
Computer-Aided Design 58 (2015) 173–178
Contents lists available at ScienceDirect

Computer-Aided Design

journal homepage: www.elsevier.com/locate/cad

Control vectors for splines✩

Jiří Kosinka a,∗, Malcolm A. Sabin b, Neil A. Dodgson a

a Computer Laboratory, University of Cambridge, 15 JJ Thomson Avenue, Cambridge CB3 0FD, United Kingdom
b Numerical Geometry Ltd., 19 John Amner Close, Ely, Cambridge CB6 1DT, United Kingdom

h i g h l i g h t s

• We extend traditional splines based on control points by incorporating control vectors.
• Our paradigm allows combining several spline constructions into one formulation.
• We can model curves and surfaces that are not possible with existing techniques.

a r t i c l e i n f o

Keywords:
Spline
Curve
Surface
Subdivision
Control vector
Modelling

a b s t r a c t

Traditionally, modelling using spline curves and surfaces is facilitated by control points. We propose
to enhance the modelling process by the use of control vectors. This improves upon existing spline
representations by providing such facilities as modelling with local (semi-sharp) creases, vanishing and
diagonal features, and hierarchical editing. While our prime interest is in surfaces, most of the ideas
are more simply described in the curve context. We demonstrate the advantages provided by control
vectors on several curve and surface examples and explore avenues for future research on control vectors
in the contexts of geometric modelling and finite element analysis based on splines, and B-splines and
subdivision in particular.

© 2014 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/3.0/).
1. Introduction

Splines have their roots in the lofting technique used in the
shipbuilding and aircraft industries throughout the first half of
the 20th century. The first mathematical reference to the notion
of splines is accredited to the work of Schoenberg [1] on piece-
wise polynomial approximation. Later, De Casteljau, Bézier, and De
Boor [2] contributed invaluably to the development of splines and
B-splines in particular; see [3] for the full story.

In the curve case, the modern understanding of a spline can be,
in its generality, captured mathematically by

c(t) =

n
i=1

Bi(t)Pi; t ∈ [a, b], (1)

where Pi are control points forming a control polygon and Bi(t)
form a set of blending functions that satisfy certain properties

✩ This paper has been recommended for acceptance by Dr. Vadim Shapiro.
∗ Corresponding author.

E-mail addresses: jiri.kosinka@cl.cam.ac.uk (J. Kosinka),
malcolm.sabin@btinternet.com (M.A. Sabin), neil.dodgson@cl.cam.ac.uk
(N.A. Dodgson).

http://dx.doi.org/10.1016/j.cad.2014.08.028
0010-4485/© 2014 The Authors. Published by Elsevier Ltd. This is an open access artic
required by a particular application. To make the spline curve c(t)
well-defined geometrically (i.e., in order to guarantee shape inde-
pendence of the choice of origin), it is required that

n
i=1 Bi(t) ≡ 1

over [a, b]. In other words, the blending functions have to form
a partition of unity. A desired property in some applications (such
as finite element analysis) is linear independence of the blending
functions; Bi(t) then form a basis and are called basis functions. In
the context of analysis, partition of unity can be relaxed to

∃ci such that
n

i=1

Bi(t)ci ≡ 1. (2)

A spline curve is generally composed of many pieces of a
particular type (e.g., polynomial, rational, trigonometric) joined
together at knots with a certain continuity. The most popular
examples include B-splines [2] (of which Bézier curves are a spe-
cial case), trigonometric splines [4], interpolating splines [5], and
subdivision curves [6].

The above approach can be easily generalised to surfaces. For
example, in the tensor-product case we have

s(u, v) =

n
i=1

m
j=1

Bi(u)Bj(v)Pi,j; (u, v) ∈ [a, b] × [c, d], (3)

le under the CC BY license (http://creativecommons.org/licenses/by/3.0/).

http://dx.doi.org/10.1016/j.cad.2014.08.028
http://www.elsevier.com/locate/cad
http://www.elsevier.com/locate/cad
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cad.2014.08.028&domain=pdf
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
mailto:jiri.kosinka@cl.cam.ac.uk
mailto:malcolm.sabin@btinternet.com
mailto:neil.dodgson@cl.cam.ac.uk
http://dx.doi.org/10.1016/j.cad.2014.08.028
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


174 J. Kosinka et al. / Computer-Aided Design 58 (2015) 173–178
where Pi,j form a rectangular control mesh and the univariate
blending functions are reused. To be able to cover also triangular
patches, volumetric splines, and other flavours of splines including
subdivision, we adopt the general notation

c(t) =


i∈I

Bi(t)Pi; t ∈ Ω, (4)

where I is an appropriately chosen index set and Ω is a suitable
parameter space spanned by t. The functions Bi(t) form a set of
blending functions that partition unity or satisfy (2) over Ω .

