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where spatial resolution is crucial to investigate the interac-
tion of flow phenomena with chemical reactions.

1  Introduction

Optical imaging techniques are indispensable for the res-
olution of non-uniformities in technical flow fields [1, 2]. 
Generally the techniques can be divided into two catego-
ries, which are planar imaging techniques on the one hand 
and tomography, on the other. As evident from its name, 
the former category, which includes planar laser-induced 
fluorescence/phosphorescence [3, 4] and Raman/Rayleigh 
imaging [5–7], is two-dimensional in nature and requires 
a pulsed laser source for the selective illumination of the 
plane of interest. The signal stems from the interaction of 
the illumination light field with the gas molecules, and the 
generated light emission is imaged directly onto a two-
dimensional detector array, typically a camera. Mathemati-
cally speaking, planar imaging techniques can be consid-
ered as a straightforward linear field mapping operation. On 
the other hand, tomography relies on the mapping of inte-
grals of the target field along the line of sight, LOS, which 
in what follows we refer to as integral mapping [8]. As a 
consequence, the target field has to be integratable along 
the LOS and the corresponding integrals have to be physi-
cally meaningful. Since emission along the LOS is accu-
mulative and hence integratable along its path toward the 
detection plane, essentially all planar imaging methods can 
be upgraded into 3D tomographic modalities. In practice, 
limitations are only set by the available optical access to 
the system under study and the excitation power available 
for volumetric sample illumination. In contrast to planar 
imaging, which solely targets on emission fields, tomogra-
phy can also recover the fields for absorption coefficients, 
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which can be further processed to retrieve other fundamen-
tal gas properties, such as temperature, species concentra-
tion, and pressure [9–14]. Compared with emission tomog-
raphy, the absorption counterpart enjoys further advantages 
such as being calibration free, species selective, and highly 
sensitive [15–20].

Tomographic absorption techniques can be further clas-
sified into classical and nonlinear methods depending 
on the sampling schemes and mathematical algorithms 
employed [8]. Classical absorption tomography, CAT, can 
only handle a single absorption transition in the inversion 
process, and thus, extensive sampling is required to obtain 
the number of projections (the sets of line-of-sight meas-
urements along specified orientations) necessary for high-
resolution reconstruction. Such a sampling scheme usually 
requires mechanical means for the angular displacement 
of the projections, which inevitably undermines the tem-
poral resolution, making it unsuitable for rapidly evolving 
turbulent flows. Since CAT results in a set of linear equa-
tions, we also refer to it as linear tomography. On the other 
hand, nonlinear methods are inherently multiplexed: For 
example, the MAT technique reported previously measures 

several spectral sampling frequencies simultaneously but 
on the other hand requires only two spatial projections, and 
it is thus inherently faster than CAT [12, 15]. It was dem-
onstrated before that with two fixed orthogonal projections, 
a faithful tomographic reconstruction can be obtained for 
a sample containing 15 × 15 resolution elements at MHz 
repetition rates [12, 15]. The geometric arrangement of a 
typical MAT experimental setup with two orthogonal pro-
jections is illustrated in Fig. 1. A schematic comparison of 
the sampling schemes used for CAT and MAT is summa-
rized in Fig.  2. As illustrated, three measurement dimen-
sions are involved, which are: angular (i.e., # of projec-
tions), lateral (i.e., # of sampling beams within a specific 
projection), and spectral dimension, respectively. The rel-
ative lengths of the axes indicate the intensiveness of the 
sampling operation along a specific dimension.

