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Decleration of originality or otherwise.

The work in this dissertation is in general original except where indic-
ated otherwise by references or footnotes.

In part I sections 4,5 and 7 are original, subject to this proviso.
Section 1 is an introduction and contains nothing new. Sections 2 and 3
sunmerise the standard theory required in the later sections, and some details
of the treatment may be new, but we have not searched the literature to verify
whether this is so. Section 6 summarises the experimental evidence for the
theoretical predictions, and is original only in the sense that the inform-
stion there may not have been previously gathered togekkier in one place. The
main source of background information has been Frauenfelder's book on the
M8ssbauer effect.‘

In part II sections 4,5,7,8 and 9 are originel. It is also believed that
the viewpoint expressed in the introduction is original. Section 2 and the
first part of section 3 are a somewhat developed form of lectures given by
Dr.P.W.Anderson combined with his 1958 paper, but the way in which the s

parameter is defined in section 3 is new. Section 6 is again a development

of ideas in Dr. Anderson's 1958 paper.
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Part I. THE RELATIVISTIC SHIFT IN THE MJSSBAUER EFFECT.

1. Introduction.

In 1957 R. L. M8ssbeuer discovered the phenomenon which is now named
after him: when gamma rays areemitted from or absorbed by muclei in a solid,
in a certain fraction of the processes the recoil of the mucleus is taken
up by the solid as a whole with no change in its state of vibration. As a
result of these processes, the gamma ray spectrum contains a sharply defined
peak or peaks whose widths are determined by the lifetime of the excited
nuclesr state, and may be some orders of magnitude less than those previously
thought to be attainable. M8ssbesuer was sble to observe the resonent absorp-
tion of a gamma ray emitted from one nucleus by another nucleus in the
ground state, and to show that when the seource is moved relative to the
sbsorber the absorption is reduced owing to the frequency change produced
by the Doppler effect.

By combining the technigues of resonant sbsorption and use of the
Doppler effect to change the frequency, mach informstion has subsequently
been obtained, particularly in the fields #f nuclear and solid state physics,
by the study of muclear gamma ray spectra. Part I of this dissertation
deals with one of the phenomena affecting the spectra, the frequency shift
which ariges from relativistic effects and can be obsermed by means of its
dependence on temperature. In gections 2 and 3 the parts of the theory of
the MYssbauer effect which are relevant to discussion of the relativistic

shift are given and sections 4 and 5 deal with the theory of the shift. In

gedtion 6 experiments on the relativistic shift are described, end section
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7 deals with a difficulty in the classical explanation of the shift which

has not been adequately discussed in the literature on the MYssbauer effect.

2. Qusntum theory of the MYssbsuer effect.

Let €,,€, be the energies of the excited snd ground states respectively
of & mucleus when it is moving with zero velocity. Let us first consider the
decay of a free nucleus, i.e, onenot under the sction of external forces. In
this section we shall ignore :ﬁ::goadenlng due to the finite lifetime of
the excited state. The gamma ray energy will not be exactly €,—€, in
general, since the kinetic energy of the nucleus mgy change when the gamma
ray is emitted. In fact, if the mucleus is originally at rest its kinetic
energy will increase, and so the gammea T&y energy is less than €,- €, .
Similarly s gamma ray resonantly absorbed by & nucleus at rest must have an
energy greater than €,-€, . Purther, if the nucleus is not at rest the
gamma rsy frequency is shifted in both cases by the Doppler effect, which
in this case can be derived from the laws of conservation of momentum and
mags-energy. Hence the gamma rays emitted or absorbed by a set &f non¥
interacting muclei have a continuous specirum, and the spectra for emission
and ebsorption are shifted relative to esch other.

The situation is entirely differwd for bound nuclei. The simplest model

which illustrates the behaviour is that of a micleus in a potential well. In

this case the nucleus, regarded as a point charge, has & discrete set of

energy levels £, Ea.-.c The totel energy of the system is obtained by adding

the internal energy €, or €, . If we neglect the small mass difference
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between the excited and ground states, the values of E; will be the same
for the two states. In this case, corresponding to the discrete energy
levels there will be a discrete gamma ray spectrum. Moreover, whatever the
values of E—; are, there will always be a gmﬁine of energy exactly G,—ez_
corresponding to processes in which the wvalue of E{ is the same for the
initial and final stales. One would expect an appreciable probability of
these 'recoilless' processes if the separation of the potential well energy
levels wewenot too small compared with the change in kinetic energy which
would occur for nuclei with the same mean kinetic energy in the absence of
the potential well.

