TESTING PROPORTIONALITY IN DURATION MODELS
WITH RESPECT TO CONTINUOUS COVARIATES *

Arnab Bhattacharjee and Samarjit Das

January 31, 2002

Abstract

Several omnibus tests of the proportional hazards assumption have been pro-
posed in the duration models literature. In the two-sample case (i.e., when the
covariate is binary), tests have also been developed against non-parametrically
specified ordered alternatives. This paper considers a natural extension of such
monotone ordering to the case of continuous covariates, and develops tests for
the proportional hazards assumption against such ordered alternatives. Small
sample properties of the test are explored. The use of the test statistics, and use
of histogram sieve estimators in the case where proportionality does not hold,
are illustrated with application to data on strike durations.
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1 Introduction

The proportional hazards (PH) model, and more specifically the Cox regression model
(Cox, 1972) (a specific formulation of the PH model) has become almost universal in
econometric applications with duration data.! This is because, the PH model (and the
Cox regression model) provides a convenient way to evaluate the influence of one or
several concomitant variables (covariates) on the probability of conclusion of duration
spells. However, the PH specification substantially restricts interdependence between
the explanatory variables and the duration in determining the hazard. In particular,
the PH model restricts the coefficients of the regressors in the logarithm of the hazard
function to be constant over the duration. This may not hold in many situations, or
may even be unreasonable from the point of view of relevant economic theory (McCall,
1994). Further, such and other kinds of misspecifications often leads to misleading
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!The PH model and the Cox regression model have been used almost synonymously in
the literature. For most of this paper, we use the term PH model, since the arguments, in
general, apply to the PH model, and specifically also for the Cox regression model.
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inferences about duration dependence, and potentially, to misleading inferences about
the effects of included explanatory variables (Kiefer, 1988). Understandably, testing
the PH model, both graphically and analytically, has been an area of active research.?

Most of these available tests are either omnibus tests (and hence, usually have low
power), or are tests in which the PH model is embedded in a broader (semiparamet-
ric) model. As opposed to such broad alternatives, it is often of interest to explore
whether the hazard rate for one level of the covariate increases in duration, relative to
another level (i.e., the hazard ratio increases/ decreases with duration), particularly
when the covariate is discrete (two-sample or k-sample setup).? In the two-sample
setup, Gill and Schumacher (1987), Lin (1991) and Deshpande and Sengupta (1995)
have constructed analytical tests of the PH hypothesis against the alternative of
‘increasing hazard ratio’ 4, which is equivalent to convex ordering of the duration dis-
tribution in one sample with respect to the other. Under the same setup, Sengupta,
Bhattacharjee and Rajeev (1998) have proposed a test of the PH model against the
weaker alternative hypothesis of ‘increasing ratio of cumulative hazards’ (star order-
ing of the two samples). The above alternative hypotheses (‘increasing hazard ratio’
and ‘increasing ratio of cumulative hazards’) often provide an explanation for the phe-
nomenon of ‘crossing hazards’ frequently observed in applications. In fact, it has now
generally come to be accepted in the empirical literature that convex-ordering/ star-
ordering of one sample with respect to another in the two-sample setup, or one cause
of failure to another in the competing risks setup, as well as their duals (the concave-
ordering/ negative-star-ordering hypotheses), are natural ordered alternatives to the
proportional hazards model. Empirical evidence of such ordering are abundant in the
literature on economic duration models and bio-medicine. The use of the above (two-
sample) inferential procedures in econometric applications is limited by the fact that,
it is often of importance to infer on the effects of one or more continuous covariates
(Horowitz and Neumann, 1992).

On the other hand, monotone/ ordered departures are common and potentially
meaningful alternatives to the PH model in the case of continuous covariates. For
example, if the coefficient corresponding to a covariate under the Cox PH model is in-
creasing with duration, the distribution of the duration conditional on a higher value
of the covariate would be convex ordered with respect to the duration distribution
conditional on a smaller covariate value. In Section 2, we build on the above idea and
develop concepts of ordered alternatives to the PH model, with respect to continuous
covariates. Tests of the PH assumption against such ordered alternatives are con-
structed and their asymptotic properties described in Section 3 (all proofs are in the
Appendix), while their small sample properties are explored in Section 4. In Section
5, we illustrate the notions and tests proposed in the paper using an application to
Kennan’s (1985) data on strike durations. We also demonstrate how the histogram
sieve estimator of Murphy and Sen (1991) can be used in the situation when propor-
tionality is rejected, to derive credible and interpretable inference. Finally, Section 5
presents the concluding remarks.

?Andersen et. al. (1992) and Neumann (1994) provide partial reviews of the tests available
in the literature, while Sengupta (1995) gives a review specifically of the graphical tests.

3This kind of situation could arise, for example, if the coefficient of the covariate is not
constant over time, or is dependent on some other (possibly unobserved) covariate.

4Throughout this paper, the word ‘increasing’ would mean ‘non-decreasing’, and ‘decreas-
ing’ would mean ‘non-increasing’.
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2 Partial ordering of duration models with continuous
covariates

The concept of partial ordering of duration distributions (or lifetime distributions)
is quite popular, especially in bio-medical applications, and are relevant to duration
models in economics. The notions have also been used in applications in political
science (see, for example, Box-Steffensmeier and Jones, 1997). The most popular
of these available notions of partial ordering are convex ordering and star ordering
(Kalashnikov and Rachev, 1986). These are defined as follows:

Let X and Y be two duration distributions with distribution functions F and
G respectively, cumulative hazard functions Arp and Ag respectively, and hazard
functions Ap and Ag respectively (whenever they exist).

Definition 1 X (F') is said to be convex ordered with respect to Y (G), denoted
X <. Y or F <, G, if FoG™! represents the distribution function of an increasing
failure rate (TFR) distribution, or equivalently, ApoAZ' is a convex function on [0, 0o).

Definition 2 X (F') is said to be star ordered with respect to Y (G), denoted X <, Y
or F' <, G, if FoG™! represents the distribution function of an increasing failure rate

average (IFRA) distribution, or equivalently, AFoAE;1 is a star-shaped function on
[0, 00).

Correspondingly, if Y <. X or G <. F (Y <. X or G <4 F), then X or F is said
to be concave ordered (negative star ordered) with respect to Y or G respectively.
Convex and concave ordering are stronger notions of ordering as compared to star-
ordering and negative star-ordering respectively; in other words, F' <. G = F <, G.
Further, the function AFOAC_;1 is convex if and only if the ratio of hazard rates Arp/A¢g
is increasing (provided the ratio exists), and star-shaped if and only if Ap/Ag is
increasing (Sengupta and Deshpande, 1994).

