
Supplementary material for ”Statistical model comparison

applied to common network motifs”
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Simple one-equation model

In order to explore some issues of parameter inference and model comparison, we start with a simple

model M1 of a single dependent variable y, representing the concentration of some chemical species

dy/dt = βyS − αyy (1)

where βy is the production rate, S a signal, and αy the degradation rate.

The choice of time points where data are sampled is critical for dynamic systems. If data are sampled

from the steady state ys = βyS/αy only, an identifiability problem arises. Since the time scale is lost, we can

multiply and divide the parameters βy and αy by a single factor and obtain the same solution. In order to

avoid this situation, it is important that data are sampled before the system reaches a steady state. Indeed,

figures S1a to S1c illustrate that data obtained from a complete series, yc, are more informative than data

obtained by the steady state interval alone, yss, assuming a constant signal S = 1. In fact, the actual values

of βy and αy are irrelevant when using yss data as long as the ratio βy/αy remains the same.

We have also explored the case when the input signal is set to the values 1, 2 and 0 at times 0, 4 and 7

in a stepwise manner. The more diverse the input function, the narrower the posterior distribution becomes

(figure S1d). This is caused by the known added variability in the input, which partially determines the

values of the parameters. Similarly, increasing the number of sampled time points has a profound effect

on the posterior distribution. When comparing a dataset of 11 time points with one of 40, the posterior
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variance of βy decreases from 0.01 to 4.67 · 10−4 (see table S1).

Noise levels

Assuming that the measurements of the system have Gaussian noise with variance σ2, each observation yobs

is normally distributed

yobs ∼ N (y(θ), σ2) (2)

where y(θ) is the observed variable—dependent on parameters θ = {βy, αy}—free of noise. We explore two

cases: one where the noise variance is assumed to be known, and one where it is unknown and has to be

estimated as an additional model parameter. Using data generated from equation 1 with true noise variance

equal to σ2 = 0.04, we observe that if the variance is fixed at a smaller value than the true one (here we use

0.01 < σ2), the posterior distribution of the rate parameters is overly optimistic. If the variance is assigned

a value higher than the true one (we use 1 > σ2), the posterior becomes very vague. The best results are

obtained when the variance is set to its true value during the inference procedure, followed by the results

obtained when it is estimated as an additional parameter (figure S2). In other words, here we explore the

effect of either fixing or estimating the noise variance. If available, such variance should be fixed to its

known value or assigned a highly informative prior. This simplifies the inference exercise by providing more

initial information (reducing the number of unknown parameters or restricting the space of possible values).

However, in the case where the exact value of the noise variance is unknown, we conclude that it is advisable

to estimate it rather than to fix it to some arbitrary value.

Prior Specification

We investigate the sensitivity of the rate parameters inference to prior distributions using different uniform

distribution intervals on the priors for βy and αy (for the noise variance, we set a constant inverse Gamma

prior with shape and scale parameters of 0.5 and 0.05, respectively). Table S2 shows that even when a very

uninformative prior is used, that is, a distribution spanning a large interval like that in the fourth row, the

posterior distributions of the parameters are still centered around the true values. This shows that in this case

–where samples are taken from the entire time series– the data is informative enough to drive the inference

process, irrespective of the uncertainty in the prior density. Table S2 also lists the parameter estimates

derived with standard least squares optimization (in this case, the Nelder and Mead method). In particular,

the algorithm was started on 100 random initial parameter values drawn from a Normal distribution with

mean and variance 1.
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Model Comparison

We investigate the ability of the Bayesian and frequentist frameworks to identify the correct option between

two competitive candidate models under different noise levels. We use M1, the model of equation 1, and a

second model M2 that contains a degradation term with a bimolecular reaction:

dy/dt = βyS − αyy2 (3)

The data are generated using model M1, and the added noise is sampled from a white Gaussian distribution

with variance σ2 = var(y)/SNR. Note that var(y) is the variance of the data free of noise, and the signal-

to-noise ratio (SNR) is set at different values between 0.5 and 100.