2. Control vectors for splines

Imagine a scenario where one needs to edit a local detail on a
spline, but the blending functions cannot capture it since they are
too coarse (with too large a support). Ideally, one would simply
like to be able to add a single new control point associated with a
blending function of a desired shape and support. However, due to
the form of (4) and the partition of unity constraint, adding a new
desired blending function is either impossible or difficult as other
functions have to be modified as well while keeping the shape of
the spline unmodified.

In the case of B-spline curves, one can use knot insertion to
refine the space spanned by the B-splines locally. The situation
gets much more complicated in the tensor-product surface
setting as local refinement is not possible due to the rectangular
structure. Several constructions have been proposed to deal
with this: T-splines [7], hierarchical B-splines [8,9], truncated
B-splines [10], LR B-splines [11], and T-meshes [12]. In these
constructions, local refinement is possible as T-junctions are
allowed. However, it proved difficult to maintain partition of unity
and linear independence for these constructionswithout imposing
restrictions on refinement strategies or moving to the rational
setting by normalisation. In the case of THB-splines [10], basis
functions are ‘truncated’ to maintain both properties, but at the
expense of introducing functions that may have more than one
maximum. While acceptable in analysis, this is undesirable in
modelling as a control point’s influence is no longer intuitive.

In the context of finite element analysis, (1) was extended to

c(t) =

n
i=1

Bi(t)Pi +

n
i=1

f (t)Bi(t)Vi (5)

with some function f (t) well suited for a particular applica-
tion/problem (a typical example is f (t) = et ) and both Pi and Vi
are treated as degrees of freedom. This approach and its generalisa-
tionswere introduced in [13,14], and called Partition ofUnity Finite
Elements and Extended Finite Elements, respectively. In the latter
case, the modification was motivated by introducing cracks (f (t)
would be a discontinuous function) without having to remesh.
Recently, due to the popularity of Isogeometric Analysis (IgA for
short; see [15]), such modifications are ever more important.

These modifications, however, break the partition of unity
property and cannot be used for modelling directly, as also re-
quired by IgA. To amend the situation and to address the require-
ments in modelling and analysis, we propose to generalise (4) and
(5) to

c(t) =


i∈I

Bi(t)Pi +

j∈J

Cj(t)Vj; t ∈ Ω, (6)

where


i∈I Bi(t) ≡ 1 still holds andPi are control points, butVj are
understood as control vectors. While this may seem as semantics
only, the transition from control points to control vectors allows
the functions Cj(t) to be incorporated in the spline definition; the
control vectors do not transform as points, but as displacements.
Thus, the partition of unity property no longer applies to the set
Fig. 1. A degree four spline curve with 12 control points and two non-zero
control vectors (red arrows). The associated basis functions are shown in black. The
unmodified underlying spline is shown in grey for reference. Control vectors are
logically associated with knots. To express the same curve using standard quartic
B-splines would require 18 control points (yellow). Each non-zero control vector
would give rise to d − 1 = 3 extra control points. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version
of this article.)

of Cj(t). However, since (2) still applies, this is not a problem for
analysis.

Considering a spline as a sum of weighted points plus a sum of
weighted control vectors, (6), is a paradigm that opens up a wealth
of possibilities with minimal increased cost, as we demonstrate
below. For future use, we denote B the collection of Bi, i ∈ I , and C
the collection of Cj, j ∈ J .

In modelling and other applications, one would associate
control vectors with desired blending functions and set their
magnitudes to zero. This guarantees that the underlying spline
given by


i∈I Bi(t)Pi is recovered and the user (or an error

estimator in the case of analysis) can then adjust control vectors to
fine-tune the resulting shape or approximation. Moreover, several
levels of control vectors can be added to obtain a hierarchical
structure that facilitates multiresolution editing; see Fig. 4 for an
example. For visualisation and demonstrative purposes, we focus
on (local) sharp creases and multiresolution editing throughout
this paper, but it should be emphasised that the full scope of our
paradigm based on control vectors is not limited to these.

