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Abstract
We present the kinematic variable, mT 2, which is in some ways similar to
the more familiar ‘transverse mass’, but which can be used in events where
two or more particles have escaped detection. We define this variable and
describe the event topologies to which it applies, then present some of its
mathematical properties. We then briefly discuss two case studies which show
how mT 2 is vital when reconstructing the masses of supersymmetric particles
in mSUGRA-like and AMSB-like scenarios at the large hadron collider.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Reconstructing R-parity conserving supersymmetric events will be difficult at the large
hadronic collider (LHC) because of the following factors which limit our knowledge of
the event:

• two massive particles have escaped undetected;
• the masses of these particles are unknown;
• the masses of their ‘parent’ particles are unknown;
• the centre-of-mass energy of the collision is not known, and
• the boost along the beam axis of the collision centre-of-mass is not known either.

An example of such an event is shown schematically in figure 1, where a pair of
supersymmetric particles have been produced, each of which has decayed to some visible
and some invisible daughters.

An important question to ask is ‘What model-independent information about sparticle
masses can be deduced from events of this type?’. The question can be seen to be a harder
version of a number of older problems with which we are more familiar.
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Figure 1. Schematic representation of a simple R-parity conserving event at the LHC in which
supersymmetric particles were pair produced. The colliding protons are shown coming in from
the left and right. The collision has pair produced two massive susy particles, ζ1 and ζ2 (dark
blue). Each of these has been shown decaying to something visible (α or β) and to an undetected
neutralino (p or q). The typical event will also contain some initial- or final-state radiation, or
other debris, represented here by g. In this figure it has been assumed that g consists entirely of
visible particles.

Searches at the large electron–positron collider (LEP) for pair-produced sparticles have
much in common with this problem, although to first order they did not suffer from the latter
two of the above problems. In some ways, the problem at the LHC is more akin to that faced
by the other hadronic collider experiments, such as UA1, UA2, CDF or DO [1–4] where the
W -mass has been measured from its decay to a lepton and a neutrino. This has been achieved
using the ‘transverse mass’ event variable, mT [5], a variable which on an event-by-event basis
generates a lower bound for the W -mass, and the endpoint of whose distribution is the W -mass.

A generalization of mT , known as the ‘cluster transverse mass’ [6], or ‘minimum invariant
mass’ [7] was proposed for cases where more than one visible particle was observed. The
interest at that time was motivated by the search for the leptonic decay of a t-quark with mass
around 35 GeV.

It was noted in [7] that extensions to the standard model (SM), such as supersymmetry,
might be investigated using similar variables. It is just such a generalized variable that is
presented here. The generalization is required for supersymmetry searches at the LHC, since
there will be at least two partially invisible decays per event, and in addition the masses of the
daughter particles are not necessarily known.

The approach to the problem first proposed in [8] and subsequently developed in [9, 10]
proposes the creation of a new kinematic variable, mT 2,1 analogous to the transverse mass,
whose kinematic endpoint carries model-independent information about (to first order) the
mass difference between the primary and the secondary supersymmetric particles. Mention
is made in [10] of generalizations to this variable (mT 3, mT 4, . . . ) which may be used when
events contain extra missing particles (e.g. neutrinos) as well as the two neutralinos.

The purpose of this paper is not to discuss new physics results which might be obtained
with mT 2 (for these the reader is encouraged to read [9, 10]) but rather it aims to take a closer
look at more technical issues concerning the use and interpretation of mT 2, and its related

1 Because of its use in supersymmetric events, mT 2 has acquired the nickname of the ‘stransverse’ mass.
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variables. It is hoped that by concentrating information on mT 2 in this way, this paper can act
as a repository of mT 2 ‘know-how’ for future investigations.

2. A concrete example

It is perhaps easiest to introduce and motivate the definition of the Cambridge mT 2 variable
using a concrete example. This allows the ingredients that make up mT 2 to be introduced, one
at a time in an almost ‘natural’ way. Readers who would prefer a ‘top down’ description of
mT 2, i.e. a description which starts with a definition and then works towards its consequences,
are directed to skip to section 3 where this approach is taken.

The concrete example which will be used here is taken from [10]. This paper considers an
(anomaly-mediated) R-parity conserving supersymmetric model whose key property is that it
predicts a lightest chargino nearly mass degenerate with the lightest neutralino. With particular
choices of model parameters, the only chargino decay mode available is

χ+
1 → χ0

1 π+, (1)

which produces isolated pions which were selected in events with large missing momentum.
Of course one could equally well consider pairs of squark decays such as q̃R → qχ0

1 or slepton
pair production and decay �̃ → �χ0

1 . One would then substitute ‘quark-jet’ or ‘lepton’ for
‘pion’ in the following discussion.

Events containing two such decays, i.e. events containing two simultaneous decays of an
unseen particle of unknown mass into another invisible particle of unknown mass and visible
particle, are exactly the sort of events that we hope to analyse with mT 2. This we shall now
begin to do.

Considering for the moment just one of the decays of the form (1), one can write the
Lorentz-invariant statement,

m2
χ+

1
= m2

π + m2
χ0

1
+ 2

[
Eπ

T E
χ0

1
T cosh(�η) − pπ

T · pχ0
1

T

]
, (2)

where pπ
T and pχ0

1
T indicate pion and neutralino 2-vectors in the transverse plane, and the

transverse energies are defined by

Eπ
T =

√(
pπ

T

)2
+ m2

π and E
χ0

1
T =

√(
pχ0

1
T

)
2 + m2

χ0
1
. (3)

Also

η = 1

2
log

[
E + pz

E − pz

]
, (4)

is the true rapidity, so that

tanh η = pz/E, sinh η = pz/ET , cosh η = E/ET . (5)

In a hadron collider, only the transverse components of a missing particle’s momentum
can be inferred, so it is useful to define the transverse mass,

m2
T

(
pπ

T , pχ0
1

T ;mχ0
1

)
≡ m2

π+ + m2
χ0

1
+ 2

(
Eπ

T E
χ0

1
T − pπ

T · pχ0
1

T

)
, (6)

which, because cosh(x) � 1, is less than or equal to the mass of the lightest chargino, with
equality only when the rapidity difference between the neutralino and the pion, �ηχ0