Convex-ordering and star-ordering are intuitive and meaningful departures from
the PH model in two samples, and in the competing risks framework. Also, these
ordered alternatives to the PH model can be conveniently studied in terms of mono-
tonicity of ratios of hazards/ cumulative hazards (under the PH model, the hazard
ratio and cumulative hazard ratio are both constant over duration). It has been ob-
served in several econometric studies that the departure from the PH model is evident
from the fact that the ratio of the hazard rates is not constant over the duration.?
Such orderings can also often explain the phenomenon of ‘crossing hazards’ commonly
observed in empirical applications.® As mentioned earlier, in the two sample setup,
Gill and Schumacher (1987), Lin (1991) and Deshpande and Sengupta (1995) have
developed tests of the PH model against the “increasing hazard ratio” alternative,
which is equivalent to convex ordering of the life-time distribution in one sample
with respect to the other, and Sengupta, Bhattacharjee and Rajeev (1998) have con-

°For example, Jayet and Moreau (1991), using French data on employment durations,
found that the ratio of hazard function for individuals in the age groups 24—28 years to that
for 3740 years was increasing upto a duration of approximately 120 days, and then decreasing.
However, the ratio of the cumulative hazards corresponding to these two groups was increasing
over the duration scale (star ordering). Similarly, Sengupta and Bhattacharjee (1994), in their
analysis of the unemployment duration data of Han and Hausman (1990), observed that the
risk due to ‘recall to old job’ is convex ordered with respect to the competing risk of ‘new
job’. In other words, the ratio of the hazards due to the competing causes of termination of
an unemployment spell, viz. ‘recall to old job’ and ‘new job’, is increasing in duration of the
spell.

6This situation is apparent, for example, in Katz (1986), where the hazard functions for
‘new job’ and ‘recall to old job’ cross each other.
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structed a test for the weaker alternative hypothesis of “increasing ratio of cumulative
hazards” (star ordering of the two samples).

Following a suggestion in Fleming and Harrington (1991), we introduce the fol-
lowing definition which provides a natural extension of the above notions of partial
ordering in the two-sample case to the continuous covariate case. Let T be a lifetime
variable, X a continuous covariate and let A(t|x) denote the hazard rate of T', given
X =xatT=1.

Definition 3 The duartion random variable T is defined to be increasing hazard ratio
for continuous covariate (IHRCC) with respect to the covariate X if, whenever
x1 > x2, Mt|z1)/A(t|z2) Tt (= (T1X = 21)=<(T|X = 22)). Similarly, T is defined
to be increasing cumulative hazard ratio for continuous covariate (ICHRCC') with
respect to X if, whenever x1 > xo, A(T|x1)/A(t|z2) Tt (= (T|X = 21)<(T|X = x2)).
The duals decreasing hazard ratio for continuous covariate (DHRCC') and decreasing
cumulative hazard ratio for continuous covariate (DCHRCC ) are correspondingly
defined.

Definition 3 gives a notion of positive ageing with respect to a continuous covariate.
The higher the covariate, the faster the ageing of the individual — a situation which
may be reasonably commonplace in empirical applications. For example, it has been
observed that the impact of real wage changes varied with duration of strikes, and
the variation may be in the nature of ordered departures (Metcalf, Wadsworth and
Ingram (1992); Card and Olson, 1992).

Ezample 1 Let the DGP be defined by the hazard function A(t|z) = Xo(t). exp(5(t).z),
where x is the covariate, and (3(.) is an increasing function of duration ¢. This model
could be appropriate when the influence (or prognostic value) of the covariate is
expected to be higher at higher durations. Then, if x1 > x2, A(t|z1)/A(t|x2) =
exp(B(t).(x1 — x2)) is increasing in t. In other words, the lifetime random variable T'
is TH RC'C with respect to the covariate X. Correspondingly, if 3(.) is an decreasing
function of the duration, 7" would be DH RC'C with respect to X.

Example 2 Consider a changepoint duration model given by the cumulative hazard
function A(t|x) = Ao(t). exp(I (t > t*) .0x), where x is the covariate, I(.) the indicator
function, and t* is a duration in the interior of the sample space. This is a model
where the effect of the covariate begins as soon as the duration crosses a certain
threshold ¢*, and it lifts the distribution function upto a level where it would have
been, if the effect of the covariate would have persisted over the entire past life of the

duration variable. If 3 > 0, this model is ICHRCC, but not IHRCC.”

FEzxample 3 Consider the hazard function A(t|x) = Xo(t). exp(B(t). |x — al), where z is
the covariate, a is a point on the covariate space, and (3(.) is an increasing function
of duration ¢. This model is neither ITHRCC nor DHRCC; it is IHRCC on one
region of the covariate space (x > a), and DHRCC' on another region (z < a). As
we shall see later, our tests of the PH model would also be able to detect this kind of
departures from the PH model.

As the above examples illustrate, the notions of ordering introduced in Definition
3 encompass a wide range of non-PH data generation processes. And, it appears likely
that such ordered alternatives would be useful in many empirical applications. Even
from a theoretical point of view, ordered duration models may often be expected in

"The distribution function here has a jump discontinuity, but one can easily construct
examples where IC HRCC holds, and the distribution function is absolutely continuous.
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econometric applications. If, as in Example 1, instead of being constant over duration,
the coefficient of a covariate is assumed to be increasing, the duration model would
then be THRCC with respect to that covariate. There may be a number of different
explanations for such change in the coefficients to occur, including learning effect, shift
in life-course position, maturational changes, and so on. For example, using British
data, Atkinson et. al. (1984) and Narendranathan and Stewart (1993) find that
unemployment benefits have different effects on the hazards from unemployments as
the spell lengthens. Mortensen (1977) presents search theoretic arguments on why this
should be so, based on maximum benifit periods, implying that the impact declines as
the benefits come close to exhaustion. Similarly, the hypothesis of Mortensen (1986)
that liquidity constraints generate a reservation wage that declines with time spent
unemployed could give rise to ordered departures from proportionality.

All the above examples demonstrate that, many situations exist in practice, where
the PH model appears to be a poor description of the duration generating procedure,
as compared with ordered alternatives. In several cases, monotone departures from
the PH model may be reasonable to expect, even from a theoretical point of view.
Since, estimation of PH models with non-proportional hazards rates in the data lead
to biased estimation, incorrect standard errors, and faulty inferences about the sub-
stantive impact of independent variables (Kalbfleisch and Prentice, 1980; Schemper,
1992; Horowitz and Neumann, 1992), one has to be careful about such departures
while using the PH model for inference. This is the context in which construction
of tests of the PH model against monotone alternatives with respect to continuous
covariates assumes particular significance.