In modelling, the convex hull property is advantageous in
some situations. In analysis, functions in B and C are required to
be linearly independent. However, since the form of (6) is very
general, the questions of linear independence and convex hulls
need to be investigated on a case-by-case basis.

While control vectors can be applied in any spline scenario
covered by (6), we focus only on the most important families used
in modelling, animation, and IgA: B-splines (Sections 3 and 5) and
subdivision based on B-splines (Section 4).

3. Control vectors for B-spline curves

We now investigate (6) for the case of B-spline curves. In the
univariate case, we have t = t and Ω = [a, b] in (6). We specialise
the basis functions to B-splines [2], but any type of splines can be
employed (polynomial, rational, trigonometric, etc.) with B and C
from the same or different families. While the degrees of B and C
can be in general different, it is sensible to assume that both sets
consist of B-splines of one degree d. Similarly, the knots of B and C
may be completely unrelated, but it is reasonable to consider only
cases where at least some of the knots are aligned.

Fig. 1 shows an example of a degree 4 spline curve, where
the knots of B and C are shared. The Bi are degree four B-splines



J. Kosinka et al. / Computer-Aided Design 58 (2015) 173–178 175
Fig. 2. This example uses the same underlying quartic spline as Fig. 1, but the
basis functions associated with control vectors have been raised to a power of
1, 2, . . . , 10 (coloured from red to blue). Note that this curve cannot be generated
using quartic B-splines. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Fig. 3. Control vectors expressed in terms of a local frame. Original configuration
(left) and after control points have beenmoved (right). Note that the details created
by control vectors (not shown for clarity) follow the deformation automatically.
Both B and C consist of cubic B-splines, but C are defined over a much finer knot
vector than that of B. The underlying spline is shown in grey.

(bottom; shown in black) defined over an open-uniform knot
vector. We show two control vectors, each associated with one
of the red basis functions. In this case we have chosen functions
which are themselves combinations of degree four B-splines with
multiple knots to create sharp features. The resulting spline is
shown in black. Note that control vectors (red arrows) are logically
associated with knots, and the user can use them as extra degrees
of freedom to model sharp features. In terms of user interface,
we found it best to anchor control vectors at the images of their
associated knots (red circles in the figure) and to initialise them to
zero vectors. We note that the red sharp functions can be allowed
to ‘slide’ interactively along the parameter space, resulting in a
flexible modelling method.

To emphasise the flexibility of our paradigm, Fig. 2 depicts
the same situation as Fig. 1, but this time the sharp (red) basis
functionswere raised to a power of 1, 2, . . . , 10. This demonstrates
the power of control vectors. The underlying open-uniform quartic
spline does not have to be modified in any way.

Yet another advantage of using control vectors is that they can
be expressed in a local adapted frame (e.g. the Frenet frame) of the
underlying spline; see Section 4 of [8]. This then allows the user
to modify the overall shape of the curve using the original control
points, while control vectors are then adjusted automatically
according to shape changes performed via control points. An
example is shown in Fig. 3. Note that this is closely related to
displacement mapping in graphics [16], where individual vertices
on a finely sampled or approximated curve (or surface) are
displaced according to a texture. In contrast, our method uses
splines to displace portions of a curve and is thus more compact
and suitable for user-centred modelling and error-driven analysis.
a

b

c

d

e

f

Fig. 4. The input cubic spline (a) and four more levels of hierarchical refinement
(b)–(e) via control vectors. Basis functions are shown in (f). To achieve a more
intuitive interface, the added basis functions (red in bottom right) have been scaled
so that their maxima are equal to 1. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

Control vectors and their associated blending functions can
come from different levels in a hierarchy. This is demonstrated
in Fig. 4 on a cubic spline which is edited on different levels of
resolution. This is achieved by using B-splines defined over finer
and finer knot vectors. In this particular example, the uniformcubic
B-splines (in red) associated with control vectors have been scaled
upby the factor of 3/2 to ensure intuitivemodelling: ends of control
vectors are interpolated.