1 π is zero.
All other �η lead to mT < mχ+

1
, so if we knew the neutralino momentum, we could use mT to

give an event-by-event lower bound on the lightest chargino mass. mT has been used in this
way in the measurement of the W±-mass.
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In events considered in this example, however, there are expected to be two unseen lightest
supersymmetric particles (LSPs)2. Since only the sum of the missing transverse momentum
of the two neutralinos is known, the best that can be done is to evaluate the quantity

min
/q(1)

T + /q(2)
T = /pT

[
max

{
m2

T

(
pπ(1)

T , /q(1)
T ;mχ0

1

)
,m2

T

(
pπ(2)

T , /q(2)
T ;mχ0

1

)}]
, (7)

which is thus a lower bound on the square of the transverse mass, mT , for events where two
decays of the type (1) occur. Note that this minimization has forced us to introduce a pair of
dummy 2-vectors /q(1)

T and /q(2)
T which, constrained by the minimization condition, parametrize

our lack of knowledge about the two true neutralino momenta. Finally, we must recognize that
under most circumstances, the value of mχ0

1
is unlikely to be known, or may only be known

with limited precision. In order to make our ignorance of mχ0
1

explicit, we thus define a new
free parameter, χ , calling it the ‘neutralino mass parameter’, intending it to denote any guess
we might have as to the true neutralino mass mχ0

1
. Using it in place of mχ , we convert (7) into

the following definition of a new kinematic variable:

m2
T 2(χ) ≡ min

/q(1)
T + /q(2)

T = /pT

[
max

{
m2

T

(
pπ(1)

T , /q(1)
T ;χ

)
,m2

T

(
pπ(2)

T , /q(2)
T ;χ

)}]
. (8)

The quantity defined in (8) is the Cambridge mT 2 variable which is the subject of this paper.
Staying within the framework of this example, we can now go on to describe some of the

desirable model-independent properties which mT 2 possesses.

2.1. Properties of mT 2(χ)

Firstly, it is worth noting that the mT 2 variable is not strictly a ‘variable’, and would more
correctly be termed a ‘function’, as it retains a dependence on the unknown parameter χ .
Ideally, χ would be set equal to the mass of the missing heavy particle, but in most of the
situations in which the variable is likely to be used, the mass of the invisible object is unlikely
to be known, or may only be known with a large uncertainty. The χ dependence remains,
therefore. A more detailed discussion of how this can affect the use of mT 2 is given in
section 2.2.2.

Secondly, from its method of construction, it is clear that for any given event

mπ + mχ0
1

� mT 2
(
mχ0

1

)
� mχ+

1
, (9)

and

mπ + χ � mT 2(χ). (10)

It is certainly not immediately clear, however, that events can always exist for which mT 2 is
capable of reaching all of these endpoints. In fact it turns out that such events do always exist,
and proof of this is given in section 3.3. So, having defined the quantity mmax

T 2 (χ) by

mmax
T 2 (χ) = max

many events
[mT 2(χ)] , (11)

the important result to draw from all of this is that the upper kinematic limit of mT 2 satisfies

mmax
T 2

(
mχ0

1

) = mχ+
1
. (12)

This is the main model-independent statement that mT 2 is able to offer.

2 Though there may also be other unseen particles (see section 2.2.1).
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Figure 2. Schematic representation of an R-parity conserving event at the LHC in which
supersymmetric particles are pair produced. The colliding protons are shown coming in from
the left and right. The collision has pair produced two massive susy particles, ζ1 and ζ2 (dark
blue). Each of these has been shown decaying to a collection of visible particles (αi or βi ) and
to a set of undetected particles (pi or qi ). The purpose of the large spherical blobs is to hide the
details of the decay process(es) involved; in principle they may contain anything, from one large
n-body decay, to n − 1 successive two-body decays. The typical event will also contain some
initial- or final-state radiation, or other debris, represented here by g (the visible component) and
g′ (the invisible component). Comments in the text apply only principally to events in which g′ is
small enough to be neglected.

2.2. Going beyond pairs of two-body decays

The scenario in which mT 2 has been introduced, thus far, is relatively simple; each event
contains a pair of charginos, and each of these decays via a two-body decay into a
charged pion and an unseen neutralino. We will now consider in more detail what happens
when:

• the neutralinos are not the only missing particles;
• the initial (e.g. chargino) decays are not both two-body decays, and
• mT 2(χ) is evaluated at values of χ �= mχ0

1
.

2.2.1. Extra missing particles and multi-particle decays. The need for mT 2 to be adaptable
to situations in which the neutralinos are not the only unobserved final-state particles may
again be demonstrated using as an example the model of [10]. In this model, there were found
to be some regions of parameter space in which the three-body chargino decay

χ±
1 → l±νχ0

1 , (13)

had a rate comparable to that of the two-body decay (1) which we have already seen. Here,
the presence of the neutrino (or antineutrino) in the final state means that we have even
less information about the event than before. Nevertheless, one would like to benefit, if
possible, from events in which one or two of these decays occur in place of the usual
two-body decays. This type of event is just one of the general class of events depicted in
figure 2.
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It is clear that one can immediately generalize the mT 2 of (8) to suit events such as those
in figure 2 in the following way. Define the new variable mT X by

m2
T X = min

consistent splittings


max




∑

i

αi +
∑

j

pj




2

,


∑

i

βi +
∑

j

qj




2



 . (14)

The phrase ‘consistent splittings’, describing the constraint on the overall minimization,
needs a little explanation. There are two sets of unknown momenta. The first of these is
F = {pi} ∪ {qj }, containing the unknown momenta of all the unobserved final-state particles.
The other set, H = {hi}, contains the momenta of any on-mass-shell particles which were
present at an intermediate stage during the decays of the initial pair of sparticles (ζ1 or ζ2)
to their final states. In other words, H contains the momenta of any intermediate particles
hidden within the large blobs in figure 2. Minimization over ‘consistent splittings’, then,
means minimization over all pi, qj ∈ F and all hi ∈ H subject to:

• all pi, qi and hi being on their respective mass shells;
• momenta being conserved at all ‘hidden’ vertices in which a short-lived intermediate

particle with momentum hi ∈ H decays, and
• the transverse components of B = ∑

i pi +
∑

j qj being consistent with the measured
missing momentum /pT .

It is because the last of these requirements that we need events in which g′, the momentum
carried by any invisible particles which are not descendants of a supersymmetric particle (see
figure 2) is negligible. Were there to be a large tail in the distribution of g′, this would degrade
the performance of mT X and mT 2.