3 Construction of the test statistics

Several two-sample tests of the PH model against monotone alternatives exist in the
literature. For a continuous covariate, a natural way of testing the PH assumption
against the alternatives THRCC and ICHRCC (and their duals) would be repeated
applications of the corresponding tests in the two-sample setup (for example, Gill
and Schumacher (1987) test (GS), and Sengupta, Bhattacharjee and Rajeev (1998)
test (SBR), etc.). We, thus, propose a simple construction of our tests as follows.
First, we (randomly) select a fixed number of pairs of distinct points on the covariate
space, and construct the usual two-sample test statistics (Tgs and Tspr) for each
pair, based on counting processes conditional on these two distinct covariate points.
We shall then construct our test statistic, by taking supremum/ infemum or average
of these basic test statistics (suitably standardized) over these fixed number of pairs.®

For the alternative of ‘increasing hazard ratio’ (convexity) in two samples (having
cumulative hazard functions A;(¢) and As(t)), the test statistic proposed by Gill and
Schumacher (1987) is

Tossta = L, where
’ VVar [Tas)
Tas =TTy — T12To1,
Var[Tas] = TaTeaVir — T TiaVia — TiiTeaVor + TiiTia Ve,
T, = [ Lode,  Gi=12)

¥While supremum/ infemum have the interpretation of Rao’s union-intersection principle,
averages have the interpretation of invoking the central limit theorem.
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Vij = /OT Li(t) L) {V1()Ya(t)} T d (N1 4 Na) (1), (1,5 =1,2),

T is a random stopping time (in particular, 7 may be taken as the time

at the final observation in the combined sample),
L;(t) ( =1,2), are predictable processes,

A, (t) ( =1,2), is the Nelson-Aalen estimator of the cumulative hazard

function in the j sample,
Y;(t) ( =1,2), is the number of individuals on test in sample j at time ,

and  Ni, Ny  are the counting processes counting the number of failures

in each sample.

Gill and Schumacher (1987) have shown that the unstandardised test statistic (Tgg)
has mean zero under the null hypothesis (PH) and positive (negative) mean if the
hazard ratio Aj(t)/A2(t) is monotonically increasing in ¢ on [0,00) and L; and Lo
are so chosen that L;(t)/La(t) is monotonically decreasing (increasing), and that its
standard error would decrease to zero as sample size increases to co under both the
null and alternative hypotheses. Hence, while the standardized test statistic Tizg stq
would be asymptotically standard normal under the null hypothesis, it’s mean would
increase (decrease) to co (—oo) under the alternative hypothesis.”

For testing Hy : PH vs. Hy : IHRCC, we propose the following procedure.
We fix r > 1, and select 2r distinct points {11, %21, ..., Tr1, 12,722, ..., T2} on the
covariate space X, such that x;o >z, l=1,...,7.

We then construct our test statistics T g, Tig and Tas based on the r statis-
tics T sta(n, 22),0 = 1,...,r (each testing convexity with respect to the pair of
counting processes N (t,x71) and N (¢, 2)), where

Tas(rn, )
VVar [Tas(zn, )]

Tassta(xn, x2) =

Tas(xin,xp) = TniTee — ThoTio,
Var Tas(zn,x2)] = TioiTieVinn — Ti21 T2 Vine — Tini TioaVier + Tini Tz Viee,
T i . .
Ty; = /0 Li(zp, 22) (£)dA(t, 275), (4, =1,2), and
T d|N(t,zp1) + N(t,x .
Viig = Li(xn, x2)(t) Ly (2, 22) (1) [Nt on) ( 12)}7@” =1,2).

0 Y(t, xn)Y(t,z2)

®Typically, L1 and Ly may be chosen corresponding to the Gehan-Wilkoxon and log rank
tests, whereby L; = Y;Y; and Ly = Y1 Y5(Y; + Yg)_l, so that Li(t)/La(t) is monotonically
decreasing in t.
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Then, our test statistics are:
Tt:s = max {Tas sta(11, 12), Tas, std(221, ©22), - - ., Tas sta(@r, 2r2) }

TEs = min {Tes sia(T11,712), TGSstd(wzl,EUQz) ooy Tasstd(Tr1, r2)}

and Tgs = ZTGS sta(Ti, r2).-
"=

For the choice of L and Lo mentioned above, this statistic will be close to zero
under the null hypothesis. Under the alternative hypothesis THRCC, T g and Tt
would increase to oo as sample size increases, while under DHRCC, Tag and T,
would decrease to —oo.

The test statistic proposed by Sengupta, Bhattacharjee and Rajeev (1998) for
testing the proportional hazards model against the ‘increasing cumulative hazard
ratio’ (star-ordering) alternative is quite similar in structure to the test statistic of
Gill and Schumacher (1987). The test statistic is given by

T
TsBRrsta = —/\SBR , where
\/ Var [TSBR]
TsBr = 511522 — S12591,

Var [Tspr| = 521522W11 — 521512Wig — S11522Waq + 511512Whaa,
Si; _/ #)dt, (6] = 1,2),

W/ij - / / K (mln(svt)) det7 (17] = 17 2)7

T is a large positive number such that A;(7) < c0,j = 1,2,

(need not be a stopping time),

WO = [ (¥ N+ M) 9

and K;(t) ( =1,2), are right continuous functions with left limits

(need not be predictable processes).