In general, adding one control vector (or a set thereof) at a
time creates a natural hierarchy with the associated spline spaces
always nested irrespective of the choice of blending functions in
B and C. For example, the spline spaces associated with (a)–(e)
in Fig. 4 form a nested sequence. This is highly desirable in both
modelling and analysis, as nestedness enables hierarchical editing
and monotone decay of error.

We remark that while the examples presented above used
uniform polynomial splines, the concept carries over straightfor-
wardly to non-uniform settings and also to rational and other types
of splines, including subdivision splines.

While it would be possible to generate the behaviour facilitated
by control vectors using other curve-based mechanisms, we
reiterate that the main purpose of this new method is to provide
such behaviour for surfaces, where it offers a significant advantage
over other mechanisms; see Section 5.

4. Control vectors for subdivision curves

We have seen that extending the traditional spline formulation
based on control points to include control vectors as well offers
more modelling flexibility. In the case of subdivision, we take the
framework one step further and incorporate also the concept of
semi-sharpness as defined by Pixar in [17]. But before that, we look
at the problem of subdivision suitability.

Consider the univariate uniform setting and suppose that B is
subdivision suitable, i.e., there exists a refined version b of B and
a subdivision matrix S such that B = bS; cf. [18]. This is a natural
assumption: the underlying basis has to support subdivision. In the
following, we investigate two options:

• B and C are refinable separately. This allows us to combine
e.g. cubic B-splines and the 6-point scheme [19]. In general, the
schemes have to be topologically compatible, i.e., both have to



176 J. Kosinka et al. / Computer-Aided Design 58 (2015) 173–178
Fig. 5. Uniform cubic B-spline (grey) with the 6-point scheme added to it (black)
via control vectors (red). As the 6-point scheme is interpolatory and both schemes
are C2 , the resultingmix behaves intuitively. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

be of the same arity, and both primal or dual. An example is
shown in Fig. 5.

• The blending functions in C are refinable with respect to B ∪

C. An example of this, which generalises Pixar’s semi-sharp
creases, is shown in Section 4.1.

As in the case of B-splines, similar arguments apply in the non-
uniform setting as well.

4.1. Generalising semi-sharp subdivision rules

It is well known that the subdivision mask in the case of the
uniform cubic B-spline reads [1, 4, 6, 4, 1]/8; see [6]. This in turn
leads to subdivision stencils [1, 6, 1]/8 and [4, 4]/8 for computing
new control points, usually called new vertex-vertices and edge-
vertices, respectively, from old ones in a uniform cubic spline after
one step of subdivision.

If end-point interpolation is desired, the simplest modification
of these subdivision rules is to modify the stencils for end-points
from [1, 6, 1]/8 (smooth rule) to simply [0, 8, 0]/8 = [0, 1, 0]
(sharp rule). The same modification can be used to create a crease
at any control point. One simply replaces its subdivision stencil by
[0, 1, 0]. The corresponding point is then interpolated and a sharp
crease is created; see Fig. 6.

Themain idea concerning creases presented by Pixar [17] is that
one can use the sharp rule only for a certain number of subdivision
steps, denoted by s and called sharpness, and then switch back
to the smooth rule for the rest of the subdivision process. An
example with several values of sharpness is shown in Fig. 6. In
this approach, no new control points are introduced (in contrast
to knot insertion), but every control point Pi is associated with a
sharpness si.

If a non-integer value of sharpness s is required, one can use
linear interpolation between the results corresponding to ⌊s⌋ and
⌈s⌉. In the real world, creases on objects are typically semi-sharp:
creases appear smoothwhen inspected from a close distance. Also,
in graphics applications it is easier to deal with C1 (rather than C0)
objects due to the use of normalmaps. Semi-sharp creases are thus
an important modelling ingredient.

Consider using the sharp rule at a point P for all subdivision
steps, i.e., s = ∞ and P is interpolated. The associated basis
functionD(t) is shown in Fig. 7, left. It is easy to verify (see e.g. [18])
that this function can be decomposed into two B-splines as shown
in Fig. 7; this observation sparked this research programme. One
of these is the original uniform B-spline B(t) associated with the
control point P , the other is the B-spline C(t) with a triple knot,
Fig. 6. Semi-sharp creases on a cubic spline. Sharpness values are s ∈ {0, 1, 2,
3, ∞}, associated with the green control point. Note that s = 0 gives the original
smooth spline (black) and s = ∞ results in an infinitely sharp crease. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

Fig. 7. Cubic basis functions and their relation. Left: Crease basis function. Middle:
Uniform B-spline. Right: B-spline with a triple knot.