Example. We illustrate the remarks of the previous section by returning to the example
of [10] in the case where charginos could decay either by the two-body decay of (1) or the
three-body decay (13). We can categorize events in this scenario by the number of missing
particles in the event. When both charginos decay via (1) we only have two missing particles
(the neutralinos). For each three-body decay which takes the place of one of these two-body
decays we gain an extra missing particle in the form of a neutrino (or antineutrino). In short,
the three categories of events could be summarized as those containing one of the following:

χ±
1 χ±

1 → {
π±χ0

1 π±χ0
1 , or e±νχ0

1 π±χ0
1 , or e±νχ0

1 e±νχ0
1

}
.

The events had been produced by a phase-space-only Monte Carlo generator. Three
distributions of the quantity mT X, defined in (14), were then generated from each of these sets
of events. Using the number of missing particles to categorize these events, the values of mT X

measured in each case are referred to as mT 2,mT 3 and mT 4. The resulting distributions for
mT X

(
mχ0

1

) − mχ0
1

are shown in figure 3.
It has already been mentioned that a key property of mT 2 is that the kinematic endpoint

of its distribution occurs at mmax
T 2

(
mχ0

1

) = mχ+
1

and so it is reassuring to see in figure 3 that a
large number of events reach this endpoint. In the vicinity of the endpoint, the edge is seen to
be sharp and near vertical. This shows that at the partonic level a measurement of mmax

T 2 would
provide an excellent constraint on the masses of the sparticles involved. In section 4 plots
from [9, 10], which include realistic detector effects, will show that the subsequent smearing
of the mT 2 edge, while significant, is still small.

Looking next at the mT 3 and mT 4 distributions, it is clear that the event fall-off in the
vicinity of their kinematic endpoints is much less steep than in the case of mT 2. This is
hardly surprising, given the reduced amount of information available in these events. Later,
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0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

m[π]

m[χ1
+] - m[χ1

0]

mT4 ee
mT3 eπ
mT2 ππ

mTX(m[χ1
0]) - m[χ1

0]/GeV

Figure 3. Simulations of mT X(m
χ0

1
)−m

χ0
1

for X = 2, 3, 4 using a simple phase-space Monte Carlo

generator program for a pair of decays q̃ → χ+
1 q followed by χ+

1 → χ0
1 π or χ+

1 → χ0
1 eνe . As

the number of invisible particles increases, the proportion of events near the upper limit decreases.
Within the figure, subscripts are indicated by square brackets.

in section 3.4, the relative fraction of events in the vicinity of the edge will be seen, more
quantitatively, to be due to the larger number of simultaneous conditions that events near the
edge must satisfy. Although the endpoint, itself, becomes increasingly harder to detect as
the number of missing particles increases, the mT X distributions are all capable of inferring
the mass scale associated with (in this case) mχ+

1
− mχ0

1
from the overall widths of their

distributions, which each scale with the endpoint position, albeit with some dependence on
the decays themselves, and on factors such as the detector acceptance over the width of the
distribution.

Finally, one notes that the mT 3 distribution has sharp peak at mT 3 = mχ0
1

+ mπ , not seen
in the mT 2 and mT 4 distributions. It will be shown later, in section 3.5, that this is an effect
which can occur whenever the hypothesized decays on each side of the event are different3.

2.2.2. Other values of χ . Now we return to a brief look at the effect of evaluating mT X

distributions at values of χ different to the true neutralino mass.
Figure 4 shows the same data as in figure 3, but in addition it shows the distributions that

would be obtained by evaluating mT X(χ) at values of χ = mχ0
1

± 10%. In this particular
example, where mχ0

1
= 162 GeV, 10% (16 GeV) errors in χ result in similar fractional errors

in �Mχ̃1 , i.e. of a few tens of MeV. This shows that mT 2 can be sensitive to small mass
differences. In this example, too, we see a positive correlation between the change in χ and
the change in the position of the endpoint. These examples are not always typical, however.
For example, in [8] the authors considered mT 2 in the context of the double decay of a pair
of sleptons, each to a lepton and a neutralino at SUGRA point 5, one of the five supergravity
points proposed at [11] and described in [12]. In this model, the difference in mass between the
decaying and final sparticles (157.1−121.5 = 35.6 GeV) is approximately 40 times larger than
in the AMSB case, and so at SUGRA point 5 we see a negative correlation between changes in

3 ‘Different’, in this context, means ‘being such that the minimum total invariant mass attainable by the particles on
one side of the event is not equal to the minimum total invariant mass attainable by the particles on the other side
of the event’. This happens principally when the particle content of each decay differs. In the case of mT 3 in, the
AMSB example scenario, the two dissimilar minima are mπ + m

χ0
1

and me + mν + m
χ0

1
.



2350 A Barr et al

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

m[π]

m[χ1
+] - m[χ1

0]

m[χ1
0] × 1.0

m[χ1
0] × 0.9

m[χ1
0] × 1.1

mTX(χ) - χ /GeV

Figure 4. The distortion of mT X(χ) − χ when the LSP mass parameter, χ , is varied by ±10%
about the ‘ideal’ value of m

χ0
1

. These curves show that mT X(χ) − χ remains sensitive to the mass

difference �Mχ̃1 = mχ+
1

− m
χ0

1
. In this simulation �Mχ̃1 = 0.845 GeV, m

χ0
1

= 161.6 GeV, and

the electron and neutrino mass were neglected. The normalization is arbitrary. Within the figure,
subscripts are indicated by square brackets.

Figure 5. Variation of mmax
T 2 (χ) with χ for a set of l̃+ l̃− → l+χ0

1 l−χ0
1 events generated by a

phase-space Monte Carlo using ml̃ = 157.1 GeV and m
χ0

1
= 121.5 GeV. Note that mmax

T 2 (χ) − χ

decreases as χ increases. The asymptote has unit gradient.