We shall now consider the general case of & nucleus embedded in a solid.
This is rather more complicated because the motion of the nucleus is correl-~
lated with that of the neighbouring atoms. We shall, however, make the
spproximation that the internal state of the nucleus is not affected by the
rest of the solid.’ We shall accordingly split up the Hamiltonian into two
parts, the first, HL consisting of the Hamiltonian which would exist if the
nucleus were repleced by a point charzge of zero spin, and the second, HN
consisting of the internal nuclear energy, its interaction with externsl and
crystalline fields, and the change in energy due to the finite size of the

nucleus (the isomer shift). If we again neglect the mass difference between

This neglects, for example, the fact that the hyperfine interaction
can change the spin of the nucleus. The average interaction is taken into
account here by including it in the nuclear energy, but the fluctwktions

about the average may broaden the energy levels.




the excited and ground states, Hy is independent of the internal state of
the mucleus. Our approximation consists in assuming that the eigenfunctions
ody on the conlie 4 Qrmni? th runcliso, and Ty,
of the total H&nlltonlan may be expressed as products of , depending
only on the relative coordinates of the particles in the nucleus with
respect to its centre of gravity, and that \I/L and \PN are eigenfunctions
of Hy, and Hy respectively, with eigenvalues Ep end Ey. Ey jg the same as
what we have previously called € or €_. Now let the recoil energy R be
defined to be the increase in EL. Then by the conservation of energy, the
gama ray energy is €,-€,-R for a decay and €,-€,+R for absorption. We
cannot here define a recoilless process to be one in which ""L is unchanged,

since this would imply that the total momentum of the solid was unchanged,

whereas it must change by the amount of the gamma ray momentume™ However,

K.
the eigenfunctions of Hy have the form \}’,f e(“' B-'\.Pw, vhere BK is the total

momentum, R the centre of gravity of the solid, and W, o is a wave function

of zero total momentum. The, energy is given by

2M
where M is the total mass of the solid. A recoilless process can now be def-
ined as one in which K changes but not ‘PL. « For non-interacting nuclei such
& process cannot occur since there is no mechanism for the transfer of the
recoil among the nuclei, but celculation shows that it has a finite probab-
ility in a solid, In such processes ELO is unchanged and R is equal to the
change in K'K*/2M. If the solid is initially at rest this change is of

order 1/y and is negligible for situations encountered in practice. One is

therefore led to the exisience of a shaply defined line of energy GI’GL
4

® I am indebted to R. R. Vierhout for pointing this out.
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in the gauwa ray speeiruw, If the solid is in metien, calculatien of the
2,0

2V

3. Classical theory of the MYssbauer effect.

change in gives the Doppler shift.

Some features of the MYssbauer effect can be derived from s classical
model. The nucleus emitting the gamma ray is replaced by a classical sgource
of electromagnetic weves, of frequency v , say.! One is then led to the

following picture of the MYssbauer effect. First let us suppose thwt the

micleus oscillates harmonically with a single frequency.fL « Neglecting

relativistic effects, the signal perceived §§ & stationary observer is freg-
ency modulated with modulating frequency JL about s mean frequency v ,
owing to the Doppler effect. The theory of frequency modulation shows that
such a signal has frequency compenents v+wi, for all integral n, In partick
ular, there is a component at the oscillator frequency ¥ . It can easily
be shown that the Fourier transform of & signal frequency modulated in an
arbgitrary way also has & delta function at its mean frequency, provided
that the integral of the dewation from the mean frequency over arbitarily
long time intervals is bounded. Consideration of this shows thst provided
the mean distance between the sg#ource and observer does not alter with time,
the frequency distribution of the signal seen by the observer has a delta
function at the oscillator frequency.

Thus the classical theory explains the existence of the !W¥ssbauer line.

|
However, it does not give all the results of the quantun theory; in partic-

x The natural linewidth can be taken into account by assuming an expon-

entizlly decaying seource, but here we shall assume a scource of constsnt

anplitude.
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ular it predicts a spectrum which is symmetrical about the V8ssbauer line,

whereas the real spectrum is sssymetric.

