatmaps 236 

representing the differentially expressed proteins in the headfoot and body of infected snails 237 

were generated in R using ggplot2 [36] and clustering was performed using Euclidean 238 

distances. Protein levels were compared in the heatmaps to gene expression levels obtained in 239 

previous studies [13]. The time points where proteins or genes presented no significant 240 

regulation are coloured in grey. 241 

 242 

3. Results 243 

Samples from the body and headfoot of infected and uninfected Bithynia snails were 244 

labeled with iTRAQ and subjected to LC-MS/MS analysis. Two different biological 245 

replicates from each sample were analysed and a total of 30,545 and 36,179 MS/MS spectra 246 

were acquired in body and headfoot samples, respectively, over all iTRAQ runs. From these, 247 

16,359 and 21,673 spectra were used to assign unique peptides and unique proteins in body 248 

and headfoot samples, respectively. An analysis of the differential expression of the 249 

identified proteins in both replicates was performed using iQuantitator, which uses two 250 

different statistical methods to infer sample-dependent changes in protein expression. The 251 

total number of assigned unique peptides and their corresponding unique proteins together 252 

with the disallowed modifications and the R
2
 value of iQuantitator statistical model are 253 

reported in Table 1.  254 

 255 

A total number of 945 and 746 different proteins from body and headfoot samples 256 

respectively were identified over all time points studied (confidence threshold >95%); of 257 

these, 452 proteins were common to both samples (Figure 1a). Of all the proteins identified, 258 

only those whose credible interval (from iQuantitator analysis) was above or below 1 and 259 



whose log2 fold-change was >0.6 or <-0.6 (for upregulated and downregulated proteins 260 

respectively), were considered for further investigation. A total of 108 significantly 261 

differentially expressed proteins were found in the body samples, whereas only 43 proteins 262 

were differentially expressed in the headfoot of the infected snails (Figure 1b). A 263 

comprehensive report was also generated with the iQuantitator software (Supplementary 264 

Files 1-4 in [37]). 265 

 266 

A GO-enrichment analysis of significantly differentially expressed proteins from the 267 

body and the headfoot of infected snails was performed using Blast2GO [35]. The analysis 268 

revealed significant enrichment of the GO terms “binding” (13.2% and 14.4% in body and 269 

headfoot, respectively), “catalytic activity” (11.4% and 12.3%) and “protein binding” (8.3% 270 

and 9.8%) within “molecular function” (Figure 2a) and “single-organism cellular process” 271 

(9.3% and 8%), “regulation of biological process” (8.7% and 8%), “primary metabolic 272 

process” (8.1% and 9.3%) and “organic substance metabolic process” (8.1% and 9.3%) 273 

within “biological process” (Figure 2b). No significant differences were observed between 274 

enriched GO terms from body and headfoot of infected snails.  275 

 276 

 Significantly differentially expressed proteins from the headfoot of infected snails 277 

were grouped into 8 GO annotation categories and plotted in a clustered heatmap (Figure 3). 278 

Clustering was performed using Euclidean distances and dendrograms were reordered based 279 

on mean values. Proteins assigned to peptidase activity, and oxidoreductases (with the 280 

exception of 15-hydroxyprostaglandin dehydrogenase) together with proteins with a catalytic 281 

domain were significantly downregulated after infection with O. viverrini. Conversely, 282 

proteins involved in motor activity and structural proteins were upregulated in the headfoot of 283 

infected snails among the experiment (Figure 3).  284 



 285 

Significantly dysregulated proteins from the bodies of infected snails were grouped 286 

into 10 GO annotation categories and plotted in a clustered heatmap (Figure 4). Clustering 287 

was also performed using Euclidean distances and dendrograms were reordered based on 288 

mean values. The majority of differentially expressed proteins were identified at 28-56 dpi, 289 

and similar numbers of up- and downregulated proteins were detected. Proteins with kinase, 290 

motor and transporter activities were mostly upregulated (specially at 56 dpi) in the bodies of 291 

infected snails, whereas proteins with peptidase hydrolase and oxidoreductase activities were 292 

significantly downregulated in the bodies of infected snails (Figure 4).  293 

 294 

4. Discussion 295 

 Despite the public health impact of infections with the carcinogenic liver fluke in 296 