χ and mT 2(χ) − χ . This is illustrated in figure 5. Differing kinds of behaviour, such as these,
are typical of a variable such as mT 2 which has input scales (e.g. mπ,mχ+

1
, χ and mχ+

1
− χ )

which can have a large number of relative hierarchies associated with them. For example, the
AMSB scenario has mπ ≈ mχ+

1
− χ � χ � mχ+

1
, while SUGRA point 5 has ml � ml̃ − χ ≈

χ < ml̃ .
We now take a final look at how mT 2 depends upon χ by looking not just at events near the

kinematic endpoint, but at events in general. To help, we define y(χ), a rescaling of mT 2(χ),
as follows:

y(χ) ≡ mT 2(χ) − χ − mπ

mχ+
1

− mχ0
1
− mπ

. (15)



A variable for measuring masses at hadron colliders 2351

Figure 6. These plots show examples of how y(χ), defined in (15), can depend on χ . The plots
were generated using the following procedure. Ten sets of masses satisfying mπ + m

χ0
1

< mχ+
1

were randomly generated. According to each set of masses, a phase-space Monte Carlo generated
a single event of the type shown in figure 1 containing two χ±

1 → π±χ0
1 decays. The plots above

show how, in each event, the value of y(χ) (a dimensionless rescaling of mT 2(χ)) depended upon
χ over the range 0 < χ < 2m

χ0
1

. The true value of the neutralino mass (i.e. that used in the Monte

Carlo for the decay) is marked by the vertical line at the centre of each plot (cyan), while the other
vertical line marks the value of the pion mass (magenta). The short and long vertical ticks (dark
blue) mark mχ+

1
/2 and mχ+

1
, respectively.

By looking back at (9) and (12), this variable can be seen to map mT 2
(
mχ0

1

)
into the range

[0, 1].4 This makes it easier to compare values of mT 2 coming from events with different
sparticle masses. A value of y

(
mχ0

1

)
close to 0 (or 1) indicates an event close to the lower

(or upper) kinematic endpoint of the mT 2
(
mχ0

1

)
distribution. Figure 6 shows how y(χ)

varies with χ for ten random events, each generated using a random set of masses satisfying
mπ + mχ0

1
< mχ+

1
as described in the figure caption. The main conclusion to draw from these

plots is that there is no easy way to say, in advance, how mT 2(χ) will vary with χ in a given
event, even in the vicinity of mχ0

1
. In general mT 2(χ) can rise, fall or even be stationary with

respect to to χ near mχ0
1
, depending on the masses of the particles involved in the decays.

3. Some mathematical results concerning the variable mTX

In section 2, mT 2 and its analogues were defined using laboratory-frame momenta and with
minimization conditions (such as /q(1)

T + /q(2)
T = /pT ) not specified in Lorentz-invariant forms.

The definition of mT 2 from section 2 may be summarized as follows:

m2
T 2

(
pl1

T , pl2
T , /pT ;χ

) ≡ min
/p1+ /p2= /pT

[
max

{
m2

T

(
pl1

T , /p1;χ
)
,m2

T

(
pl2

T , /p2;χ
)}]

, (16)

where

m2
T

(
pl

T , pχ̃

T ;χ
) ≡ m2

l + χ2 + 2
(
El

T E
χ̃

T − pl
T · pχ̃

T

)
, (17)

in which El
T =

√∣∣pl
T

∣∣2 + m2
l , E

χ̃

T =
√∣∣pχ̃

T

∣∣2 + χ2. In the following sections we will replace
these definitions by equivalent, but explicitly Lorentz-invariant ones, which are easier to
manipulate mathematically.

4 Note that mT 2(χ) is in general not constrained to lie in this range.
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3.1. Definitions

The natural way to write mT 2 in a manifestly (1, 2)-Lorentz-invariant form is as follows:

m2
T 2(α, β,
,�;χ) ≡ min{

p + q = √
s� − 


p2 = q2 = χ2

} [max {(α + p)2, (β + q)2}]. (18)

Here, mT 2 has been written as a function of the four (1 + 2)-dimensional Lorentz vectors
which describe each event (α, β, 
 and �) and one real parameter χ . The transverse Lorentz
vectors of the two visible particles coming from each of the hidden decays are represented by
α and β, while 
 represents the total transverse energy–momentum seen in the event. This is
consistent with the notation used in figure 1. The only new vector, �, defines the laboratory
frame by being the (1, 2)-energy–momentum of a particle of unit mass (�2 = 1) at rest in
the laboratory. The total transverse momentum of the event (visible and invisible) can only be
assumed to be zero in the laboratory frame, and so knowledge of how to boost to the laboratory
frame is essential. This is why � is needed.

Note that (18) includes a minimization over
√

s, a parameter which accounts for our lack
of knowledge of the centre-of-mass energy of the whole event. The requirement that the
hypothesized neutralino momenta are real, i.e. (

√
s� − 
)2 � (2χ)2, constrains

√
s to be

chosen from the region in which
√

s � � ·
 +
√

4χ2 + ((� · 
)2 − 
2). (19)

Similarly, one can also define mT X in a manifestly Lorentz-invariant form:

m2
T X(α̂, β̂, 
,�;χ) ≡ min [max {(α̂ + p̂)2, (β̂ + q̂)2}] over{

p̂ + q̂ = √
s� − 
,

pi, qi and hi all on their mass shells, and
momenta conserved at all internal h decays

}
, (20)

in which the same notation has been used as in figure 2 and equation (14), and in which the
‘hats’ indicate summation over all vectors of a set (e.g. α̂ = ∑

i αi).
If desired, one may remove the ‘max’ at the expense of moving to Lorentz 4-vectors and

remembering to minimize over all possible longitudinal boost of the centre of momentum
(here denoted by the Lorentz boost Lz):

m2
T 2(α, β,
,�;χ) ≡ min


D2 = D2

1 = D2
2

p + q = √
sLz� − 


p2 = q2 = χ2




[D2], (21)

where

D2
1 = (α + p)2, (22)

and

D2
2 = (β + q)2. (23)

This way of representing mT 2 most clearly captures the spirit in which it provides an event-
by-event lower bound on the initial sparticle mass.

3.2. Results concerning mT 2

In the case where both visible particles have the same mass, i.e. in the case where
α2 = β2 = m2

l , (18) may be rewritten in the form

m2
T 2

′(α, β,
,�;χ) ≡ m2
l + χ2 + min{

p + q = √
s� − 


p2 = q2 = χ2

} [2 max {α ·p, β · q}]. (24)
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It was shown in [10] that the solution of (24) must select vectors p and q for which
α ·p = β · q. Using this information, one may perform half of the minimization in (24)
analytically. This allows (24) to be rewritten as a minimization over a single real variable,

√
s,

as follows:

m2
T 2

′(α, β,
,�;χ) ≡ m2
l + χ2 + 1

2 min√
s

[
(σ ·B)Q −

√
σ 2Q − 4m2

l

√
B2Q − 4χ2

]
, (25)

where

Q = 1 − (� ·B)2

(σ · B)2 − σ 2B2
, (⇒ 0 � Q � 1) (26)

σ = α + β, (27)

� = α − β, (28)

and

B = √
s� − 
. (29)

We should note that the constraint which has just been imposed, namely α ·p = β · q, is more
stringent than the

√
s constraint (19) which was only there to ensure that the hypothesized

neutralinos were not tachyonic. As a consequence, the range over which
√

s may be varied
when performing the minimization in (25) must be replaced by the stronger condition that
each of the quantities under radicals in (25) be positive.