This standardised test statistic is also asymptotically standard normal under the
null hypothesis of proportional hazards, and asymptotically normal with mean in-
creasing (decreasing) to co (—oo) if the cumulative hazard ratio A;(t)/A2(t) is mono-
tonically increasing in ¢ on [0,00) and K; and K3 are so chosen that K;(t)/K(t)
is monotonically increasing (decreasing). As before, we construct our test statistics
Tépp Tésp and Tspr based on the r statistics Tspr,sta(xn,x2),l = 1,...,7 (each
testing star-ordering with respect to the pair of counting processes N (t,x;1) and
N (t,z2)). Thus, we have:

Tspr = max {Tspr sta(*11, T12), TsBRr,sta(T21, 222), - - ., TSBR std(Tr1, Tr2) } 5

Tssr = min {Tspr sa(®11, T12), TsBr,sta(®21,222), - . . , TsBR,std(Tr1, Tr2)} 5
1 T
and Tspr = ZTSBR std(T11, T12).-
"=
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We now derive the large sample results for the proposed test statistics, using the
counting process methods of e.g. Gill and Schumacher (1987) and Andersen et. al.
(1992). Tt is also indicated how these results, in conjunction with extreme value theory
as contained in e.g. Berman (1992), can be used to obtain convenient expressions for
the relevant p-values of T¢g, T, Tégp and TS5 -

Consider a counting processes {N(t,z) : t € [0,7],2 € X}, indexed on a continu-
ous covariate z, with intensity processes {Y (¢, 2)A(t,x)} such that A(¢,x) = 0, A(2)
for all £ (under the null hypothesis of proportional hazards). Let, as before, L,
and Lo be two predictable processes, each indexed on a pair of distinct values of
the continuous covariate = (i.e., indexed on (x1,z2), 1 # x2, T1,72 € X), and
let 7 be a stopping time. Then, from Gill and Schumacher (1987), it follows that,
as n — oo, TGS’std(xl,xQ) i) N(O,l), Vai,29 € X, 21 75 x9. Similar]y, if K4
and K> are right continuous functions with left limits, which are each indexed on
{(21,22), 21 # 22, 1,22 € X}, and 7 is a large positive time such that A(7,z;) <
00, © = 1,2, then, Sengupta, Bhattacharjee and Rajeev (1998) have showed that, as
n —- 00, TSBR’Std(xl,xg) i) N(O, 1), le,xg € X, 1 7& 9.

Now, let {z11,%21,...,%r1,%12,T22,...,%r2} be 2r (r is a fixed positive integer,
r > 1) distinct points on the covariate space X, such that zjp > xpn,l=1,...,7.

Assumption 1 For each I, | =1,2,...,r, let Li(xpn,x2)(t) and La(z, z2)(t) be pre-
dictable processes (predictable with respect to t).

Assumption 2 Let T be a random stopping time.!"

Assumption 3 The sample paths of L;(xy,72) and Y (¢,25)~' are almost surely
bounded with respect to ¢, for ¢ = 1,2 and [ = 1,...,r. Further, foreach { =1,...,r,
Li(xp1,x12) (i =1,2) are both zero whenever Y (¢, x;1) or Y (¢, xj2) are.

Assumption J There exists a sequence a(™, a(® — 0o as n — 0o, and fixed func-
tions y(t,x), l1(z1, 2)(t) and la(xy, x2)(t), I = 1,...,r such that

SUPse0,7] Y (t,x)/al™ — y(t,az)‘ .0 asn — 00, VreX

P .
supyefo,r] |Li(wi1, m2) () — li(x1, m2) ()] — 0 asnm— o0, i=1,20=1,....r

where |l;(xn,22)(.)] (i = 1,2;1 = 1,...,r) are bounded on [0,7], and y~!(.,x) is
bounded on [0, 7], for each x € X .11

Let the test statistics Thg, Tihg and T be as defined earlier.

Theorem 1: Let Assumptions 1 to 4 hold. Then, under Hy : PH, as n — oo,
(a) P[Tgs < 2] — [@(2)]',

(b) PIgs > —2] — [®(2)]",
and
(¢) VF Tag -2 N(0,1),

0Tn particular, 7 may be taken as the time at the final observation of the counting process
Zlezgle(t, x75). In principle, one could also have different stopping times 7 (21, 252) ,1 =
1,...,r for each of the r basic test statistics.

" The condition on probability limit of Y (¢, 2) can be replaced by a set of weaker conditions
(see, for example, Sengupta, Bhattacharjee and Rajeev, 1998).
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where ®(z) is the distribution function of a standard normal variate.
(Proof in Appendix.)

Corollary 1

Pla,{Ttg—br} <z] — exp|—exp(—2z)] as r — oo and
Pla,{Igs +br} 2 2] — exp[—exp(z)] asr — oo,

where a, = (2Inr)Y2,

and b, = (2Inr)/?— % 2In7) Y2 (Inlnr + In4r).

(Proof in Appendix).

Assumption 5 For each [, I = 1,2,...,r, let Ky(z,22)(t) and Ko(xp1,22)(t) be
stochastic processes (with respect to t) with sample paths in D[0,00) (i.e., are right
continuous and have left limits).

Assumption 6 Let T be a positive duration such that A (¢, 27;) < oo, 1 =1,2,...,r, j =
1,2.

Assumption 7 There exists a sequence a{™ | (") — oo as n — oo, and deterministic
functions y(t, x), k1(zn, z2)(t) and ka(xp,z2)(t), [ = 1,...,r such that

supiep. [V (t,2)/a™ — y(t, 2)| =0 asn — 0o, Vze€X
supte[oﬂ |K¢(I‘ll,l‘12)(t) — k?l'(l‘ll,l‘lg)(t” L 0 asn— o0, = ]_, 2,l = 1, e, T
where ky(zn,x2)(t) and ka(xp,x2)(t), I = 1,...,r are continuous functions with

respect to t, and y~1(.,x) is bounded on [0, 7], for each = € X.
Let the test statistics T¢gp, Tspr and Tspr be as defined earlier.

Theorem 2: Let Assumptions 5 to 7 hold. Then, under Hy : PH, as n — oo,
(a) P[Tspp < 2] — [2(2)],
(b) P[Tgpr > =2l — [©(2)]',

and
() V7 Tspr = N(0,1),

where ®(z) is the distribution function of a standard normal variate.

(Proof in Appendix.)

Corollary 2:

Pla,{Tégp —br} <2 — exp[—exp(—z)] as r — oo and
Pla,{Tspr+br} 2 2] — exp[—exp(z)] as 7 — oo,

where a, = (21nr)1/2,

and b, = (2 lnr)l/2 - % (21nr)_1/2 (Inlnr +In4m).

(Proof in Appendix.)
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Remark 1: Restricting the statistics T¢g, Tig, Tégr and Téxp to depend on a fixed
number (r) of distinct pairs of points is a crucial step in the construction of the test
statistics. This is because, the processes Tgg sa(21,2) and Tspr sd(v1,22) on the
space {(x1,x2): ma > x1, T1,72 € X}, being pointwise standard normal and inde-
pendent (not independent increments), may not have well-defined limiting processes.
And the supremum of these limiting processes would have a degenerate distribution,
with all the mass at 4-oc0.