Southeast Asia, and the significant advances in knowledge of the molecular and patho- 297 

biology of this infection in mammalian hosts [2, 4, 7, 38-40], little is known of the molecular 298 

interactions in the Bithynia-Opisthorchis system. We recently reported on the transcriptomic 299 

changes induced in snails following O. viverrini infection using next-generation RNA 300 

sequencing [13, 25]. In the present study we have monitored, for the first time, the effect that 301 

O. viverrini infection has on expression of proteins in the body and the headfoot of B. 302 

siamensis goniomphalos, throughout the period in which the parasite is developing within its 303 

snail intermediate host. Because of the difficulty in breeding snails in the laboratory, wild 304 

snails were collected from the field and checked for parasitic infections. Uninfected snails 305 

were infected with O. viverrini eggs and the infection was monitored by cercarial emission 306 

and examination of hatched eggs in the snail faeces twice each week over an 8 week period 307 

as described previously [9, 30].  308 

 309 



 Despite the similar number of proteins identified in the body and headfoot of B. 310 

siamensis goniomphalos (945 and 746 proteins respectively), the number of significantly 311 

differentially expressed proteins following infection by O. viverrini was significantly higher 312 

in the body than in the headfoot (108 and 43 proteins respectively). This difference could be 313 

associated with the developmental biology of O. viverrini in its intermediate host; indeed, 314 

unlike other trematodes such as S. mansoni whose eggs hatch in the water and miracidia 315 

actively penetrate the snail, O. viverrini eggs are eaten by B. siamensis goniomphalos and 316 

hatch in the snail‟s digestive system which is located within the gastropod body [41]; thus, it 317 

is likely that changes in protein expression in the body may be directly associated with 318 

parasite hatching and asexual reproduction, and localized to the immediate vicinity of the 319 

parasite [42]. Interestingly, the majority of differential (body) protein expression was 320 

observed at 28 dpi and particularly at 56 dpi, whereas no significant pattern of up- or 321 

downregulation was observed in the headfoot samples at the same time points. Given that the 322 

cercariae exit the snail within 6-8 weeks post infection [41], this observation could be linked 323 

to the parasite migration through the digestive glands within the body of the snail. 324 

 325 

 A GO analysis of differentially expressed proteins in the body and headfoot of B. 326 

siamensis goniomphalos following O. viverrini infection displayed an enrichment of proteins 327 

involved in “binding” and “catalytic” activities, which is consistent with previous 328 

transcriptomic studies [13]. For instance, heat shock proteins (HSPs) and histones, commonly 329 

linked to “stress-related responses”, were significantly differentially expressed in infected 330 

snails. In particular, expression levels of two different HSPs (HSP-70 and HSP) detected in 331 

the headfoot of infected snails were downregulated throughout the experiment. In previous 332 

studies, these stress-related proteins were upregulated following parasite infection and 333 

hypothesized to have an immunomodulatory role [43, 44]. Furthermore, increased levels of 334 



HSP-70 expression were observed in schistosome-susceptible Biomphalaria following 335 

experimental infection with S. mansoni [45]. Conversely, other studies have shown that HSPs 336 

are downregulated in hemocytes from susceptible and resistant snails infected with S. 337 

mansoni [46]. Despite the contradiction surrounding the role and differential expression of 338 

HSPs in the literature, our proteomic results from the body of the snail are in accordance with 339 

previous transcriptomic studies performed in naturally infected Bithynia, where mRNAs 340 

encoding HSPs were among the most highly upregulated in infected Bithynia [13]. Other 341 

proteins related to oxidative stress, like histones, were also upregulated in the body of 342 

infected Bithynia, supporting our earlier findings of other isoforms of histones at the RNA 343 

level [13] and those of others with S. mansoni infected B. glabrata [47, 48]. Despite the 344 

unclear role of histones in the response against parasitic infections, it has been speculated that 345 

an increase in transcription could trigger chromatin modifications in susceptible snails, 346 