It is interesting to note that if we define two new transverse Lorentz vectors (σ and B) via
a rescaling of existing transverse Lorentz vectors according to

σ = σ
√

Q, (30)

and

B = B
√

Q, (31)

then we can rewrite (25) in the form

m2
T 2

′(α, β,
,�;χ) ≡ m2
l + χ2 + 1

2 min√
s

[
(σ ·B) −

√
σ 2 − 4m2

l

√
B

2 − 4χ2

]
. (32)

This is not much of an improvement in itself, but it motivates the definition of two new Lorentz
4-vectors;

σ̃ = (
σ ,

√
σ 2 − 4m2

l

)
, (33)

and

B̃ = (
B,

√
B

2 − 4χ2
)
, (34)

which we see, by construction, satisfy the following fixed-mass relations:

mσ̃ =
√

σ̃ 2 = 2ml, (35)

and

mB̃ =
√

B̃
2 = 2χ. (36)

In terms of these new Lorentz 4-vectors, then, we can finally rewrite (32) as

m2
T 2

′(α, β,
,�;χ) ≡ m2
l + χ2 + 1

2 min√
s
(σ̃ · B̃), (37)

or

mT 2
′(α, β,
,�;χ) ≡ 1

2 min√
s

|σ̃ + B̃|. (38)

It is interesting to note that the constant mass relations (35) and (36), taken together with the
definition of mT 2

′ shown in (38), make it self-evident that the value of mT 2
′ obtained in a given

event is bounded below by ml + χ , as expected.
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Approximations. To get a better idea of the way in which mT 2 depends on its inputs, one
might hope to find a concise closed-form analytic definition of the variable. Thus far, however,
mT 2 and mT 2

′ have resisted all attempts to write them in forms simpler than (16), (18) and
(25), except in a few special cases. For example, in the special case of events in which the
spatial part of the total visible transverse momentum is seen to be zero in the laboratory frame
(i.e. events for which (
 ·�)2 = 
2) one can show that (25) is equivalent to

m2
T 2

′′(α, β,�;χ) ≡ m2
l + χ2 + χ

√
4(α ·�)(β ·�) − (−�2)(= m2

l + χ2 + χ

√
2
(
EαEβ + m2

l + pα
T · pβ

T

)
in the laboratory frame

)
. (39)

The limit of validity of (39) can be explored as follows. The laboratory-frame energy that
this special case solution assigns to p and q is given by

p ·� = q ·� = (σ ·�)χ√
4(α · �)(β ·�) − (−�2)

, (40)

and so the velocity of the boost needed to take the laboratory frame to the one in which the
invisible particles are back to back could be written, in this special case, as

(0 =) |v|2 = p2



/
(p ·� + q ·�)2 (41)

=
{
(
 · �)2 − 
2

} {
4(α · �)(β ·�) − (−�2)

}
4(σ ·�)2χ2

. (42)

(
= p2




(
EαEβ + m2

l + pα
T · pβ

T

)
2(Eα + Eβ)2χ2

in the laboratory frame

)
. (43)

In the light of the above, we can interpret (39) as the leading term in an expansion of m2
T 2

′
in

powers of |v|2 as defined in (42). Given a particular event, all the quantities in (42) may be
evaluated, so one can safely use (39) to evaluate m2

T 2
′

for events in which |v|2 is observed to
satisfy |v|2 � 1.5

3.3. Extremal values of mT 2

In this section, we show that the maximum value which mT 2(mχ0
1
) can attain, for a given set

of particle masses, is indeed the mass of the initial sparticle6. We start from definition (8). We
also describe the region of decay phase space which contains events which occur close to this
kinematic endpoint.

To find the range of values mT 2 may take we first let f1 = m2
T

(
pπ(1)

T , /q(1)
T ;mχ0

1

)
, and

f2 = m2
T

(
pπ(2)

T , /q(2)
T ;mχ0

1

)
. We then note that the minimum over a parameter x of the

maximum of f1(x) and f2(x) can occur at a local minimum, f ′
1(2)(x

∗) = 0, provided
f1(2)(x

∗) > f2(1)(x
∗), as shown in figure 7(a). Alternatively the minimum can occur when the

functions cross one another when f1 = f2 (figure 7(b)) or at a boundary (figure 7(c)). The
parameter x corresponds to the fraction of the missing momentum (in one of the transverse

5 The reader is warned not to mistake |v| for the speed associated with an actual boost (real or conjectured) connected
with the neutralino pair; |v| could, for example, even exceed the speed of light if χ were made sufficiently small!
It should only be assumed that as |v| → 0, |v| will tend to the speed, in the laboratory frame, associated with the
energy–momentum vector B. (This is the B which was originally defined in (29) and whose

√
s value was selected by

the minimization process in (25).)
6 Up to this point, within the context of the AMSB example, it has only been shown that mT 2(mχ0

1
) is bounded above

by mχ+
1

. It has not yet been shown that mT 2 can attain this bound. The purpose of this section is to show that it can.
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(a) (b) (c)

Figure 7. A diagram demonstrating that the minimization over some parameter of the maximum
of two well-behaved functions may occur either at (a) a minimum value of one of them, or
(b) when they are equal, or (c) at the boundary of the domain.

directions) which is assigned to each half of the event. Since f1, f2 → ∞ as x → ±∞
figure 7(c) is not relevant to our minimization problem.

To find which of (a) or (b) is pertinent, consider an unconstrained minimization over /qT ,
of m2

T

(
pπ

T , /qT ;mχ0
1

)
. Using the relationship

∂/ET

∂/qk

= /qk

/ET

, (44)

where /E2
T = /q2

T + m2
χ0

1
, it is straightforward to show that

∂m2
T

∂/qk

= 2

(
Eπ

T

/qk

/ET

− pπ
k

)
, k = 1, 2. (45)

This means that at an unconstrained minimum of m2
T we have

vπ
T = /uT , (46)

where we introduce the notation vT ≡ pT /ET , /uT ≡ /qT //ET . Note that although pT is the
transverse momentum of a visible particle, vT is not quite its transverse velocity, as it has ET ,
rather than E in the denominator.