However, since only two projections were used in pre-
vious implementations of MAT and the spectral sampling 
could only partially compensate (in a mathematical sense) 
for spatial sampling deficiencies, the spatial resolution 
is inevitably undermined. Nevertheless, we point out that 
there is no limitation per se in the number of projections 
that can be accommodated by the MAT algorithm, how-
ever, at a commensurate loss in temporal resolution due 
to beam scanning requirements. But in this case, MAT 
enjoys a much improved reconstruction fidelity due to bet-
ter immunity against experimental noise such as originat-
ing from beam steering, window fouling, and etalon fring-
ing [15]. Moreover, since MAT can be combined with 
advanced detection techniques, such as wavelength modu-
lation spectroscopy (WMS), it can be used for high- and/or 
varying pressure scenarios, for which CAT is not optimally 
suited. In summary, the nonlinear MAT technique offers 
full flexibility, to either be deployed with high temporal 
but somewhat limited spatial resolution, as demonstrated in 
an earlier article, or, as we demonstrate here, at very high 
spatial resolution at the cost of increased data acquisition 
requirement.

We demonstrate this effect by increasing the spatial sam-
pling frequency along each projection direction. This finer 
meshing of the flow filed is permissible under the assump-
tion of the smoothness condition, which is valid for most 

Fig. 1   Geometric arrangement of a typical MAT experimental setup

Fig. 2   Schematic comparison of the dimensionality of sampling schemes for, a classical absorption tomography and b multispectral absorption 
tomography. The relative lengths of the axes indicate the intensiveness of the sampling process along a specific dimension
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combustion environments practically encountered. We 
demonstrate a resolution spatially for grid sizes containing 
80 ×  80 elements to achieve a resolution that is compara-
ble to that of CAT although requiring only a fraction of pro-
jections. For high-resolution MAT, the temporal resolution 
is furthermore only limited by the bandwidth of the data 
acquisition system. High-resolution MAT has thus the practi-
cal potential for deployment in situations where both spatial 
and temporal resolutions are crucial, for example to provide 
full resolution of complicated flow fields such as supersonic 
combustion systems within ramjets/scramjets [21].

So far, both CAT and MAT have been limited to appli-
cations in two dimensions, simply because of prohibitive 
experimental costs for the enabling technology. However, 
the potential for the implementation of MAT with inexpen-
sive tunable diode lasers with coarse wavelength-division 
multiplexing (CWDM) [15] has made volumetric absorp-
tion tomography a more practical proposition. This pro-
vides us with a strong motivation to further develop this 
technique theoretically and perform numerical validation 
studies in preparation for experimental demonstrations in 
the near future.

The remainder of this paper is organized as follows: 
Sect.  2 briefly introduces the mathematical formulation 
for the MAT algorithm; Sects. 3 and 4 present studies for 
large-scale planar and volumetric implementations of the 
technique, and the final section provides a summary of our 
findings.

2 � Mathematical formulation of MAT

The mathematical formulation of MAT using both direct 
absorption spectroscopy (DAS) and WMS has been 
detailed in previous publications [15, 22]. To facilitate the 
discussion here, we focus on MAT implementations based 
on DAS as an example and briefly summarize the formula-
tion to use MAT for flow thermometry.

According to the Beer–Lambert law, the absorbance, 
labeled as α, for monochromatic light of a frequency v 
passing through non-homogeneous absorbing medium is 
defined as:

where L1 and L2 the intersections between the laser beam 
and the boundaries of the region of interest, ROI; T(l) and 
X(l) the temperature and concentration profiles along the 
LOS as a function of distance, l; P the pressure; φ the nor-
malized Voigt line-shape function, which approximates the 
convolution of the two dominant broadening mechanisms, 

(1)

α(ν) =

L2
∫

L1

∑

g

S[T(l), νg] · φ[T(l), X(l), P, (νg − ν)] · P · X(l)

i.e., Doppler and collisional broadening, representative for 
typical combustion scenarios; and S[T(l), νg] is the line 
strength of the gth non-negligible transition centered at νg 
and for prevailing local temperature T(l). In practice, the 
ROI is represented by discretized pixels, and the integration 
in the equation is replaced by a summation operation.

