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Abstract 61 

Purpose: The wide heterogeneity in the early growth and metabolism of children born small for gestational 62 

age (SGA), both before and during growth hormone (GH) therapy, may reflect common genetic variations 63 

related to insulin secretion or sensitivity. 64 

Method: Combined multi-allele single nucleotide polymorphism (SNP) scores with known associations with 65 

insulin sensitivity or insulin secretion were analysed for their relationships with spontaneous postnatal 66 

growth and 1
st
 year responses to GH therapy in 96 short SGA children.  67 

Results: The insulin sensitivity allele score (GS-InSens) was positively associated with spontaneous 68 

postnatal weight gain (B:0.12 SD scores per allele, 95% CI:0.01-0.23, p=0.03) and also in response to GH 69 

therapy with 1
st
 year height velocity (0.18 cm/year per allele, 0.02-0.35, p=0.03) and change in IGF-I (0.17 70 

SD scores per allele, 0.00-0.32, p=0.03). The association with 1
st
 year height velocity was independent of 71 

reported predictors of response to GH therapy (adjusted p=0.04). The insulin secretion allele score (GS-72 

InSec) was positively associated with spontaneous postnatal height gain (0.15, 95% CI:0.01-0.30, p=0.03) 73 

and disposition index both before (0.02, 0.00-0.04, p=0.04) and after 1-year of GH therapy (0.03, 0.01-0.05, 74 

p=0.002), but not with growth and IGF-I responses to GH therapy. Neither allele scores were associated with 75 

size at birth.   76 

Conclusion: Genetic allele scores indicative of insulin sensitivity and insulin secretion were associated with 77 

spontaneous postnatal growth and responses to GH therapy.  Further pharmacogenetic studies may support 78 

the rationale for adjuvant therapies by informing the mechanisms of treatment response. 79 

80 
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INTRODUCTION 81 

Small for gestational age (SGA) at birth indicates impaired fetal growth due to a heterogeneous range of 82 

intra-uterine conditions or in some infants by innate genetic defects. Around 10% of SGA children do not 83 

show spontaneous catch-up growth during the early postnatal years and they are also short as adults if not 84 

treated with growth hormone (GH). Most short SGA children have sufficient GH secretion and show 85 

generally good responses to GH treatment, although there is considerable variation between patients.  86 

Prediction models of the response to GH therapy in short SGA children have been generated in order to 87 

individually tailor treatment, to improve efficacy and safety, and to improve the cost-benefit ratio(1). The 88 

prediction model described by Ranke et al.(1) explained 52% of the variance in the first year growth 89 

response, with GH dose alone accounting for 35% of the variance.  90 

We and others reported that the growth response to GH therapy in short SGA children is associated with 91 

baseline insulin sensitivity and IGF-I levels(2, 3). Children with the highest baseline IGF-I levels had lower 92 

insulin sensitivity, lower height velocity and IGF-I responses after 1-year after GH therapy(3). Insulin 93 

secretion is diminished in SGA children and this has been proposed as a possible factor in the failure to 94 

catch-up in some infants(4). Furthermore, growth and IGF-I responses to first year GH treatment were 95 

related to insulin secretion in the NESGAS study(3). We hypothesised that genetic variation in insulin 96 

sensitivity or insulin secretion would be associated with inter-individual variation in responses to GH in short 97 

SGA children. 98 

 99 

PATIENTS AND METHODS 100 

Study Population 101 

NESGAS is a multicentre, randomised, parallel group trial (EudraCT 2005-001507-19) of GH treatment in 102 

short SGA-born pre-pubertal children, which has been described in detail(3). Data included in the current 103 

analyses are related to the first year of high dose GH treatment (67µg/kg/day) in 96 NESGAS participants.   104 

The study was performed according to the Helsinki II declaration and approved by the ethics committees. 105 

Written informed consent was obtained from parents.   106 

 107 
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Study assessments:  108 

Standing height was measured on a wall-mounted stadiometer and weight by electronic scales by staff. All 109 

children underwent a fasting blood sample and a short intravenous glucose tolerance test (IVGTT) at 110 

baseline and at year 1(3).  111 

Plasma insulin and C-peptide concentrations were measured centrally by a DELFIA-assay (Perkin Elmer 112 

Life Sciences, Turku, Finland). Interassay coefficients of variation (CV) were below 4% for both insulin and 113 