Using the basis (t, x, y) with the metric diag(1,−1,−1), one can write

m2
T = (

Etot
T , ptot

T

) · (Etot
T , ptot

T

)
, (47)

where Etot
T = Eπ

T + /ET and ptot
T = pπ

T + /qT . This (1+2)-dimensional Lorentz invariant can
be evaluated in any frame boosted from the laboratory in the transverse plane. Equation (46)
reveals that at the unconstrained minimum the transverse velocities vπ

T and /uT are equal; a
statement necessarily true in all transverse frames, including the special one in which both the
transverse velocities (and associated momenta) are zero. Evaluating (47) in this frame, we
find that the unconstrained minimum of (47) then becomes

(
mπ +mχ0

1
, 0, 0

) · (mπ +mχ0
1
, 0, 0

)
,

and we recover the expected result

mmin
T = mπ + mχ0

1
. (48)

We therefore conclude that the function m2
T has only one stationary value and it is the global

minimum, and is common to both sides of the event provided the same type of particles are
emitted

(
m(1)

π = m(2)
π

)
. Thus when f1 is minimum it cannot be greater than f2, and so the

minimization in (8) forces f1 = f2. This could of course occur when both f1 and f2 are at
their global minima, in which case mT 2 takes its minimum value:

mT 2
min = mπ + mχ0

1
. (49)

To summarize, when the same particles are emitted from both sides of the event, mT 2

may be defined as the minimum of m
(1)
T subject to the two constraints m

(1)
T = m

(2)
T , and
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/p(1)
T + /p(2)

T = /pT . The condition for the minimization can be calculated by Lagrange-multiplier
methods, the result of which is that the vectors /u(1,2)

T of the assigned neutralino momenta /q(1,2)
T

must satisfy 7

(
/u(1)

T − vπ(1)

T

) ∝ (
/u(2)

T − vπ(2)

T

)
, (50)

where again, vπ
T = pπ

T

/
Eπ

T .
To find the maximum of mT 2 over many events we note that for each event the minimization

will select hypothesized momenta satisfying (50). We now note events can occur in which the
true transverse velocities of the neutralinos were exactly those which were assigned by the
minimization, i.e. they can satisfy

vχ0
1 (1)

T = /u(1)
T , vχ0

1 (2)

T = /u(2)
T . (51)

These events will have both hypothesized transverse masses equal not only to each other but
also to true transverse masses which would have been calculated if the neutralino momenta
had been known:

m
(i)
T

(
pπ(i)

T , /pχ0
1 (i)

T

) = m
(i)
T

(
pπ(i)

T , /q(i)
T

)
. (52)

If events occur where, in addition to the transverse components of the neutralino momenta
satisfying (51), the rapidity differences satisfy ηχ0

1 (1) = ηπ(1) and ηχ0
1 (2) = ηπ(2), then by (2)

mT 2 will equal the true mass of the chargino. Combining this with (49) and recalling that mT 2

cannot be greater than the chargino mass by construction, we can see that the event-by event
distribution of mT 2 can span the range

mχ0
1

+ mπ � mT 2 � mχ+
1
. (53)

3.4. Extremal values of mT X

In the last section we looked at the conditions under which events can generate mT 2 values
near the kinematic endpoint. Here we will look at some of the ways these conditions become
modified for mT 3 and mT 4 events.

Consider once again events from the AMSB scenario in which a chargino is produced and
then decays to χ0

1 eνe. If we expand the Lorentz invariant(
mχ+

1

)2 = (
pχ0

1
+ pe + pν

)2
, (54)

we obtain three mass-squared terms for each of the decay particles and three cross terms. The
cross terms can each be written in the form

2pa ·pb = 2
[
E

(a)
T E

(b)
T cosh(�ηab) − p(a)

T · p(b)
T

]
, (55)

like the cross term in (2). If the neutralino and neutrino transverse momenta were individually
known we could evaluate the transverse mass,

m2
T = m2

χ0
1

+ m2
e + 2

[(
Ee

T E
χ

T − pe
T · pχ

T

)
+
(
Eν

T E
χ

T − pν
T · pχ

T

)
+
(
Ee

T Eν
T − pe

T · pν
T

)]
, (56)

where the neutrino mass is assumed to be negligible. mT will be equal to the χ+
1 mass in

events where �ηab = 0 for all pairs of e, νe and χ0
1 .

7 We comment that this minimization-enforcing relationship is also obtained in more general events in which the
masses of the visible particles (or groups of particles) on each side of the event are unequal. It should however be
noted that this condition only enforces the minimum contained within mT 2’s definition in the case that the minimum
at a point where m

(1)
T = m

(2)
T . Cases where this does not occur are presented in section 3.5.
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Using, in (8), the three-particle definition of mT from (56) instead of the two-particle
definition (6), one defines mT 4, the analogue of mT 2 for the case of four missing particles.
The constraint on the unobserved momenta will, of course, have to be modified to read

qν(1)
T + qχ(1)

T + qν(2)
T + qχ(2)

T = /pT , (57)

where the labels (1) and (2) indicate which chargino the particles were emitted from.
The conditions for the minimization required to calculate mT 4 can be calculated just as

for mT 2. The Euler–Lagrange (EL) equations involving

∂
(
m

(i)
T

)2

∂qν(i)
T

and
∂
(
m

(i)
T

)2

∂qχ0
1 (i)

T

, (58)

show that the minimization will select the invisible particles’ momenta such that uχ0
1 (i)

T = uν(i)
T .

The other EL equations reproduce (50) but with electrons replacing pions.
This means that when calculating mT 4 one can replace the missing particles from each

chargino decay with a pseudo-particle with mass equal to the sum of the masses of those
invisible particles and proceed as for mT 2. In the case of leptonic chargino decay the mass
of the neutrino can be safely neglected in comparison with that of the χ0

1 , and the constraint
uχ(i)

T = uν(i)
T is equivalent to qν(i)

T = (0, 0).
The distribution over events of mT 4 will have fewer entries near the upper kinematic limit(

mT 4 = mχ+
1

)
because when more particles go undetected an event at that limit must satisfy a

larger number of constraints. For fully leptonic chargino-pair decay, there are six constraints
of the type �η = 0, two pν(i)

T = 0 and finally the modified constraint from (50). This effect
can be seen in figure 3 for events where a total of two, three and four invisible particles are
produced.