contributing to the success of the infection [47]. 347 

 348 

 Proteins functionally linked to motor activities were upregulated in both body and 349 

headfoot of infected Bithynia. Myosins were consistently upregulated throughout the study, 350 

with the exception of two myosin light chains in the body of infected Bithynia. These light 351 

chains are not usually considered “myosins” but regulatory components of the 352 

macromolecular complexes, and could not be related to motor activity [49, 50]. Consistent 353 

with these findings is the upregulation of actin, tropomyosin and paramyosin observed in the 354 

body of infected snails [13]. We recently hypothesized that actin-related gene expression in 355 

fluke-infected Bythinia is associated with the migration of circulating hemocytes and 356 

promoting phagocytosis and cell trafficking, which could assist in the defense of the snail 357 

against pathogens [13]. Moreover, a putative role for tropomyosin in host-parasite molecular 358 



mimicry has been suggested based on the unusually high degree of sequence similarity 359 

between S. mansoni and B. glabrata tropomyosins [51-53]. 360 

 361 

 Oxidoreductases were also differentially expressed in the body and the headfoot of 362 

infected snails. This group of proteins includes all enzymes that catalyze the transfer of 363 

electrons from one molecule to another, thus playing a major role in aerobic and anaerobic 364 

metabolism. Peroxiredoxins are a family of enzymes playing protective roles against 365 

oxidative stress through the neutralization of reactive oxygen and nitrogen species that can 366 

damage cellular function. It has been shown previously that the expression levels of a 367 

peroxiredoxin from S. mansoni-resistant B. glabrata are increased following infection with S. 368 

mansoni; in contrast, expression levels of this enzyme were decreased in susceptible snails 369 

[54]. We detected significant downregulation of different Bithynia peroxiredoxins at 56 dpi, 370 

which may be related to a defense mechanism from the cercariae transiting through the body 371 

tissues to leave the snail. In this sense, the excretory/secretory (ES) products from the 372 

parasite could downregulate the expression levels of peroxiredoxins as a self-defense 373 

mechanism. 374 

 375 

Only a few proteins playing putative roles in immunomodulation were identified as 376 

significantly differentially expressed in our experiment. Among these proteins, galectins were 377 

downregulated in the body of infected Bithynia. Galectins and C-type lectins are a family of 378 

glycan-binding proteins that are usually upregulated in infected snails [48, 55]. The B. 379 

glabrata galectin BgGal binds to hemocytes and the tegument of S. mansoni suggesting its 380 

role in parasite recognition [56]. Other immunomodulatory proteins include the hemocyanins, 381 

which rely on copper for the transport of oxygen throughout the body of gastropods and have 382 

been shown to be involved in defense mechanisms in invertebrates [48, 57, 58]. It has been 383 



hypothesized that the presence of hemocyanin in iron-containing hemoglobin of gastropods 384 

such as B. glabrata could be more related to defense mechanisms than to respiratory function 385 

[48]. The lack of key immunomodulatory proteins identified in this study could be related to 386 

the limited sensitivity of mass spectrometry instruments; however, many of the proteins of 387 

unknown function identified could also be playing an immunomodulatory role. In our 388 

previous transcriptomic study, there was a notable paucity of differentially expressed genes 389 

encoding immunomodulatory proteins in infected Bithynia [13]. The concordance between 390 

proteomic and transcriptomic data lends further credit to the hypothesis that O. viverrini may 391 

manipulate the snail by suppressing its immune responses, thus resulting in the inability of 392 

the hemocytes to recognize the parasite and/or the suppression of the snail humoral response 393 

against parasite invasion. In this sense, the model B. glabrata-Echinostoma spp with 394 

susceptible and resistant snails has been shown to be a good model to analyse the influence of 395 

parasites on the snail immune response [59-61]. The manipulation of the B. glabrata defense 396 

responses by Echinostoma paraensei has been well characterized in previous studies [48, 62]. 397 