4. Quantum theory of the relativistic shift.

The relativistic shift arises from the difference in mass between the
excited and ground states, which was neglected in sect. 2. We shall first
consider the model of & nucleus in a one dimensional pottentisl well, to
indicate qualitatively the results expected. The energy levels of a harm-
onic well are (w¢3)kw, where w=Jf/m , F being the force constant and m
the muclear mass. The excited state has a greater mass, and consequently
smaller W . Thus the mmvels are all less than the correspending
ones for the ground state. Accordingly the gamma ray energies, both for
emission and sbsorption are reduced, by an smount [V\"‘Ll)'R.AU. This is greater
for higher energy levels, and so the mean gemma ray energy decreases with
increase in temperature. In this model the shift depends on the value of n,
and so there is a broadenkng as well as a shift.

A generzl formula can also be found giving the emergy shift for a solid.
In this case the shift is due to the fact that BI. (sect. 2) is not the seme
for the excited and ground ststes of the nucleus. The difference results
from the fact that the term p;_L/Z m; giving the kinetic energy of the nucleus
involved in the process contains its mass my explicitly. Hence \PLO and E'_°
mst change during the process. The new values can be derived by regarding

the change in H’L as a perturbation. It is necessary to note that since the
-2

P
perturbing term Smi commutes with the total momentum, if 4',_, is a zero

momentun wave function then the new wave function derived by perturbation
theory will also be of zero momentum. Applying first order perturbation

theory, we obtain
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(sH) = <s-‘ii.>

s SW\L A4, Y\. _ SM" \
M t IW\L W Ly
where Ty is the expectation value of the kinetic energy of the mucleus.

Ll
If we neglect the change in 7—“"\ , the recoil energy R is just SELO

For an emission process, by the mass-energy relation, Sm;”‘"E/L)', where
E
E is the gamma ray energy. Hence R=?“_=—E.Similarly for an absorption pro-

cess, SM; is E/(" and k:‘m_i,‘r. In both cases the change in ganma ray energy

E. 18
is g = e~ .
£ w\;clb._....-.._........(Ha)
and the relative change is )
SE T (
_— = — . 4}
E w\".(_l . @ . i . . .. k L>

Ty may depend on the initial state of the system, leading to a broadening
of the line as well as a shift. This possibility has been considered by Snyder
and Wick (1960), who show that the broadening expected in a perfect crydstal

t a definite temperature is very small. If we neglect the broadening, eqgns.
4.1 give the shift as a function of temperature, T; being now the average
kinetic energy of the nucleus at the temperature concerned. ¥he calculation
of Ty in the general case is rather complicated, but in two particular cases
it can be celculated easily. In the first case, at high temperatures (T>)GD).

3
the classical equipartition theorem holds, and gives the result T, = KT s

SE
Hence E kT/"‘ ct T I - T w (4-2)
The temperature coefficent is given by
1 dE -2
—E—-TT—: lk/mi(l_ C e - _ . _ . TR, (4’3)

The second case applies when the nucleus is embedded in a lattice of atoms
f{dentical to it. Then Ti is simply the mean kinetic energy per atom, and Ti/mi

is the kinetic energy per unit mass. If we also make the gpproximation of harm-

onic interatomic forces, then the kinetic energy is half the total lattice




energy. Hence
SE _ o
_E— - 2 Lth/L‘ R N I T T T 9

where Ul is the latticed energy per unit mass, and the temperature coefficient

; is given by

é%:~i~CL/C&" R (S5

where QL is the lattice specific heat per unit mass.

5. Classical theory of the relativistic shift.

The relativistic shift has a very simple interpration on the classical
model: it is simply the time dilatation predicted by special relativity. Let
us suppose that the proper freguency of the nuclear *clock’ i.e. the frequency
in a reference frame stationary with respect to it, is » . If the velocity
of the nucleus relative to the observer is v, the frequency of the clock in
the observer's reference frame 1sv;¢zAﬁTTC?ZE. This will not be the same as
the frequency seen by the observer.ya” » owing to the Doppler effect. However,
the mean values of ¥y' and v,  , taken over a long time interval, will be the
same, because the Doppler effect results from the verying phase lag of the sig-
nal in passing from the sdource to the observer, due to the varying distance
it has to travel. However, since the mean distance over long periods of time
stays constant, these fluctuating phax differences will have no effect on the
mean frequency. Since the prsition of the uM¥ssbeuer line depends only on the
mean ffequency seen by the observer fscct. 3), its shift depends only on the
time dilatation, and 1 to first order in v2 is gurem Ay