In MAT, the left-hand side of Eq.  (1) can be obtained 
from experimental measurements and the right-hand side 
can be predicted using Beer’s law. By taking LOS measure-
ments at different lateral positions and orientations across 
the sample for multiple absorption transitions, which is 
achieved by coarse/dense wavelength-division multiplex-
ing (CWDM/DWDM), the parameters are obtained for a 
set of nonlinear equations, whose common variables are the 
profiles of temperature and species concentration. Here we 
assume that the pressure is constant, which is the case for 
many practical applications. Currently, the standard way of 
solving the MAT equation system is through iterative opti-
mization via minimization of a cost function, defined as

where I denotes the total number of peak wavelengths used; 
J the number of sampling laser beams within ROI; pm(lj, 
νi) the LOS measurements at the frequency νi along the 
jth laser beam; and pc(lj, νi) the corresponding predictions 
using Beer’s law. The cost function, D, provides a quantita-
tive measure of the difference between the fitted and meas-
ured projections. In the ideal case, where measurements 
are noise-free and the spectroscopic database is accurate, 
D reaches its global minimum (zero) when the reconstruc-
tions match the true profiles. However, in reality due to the 
noisy projections, numerous local minima that have val-
ues close to the global minimum would lead to solutions 
that are significantly different from the true profiles. In this 
case, additional constraints such as smoothness conditions 
due to thermal and mass diffusion can be incorporated into 
the inversion process to rule out the solutions that disagree 
with the constraints so that a smooth solution which serves 
as a good approximate of the true profiles can be reached. 
For example, the smoothness of temperature within the 
ROI can be implemented as:

where 
⇀

T
rec

 stands for the reconstructed temperature distri-
bution; M and N the number of square pixels along the x 
and y directions, respectively; the subscript m, n run over 
all inner pixels within the ROI; and the subscripts i, j enu-
merate the immediate adjacent pixels to every pixel speci-
fied by m and n.

(2)D =

J
∑

j=1

I
∑

i=1

[

1 − pc(ℓj, νi, Tq, Xq)/pm(ℓj, νi)
]2
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Obviously, RT decreases as the distribution becomes 
smoother, and for a constant temperature field, RT would 
approach zero. The cost function can thus be modified as

where γT is a weighting parameter to regulate the relative 
significance of a priori (smoothness of the temperature 
profile) and posteriori (measured projections) informa-
tion. Since it was previously demonstrated that the recov-
ery of temperature information in the MAT process is only 
weakly affected by local concentration variations [23], we 
omit the latter in the formulation for F. However, it has to 
be pointed out that both the temperature and concentra-
tion profiles were set as independent free variables during 
the fitting process. The minimization problem can then be 
solved using a global minimizer, e.g., the simulated anneal-
ing (SA) algorithm [24], which we use here.

3 � Large‑scale planar MAT

For the study of large-scale planar MAT problems, we arti-
ficially generated smooth, but multi-modal 2D phantoms 
of flame temperature and water vapor concentration as 
shown in Fig. 3 in order to simulate practical flow condi-
tions. Water vapor was chosen as the target species due to 
its relatively strong absorption in the near-infrared spectral 
region compared with other flame species and also due to 
its abundance in hydrocarbon/hydrogen flames. For prac-
tical applications, the continuous phantoms are meshed 
by a grid containing N ×  M pixels. Here we vary N and 
M to study the effect of variations in the spatial sampling 
frequency along the projections on the MAT reconstruc-
tion quality. Typically both forward and backward projec-
tion processes were considered, i.e., going from phantom 
to projections and vice versa. In the forward process, the 
noise-free projections were modeled according to Beer’s 
law assuming that an accurate spectroscopic database had 
been used. A specified level of noise was then added to 

(4)F = D + γT · RT (Trec)

simulate practical projections suffering from noise (poste-
rior information). In the backward process, a large num-
ber of trial solutions were generated within constraints to 
match the fitted projections calculated via Eq.  (1) to the 
‘measured’ projections, while at the same time, ensuring 
the smoothness condition was met (a priori information). 
The optimal solution was then taken to be that which struck 
the best balance between a priori and posterior constraints. 
To quantify reconstruction quality, an overall average error 
was defined as follows

where 
⇀true

T  is the temperature phantom arranged in a vector 
form and ‖‖1 denotes the Manhattan norm of a vector.