3.5. Asymmetric decays

In the preceding two sections we have seen that when the decays on each side of the event
are the same (i.e. both initial sparticles decay to the same set of daughter particles) then the
resulting kinematic variables, mT 2 and mT 4, have very similar properties. The only significant
difference we have seen is the reduced density of events near the upper kinematic endpoint
of mT 4 relative to mT 2. Why, then, is the mT 3 distribution, shown in figure 3, seen to have
a shape significantly different from the mT 2 and mT 4 distributions? Specifically, why does it
have the strong peak at low values not shared by the other two?

The difference occurs because the visible particles on each side of an mT 3 event are
different (on one side χ0

1 , e, ν and on the other to χ0
1 , π+) and so the unconstrained minima

of the values of mT on each side of the event are not equal as they are in the case of mT 2 and
mT 4:

min
/q(1)

T

(
m

(1)
T

(
pπ

T , /q(1)
T

)) = mπ + mχ0
1

�= me + mχ0
1

= min
/q(2)

T

(
m

(2)
T

(
pe

T , /q(2)
T

))
. (59)

It is thus possible for some of the events can then fall into the category shown in figure 7(a),
producing a peak of events with mT X = mχ0

1
+ mπ .

4. LHC case studies using mT 2

In this section we highlight some physics studies for the LHC which demonstrate that the
background and the detector effects do not prevent mT 2 from being a useful experimental
variable. We investigate points from three different models, under two different classes of
mass hierarchy.
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4.1. Case 1—mSUGRA-like points

The first two points discussed are the mSUGRA point 5 (S5) and a point from the optimized
string model (O1) discussed in [9]. The relevant parameters of these models are

m3/2 = 300 GeV, m0 = 100 GeV, A0 = 300 GeV, tan β = 2.1,

m3/2 = 250 GeV, tan β = 10, θ = π/4,

respectively and µ > 0 in both cases. For these points we are looking at dislepton
production from a hard process which decays as l̃± → χ̃0

1 l±, and so the mass hierarchy
is ml � ml̃ − χ ≈ χ < ml̃ .

For S5 and O1, all events, except the qq → W +W− background processes, were simulated
by HERWIG−6.0 [13]. The W-pair events were generated by ISAJET−7.42 [14]. The events
for these two points were generated at 100 fb−1. This is expected to correspond to running at
high luminosity for one year.

Since there are two different processes being analysed, there are different cuts to apply.
As this is not intended to introduce new physics, here we present only the major cuts used.
For more details about the cuts and the techniques used, see [9, 10].

The events used for S5 and O1 are required to have one opposite sign same family (OSSF)
pair of isolated leptons with p

l1
T > 50 GeV and p

l2
T > 30 GeV. These events cannot contain

any other isolated leptons. Also, events containing one or more jets with p
j

T > 40 GeV are
vetoed. This helps reduce the standard model backgrounds.

The variable �M is defined as

(�M)2 ≡ 1
4

(
M2

T 2(ml)
) − m2

l . (60)

This variable is what is studied for the points S5 and O1, for reasons given in [9]. The
desired dislepton events have very little jet activity and the dislepton production cross
sections are typically two orders of magnitude smaller than the squark/gluino production
cross sections. There are also irreducible SM backgrounds (primarily W +W− → l+l−νν̄

and t t̄ → bb̄W +W− → jj l+l−νν̄ in cases where jets are below the reconstruction threshold
or are outside detector acceptance) which have signatures identical to dislepton events. The
smallness of the signal and the presence of these backgrounds would cause problems for naive
straight-line fitting technique. Instead, the technique described in [9] is used for the estimation
of the edge precision.

Figure 8 shows the �M distributions obtained at S5 and O1 after applying the cuts to a
100 fb−1 sample of signal dislepton events. Events from lighter sleptons (ẽR and µ̃R) occupy
the unhatched region in each plot, while the events from heavier left-sleptons are cross-hatched.
It will be noted that events from both light and heavy sleptons succeed in passing the cuts in
both models. In principle, then, there are two edges to be observed in each of the models: one
for the lighter slepton and one for the heavier. We note, however, that as the slepton masses
increase, their production is strongly suppressed, and so there are very few heavy slepton
events at O1 where there is in fact none within 10 GeV of the kinematic limit. It is readily
observed that at the three remaining edges, where statistics are higher, there is good agreement
between the theoretical prediction and the observed endpoint of each distribution.

Significant numbers of SM background events also pass the cuts. These can be well
modelled by their opposite sign different family (OSDF) counterpart. As the signals from
dislepton pair production are expected to be purely OSSF, we can use OSDF background
subtraction. Supersymmetric backgrounds also have to be considered. Again, in this case
the OSSF distributions are well modelled by OSDF events passing the same cuts. So again,
different-family background subtraction is used.
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Figure 8. �M distributions obtained at S5(a) and O1(b) after applying the cuts to a 100 fb−1 sample
of ẽR

¯̃eR, µ̃R ¯̃µR, ẽL
¯̃eL and µ̃L ¯̃µL dislepton events. Events from light right-sleptons (unhatched)

are stacked on top of those from heavier left-sleptons (hatched). Only events from OSSF lepton
combinations are shown. The plots are generated without OSDF background subtraction, but were
it to be performed, no significant differences would be apparent as only 4 (12) signal events are
able to pass OSDF soft cuts at S5 (O1). Arrows indicate the values of �Mmax predicted by theory
for the two types of slepton in each model. A red vertical line is drawn through each plot at half
the W -mass.
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Figure 9. Flavour-subtracted �M distributions for combined signal and background at S5(a) and
O1(b) after applying the cuts. A red vertical line is drawn through each plot at half the W -mass.
Plots are shaded to the left of this line in order to draw attention to the events which reconstruct
above this point. Compare these plots with those of figure 8 which contain only signal events. The
arrows of figure 8 are provided for comparison.

All events for S5 and O1 (signals and backgrounds) are combined in figure 9 after
different-family background subtraction. The reader is encouraged to compare these plots
with those from figure 8 showing the desired signal shapes. As expected, all signal shape
information is lost to the left of mW/2 due to obliteration by the SM backgrounds. To the right
of this point, at least one clear edge is observable in both models (the left-slepton edge at S5,
and the right-slepton edge at O1) and in both sets of cuts. The hard cuts are able to suppress
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Table 1. Parameters of the four AMSB-like points studied. The µ parameter was adjusted so that
different values of �Mχ̃1 could be investigated.