_S;Y_ = -3 -‘g{ = — L mvE /it = — T, /wmic?

in agreement with egn. 4,tb. In this case there is no reason why the integral

of the deviation of the frequency from its mean value should remain bounded
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for arbitrarily long time intervals, since v2-vZ does not have this property.
Hence the MYssbsuer line is also broadened; however, this is only a second
order effect. It could be derived from quantum theory by calculating the
perturbation to second order.

fhis is the most direct method for deriving the relativistic shift from
the classical model; other methods lezd to some difficulties (sect. 7).

Sherwin (196@) has pointed out that the existence of the shift confirms
the reality of Einstein's clock paradox. According to this, if two clocks
move from A to B, the first by motion involving accelerations and the second
by unaccelerated motion, and the clocks are synchronised at A, then on meeting
at B the first clock will be slow compared m;:h the second. Sherwin observes
that if we have two nuclei, the first in a solid at a high temperature and

the second in a solid at a low temperature, these play the roles of the two

clocks in the clock paradoXe.

¢. Experiments on the relativistic shift.

The relativistic shift was first observed, though it was not realised at
the time, in the expcrinent carried out by Cranshaw mxt et. al. (1960) to
observe the gravitationsl red-shift. They measured the frequency shift between
a sgource and sbsorber at different heights, and noticed that the fluctuations
between results on different runs were appreciably greater than could be exp-

lained as statistical fluctations. In the case of the particular nucleus used,

Fe57, the relative shift is 2.2110'15/°C at room temperature, and later measure-

ments xmxw revealed fluctuating temperature differences between sgource and
absorber of the order of 0.5°C, sufficient to explain the fluctuations in

measured shift. Later Cranshew and Schiffer funpublished) checked the shift
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t
more directly by cooling the absorber to liquid niﬂrogen temperature, thus

producing a comparatively lerge and easily measured shift. Meanwhile the
relativistic shift had been discovered independently by Pound andR Rebka
(1960), who showed that its temperature dependence for Fe’ agreed with (4.4).

A similar result for Sn”9 was obtained by Boyle et. al. (1960).

7. Is the relativistic shift a second order Doppler 3kifif® effect?

Pound and Rebka (1960) proposed the following explanation of the relstiv-
istic shift. The Doppler shift can be expanded as s power series in v, the
velocity of the spource. The terms of first order have no effect on the M¥ss-
bauer line, since ¥ is zero. However, v% is not zero, and it is the second
order term, proportional to the mean kinetic energy, which is the relativistic
shift. E.W. Schmid has pointed out (private corrmunication) that this does not
appear to give the right result in the gecneral case. In this section we shall
show how the inconsistency can be resolved.

Suppose, as in sect. 5, that the nuclear frequency is ¥ measured by an
observer moving with the nucleus, and Vopy &3 seen by the stationary observer.
Let v be the velocity of the nucleus, and @ the angle between its velocity and
the line joining it to the stationary observer, as seen in the stationary ref-
erence frame. For simplicity we suppose @ constant. According to special relat-

ivity (pinstein 1907),
v JI=vi/ct
| = (v/c)wn @

To second order in v, 5
_ _ A v v L
WV,!,;’V{I 2 ct +(_WO+F‘*’96}
4
2

fo—— e + —‘—0‘420}~

yobs =
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The frequency of the Lfssbauer line as seen by the observer is
= 1 ve
Voo =~ V“""i%f w’la}

% _\-/-:o,

However, the correct expression for the frequency is, by sect. 5,
T

\'4

!

¢ v=ril-ta
This agrees with (7.2) only when 8=90°} i.e. transverse oscillation of

Kke nucleus. The explanation is as follows. In deriving (7.2) from (7.1) the
time average was taken. However, the time occuming on the left side of (7.1)
is the time when the signal reaches the observer, and on the right side the
time when it leaves the nucleus. These are not the same, and so the process
of time averaging is not justified. The above considerations indicate that

the relativistic shift cannot be regarded aw a straightforward second order

Doppler shift. The correct result can be obtained by the recsoning of section 5.
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Part II. COUPLED SUPERCONDUCTORS.

t. Introduction.