Remark 2. The significance of the Corollary is that it gives a simple way of calculating
the p-values for the extremal test statistics T¢ig and T5% (and similarly, T¢pp and

$hpR), if 7 is reasonably large. Note that r is held fixed, and hence cannot increase
to oo, but then it can be fixed at a large enough value, so that the approximation can
be fruitfully used.

Since the covariate under consideration is continuous, it is practically not feasible
to construct the basic tests (GS, SBR etc.) based on two distinct fixed points on the
covariate space, since the number of observations will be limited. In pursuance of
usual practice in such situations, we recommend considering two “small” intervals/
neighborhoods around these chosen points, such that the hazard function within these
intervals can be (at least approximately) regarded as constant (across covariate val-
ues). While the derived distributions are for counting processes pertaining to specified
pairs of points in the covariate space, the tests would go through for small intervals
around these points, provided the covariate values are so chosen that they are conti-
nuity points of the hazard function (for T¢.g, T¢v% and Tgs, when the alternative is
THRCC or its dual), or the cumulative hazard function (for Tép g, Tésg and Tspr,
when the alternative hypotheses are ICHRCC or its dual). However, in small sam-
ples, these intervals may be overlapping, and therefore independence of the basic test
statistics may be violated. Our Monte Carlo simulations suggest that the average
test statistics are particularly susceptible to this problem (they have a small sample
variance larger than 1/r), and we suggest making a standard error correction in such
cases, by normalizing the average statistic using a jacknife or bootstrap estimate of
the standard error. In this paper, we have used the Quenouille-Tukey jacknife vari-
ance estimator for this purpose (see Efron and Stein, 1981). This strengthens the
performance of the test in small samples, and does not change our asymptotic results.
We denote these adjusted test statistics by TGS, Adj and Tsp R, Adj Tespectively.

The choice between the supremum/ infemum and average test statistics can be
crucial in practice. The supremum/ infemum test statistics detect more complicated
departures from the PH model, and thereby facilitate detailed investigation of mono-
tonicity across the duration. If, as in Example 3, the relevant hazard / cumulative
hazard ratio is monotonically increasing over one region of the covariate space, and
decreasing over another (a not very unusual phenomenon), this approach would be
useful in detecting such behaviour. We shall return to this aspect of the tests later in
the paper, when we discuss small sample properties and empirical applications. On
the other hand, as we shall see in the Monte Carlo simulations in the next section, the
adjusted average statistics outperform the supremum/ infemum statistics in terms of
power.
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4 Simulation Results

The asymptotic distributions of the proposed test statistics have been derived in the
previous Section. In this Section, we shall explore the finite sample performance
of the tests for different specifications of the baseline hazard function and covariate
dependence. The selected DGPs are broadly drawn on the models used in Horowitz
(1999) and Martinussen, Scheike and Skovgaard (2000). In particular, we consider
models of the form

AL, z) = Ao(t). exp [B(t, ©)]

where A\g(t) and B(t,x) are chosen to assume a variety of functional forms. The
PH model holds if and only if 3(¢,x) does not depend on ¢. If, for fixed =, 5(t,z)
increases,/ decreases in t, we have THRCC/ DHRCC alternatives.'? If, on the other
hand, (¢, x) increases in ¢ over some range of the covariate space, and decreases
over another (as in Example 3), neither PH nor ITHRCC/ DHRCC hold. However,
our tests based on supremum/ infemum would still be consistent for these kinds of
alternatives to the null hypothesis of proportional hazards.

The Monte Carlo simulations are based on independent right-censored data from
the following 8 DGPs, generated using the Gauss 386 random number generator,
where the covariate X are i.i.d. U(—1,1), and the censoring duration C are i.i.d.
U(0.2,2.2).

Model — Xo(t) [(t, x) Median cens.dur. % cens. Expected significance

DGP;; 2 0 0.36 16.4 None

DGPy 2 T 0.30 19.2 None

DGP13 2 ln(t).m 0.25 15.8 TéS7TGS,Adj7T§3R7TSBR,A0Z]'
DGPyy 2 In(t). |z| 0.52 26.9 T4e, 155, Tepr TSR
DGPyy 12t 0 0.32 8.9 None

DGPyy 12t T 0.32 9.6 None

DGPy; 12t In(t).x 0.30 8.9  Tig,Tasad, Tépr, T SBR.Ad
DGPyy 12t In(t). |z| 0.42 13.8 T4, 156, Tepr TSBR

Here, DG P11, DGP1o, DGPs; and DG Pyy belong to the null hypothesis of PH, and
DGPy3 and DG Pyg belong to THRCC and ICHRCC. DGPyy and DG Py, on the
other hand, are THRCC and ICHRCC over the range x € [0,1] and DHRCC and
DCHRCC over the range = € [—1,0]. Table 1 reports, for each of the above 8 DGPs,
the observed rejection rates (in percentage) of each of the test statistics, at 5 per
cent confidence level, for different sample sizes. The reported percentages of rejection
are based on 200 Monte Carlo simulations in each case, and asymptotic distributions
are used to compute the cut-offs. The test statistics are computed based on 100
random pairs of distinct points on the covariate space (r = 100) in each case. For the
supremum and infemum test statistics, the one-sided cut-off for the relevant extreme
value approximation has been used; for the average test statistic, a two-sided test has
been used. The average test statistics have been standardized using the Quenouille-
Tukey jacknife estimator of variance.

The results show that the tests have reasonable power in small samples, in most
cases, excepting for DG Pyy. This is not surprising, since this DGP is THRCC' over
one-half of the covariate space, and DH RCC over the other half. Hence, when a pair
of points are drawn at random from the covariate space, only a quarter of them may
be expected to reflect the THRCC character of the hazard function, and another

RICHRCC/ DCHRCC alternatives also hold in this case.
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quarter would reflect the DH RCC nature. When we increased the sample size to
1500, the rejection percentages for T¢ig, 15, Tsgr and TSy rose to 77, 68, 83 and
61 per cent respectively. Overall, the tests appear to be fairly powerful and robust
in finite samples. The results also reflect the strength of the supremum/ infemum
test statistics in their ability to detect non-monotonic departures from the PH model
(DGP14 and DGP24)

5 Empirical Application

In this section, we illustrate the tests proposed in this paper by way of an application
to data on durations of strikes in the US (Kennan, 1985). Several authors have
analysed these data, including Kennan (1985), Kiefer (1988), Horowitz and Neumann
(1992), and Neumann (1994); a major focus of the analysis is on the effect of business
cycles (measured by production index) on strike duration, and this production index
represents the continuous covariate in our application. Given that, strike durations
are also known to exhibit some seasonal effects (Neumann, 1994), we use only the
data on 292 strikes beginning in the first half of each year.