Figure  4 shows the reconstruction results for a typical 
case with N  =  M=60. Two orthogonal projections, each 
containing 60 laser beams, were assumed so that each pro-
jection passed through each grid pixel once. Twenty strong 
H2O absorption transitions in the 1,350- to 1,500-nm spec-
tral range were selected for this demonstration. Gaussian 
noise was added at 5 % of the peak value to each projection 
to simulate the realistic experimental conditions. Thus ca 
~2,000 nonlinear equations were obtained from the simu-
lated measurements. For the case where we modeled the 
system to contain two unknown variables (i.e., temperature 
and water vapor concentration) for each pixel, an equation 
system containing ca ~7,000 variables was obtained. The 
results for the final reconstructed temperature profiles are 
shown in Fig. 4, left panel. Clearly, the major features of 
the systems are recovered with good resolution, e.g., the 
twin peak system of the temperature profile. The average 
error obtained is only 1.39 % (~25 K). It has to be noted 
that the lower reconstruction quality on the edge is due to 
the relatively weak enforcement of the regularization since 
the pixels on the edge have fewer adjacent pixels available 
for smoothing. The right panel in Fig. 4 shows the evolu-
tion of the terms contributing to the cost function as the SA 
algorithm progresses, i.e., D and γT·RT(Trec) normalized 

(5)eT = ||
⇀rec

T −
⇀true

T ||1/||
⇀true

T ||1

Fig. 3   Continuous phantoms 
generated to simulate tempera-
ture and water vapor concentra-
tions in a combusting flow
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by the initial value of F. As can be seen already halfway 
through the fitting process, the cost function (green sym-
bols) has essentially reached its minimum, indicating a 
close resemblance between fitted and “measured” projec-
tions. On the other hand, the regularization term (red sym-
bols) continues to decrease until the termination criterion 
is satisfied in the procedure. This means there were numer-
ous temperature profiles that lead to the similar “measured” 
projections, but only the smooth profiles result in a small 
regularization term. The procedure guarantees a smooth 
solution as the best approximation to the true phantom. The 
evolution of both the fitted temperature profile and the con-
tribution terms in the cost function guided by the SA algo-
rithm can be found in Media 1.

Figure 5 shows the reconstruction error of temperature 
(eT) and the corresponding computational time as a func-
tion of meshing scale. The same simulation conditions, i.e., 
the number of projections, transitions, and noise levels in 
the “measurements” were used as for the case shown in 
Fig. 4. To make the comparison meaningful, all simulations 
were run on the same Intel Core i7-4770 Processor. The 
error bars here indicate the standard deviation of 30 cases 

using projections with the same noise levels. It is seen that 
the computational time increases almost exponentially with 
meshing frequency which is explained by the fact that the 
number of free variables in the optimization is 2 × N×M. 
Furthermore, eT decreases with meshing grid sizes up to 
50 × 50 and increases thereafter. This is due to the fact that 
the smoothness condition is better satisfied for finer discre-
tization; however, as the meshing scale is increased beyond 
a critical value, the ratio between the number of variables 
and nonlinear equations (N/I) also increases, thus reduc-
ing reconstruction quality. The overall reconstruction fidel-
ity represents an amalgamation of both factors. For small 
meshing scales, the smoothness condition will outweigh 
the effect of increasing N/I and vice versa.