Vhen = metal becomes superconducting, remarkable changes occur in its
propepties, the most striking being the flow of cuerents without resistance
and the exclusion of magnetic fields from the interior of the metal. Thanks
to the recent theories of Bardeen, Schrieffer and Cooper (1957)EEs&) and
other workers these phenomens are now fairly well understood, and are known
to result from a type of long range order extending throughout the super-
conductor. If the superconducting metal is cut into two pieces these prop-
erties are lost, even if the pieces are reconnected by a wire of normal
metal; a magnetic field can penetrate into the normal metal joining them,
while it is impossible to make a current flow from one piece to the other
without the continuous expenddture of energy. Clearly the two pieces no
longer cooperete together in the way necessary to produce the chemfzristic
behaviour of a single superconductor. If, however, they are pressed together
into direct contact the originsl behaviour is restored and the two pieces
behave like one.

It is natural to ask whether there can be any behaviour of two super-

conductors intermediate between those characteristic of complete separation
and of complete union, in which the two parts influence each other a certain
amount, but not enough to exhibit the phenomena of superconductivity to
their full extent. This gueztion is of particular interest in view of the

experiments now being carried out involving tunnelling through a barrier

layer between supercomductors (Nicol et. al. 1960, Giaever 1960) and cond-

nction between two superconductors separated by a thin normal rEgkzx layer,
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(Smith et. al. 1961). In addition, a superconductor in the intermediste state
consists of a complicated domain structure of normal and superconducting
regions, and the superconducting regions might be expected to influence each
other to some extent. In the case of tunnelling there has previously been

no valid theoretical treatment of tie case when both sides of the barrier

are superconducting, and the experimentally demonstrated absence in the
formula farxikexfoxxxXx for the tunnelling current of the coherence factors,
shown by Bardeen, Cooper and Schrieffer (195§) to occur in calculations
involving superconductors, has not been explained.

It is to the resolution of these questions thet this part of the diss-
ertatian is devoted. We shall see that if two superconductors influence
each other slightly, not only do they exhibit to a restricted extent the
properties of a single superconductor, but they also show several new proper-
ties, which are perhaps no less remerkable.

In sections 2 and 3 the theory of broken syrmetry, its application to
superconductinity and the definition of the phase operator are described.
Using these ideas the mathematical formalism necessary to deal with coupleéd
superconductors is derived in sections 4 and 5. In section 6 Anderson's
analogy between a superconductor and a robating bodyZ, which proves helpful
to seeing the physics behind the mathematics,is developed further, In section
7+ as a preliminary to dealing with coupled superconductors we discuss the
properties of a system consisting of two completely non-interacting supercon-
ductors, and in section 8, the main body of thp work, the properties of
coupled superconductors are derived. Finally, in section 9 we apply a modified
form of the perturbation theory methods of Cohen, Felicov and Phillips, in

conjunction with the mathematical techniques developed in sections 4 and 5,

to calculate the magnitude of the effects in tunnelling.

|
i
|
|
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2¢ Broken symmetry and restricted canonical ensembles.

Anderson (1961-2) has considered the feature of 'broken symetry' which
occurs in many calculations of the self-conststent field type and is gener-
elly associated with phase transitions. Much of the succeeding diseussion can
best be understood against the background of these ideas, and so we shall
outline the relevant features in this section.

We shall illustrate the theory by considering e pmriicular examnple, an
isotropic fegromagnetic system. If one calculates the ground state of such a
system by the Hartree-Fock method, one obtains a state in which all the spins
are aligned ih a definite direction. This state has the prpperty that it is
not invarient under all the transformations which leave the Hamiltonian
invarient, in particular, rotations. The same feature occurs in the grand
canonical ensemble obtained by having a distribution of excitations given by
the ususl statistical mechanical formulae for non-interacting particles. we
shall cell an ensemble obtained in this way a restricted canonical ensemble,
since it does not contain all the states of the true grand canonical ensemble,
which rmust have all the symmetries of the Hamiltonian.