Fig. 8. Control vectors (red) controlling sharp creases (black; s = ∞) and semi-
sharp creases (grey; s = 2) in cubic splines. Top left: V = 0 (or s = 0) gives the
original smooth spline. Bottom right: Setting V appropriately recovers Pixar semi-
sharp creases; cf. Fig. 6. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

defined over the knot vector (−1, 0, 0, 0, 1). We associate the
latter with a control vector.

More precisely, we have D(t) = B(t) +
1
3C(t) in the cubic case.

Adding one sharp function per knot leads to

c(t) =

n
i=1

Bi,4(t)Pi +
n

i=1

Ci,4(t)Vi, (7)

where Bi,4(t) are uniform cubic B-splines and Ci,4(t) are sharp
cubic B-splines with a knot of multiplicity 3 in the middle of their
support. Pi are the original control points, whereas Vi are control
vectors that control sharp creases in an intuitive way; see Fig. 8.

In order to be able to take full advantage of this new approach,
including semi-sharp rules, we now show how to handle control
vectors in uniform cubic subdivision.

We know that the subdivision mask is [1, 4, 6, 4, 1]/8. Thus, it
only remains to determine how C(t) is subdivided. Since C(t) is
a B-spline defined over the knot vector (−2, 0, 0, 0, 2), it is easy
to show that it gives rise to a scaled copy c(t) of itself defined on
(−1, 0, 0, 0, 1) and a scaled copy b(t) of the uniform B-spline over
(−2, −1, 0, 1, 2). The appropriate combination is C(t) =

3
4b(t) +

1
2 c(t).



J. Kosinka et al. / Computer-Aided Design 58 (2015) 173–178 177
Fig. 9. Semi-sharp creases on a quintic spline. Quintic B-splines Bi,6(t) (black) and
one copy of the sharp basis function Ci,6(t) (red) are also shown. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Consequently, a new vertex–vertex is computed according to
pi = (Pi−2 + 6Pi + Pi+2 + 6Vi)/8 and the new control vector as
vi = Vi/2. The rules for newedge-vertices remain unmodified. This
is extremely simple to implement.

In terms of user interface, we found it most convenient to posi-
tion the control vector Vi at the limit point corresponding to Pi. In
the cubic case, this amounts to (Pi−1 +4Pi +Pi+1)/6. Moreover, we
initialise the position of the endpoint of Vi to Pi. This directly gen-
eralises Pixar creases. The user is then free to adjust themagnitude
and orientation of Vi, which controls the crease; see Fig. 8.

It is straightforward to incorporate sharpness in the spirit of
Pixar to our method. A value of s is associated with every control
vector, initialised to zero. Our crease subdivision rules are then
used only in the first s subdivision steps before switching to smooth
rules (which is equivalent to setting V to zero at the appropriate
level of subdivision); see the grey curves in Fig. 8. As in the Pixar
method, non-integer values of s can be dealt with either by linear
interpolation, or more conveniently in our formulation by scaling
V down by s in the step when s < 1.

This new approach has the following properties:

• Linear independence of B ∪ C: follows from the fact that all the
functions involved are B-splines.

• Trivial initialisation: set all sharpness values to zero.
• Generalises univariate semi-sharp Pixar rules.
• Full cubic polynomial reproduction: Pixar creasesmiss quadrat-

ics; see [18].

According to our initial tests based on the approach developed
in [18], the formulation in (7) can be generalised to support any
degree. This is work in progress. An example for degree 5 is shown
in Fig. 9.

5. Control vectors for surfaces

The univariate case is interesting in its own right for curvemod-
elling and also since curves appear naturally on surfaces as bound-
aries and creases. All our results from the curve case generalise
to tensor products in a straightforward fashion. However, control
vectors offer much more than that.