C-peptide. Serum IGF-I and IGFBP-3 concentrations were determined centrally using an Immulite 2000-114 

assay (Diagnostic Products Corporation, LA, USA) with standards calibrated towards the WHO NIBSC IRR 115 

87/518. Limit of detection (LOD) and CV was 20ng/ml and 5.93% respectively for IGF-I and 500ng/ml and 116 

5.23 % respectively for IGFBP-3. IGF-I and IGFBP-3 SDS were calculated from our reference data (5, 6). 117 

Plasma glucose and HbA1c were measured locally. 118 

Genotyping information 119 

The cohort was genotyped using the Metabochip, a custom Illumina iSelect genotyping array that assays 120 

nearly 200,000 single nucleotide polymorphisms (SNPs) chosen based on GWAS meta-analyses (7).  121 

In each individual, combined multi-allele scores were generated comprising SNPs for insulin sensitivity (GS-122 

InSens) or insulin secretion (GS-InSec), as recently described(8). The GS-InSens was calculated as a count 123 

of the insulin sensitivity-increasing alleles at 10 variants (Supplementary Table 2a).  The GS-InSec was 124 

calculated as a count of the insulin secretion-increasing alleles at 18 of the 23 variants described by Scott et 125 

al. (for the remaining 5 variants, there were no suitable proxies genotyped) (Supplementary Table 2b). Both 126 

combined multi-allele scores were recently validated in large population-based studies (8).  127 

 128 

Calculations: 129 

Anthropometric measurements are presented as standard deviation scores (SDS) using normal reference 130 

materials (9-11). Insulin sensitivity was estimated from the homeostatic model (HOMA) 131 

(http://www.dtu.ox.ac.uk/homacalculator/index.php). Acute insulin response (AIR) was calculated as the 132 
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IVGTT area under the curve of the insulin response. Disposition index (DI) was calculated as the product of 133 

insulin sensitivity and AIR.  134 

 135 

Statistics: 136 

Outcome variables were natural-log transformed and standardised. Associations between genetic risk scores 137 

and these outcomes were assessed by fitting linear regression models adjusted for age and sex and either 138 

BMI or mid-parental height. Statistical analyses were performed using the statistical package IBM SPSS 139 

statistics (version 21; SPSS Inc., Chicago, IL). 140 

The genetic allele scores were also added to a reported model for 1
st
 year predicted height velocity (PHV) 141 

responses to GH therapy in short SGA children(1), which includes the variables: age (years) and weight SDS 142 

at start of treatment, GH dose, and mid-parental height SDS.  143 

 144 

RESULTS  145 

Associations with spontaneous growth 146 

Clinical characteristics are presented in supplementary Table 1. Birth weight (mean -3.22 SDS), birth length 147 

(mean -3.15 SDS) and gestational age (mean 35.6 weeks) were all unrelated to GS-InSens and GS-InSec (all 148 

P>0.24, data not shown). 149 

GS-InSens was unrelated to spontaneous growth (change in height (SDS) from birth to study baseline, 150 

p=0.24), but positively associated with spontaneous weight gain (B:0.12 SDS per allele, 95% CI:0.01-0.23, 151 

p=0.03). GS-InSec was positively associated with spontaneous growth (B: 0.15, 95% CI 0.01-0.30, p=0.03) 152 

and showed a similar trend with spontaneous weight gain (p=0.06) (Table 1). 153 

 154 

Height velocity and IGF-I responses to GH therapy 155 

GS-InSens was positively associated with height velocity (B:0.18 cm/year per allele, 0.02-0.35, p=0.03), 156 

weight (SDS) (B:-0.10 SDS per allele, -0.20 to -0.003, p=0.04) and change in IGF-I levels (0.17 SDS/year 157 

per allele, 0.00-0.32, p=0.03) in response to GH therapy.  158 
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The variance in 1
st
 year height velocity in response to GH therapy predicted by the Ranke model (R

2 
0.17) 159 

was lower than that in the original report, but the SE (1.72 cm) was similar, likely reflecting the uniform GH 160 

dose used in our study. Addition of GS-InSens to this prediction model explained an additional 5% of the 161 

variance in the 1st year height velocity response (R
2
 0.22, SE 1.71 cm; p-value for R