Fron any restricted canonical ensemble others mey be obtained by applying
the transformations which leave the Hamiltonian invariant. Under these trans-

formations the self-consistent field will transforn in a well defined manner,

and there will exist a set of parameters-{l} as a function of which theself-

consistent field in any particular ensemble csn be expressed. For example,
in the ferromagnetism case the flirection cosines of the direction of magnet-
ization determine the self-consistent field. Similarly, in a solid six para-
meters suffice to specify the mean lattice position, which determines, for

example, the self-consis tent field in which the electrons move. In all cases
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the parameters may be trezted as classical variables, since they depend on

the mean properties of a large number of particles and are subject only to
insignificant quantum-mechanicsl and statis tical flucthations. ljore precisely,
corresponding to the parameters'{a& there exists a set of quentum-mechanicsl
operators {A} such that if ¥ is the number of particles in the system, the
restricted ensenble specified by‘(a& consists of states which are, to order
«IH/N). eigenfunctions of the operators A with elgenvalues a. One feature
asgociated with restric ted ensembles is the existence of collective excitations,
which can be thought of as due to processes which change the values of the
ensemble parameters, whereas the quasi-particle excitations leave the para=-
meters unchenged. For example, in a solid rotations of the solid as & whole

are collective excitations.

3. Broken symmetry in superconductorsx and the S operators.

A loss of symmetry of the kind considered in the previous section occurs

in the random phese approximation (RPA) treatment of supercondugtors

(Anderson 1958). In this theory it is assumed that if k,k' are states between

which pairing occurs in superconductors (Bardeen et. al. 1957) then the

operators¢ﬁfaz. and “hqk‘ » Which respectively create and destroy a patr

of electrons in these states, have non-zero expectation values.‘ This asgump- ¢
tion allows superconductivity to be treated by the use of self-consistent

field methods. Before describing these we note two gimplifying assumptions

which are usually mede, mainly in order %o simplify the notation. These are

that the system is invariant under time reversal and under rotations in spin

gpaces These assumptions will not materially affect any of the succeeding

g e ot S

* Here and in the following we shall use Roman letters for electron oper-

ators and Greek letters for Quasi-particle operators.
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arguments except where it is exEplicitly stated. If the assumption of time-
reversal symmetry is made, then the psired states k,k' are time reversed
states k,-k. Under the assumption of invariance under rodtations in spin space
the convention can be mede that states not preceeded by and mmx preceeded by
e minus sign have spin up and gpin down regpectively. The following self-
consigtent field parameters can then be defineds

w, ={a, a2 W, =(a_}, a_> b, =(aya> L::@:L:)_(}A).

The next step in the RPA treatment is to write down the comutators of
gingle-electron creation and destruction operators with the Hamiltonian and

to linearize them with the use of the RPA. The Bogoliubov operators

+ = +
Lo = Y O~V Ay

- +
°<Ir
S R ak‘\'

- - +
0 uqu Yie 4o

(“kl"'vul’ |) are then found by solving the equetions

CH,« 1= et [H,a,1= -, (3.3}
which give w, and v in terms of the P's and n's. Owing to our assumption of
time~reversal gymmetry the B's are real and so W and v, cen be chogen to be
resl. Finally the B's and n's are found in terms of the w_ and v, for an
engsenble containing a Fermi-Dirac distribution of the quasi-particles thus

%
defined.

%

This differs from Anderson's treatment in two ways; firstly he wishes

to derive the collective excitations and so works with operator pairs, and
gecondly he considers only the groundé state. However, the treatment sketched

here is a valid method for finding the quawi-particle operators at a finite

temperature, provided that energies are measured relative to the Fermi energy
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The ensemble defined in this way is a restricted canonical ensemble. Th
ece this, let us consider the effect of the transformation which changes the
phases of wave functions with different numbers of electrons relative to
each other. llore precisely, it is the transformetion obtained by multiplying
the stete vedtors by the unitary operator ewe » where N 1s the total number
of electrons end & an arbitrary real constant. The matrix elements of E with
regpect to the new states are the same as before, since H commutes with N.

The effect of the transformation on the self-consistent field parameters (3.1)

=% — 218 T
b Chy
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Since the 3% are not invariant under the transformation, the ensemble

)

derived from the RPA solution is not invarisnt, and so is a restricted ensemble.
As indicated in sect. 2. other regtricted canonical ensembles may be obtained
from a given one, in this cage by applying the operstor ef“w to the state
vectors.