4 � Volumetric MAT

So far, MAT, and indeed CAT, has been limited to 2D situ-
ations simply due to prohibitive experimental costs. Fortu-
nately, recent advances in MAT with inexpensive tunable 
diode lasers have made the experimental realization of 
volumetric absorption tomography a more realistic propo-
sition. This is what encourages us to perform preliminary 
numerical studies here in preparation for later experimental 
demonstrations. We note that volumetric MAT implemen-
tation is a worthwhile endeavor not only from an applica-
tion point of view (i.e., providing full 3D information for 
the system under study), but it brings advantages also for 
tomographic inversion process, because extra information 
gained along directions between adjacent planes offers fur-
ther constraints (e.g., smoothness between the layers) that 
make the method even more robust.

Here we test the feasibility of such a volumetric tomog-
raphy approach with MAT. We thus generated a 3D phan-
tom as shown in Fig.  6 in such a way that the smooth-
ness condition could be applied not only within, but 
also between the layers. The ROI was discretized into 
15  ×  15  ×  15 voxels, and thus, there are totally ~7  k 

Fig. 4   An example reconstruc-
tion using a discretization of 
60 × 60 grid points. See also 
Media 1 for an animation for 
the evolution of the recon-
structed temperature distribu-
tion and the cost function as the 
Simulated Annealing algorithm 
progresses. 5 % Gaussian noise 
was added to all projections to 
simulate realistic noise condi-
tions as may be encountered in 
practical experiments

Fig. 5   Reconstruction error of temperature profile and correspond-
ing computational time as a function of meshing scale. 5 % Gaussian 
noise was added to all projections
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Fig. 6   Volumetric temperature 
phantom using a discretization 
of 15 × 15 × 15

Fig. 7   Reconstructed volumet-
ric temperature distributions. 
Average temperature errors eT 
are indicated for each recon-
structed layer
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variables (i.e., 3,375 for temperature and 3,375 for spe-
cies concentration). Again the same simulation conditions 
were used as in the planar MAT cases. Two orthogonal 
projections were assumed, with 450 beams thus resulting 
in exactly 9,000 nonlinear equations. Accordingly, Eq. (2) 
was modified to accommodate measurements along the 
third dimension as:

where K indicates the total number of layers.
In addition, to take full advantages of connections 

between layers, Eq. (3) was rewritten as:

Figure 7 shows an example reconstruction of the volumet-
ric temperature field for the phantom. The average error 
eT is stated for each recovered layer in the figure panels. 
Remarkably, a good reconstruction fidelity was obtained 
with an overall errors eT of <2.6 % (~40 K) throughout.

5 � Conclusion

In summary, we present the numerical studies of nonlinear 
MAT for large computational mesh sizes. We demonstrate 
a spatial resolution with meshes containing up to 80 × 80 
grid points for planar MAT requiring just two orthogonal 
projections. The spatial resolution obtained is compara-
ble with that of CAT, which needs many more projections. 
Even better spatial resolution is in principle possible at the 
expense of increased computational cost. We show that 
reconstruction fidelity is improved simply by increasing 
the spatial sampling frequency along the available orthogo-
nal projections before the effect of increasing N/I (the ratio 
between the number of variables and nonlinear equations) 
outweigh the benefit of smoothness condition. However, it 
has to be pointed out that for more complicated turbulent 
flow fields featuring sharper gradients and more intense 
fluctuations, more projections are necessary to resolve all 
information on relevant spatial scales. In theory, resolution 
can be improved by using more projections, but in practice, 
the achievable resolution is dictated by the maximum num-
ber of projections available with limited optical access and 
the optimal signal noise ratios that are possible. An advan-
tage of the MAT algorithm is that it features a better noise 
immunity when the same number of projections was used 
as CAT against experimental noise originating from beam 
steering, window fouling, and etalon fringing [15]. Finally, 

(6)D =

K
∑

k=1

J
∑

j=1

I
∑

i=1

[

1 − pc(ℓj,k , νi, Tq, Xq)/pm(ℓj,k , νi)
]2
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we demonstrate that full volumetric MAT is a feasible 
and realistic proposition for experimental realization. The 
availability of cost efficient laser and detector technologies 
mean that full 3D reconstructions of dynamic combusting 
flows will soon become a reality.
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