2 
change =0.04).  162 

Alternatively, addition of baseline IGF-I SDS to the model also increased the explained variance in the 1st 163 

year height velocity response (R
2
 0.26; SE 1.65 cm, p-value for R

2
 change=0.009) and addition of both 164 

baseline IGF-I and GS-Insens increased the explained variance, but this change in R
2 

was not significant (R
2
 165 

0.29; SE 1.63 cm, p-value for R
2
 change=0.09).   166 

 167 

Associations with insulin traits 168 

Consistent with its expected functional role, GS-InSec was positively associated with disposition index, both 169 

before (B:0.02 per allele, 95% CI:0.00-0.04, p=0.04) and 1-year after GH therapy (0.03, 0.01-0.05, p=0.002). 170 

However, the GS-InSens was unrelated to HOMA-S or the disposition index at baseline and after 1 year of 171 

therapy (Table 2). 172 

 173 

DISCUSSION 174 

In this study of short SGA-born children, validated genetic determinants of insulin sensitivity were 175 

associated with both height velocity and circulating IGF-I level responses to GH therapy.  The findings 176 

provide insights into the mechanisms that contribute to GH responses and also insights into the 177 

pathophysiology of poor spontaneous postnatal growth in SGA infants. 178 

 179 

Pharmacogenetics considers the possible contribution of genetic factors to the prediction of individual 180 

treatment efficacy and/or risks of treatment-related adverse events and forms the basis for many putative 181 

strategies for stratified medicine(12).  Prediction of individual growth responses to GH therapy has been 182 

suggested to optimise treatment in a range of childhood disorders. However, the reported prediction model 183 

for short SGA children was largely reliant on historical heterogeneity in the GH dose(1) , which in current 184 

clinical practice is standardised. In our fixed GH dose study, inclusion of the insulin sensitivity allele score 185 
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improved the explained variance by only 5%, from 17 to 22%, which is insufficient for such scores to have 186 

clinical utility in individual treatment prediction.  187 

 188 
An alternative application of pharmacogenetics is to inform the mechanisms of treatment response, by 189 

considering informative genotypes or allele scores as indicators of the likely causal effects of their target 190 

traits. Such inference forms the basis of the so-called ‘Mendelian randomisation’ approach(13). The 191 

independent association between the insulin sensitivity allele score and 1
st
 year height velocity responses 192 

supports observations in non-genetic studies of SGA infants, where insulin resistance has been associated 193 

with poor response to GH therapy. IGF-I resistance has also been implicated because of the close functional 194 

relationship between the insulin receptor and the type 1 IGF-I receptor (IGF-IR).  We previously reported 195 

that children with relatively high baseline IGF-I levels had lower insulin sensitivity and impaired IGF-I 196 

generation in response to GH therapy(3). Our genetic associations support the possible causality of such 197 

associations and may allow a quantitative estimation of the relationship between insulin sensitivity and 198 

growth response. Such causal inference relies on various assumptions and therefore requires experimental 199 

validation, but it would support the rationale for the clinical testing of adjuvant insulin sensitisation in 200 

combination with GH therapy(14).   201 

 202 

The insulin secretion allele scores were associated with spontaneous postnatal growth in height and weight, 203 

whereas the insulin sensitivity allele scores were associated with weight gain. In the population-based 204 

ALSPAC cohort, insulin secretion was positively related to size at birth, and to childhood height and IGF-I 205 

levels(4). Similarly, in an earlier study of short SGA children, insulin secretion was positively related to 206 

height velocity(15). Thus, beta-cell function appears to have a key role in spontaneous height growth, and 207 

this mechanism may underlie observed associations between shorter adult stature or lower IGF-I levels and 208 

higher risk for type 2 diabetes (T2D)(16, 17). Common genetic mechanisms between early growth patterns 209 

and later risk of metabolic disease have been proposed, however, there is inconsistent evidence linking SNPs 210 

related to T2D or obesity to risk of SGA at birth(18-20). Our findings support common genetic mechanisms 211 

linking spontaneous postnatal height growth to disposition index, a marker of insulin secretory capacity, 212 
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before and during GH treatment. The positive association between insulin sensitivity alleles and spontaneous 213 

postnatal weight gain is discordant with observed associations between rapid postnatal weight gain and 214 

insulin resistance(4), but is consistent with recent findings in adults(8) and likely indicates the positive 215 

anabolic effects of insulin signalling. Future studies should test the combination of the insulin sensitivity and 216 

insulin secretion allele scores for prediction of T2D in SGA-born or other high-risk groups. 217 