Table S3 shows the results obtained. The interpretation of Kass and Raftery (1995) of the Bayes factor

indicates that for SNR > 1 there is a decisive evidence in favour of the true model M1, for SNR equal to

1 there is a substantial evidence in favour of M1, and there is no evidence for either model for extensively

large noise levels (SNR equal to 0.5).

Table S3 also shows the log likelihood computed by the optimisation method of Nelder and Mead,

p(y|θls
ML,M). The AIC derived from these values favour the true model (M1) in all cases but the last two,

where there is no evidence to discard neither model. The figures in parentheses show the highest value of the

likelihood function sampled during the MCMC runs, that is, the maximum likelihood value, p(y|θmcmc
ML ,M).

These values appear to be a reasonable approximation to p(y|θls
ML,M), except for the first case. With respect

to model performance, the trends observed here among the frequentist and the Bayesian ways of assessing

model performance are the same: as the noise increases (lower SNR), the difference between models blurs.

n β̂y|yc α̂y|yc

11 1.02 (0.01) 1.02 (0.01)
20 1.003 (0.002) 1.004 (0.0026)
30 1.004 (0.00092) 1.004 (0.001)
40 1.003 (0.00046) 1.003 (0.00053)

Table 1: Effect of dataset size on posterior distribution of rate parameters, given a Uniform prior U[0,3].
The values shown are the posterior median and its associated variance (in brackets). Note the true values
are βy = αy = 1.
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prior CI[β̂y] CI[α̂y] CI[σ̂2]
U[0,2] [0.807,1.367] [0.741,1.293] [0.011,0.068]
U[0,5] [0.815,1.371] [0.755,1.311] [0.011,0.070]
U[0,10] [0.818,1.387] [0.754,1.322] [0.011,0.074]
U[0,20] [0.807,1.331] [0.743,1.275] [0.011,0.069]

ML [0.860,1.128] [0.793,1.045] 0.014

Table 2: Parameter inference results for the simple one-equation model. The first four rows show the posterior
credible interval (CI) of the parameters obtained with the prior specifications indicated in the first column,
as computed by MCMC. That is, the interval where the samples fall 95% of the times, given the posterior
distribution for each parameter. The last row shows the results from maximum likelihood optimisation
(equation 7 in main text), in particular, using the Nelder and Mead implementation available in the R
statistical package.

SNR p(y|M1) p(y|M2) BF p(y|θls
ML,M1) p(y|θls

ML,M2) AIC(M1) AIC(M2)
∞ 4.32 -6.58 5.42 · 104* 72.63(21.31) 2.68(2.42) -139.26* 0.64
100 3.17 -6.04 9.99 · 103* 16.75(16.46) 4.45(4.16) -27.5* -2.9
10 0.35 -7.81 3.50 · 103* 9.74(9.73) -0.38(-0.38) -13.48* 6.77
1 -8.29 -9.90 5.00* -3.43(-3.95) -5.02(-4.97) 12.86 16.04

0.5 -18.57 -16.59 0.14 -13.56(-13.57) -11.77(-11.79) 33.12 29.54

Table 3: Effect of noise level on model identification. The first column lists the signal-to-noise ratio. The
next three columns show the Bayesian results, namely, the evidence for each model in logarithmic scale
log p(y|M), and the associated Bayes factors (BF). The last four columns list the frequentist results. The
log data likelihood computed using the least squares parameter estimates, log p(y|θls

ML,M), is given first.
The values in brackets represent the highest value of the likelihood of each model sampled during the MCMC
run in log scale, log p(y|θmcmc

ML ,M). Finally, the associated Akaike Information Criterion (AIC) values are
given.
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Cooperativity models

Cooperativity models are defined in table S4. Corresponding results are given in table S5.