DeGaffe and Loker [63] showed that susceptibility of B. glabrata to infection with E. 398 

paraensei is correlated with the ability of the ES products to interfere with the spreading 399 

behaviour of host hemocytes. Furthermore, the ES products of Echinostoma caproni have 400 

been shown to inhibit phagocytosis and adhesion mechanisms of susceptible B. glabrata 401 

snails [64].  402 

 403 

 Control and elimination of snail-borne diseases should not rely solely upon anti-404 

parasite chemotherapy [65, 66], and integrated programs should be designed. Recently, a 405 

number of authors highlighted the importance of controlling snail-borne parasitic diseases by 406 

using integrated approaches aimed at eradicating the parasite from the definitive host (i.e. 407 

mass drug administration) as well as disrupting the life cycle in the intermediate host (i.e. use 408 



of molluscicides and health education) [24-26, 67]. The present study establishes a baseline 409 

for future investigations on host-parasite interactions in the Bithynia-Opisthorchis system 410 

aimed at dissecting the molecular mechanisms involved in the transmission of this 411 

carcinogenic infection by snails. 412 

 413 

5. Conclusions 414 

 Our study compares for the first time the differentially expressed proteins in the body 415 

and the headfoot of the snail B. siamensis goniomphalos after infection with the liver fluke O. 416 

viverrini. In general, more proteins were differentially expressed after infection in the body of 417 

the snail, which could be related to the biology of the infection. Most notably, expression of 418 

oxidoreductases and catalytic enzymes was downregulated in infected snails, while motor 419 

and stress-related proteins were upregulated. This work provides new insights into the study 420 

of host-parasite interactions and could serve as a basis for the development of new strategies 421 

aimed at controlling parasite transmission. 422 
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 612 

Figure Legends  613 



Figure 1. Venn diagram of all the identified (A) and significantly differentially expressed (B) 614 

proteins in the body and headfoot of Bithynia siamensis goniomphalos following infection 615 

with Opisthorchis viverrini. 616 

 617 

Figure 2. Enriched Gene Ontology (GO) terms assigned to significantly differentially 618 

expressed proteins in the body (closed bars) and the headfoot (open bars) of Opisthorchis 619 

viverrini-infected Bithynia siamensis goniomphalos snails, according to the categories 620 

“molecular function” (A) and “biological process” (B). 621 

 622 

Figure 3. Clustered heatmap of the significantly regulated proteins and genes in the headfoot 623 

of Opisthorchis viverrini-infected Bithynia siamensis goniomphalos snails. Proteins were 624 

grouped into 8 different categories based on GO annotation and clustering was performed 625 

using Euclidean distances. The time points where proteins and genes presented no significant 626 

regulation are coloured in grey. 627 

 628 

Figure 4. Clustered heatmap of the significantly regulated proteins and genes in the body of 629 

Opisthorchis viverrini-infected Bithynia siamensis goniomphalos snails. Proteins were 630 

grouped into 10 different categories based on GO annotation and clustering was performed 631 

using Euclidean distances. The time points where proteins and genes presented no significant 632 

regulation are coloured in grey. 633 

 634 



 1 

 

Day 1 Day 7 Day 14 Day 28 Day 56 

  Body Head Body Head Body Head Body Head Body Head 

Supplied spectra 30,545 36,179 30,545 36,179 30,545 36,179 30,545 36,179 30,545 36,179 

Identified spectra 16,359 21,673 16,359 21,673 16,359 21,673 16,359 21,673 16,359 21,673 

Unidentified spectra 14,186 14,506 14,186 14,506 14,186 14,506 14,186 14,506 14,186 14,506 

Disallowed modifications 247 542 237 546 251 549 237 547 256 545 

Unique proteins 814 655 800 657 820 656 809 657 824 653 

Unique peptides 2,859 2,359 2,737 2,364 2,898 2,366 2,813 2,370 2,954 2,351 

Model R2 0.807 0.939 0.787 0.939 0.764 0.938 0.67 0.943 0.924 0.935 

 2 

Table 1. Summary results from iQuantitator analysis. The number of supplied, identified and unidentified spectra, together with the number of 3 

unique proteins and peptides in all time points from each sample is provided in this table. The model R
2
 is inferred from a Markov Chain Monte 4 

Carlo and a Bayesian statistical method. 5 
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