Name m0 (GeV) m3/2 (TeV) tan β µ

SPS-300 450 60 10 300
SPS-250 450 60 10 250
A-250 500 36 10 250
A-200 500 36 10 200

Table 2. The lightest chargino mass, the mass difference, �Mχ̃1 = mχ+
1

− m
χ0

1
, and two chargino

branching ratios for the four AMSB-like points discussed in section 4.2. The hadronic branching
ratios can be found in [10].

mχ+
1

�Mχ̃1

Point (GeV) (MeV) χ+
1 → χ0

1 e+νe χ+
1 → χ0

1 µ+νµ

SPS-300 165 886 17.0% 15.9%
SPS-250 159 1798 21.9% 21.5%
A-250 101 766 15.4% 13.9%
A-200 97 1603 22.5% 22.2%

the supersymmetric backgrounds to such a degree that there is even compelling evidence at
O1 for the existence of two edges, although the lack of statistics in the higher edge limits the
precision with which the endpoint may be located.

4.2. Case 2—AMSB-like scenarios

The characteristic signature for anomaly-mediated supersymmetry breaking is the near mass-
degeneracy of the lightest chargino and the lightest neutralino. The χ+

1 therefore decays
to a neutralino plus (relatively) light standard model particles. For a small mass difference,
�Mχ̃1 = mχ+

1
−mχ0

1
, the largest χ+

1 branching ratios are to χ0
1 π+ and to χ0

1 l+νl , where l ∈ e, µ.
The mass hierarchy,

mπ or (ml + mν) ≈ mχ+
1

− χ � χ � mχ+
1
,

is therefore very different to the previous case study.
HERWIG−6.3was used to generate 30 fb−1 of unweighted inclusive supersymmetry events.

HERWIG was also used to generate the background. For all the points, the results were
passed through the ATLAS fast detector simulator, ATLFAST [15]. The signal-enhancing
cuts require missing transverse energy, /Emin

T = 500 GeV, leading jet transverse momentum,
pmin

T (J1)
= 400 GeV and transverse sphericity, Smin

T = 0.05. There are also cuts on the tracks,
these are described in more detail in [10].

We consider four AMSB-like points, which have the parameters given in table 1. Two of
the points (SPS-300 and SPS-250) are based on the point suggested for study at Snowmass
[16]. In all four cases the µ parameter has been adjusted at the electroweak scale in order to
investigate different values of �Mχ̃1 , as discussed in [10]. Some masses and branching ratios
can be found in table 2.

Two of the points (SPS-300 and A-250) have large branching ratios for the decay
χ̃±

1 → π±χ̃0
1 . This means that chargino-pair decay can easily generate the topology shown in

section 1. We therefore plot distributions of mT 2 − mχ̃0
1
, for which signal events in a perfect
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Figure 10. The mT 2 − m
χ̃0

1
distribution for (a) the point SPS-300, and (b) the point A-250. The

signal consists of the two solid regions labelled χx +χx in the legend. The upper kinematic limit of
mT 2 −m

χ0
1

for signal events is marked with a dotted line. Note the sharp fall-off in the distribution

near the kinematic edge at mT 2 − m
χ0

1
= �Mχ̃1 .
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Figure 11. The mT 2 − m
χ̃0

1
distribution for (a) the point SPS-250, and (b) the point A-200. The

signal consists of the two solid regions labelled χx + χx in the legend. The upper kinematic limit
of mT 2 − m

χ0
1

for signal events is marked with a dotted line. Note the fall-off in the distribution

near the kinematic edge at mT 2 − m
χ0

1
= �Mχ̃1 .

detector would lie in the range [mπ,�Mχ̃1 ]. The results (see figure figure 10) show that mT 2

could be used to measure the small mass difference between the χ̃+
1 and the χ̃0

1 in this model,
provided the signal cross section is sufficiently large.

The other two points each have a larger leptonic branching ratio, and so for these points
the fully leptonic channel was investigated. Since there are now four missing particles in the
final state (two neutralinos, and two neutrinos), distributions of mT 4 − mχ0

1
were plotted. For

a perfect detector, these are restricted to lie in the range [me/µ,�Mχ̃1 ].
The signal events are again indicated by the solid shades in the histograms in figure 11.

Again, it can be observed that the distribution lies within the expected range. The distribution



2362 A Barr et al

is skewed to lower values because more particles are missing, and so more constraints must
be satisfied for an event to approach the upper limit (as was seen in figure 3).

The sensitivity of mT X to the estimated mass of the neutralino was shown in figure 4.
It has been found that mT X shows similar insensitivity to measurement uncertainties in the
missing transverse momentum vector. This behaviour can be (at least partially) understood
from the non-relativistic limit of mT 2, when the proportionality in (50) becomes an equality
and

m2
T 2 − (

mπ + mχ0
1

)2 = 1

4mπmχ0
1

(
mπ/pT − mχ0

1
pπ1

T − mχ0
1
pπ2

T

)2
+ O((vT · vT )2). (61)

The low sensitivity to the (possibly poorly measured) quantities mχ0
1

and /pT comes from the
fact that in (61) they are multiplied by the quantities pπ

t and mπ respectively, which are both
small in this mass regime.

5. Conclusion

This paper has attempted to achieve three objectives. Firstly, it seeks to introduce a new set of
kinematic variables {mT 2, mT 3, . . .}, which are specially designed to extract information from
a particular class of troublesome events that we are likely to see at next generation hadron
and lepton colliders. These events are those containing a pair of particles of identical (but
unknown) mass which subsequently decay into groups of particles, each containing one or
more invisible (possibly massive) particles. An example of this kind of event might be pair
production of sleptons at the LHC, followed by subsequent sleptonic decay to leptons and
neutralinos. Secondly, this paper attempts to get to the bottom of these new variables; it
describes the regimes in which they can or cannot be trusted, develops useful approximations
to them, and shows generally how one could go about calculating this variable for real. The
approximations to the variables are not only useful in their own right, but are even more useful
as guides which illustrate the dependence of the variables upon their inputs. Finally, this paper
seeks to show with a couple of examples, real use of these variables in physics analyses. These
hopefully show that mT 2 and its chums are able to provide vital and new information about
particle masses from events that would at first glance appear to contain so many unknown
quantities as to be useless.

In conclusion, we believe that mT 2 is an invaluable tool for physicists working at the
LHC, and other future colliders, and we hope that this paper will encourage its use.
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