 218 

A limitation of this study is the relatively small population, even though the cohort is well-characterised 219 

phenotypically. To increase statistical power, we examined combined allele scores rather than individual 220 

SNP genotypes. We are therefore unable to pinpoint individual variants or genes that regulate response to 221 

GH therapy, however, this approach allows broader support for a causal role of insulin sensitivity in general.  222 

 223 

In conclusion, these novel data indicate causal influences of insulin secretion and insulin sensitivity on 224 

spontaneous postnatal height growth and growth responses to GH therapy, respectively in short SGA-born 225 

children.  The findings also support the relationship between insulin resistance and putative IGF-I resistance, 226 

which may impair responses to GH therapy and potentially increase the risk of T2D. It will be interesting to 227 

examine whether similar mechanisms contribute to growth responses in patients with other conditions that 228 

warrant GH therapy, such as GH deficiency.  229 

230 
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Table 1 

Clinical characteristics in 96 children (60 boys) at baseline and after 1 year of GH treatment 

 

Data are presented as means (SD) or back transformed geometric means (1SD ranges) 

 

 

 

 

 

 

 

 

 

 Baseline After 1 yr of treatment 

Age (year) 6.25 (1.67) 7.31 (1.64) 

Height (cm) 102.21 (9.38) 113.09 (8.96) 

Height (SDS) -3.41 (0.77) -2.35 (0.84) 

Weight (cm) 15.55 (5.00) 18.95 (4.25) 

Weight (SDS) -3.13 (1.05) -2.13 (1.04) 

BMI (SDS) -1.21 (1.33) -1.01 (1.27) 

IGF-I (SDS) -1.14 (1.20) 2.73 (1.50) 

Glucose Metabolism   

Glucose (nmol/l) 4.36 (0.68) 4.74 (0.54) 

Insulin (pmol/l) 15.63 (7.99-30.20) 39.8 (23.82-66.53) 

C-peptide (pmol/l) 194.98 (110.15-334.97) 416.87 (249.46-696.63) 

HOMA % 239.88 (134.90-424.62) 109.64 (74.47-169.04) 

Acute Insulin Response 

(10
2
*pmol*min) 

13.49 (7.76-23.44) 23.98 (13.18-43.65) 

Disposition Index 

(10
4
*pmol*min) 

32.21 (18.11-57.28) 26.92 (15.14-47.86) 



 

Table 2  

Associations to measures of growth and metabolism for Insulin secretion multi-allele score (GS-

InSec)  

*corrected for age, sex and BMI, **corrected for age, sex and mid-parental height 

Measure of growth and metabolism Effect size per 

allele (B) 

95%CI P value 

    

Insulin Secretion multi-allele score (GS-

InSec) 

   

Height (SDS) baseline** 0.02 -0.04-0.08 0.49 

Height (SDS) 1yr** 0.03 -0.04-0.09 0.41 

∆ Height (SDS) (baseline to 1yr)** 0.004 -0.03-0.04 0.80 

∆ Height (cm) (baseline to 1yr)** -0.008 -0.14-0.13 0.91 

Weight (SDS) baseline** 0.06 -0.02-0.14 0.17 

Weight (SDS) 1 yr** 0.04 -0.04-0.13 0.30 

∆ Weight (SDS) (baseline to 1yr)** -0.02 -0.05-0.02 0.30 

∆ Weight (kg) (baseline to 1yr)** -0.17 -0.49-0.15 0.30 

IGF-I (SDS) baseline** -0.03 -0.13-0.07 0.54 

IGF-I (SDS) 1 yr** 0.005 -0.11-0.12 0.94 

∆ IGF-I (SDS) (baseline to 1yr)** 0.04 -0.09-0.15 0.57 

AUC insulin baseline* 0.02 -0.003-0.04 0.09 

AUC insulin 1yr* 0.03 0.005-0.05 0.02 

∆ AUC insulin (baseline to 1yr)* 62.36 -51.3-176.0 0.28 

HOMA-S baseline* 0.01 -0.01-0.03 0.33 

HOMA-S 1 yr* 0.006 -0.01-0.02 0.47 

∆ HOMA-S (baseline to 1yr)* -9.19 -27.9 to 8.9 0.32 

Disposition index baseline* 0.02 0.001-0.04 0.04 

Disposition index 1 yr* 0.03 0.01-0.05 0.002 
∆ Disposition index (baseline to 1yr)* 2141.9 -20976-25260 0.85 