We can now create features that are not aligned with knot
lines in B by rotating the domain of (some of the functions of)
C. This is reminiscent of point-based splines [7]. An example is
shown in Fig. 10. We emphasise that any angle can be used and
that the crease can, as in the univariate case, be controlled by a
Fig. 10. A bicubic tensor-product spline with a vanishing diagonal crease added
to it via a control vector. The associated basis function (whose support is shown in
blue) is not aligned with the underlying rectangular structure. We emphasise that
this surface cannot be generated using standard B-splines. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version
of this article.)

Fig. 11. An input surface with bumps added via control vectors (left) and after
control points have been moved (right). As control vectors are represented in local
surface-aligned frames, the bumps follow the deformation automatically.

semi-sharpness value. For rendering and analysis, the triangulation
(partitioning into elements) of the surface (parameter space) needs
to respect the features; see Fig. 10, left. Similarly, one can also
combine quadrilateral and triangular splines, or any other available
spline constructions.

As in the univariate case (cf. Fig. 3), control vectors can be
expressed in a local coordinate frame, e.g. determined from the
first derivatives and the normal vector of a regular surface; see
Section 4 of [8]. A deformation governed solely by control points
that respects local feature alignment via control vectors is shown
in Fig. 11.

Adding a basis function (or a set thereof) associated with a
control vector at a time results in a hierarchy of refinements
and a sequence of nested spaces. Therefore, our framework, with
tensor-product B-splines at the coarsest level represented by B,
can reproduce surfaces modelled by a number of existing methods
including [8–10]. It should also be noted that any of thesemethods
can be used to construct B and then continue refining/adding
features of various types via control vectors associated with
functions in C.

Subdivision surfaces offer hierarchical refinement via multires-
olution editing. On the other hand, adding semi-sharp creases and
other features often requires a modification of standard subdivi-
sion rules, as e.g. in the case of Pixar [17]. Our initial tests show that
our univariate subdivision scheme based on (7) can be extended to
Catmull–Clark subdivision surfaces [20] and a control vector can
be attached to any control point that is not an extraordinary point,
i.e., a point of valency other than four [21]. Control vectors associ-
ated with extraordinary vertices present an interesting avenue for
future research.

It should also be noted that our framework is not limited to sur-
faces and subdivision schemes based on quadrilaterals. For exam-
ple, in the spirit of Fig. 5, the combination of the approximating
Loop subdivision [22]with the interpolatory butterfly scheme [23],
both based on triangular meshes, is appealing.



178 J. Kosinka et al. / Computer-Aided Design 58 (2015) 173–178
6. Conclusion

Wehave proposed an extension to the existing spline paradigm
based on control points by including support for control vectors.
Our examples demonstrate that our framework offers numerous
new modelling scenarios with close links to analysis provided
by the isogeometric concept. We have only touched on the full
potential of control vectors and opened up new avenues for future
work.

We envision that the use of control vectors in splines, and
NURBS and subdivision in particular, will greatly enhance model
design and analysis in the future.

Acknowledgements

The authors thank EPSRC for supporting this work through
Grant EP/H030115/1 and the anonymous reviewers for their help-
ful insights.

References

[1] Schoenberg IJ. Contributions to the problem of approximation of equidistant
data by analytic functions. Quart Appl Math 1946;4: 45–99 and 112–141.

[2] de Boor C. On calculating with B-splines. J Approx Theory 1972;6(1):50–62.
[3] Boehm W, Müller A. On de Casteljau’s algorithm. Comput Aided Geom 1999;

16(7):587–605.
[4] Schoenberg IJ. On trigonometric spline interpolation. J. Math. Mech. 1964;13:

795–825.
[5] Subbotin YN. Interpolating splines, In: Cieselski Z, Musielak J, editors

Approximation theory, Reidel, 1975, pp. 221–34.
[6] Sabin M. Analysis and design of univariate subdivision schemes. Springer;
2010. ISBN: 978-3-642-13647-4.

[7] Sederberg TW, Zheng J, Bakenov A, Nasri A. T-splines and T-NURCCs. ACM
Trans. Graph. 2003;22:477–84.

[8] Forsey DR, Bartels RH. Hierarchical B-spline refinement. In: SIGGRAPH ’88.
ACM; 1988. p. 205–12.

[9] VuongA-V, Giannelli C, Jüttler B, Simeon B. A hierarchical approach to adaptive
local refinement in isogeometric analysis. Comput Methods Appl Mech Engrg
2011;200(49–52):3554–67.