As mentioned earlier, empirical investigations of Kennan’s strike data by earlier
authors suggest that the level of production index significantly affects strike duration
(Kennan, 1985; Neumann, 1994). Higher values of the production index were observed
to be associated with higher conditional probability of ending the strike, implying sig-
nificant counter cyclical pattern of strike duration. However, the PH model specifies
considerably more than merely the direction of impact of the covariate on the hazard
function of strike duration. In order to graphically explore whether monotone depar-
tures from the PH model exist, we first constructed Lee-Pirie plots (Lee and Pirie,
1981) of cumulative hazard functions conditional on various randomly chosen pairs
of covariate values. Many of these plots indicate an increasing ratio of the hazards,
as evident from the convexity (or even marginal star-shapedness) of the plot'3 (as an
illustration, see Figure 1, the Lee-Pirie plot conditional on covariate values -0.048 and
0.037), lending credence to a priori suspicion of monotone ordering of the THRCC
type. Nexy, we applied our tests of the PH model on these data (Table 2). Each
of the tests were based on 150 pairs of distinct covariate values. The results of the
tests indicate confirmation of our a priori notion; the null hypothesis of PH model is
rejected in favour of the alternative THRCC (and ICHRCC'), with production index
as the continuous covariate.

This implies that the impact of production index on the hazard rate is such that,
the duration distribution conditional on a higher value of the covariate is convex-
ordered with respect to that conditional on a lower production index. In other
words, the impact of production index on the hazard of a spell of strike duration
ending increases in the duration of the strike. This has significant consequences for
an economist modelling strike durations, in that (i) the PH model does not hold,
(i) that there is a systematic monotone departure from the PH model in the sense
of IHRCC, and (iii) that the theoretical model of strike durations applied to this
situation must accommodate such covariate dependence.

Further, the supremum/ infemum test statistics provide additional information
on the covariate pairs for which the basic test statistics assume extreme values, which
may be useful in further investigating the nature of departures from proportionality.

3Empirical Lee-Pirie plots often display distortions at the far end of the duration spectrum,
because of sampling fluctuations. Gill and Schumacher (1987) and Sengupta, Bhattacharjee
and Rajeev (1998) have, among others discussed such distortions and proposed modifications
to norm out the impact of these farthest observations.
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For Kennan’s strike data, for example, the significant test-statistic T¢ ¢ is attained for
the covariate pair {—0.0478,0.0371}. The test statistic 755 (covariate pair 0.0371 and
0.0675) had a p-value of 5.4 per cent, which could imply weak evidence of concave-
ordering towards the upper spectrum of the covariate space (as in Example 3). This
evidence can also be assessed from Figure 2, which shows a contour diagram of the
standardized test statistic (smoothed using the Epanechnikov kernel), on the covariate
X covariate two-dimensional plane.

The evidence from the tests and Figure 2 may lead the researcher to enquire
whether the impact of the covariate is indeed monotone, or instead increasing upto a
point and then decreasing. To illustrate how the researcher may incorporate this kind
of covariate dependence into an econometric model, we present parameter estimates
for three different models in Table 3. Model 1 is a simple Cox PH model, with
production index as the continuous covariate. In Model 2, we allow the effect of the
covariate to be time-varying, using the histogram-sieve estimator proposed by Murphy
and Sen (1991). This can accomodate monotone departures from proportionality, in
the nature of THRCC'. In Model 3, we allow the coefficient of the covariate to vary
not only over the duration, but also for covariate values. Based on the results in Table
2, we allow, in Model 3, the coefficients to be different for covariate values below and
over 0.0371. Model 3 is, thus, of the type DG P14, DG P24 or Example 3. Here again,
we use the estimators given by Murphy and Sen (1991) for inference.!®

The time- and covariate-varying nature of the parameter estimates conform to
our initial intuition based on the tests, regarding the nature of covariate dependence.
For lower values of the covariate, the coefficient increases in duration, and decreases
in duration for higher values.

The application, thus, illustrates the usefulness of our test statistics based on
the supremum and infemum in deriving inference under non-monotonic structures of
covariate dependence in economic duration models. Some other applications in which
similar estimation methods have been used can be found in Bhattacharjee et. al.
(2001) and Bhalotra and Bhattacharjee (2001). The former is an application to firm
exits in the UK, and the latter to child mortality in India.

6 Conclusion

In this paper, we have introduced notions of monotone ordering of duration distri-
butions with respect to continuous covariates and proposed tests of the PH model
against monotone/ ordered departures. We have thus provided a framework wherein
such monotone departures can be detected. As we have seen, such departures are
common in the econometric applications, and empirical or theoretical work in dura-
tion models would require to have a framework flexible enough to accomodate such
covariate dependence. Our tests demonstrate reasonable small sample properties, and
are useful in applications. The empirical application to strike duration data demon-
strates how our tests can be used, in conjunction with available estimation methods,
to derive inference in cases of monotonic and non-monotonic covariate dependence.
The proposed tests are also suitable for testing proportionality in several dimen-
sions (multiple continuous covariates). In this case, however, it would be necessary

4The model estimates presented in Table 3 are only of illustrative value, and intended
to suggest how one might incorporate additional information about monotonic (or non-
monotonic) departures from the PH model, with respect to a continuous covariate, in an
econometric duration model.

15 Alternatively, one may use the estimators proposed by Zucker and Karr (1990), or Mart-
inussen, Scheike and Skovgaard (2000).
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to extend the notion of monotone/ ordered alternatives appropriately. For example,
one could define the duration T to be I H RC'C' with respect to continuous covariates
X and Z if, whenever x1 > x5 and z1 > 2o, A(t|x1, 21)/\(t|xe, 22) T t. More generally,
one may define T to be THRCC with respect to X and 7 if, given some function
h(.,.), Mt|z1,21)/A(t|z2, 22) T t whenever h(z1,21) > h(x2,22). The appropriate spec-
ification of the function A(.,.) may depend on the particular application the researcher
is interested in, and any prior knowledge about the nature of covariate dependence.
Further, one may use contour plots, as in Figure 2, to suggest the appropriate choice
of the function hA(.,.) that may be appropriate for a particular application.