∆ Height from birth to baseline**  0.15 0.01-0.30 0.03 

∆ Weight from birth to baseline** 0.09 -0.003-0.17 0.06 



Table 3 

Associations to measures of growth and metabolism for Insulin Sensitivity multi-allele score (GS-

InSens)  

 

*corrected for age, sex and BMI, **corrected for age, sex and mid-parental height 

The regression coefficient (B) are the inverse of the Insulin resistance score (IR score) described by Scott et al. 

An increase in multi-allele score reflects a decrease in insulin sensitivity.   

 

Measure of growth and metabolism Effect size per 

allele (B) 

95%CI P value 

    

Insulin Sensitivity multi-allele score (GS-

InSens) 

   

Height (SDS) baseline** -0.05 -0.13-0.02 0.17 

Height (SDS) 1yr** -0.08 -0.15 to -0.001 0.048 

∆ Height (SDS) (baseline to 1yr)** -0.02 -0.06-0.02 0.24 

∆ Height (cm) (baseline to 1yr)** -0.18 -0.35 to -0.02 0.03 

Weight (SDS) baseline** -0.10 -0.20 to -0.005 0.04 
Weight (SDS) 1 yr** -0.10 -0.20 to -0.003 0.04 
∆Weight (SDS) (baseline to 1 yr)** -0.01 -0.05-0.03 0.63 

∆ Weight (kg) (baseline to 1yr)** -0.16 -0.56 to 0.23 0.41 

IGF-I (SDS) baseline** 0.04 -0.080-0.170 0.47 

IGF-I (SDS) 1 yr** -0.15 -0.30 to -0.002 0.047 
∆ IGF-I (SDS) (baseline to 1yr)** -0.17 -0.32 to -0.002 0.03 
AUC insulin baseline* -0.006 -0.03 to 0.02 0.63 

AUC insulin 1yr* -0.01 -0.04 to 0.01 0.47 

∆ AUC insulin (baseline to 1yr)** -60.2 -208 to 88 0.42 

HOMA-S baseline* -0.007 -0.03 to 0.02 0.59 

HOMA-S 1 yr* -0.004 -0.02 to 0.01 0.64 

∆ HOMA-S (baseline to 1yr)* 2.16 -20.1 to 24.4 0.85 

Disposition index baseline* -0.01 -0.04 to 0.01 0.30 

Disposition index 1 yr* -0.01 -0.04 to 0.01 0.27 

∆ Disposition index (baseline to 1yr)* -4858 -34565 to 24939 0.75 

∆ Height from birth to baseline** -0.003 -0.19-0.18 0.95 

∆ Weight from birth to baseline** -0.12 -0.23 to -0.01 0.03 



Table 4a Regression equation variables for predicting the first-year growth response (cm/yr) to GH 

therapy in the NESGAS cohort 

 Parameter estimate (B) 95% CI P value  

Intercept (constant) 13.9   

Age at start (yr) -0.37 -0.59 to -0.15 0.001 

Weight (SDS) at start 0.17 -0.27-0.45 0.35 

GH dose (µg/kg/day) 4.23 -101.7-96.8 0.93 

MPH (SDS)  0.46 0.05-0.75 0.01 

R
2
 0.17   

Error SD (cm) 1.72   

 

Table 4b Regression equation variables for predicting the first-year growth response (cm/yr) to GH 

therapy in the NESGAS cohort including GS-InSens 

 Parameter estimate (B) 95% CI P value  

Intercept (constant) 16.1   

Age at start (yr) -0.37 -0.59 to -0.15 0.001 

Weight (SDS) at start 0.09 -0.27-0.45 0.61 

GH dose (µg/kg/day) 2.44 -101.7-96.8 0.96 

MPH (SDS)  0.40 0.05-0.75 0.03 

GS-IR -0.17 -0.34 to -0.01 0.04 

R
2
 0.22*   

Error SD (cm) 1.71   

 

*The change in R
2
 between the two models was significant (p<0.05) 
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