motif model
SIM ẏ = βyf+(θSy, S, hsy) − αyy

ż = βzf
+(θSz, S, hsz) − αzz

RC ẏ = βyf+(θSy, S, hsy) − αyy
ż = βzf

+(θyz, y, hyz) − αzz
FF ẏ = βyf+(θSy, S, hsy) − αyy

ż = βz(f
+(θSz, S, hsz) + f+(θyz, y, hyz)) − αzz

FB ẏ = βy(f+(θSy, S, hsy) + f−(θzy, z, hzy)) − αyy
ż = βzf

+(θyz, y, hyz) − αzz

Table 4: Cooperative ODE models for the network motifs.

data source measure SIM RC FF FB
SIM log p(y|Mi) 71.87 57.07 72.84 -203.36

DIC -159.29 -141.84 -159.65 -53.97
pD 5.82 4.08 5.01 -221.36
log p(y|θmcmc

ML ,Mi) 85.45 79.42 85.41 67.06
AIC -162.9 -146.4 -160.82 -120.12

RC log p(y|Mi) 83.83 84.02 83.62 -152.19
DIC -184.83 -180.41 -184.29 274.03
pD 5.19 4.64 4.71 4.91
log p(y|θmcmc

ML ,Mi) 93.48 95.57 98.36 -128.21
AIC -178.96 -183.14 -186.72 -270.42

FF log p(y|Mi) 94.79 71.61 96.31 -304.08
DIC -207.70 -175.55 -208.86 81.47
pD 5.95 5.27 6.12 -42.07
log p(y|θmcmc

ML ,Mi) 109.79 96.95 110.64 88.29
AIC -211.58 -181.9 -211.28 -162.58

FB log p(y|Mi) -705.70 -590.14 −∞ 79.44

DIC 1343.98 1115.04 1188.39 -186.59

pD 5.05 5.12 57.01 6.73
log p(y|θmcmc

ML ,Mi) -661.66 -548.35 -532.19 100.11

AIC 1335.32 1108.7 1078.38 -186.22

Table 5: Model comparison results for artificial data from the cooperative version of SIM, RC, FF (coherent
with OR gate) and negative FB motifs.
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Figure S1: Selecting appropriate data intervals and signal function for parameter inference. In (a) datasets
of the same size are sampled from the steady state zone (empty circles), or the complete time series (filled
circles) for S = 1. Inference from the steady state data, yss, fails to converge and yields the posterior
distribution shown in (b) for βy (αy behaves similarly). Inference from the complete dataset, yc, is shown in
(c). In (d), βy is inferred with a richer signal function S = {1, 2, 0}. The same prior distributions, namely
βy, αy ∼ U [0, 3], were used in all cases (dashed boxes). The posterior median (dotted vertical line) and
posterior standard deviation values are given in each figure.

Feedforward control models

Cartoon representations for the control models of the arabinose, flagella and galactose system are drawn in

figure S3. Model reconstructions for the flagella dataset are shown in figure S4.
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Figure S2: Error model treatment and accuracy of rate parameter estimates. Posterior densities for the
parameter βy under different noise specifications (see legend within plot). The prior on βy is shown by a
dashed box. In the case where the variance is estimated, an inverse Gamma prior with shape and scale
parameters of 0.5 and 0.05 is used.

Figure S3: Control models for feed forward systems. The control system for the arabinose and galactose
systems in E.coli is shown in (a). Note that in the presence of lactose or IPTG, both system branches are
activating (coherent). The system is incoherent when the repressor LacI is not inhibited. The control system
for the flagella network is shown in (b). Figures are adapted from Mangan et al. (2003) and Kalir et al.

(2005).
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Figure S4: Reconstructing the flagella dataset. Model reconstruction for the flagella dataset (Mangan
et al. 2006) using MCMC estimated models. These are the candidate models CONTROL, FF.C1.OR.1,
FF.C1.OR.2, FF.C1.OR.3 and FF.C1.OR.4. The first row shows ON steps, while OFF steps are given in
the second row.
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