[10] Giannelli C, Jüttler B, Speleers H. THB-splines: the truncated basis for
hierarchical splines. Comput Aided Geom Design 2012;29(7):485–98.

[11] Dokken T, Lyche T, Pettersen K. Polynomial splines over locally refined box-
partitions. Comput Aided Geom Design 2013;30(3):331–56.

[12] Deng J, Chen F, Li X, Hu C, Tong W, Yang Z, Feng Y. Polynomial splines over
hierarchical T-meshes. Graph. Models 2008;70(4):76–86.

[13] Melenk J, Babuška I. The partition of unity finite elementmethod: Basic theory
and applications. ComputMethods ApplMech Engrg 1996;139(1–4):289–314.

[14] Belytschko T, Black T. Elastic crack growth in finite elements with minimal
remeshing. Internat J Numer Methods Engrg 1999;45(5):601–20.

[15] Hughes T, Cottrell J, Bazilevs Y. Isogeometric analysis: CAD, finite elements,
NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech
Engrg 2005;194(39–41):4135–95.

[16] Cook RL. Shade trees, SIGGRAPH ’84, ACM, 1984, pp. 223–31.
[17] DeRose T, Kass M, Truong T. Subdivision surfaces in character animation.

In: SIGGRAPH ’98. ACM; 1998. p. 85–94.
[18] Kosinka J, Sabin MA, Dodgson NA. Creases and boundary conditions for

subdivision curves. Graph Models 2014;76(5):240–51.
[19] Weissman A. A 6-point interpolatory subdivision scheme for curve design.

(M.s. thesis), Tel-Aviv University; 1989.
[20] Catmull E, Clark J. Recursively generated B-spline surfaces on arbitrary

topological meshes. Comput-Aided Des 1978;10(6):350–5.
[21] Kosinka J, Sabin MA, Dodgson NA. Semi-sharp creases on subdivision curves

and surfaces. Comput Graph Forum 2014;33(5):217–26.
[22] Loop C. Smooth subdivision surfaces based on triangles. (M.S. mathematics

thesis), University of Utah; 1987.
[23] Dyn N, Levin D, Gregory JA. A butterfly subdivision scheme for surface

interpolation with tension control. ACM Trans. Graph. 1990;9(2):160–9.

http://refhub.elsevier.com/S0010-4485(14)00197-3/sbref1
http://refhub.elsevier.com/S0010-4485(14)00197-3/sbref2
http://refhub.elsevier.com/S0010-4485(14)00197-3/sbref3
http://refhub.elsevier.com/S0010-4485(14)00197-3/sbref4
http://refhub.elsevier.com/S0010-4485(14)00197-3/sbref6
http://refhub.elsevier.com/S0010-4485(14)00197-3/sbref7
http://refhub.elsevier.com/S0010-4485(14)00197-3/sbref8
http://refhub.elsevier.com/S0010-4485(14)00197-3/sbref9
http://refhub.elsevier.com/S0010-4485(14)00197-3/sbref10
http://refhub.elsevier.com/S0010-4485(14)00197-3/sbref11
http://refhub.elsevier.com/S0010-4485(14)00197-3/sbref12
http://refhub.elsevier.com/S0010-4485(14)00197-3/sbref13
http://refhub.elsevier.com/S0010-4485(14)00197-3/sbref14
http://refhub.elsevier.com/S0010-4485(14)00197-3/sbref15
http://refhub.elsevier.com/S0010-4485(14)00197-3/sbref17
http://refhub.elsevier.com/S0010-4485(14)00197-3/sbref18
http://refhub.elsevier.com/S0010-4485(14)00197-3/sbref19
http://refhub.elsevier.com/S0010-4485(14)00197-3/sbref20
http://refhub.elsevier.com/S0010-4485(14)00197-3/sbref21
http://refhub.elsevier.com/S0010-4485(14)00197-3/sbref22
http://refhub.elsevier.com/S0010-4485(14)00197-3/sbref23

	Control vectors for splines
	Introduction
	Control vectors for splines
	Control vectors for B-spline curves
	Control vectors for subdivision curves
	Generalising semi-sharp subdivision rules

	Control vectors for surfaces
	Conclusion
	Acknowledgements
	References