The tests proposed here can also be adapted for analysing monotone departures in
k-sample (discrete covariate) problems. In this case, an a priori partial order of the k
samples can be derived either using the usual estimates of hazard ratio (or cumulative
hazard ratio) proposed by Gill and Schumacher (1987) and Sengupta, Bhattacharjee
and Rajeev (1998), or the tree-structured modeling approach (Ahn and Loh, 1994).
One can then test for the PH model against ordered alternatives defined in this
paper. Similarly, the testing procedures in this paper can also be easily adapted to
the competing risks setup where there are more than 2 competing risks.

Some promising areas of future research emerge from the work in this paper.
Firstly, research can be directed towards extension of the tests to the situation where
unobserved heterogeneity is present. The notion of partial ordering introduced in
this paper would be valid in the presence of unobserved heterogeneity, and one can
construct tests using the estimator of cumulative hazard proposed in Horowitz (1999).

Second, estimation of semiparametric regression models under monotone depen-
dence structures appears to be an area of considerable research potential. While we
have suggested using time dependent coefficient estimates proposed by Murphy and
Sen (1991), Zucker and Karr (1990) or Martinussen, Scheike and Skovgaard (2000), it
may be more appropriate to develop estimates under appropriate monotonicity con-
straints suggested by the tests. Future research in these directions would be useful.
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APPENDIX

Proof of Theorem 1: Tt follows from Gill and Schumacher (1987) that, under PH, asn — o0,

1/2
(a(n)> / Tas (i1, 012) — N (0,0%s,) . and

a(n)m[TGS (xll7$l2)] i} 0’%5,1 s

o - 2
where 0%, = / [ Iz (201, 20) 1y (200, 20) (8) — Lo (w00, 202) Lo (w00, 02) (2)]
0

01,”0%]2 <dA(t,$l1) + dA(t,l‘lg)>
Tyt ) y(t )

and Zz (.1'117 .1'12) = / lz (1‘117 .IZQ) (t)dA(t, ZL‘M), L= 17 2.
0

so that,

Tas (@, 12)

\/@ [Tas (zi1, 712)]

Tas,sta (T11, 112) = £, N(0,1), I1=1,...

The proof of the Theorem would follow, if it further holds that Tgs sta (z11,212), [ = 1,...
are asymptotically independent. In other words,

TGs,sta (11, 712)

TGs,std (21, 722)
) L. N(O.L),

TGS,std (mrl ) $r2)
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where I,. is the identity matrix of order r.
Let

z) :/0 Li(x117x12)(t)d{/A\(t7xlj) _A(mlj)}, (j=121=1,...7).

Then

2 /2 AN (t,z1;) — Y (¢, x15)dA(t, x5
(a(n)) Zl(z'j) — (a(n)) A Li(zp, a12)(t) ( lj) Y(t(l‘l';J) ( lJ)
Lt ¥}

D T
— / li(CL'lLxlz)(t)d]\f(t,xle
0

where M (t,z;;), I =1,...,7, j = 1,2 are independent Gaussian processes with zero means,
independent increments and variance functions

Var [M(t,z;;)] = /OT ‘dﬁ(is;:f;;)

This follows from a version of Rebolledo’s central limit theorem (see Andersen et. al., 1992),
which essentially states that the innovation martingales corresponding to components of a
vector counting process are orthogonal, and the vector of these martingales asymptotically

converge to a Gaussian martingale.
It follows, by a version of the §-method proved in Gill and Schumacher (1987), that

2 5 1y o7

TGS,std (Ill, (L‘12) Zz’,jzl ! i fo l’i(Illy $12)(t)dA[(t> Ilj)

( ( )) 1/2 TGS,std ($213 1'22) D Z?jzlz I fOT l¢(1'217 mgz)(t)dﬂf(t, iL'Qj)
a\" . — ’ )
>

Tes,sta (Tr1, Tr2) 1™ [T 0, ) ()M (8, 05

z2,j=1
where
R N T
and 7”3- = /OT Ly, w2) () dA(t, zy5); l=1,...,r;1,7=1,2.

Now, under Hy : PH, Zh-j = 0$UZ¢ (211, 712), so that

2 . .
_lid -
5 [ / li(wgy, wi2) (0)dM (t,25) = / [lioaly (11, m12) (1) — Lingla (01, 212) ()] M (£, 211)
0 0

i,j=1

+/ [—lizily (2, 2i2) (8) + L lo (2, i) (1) ]| dM(E, 212).
0

It follows that

Tas (9311,9512)
Tas (r21, T22)
. 2N (0,

TGS (l'rla ‘TTQ)
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where Y = diag ((O’%S’l)) JA=1,... r, with

2 dA(t, ;1)
y(t, @)

2 dA(t, xlg)
y(t,xi2)

O%S,l = /0Ulel(szmem)(t)—711212(90117@2)(25)]

+/0T [—ligrl (i1, 202) (8) + inalo (21, m02) (¢)]

Further, following Gill and Schumacher (1987), it can be shown that r% g can be consistently
estimated by Var [Tas (211, 212)]. Hence, it follows that

Tas,sta (11, 712)

T s,std (w21, 22)
. LN (L),

TGS,.std (xrl ) ITQ)

where I,. is the identity matrix of order r.
Proofs of (a), (b) and (c) follow.
¢

Proof of Corollary 1: Proof follows from the well known result in extreme value theory re-

garding the asymptotic distribution of the maximum of a sample of iid N(0, 1) variates (see,
for example, Berman, 1992), and invoking the §-method by noting that maxima and minima
are continuous functions.

&

Proof of Theorem 2: Tt follows from Sengupta, Bhattacharjee and Rajeev (1998) that, under

Hy, as n — oo,

1/2
(a(n)) Tspr (T, 712) = N(O’UgBRJ%and

—— P
a"Var [Tspr (w11, m2)] — 0%pgry

where U%BR,! = / / V (min(s, ), z1) + d(t)d(s)V (min(s,t), z52)] dsdt,
0
Vi(t,ay) = / dAS_f%), i—1.2,

0 y(svxlj)

c(t) = so(w2) k1 (@, x2) () — s1 (w2) k2 (201, 212) (T),

dt) = so(@n) ks (v, ) (t) — s1 () k2 (2, 22) (1),

and s; (z;) = / ki (z11, 212) (8).A(s, z5)ds, 1=1,2,7=1,2.
0
so that,

Tspr (211, 12)

\/@“ Tspr (x,22)]

D
Tspr,sta (T11, T12) = — N(0,1), I=1,...,r

Like Theorem 1, the proof will follow, if it further holds that

TsBR,std (T11,T12)

TsBR,std (T21, T22)
. L. N L),

TsBr,std (Tr1, Tr2)
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where I,. is the identity matrix of order r.

The essential difference in the arguments required here to establish asymptotic distributions,
from those in Theorem 1, lie in the fact that the integrals considered in Theorem 1 are
transformations of stochastic integrals, while here, they are functions of ordinary Steiljes
integrals of stochastic processes. Hence, we require different resuts to establish the asymptotic

properties.
Let us define

Zm :/0 K, o) () { At ;) — Alt, i) } (i = 1,21 =1,...,r).

Then, by Rebolledo’s central limit theorem and Theorem 3.1 in Sengupta, Bhattacharjee and
Rajeev (1998), we have, as n — o0,

1/2 T
(a(")) Zl*z_(yn) 3)/ kl(il}lhxlg)(t) ]\/[(t,il?lj) dt,
0

where M (t,z;;),l = 1,...,7,j = 1,2 are independent Gaussian processes with zero means,
independent increments and variance functions
T dA (s, xy4)

y(s,z5)

Var [M(t, xi;)] :/0

Now, as in Theorem 1, invoking the 6-method of Gill and Schumacher (1987), it follows that

1
TsBR,sta (211, 712) Z ,J =1 ;J fo (w11, w12) (1) M(t,215) dt
77 )
(a(n))l/2 TSBRystd'(xmaxzz) p | X5 F Ty Ki(war, wa0)(8) M(t,wo5) di

)

TsBR,std (Tr1, Tr2) 22,3 Lk e Io ki($r1'7xr2)(t) M(t, ;) dt
where
Tl _ (1) T3 15,
and Eli]’ = /T iy, 2) (P)A(t, 215)dt; l=1,...,m4,7=1,2,
0

and under Hy,

2 i [T _
Z / i(zin, m2)(8) M(tay) dt = [ [ Kiogk (20, m12) () — Kinzka(ziy, mi2) (8)] M (¢, 1) dt

+ [ [Feiki(zn, 2i2)(t) + kuika (2, i2) (8)] M (¢, 22)dt.

As in Theorem 1, it follows that

TsBr (11, 212)
Tsgr (r21, T22)

2N (0Y).

TsBr (Tr1, Tr2)
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where Y~ = diag ((U%BRJ)) ,L=1,...,r, and following Sengupta, Bhattacharjee and Rajeev

(1998), it can be shown that O'%BRZ can be consistently estimated by Var [Tspr (x11, x12)]-
Hence, it follows that

TsBr,std (€11, %12)

TsBR,sta (T21, T22)
. NI,

TsBr,std (Tr1, Tr2)
where I,. is the identity matrix of order r.

Proofs of (a), (b) and (c) follow.
&

Proof of Corollary 2: Proof follows from extreme value theory and the §-method, as in Corol-

lary 1.
¢
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TABLE 1:
REJECTION RATES (%) AT THE 5% ASYMPTOTIC CONFIDENCE LEVEL
Test Sample size
Model i tistic 100 200 500 1000
Tes 190 180 45 40
T 23.0 135 60 45
T s, Adj 40 45 110 70
bGP Tinn ’ 130 70 40 15
T55R 130 100 65 35
TsBR,Adj 50 20 9.0 5.0
Tes 195 160 95 1.0
T 180 115 60 35
Tes, Adj 120 125 155 45
DGF, Tipn ’ 135 75 40 40
TE5R 170 50 55 3.0
TsBR, Adj 55 165 135  10.0
Tes 520 83.5 100.0 100.0
T 120 60 05 00
Tas, Adj 37.5 100.0 100.0 100.0
DG Tign ’ 84.0 100.0 100.0 100.0
TE5 R 45 00 00 05
Tsppaq 415 100.0 100.0 100.0
Tes 31.0 330 575 895
T 295  41.0  70.5 945
Tas, Adj 155 120 75 100
bGP Tinn ’ 105 21.0 39.5 87.0
T55 R 21.0 330 720 975
TsBRr,Adj 95 135 95 85
Tes 130 190 7.0 30
T 215 140 7.0 40
Tas,adj 55 55 35 20
bGPy Tipr ’ 1.5 95 30 3.0
T&sn 130 65 40 3.0
Tsir, Adj 150 35 50 5.0
Tos 290 205 55 6.0
T 165 105 20 20
Tas,adj 55 80 30 45
DG Py Tigr ' 125 115 40 35
Ts5r 120 85 40 3.0
TsBRr Al 30 75 35 80
Tes 33.0 495 100.0 100.0
T 135 55 20 20
Tas, adj 76.0 920 100.0 100.0
DGy Tipr ’ 145 265 100.0 100.0
Ts5R 40 20 00 00
Tsproaq 875 985 100.0 100.0
Tes 245 235 220 440
T 21.0 225 220  46.0
Tas,adj 00 105 11.0 55
DGy Tipr ’ 1.5 150 11.0 255
T55R 140 185 285 565

TsBR,Adj 1.0 100 140 4.5
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=0.037)

Lambda(t|x
N

0.0 0.5 1.0 15 2.0
Lambda(t|x=-0.048)

Figure 1:

Lee-Pirie Plot of A(t|z = 0.037) versus A(t|z = —0.048)
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TABLE 2:
TESTS OF THE PH MODEL: STRIKE DURATION DATA
Test Test Statistic P-Value (%)
Tég 3.619 3.0
T -3.426 5.4
Tas,adj 4.093 0.0
Tépr 3.415 5.6
Téhr -2.703 42.0

T s8R AdG 3.808 0.0
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TABLE 3:

MODEL ESTIMATES: STRIKE DURATION DATA
Model/ Parameter Coeflicient t-stat.
MobDEL 1
Production Index, z 3.529 3.17
MODEL 2
x.I[t €[0,75)] 5.179 3.90
x.I[t € [75,150)] 0.360 0.27
x.I [t € [150, 00)] 9.416 1.19
MODEL 3
x.d [z € (—00,0.037)] .I[t € [0,75)] -1.178 -0.75
x.d [z € (—00,0.037)] .I[t € [75,150)] 9.362 4.32
x.d [z € (—00,0.037)] .1 [t € [150, 00)] 45.266 3.43
x.d [z €[0.037,00)] I[t € ]0,75)] 10.173 4.96
x.I [z € ]0.037,00)] .1t € [75,150)] -14.910 -5.96
x.I [x € [0.037,00)] .I [t € [150,00)] -27.619 -5.90
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Covariate

Contour Plotof T

GS,std

0.08

0.06

0.04

0.02

-0.02

-0.04

-0.06
-0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08

Covariate

Figure 2:
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