We now turn to the problem of finding a parameter s to label the restricted

engembles. To do this let us take a particular solution of the RPA equationsg

to be the ensemble s=1. If the Hamiltonian is time-reversal symmetric the
golution with real bk' which gives an ensemble with time reversal gymetry,
should be chosen in order that the symmetry may be maintained in the succeed-
ing manipulations. From (3.4) we see that the self-consistent field paremetems .
Por the ensemble obtained by spplying the operator GJNG involve & only through

Ai0
the expression € » and this we sghall talke to define s. s thus always has

unit amplitude. As in sect. 2, we shall supiose thet there exigts an operator

(Bogoliubov 1958), so that the conventional statistical mechanical treatment

shall be valid.
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S such that a typical state in the ensemble s is (to order t//N ) an eigen-
function of S with eigenvalue s, and hence an eigenfunction of ST’with
eigenvalue ¥, Vie sha}l see in gect. 4 that in superconductivity it is the
operator S rather than the parameter s which has a simple physical

gignificance.

4. Generaliged operators in superconductors.

Since the Bogoliubov operators depend on the self-mmmmyconsistent field
paraneters they can be good quasi-particle operators in only one ensemble.
While in most calculations in superconductivity theory the correct results
can be obtained by aversging over a single restricted-:ensemble, in problemsg
involving two superconducting regions it is necessary 1o consider a general
regtricted ensemble (cf. sections 7 and §). The appropriate generalised forus
FEtkE
of the Bogoliubov operators een be derived in the following way. Let A be a
good quasi-particle operator for the endemble s=1. Now let the canonicsal
transformation generated by the operator eiNe e applied to both the state
vectors and the operators. This changes the ensemble s=t{ into the ensemble
s-eZie. and A into a new operator AB' Since a canonicsl transformation leaves
natrix elements unchanged, Ae is a good quasi-particle operator for the
engemble s-ezie. It is then necessary to express AB in terms of s instead of
8. Since g is the eigenvalue of §, if in this form s is replaced by the
operator S, the resultant operator will be a good quasi-particle operator for
all ensembles. Applying the transformation to the Bogoliubov operators (3.2)
we obtain

) = 10+
(°(ko 5 uke‘ a,

(a(k"&)o— -+ =
ale = e S

(Kkv)e
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However, these operators cannot be expressel in terms of s=e2ig' byt

gsince we have not yet uged any formalaze which depend on their prhases, we may

16

rultiply (4.1) by e*'e and replace e® and e~21@ by S and st respectively,

obtaining
L T
°‘1eko Wk = v S ay
“hko = u, Sf{ - vka_:
t -
ekl T Ukl v, Sa,

- t
qtk\ = uk Sq‘k +Vkak

X eko ] ;
hig T e STk T A

T
= Ukak —'nga.-u

_ "
Xekl T Utk +Vks a

_ ot t
(g = e > A TV

The q.uasi_pa:r'ticle energies will be the game 23 in the Bogoliubov theory:

[HJYQ‘QJ = ékr(’(‘;h

[H'qquj ch; (I\k;
[H'qehsj - G“S‘xeks

H:kax] = = Cr kg
(2.2) mey be inverted to express electron operators in terms of quagi-~

particle operators:
+
&k u °‘cko + Vk «kq'
t t
A= Y Yed ™ Vi %o
-'.
*kkl
Cl_.k_ U, Kkl — i Xy 0
We next consider quasi-particle occupation number operators. These mey

be defined by the equivalent expressions:

-~ ,T — *
VT Gy Keks T dkkro(ku; =

1. 5%

(4.5)
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both of which reduce to the Bogoliubov expressions for the gwi engemble.

We shsll now derive various cormmutation relations. Firstly, since the
miltiplication of state vectors by e:M® multiplies s by e21®(by definition
of s), it follows that e'iNQSeiN9=e21QS. Differentiating with respect to @

and yutting eé=0, we obtain

[s,N]=2S
[t N]=~26" s

Hence

The states of the s=1 ensemble are those in vhich the occupation numbers
corresponding to the Bogoliubov operators (3.2) have definite values, snd so
application of a Bogoliubov operator to one of these gtates produces another
gtate in the same ensemble. It follows that if a generalised quasi-particle
operator is applied to a state in sny restricted ensemble it produces a
gtate in the same ensemble, i.e. it does not alter the value of g. Hence the
generalised quasi-particle operators commuite with S and st,

(%815, §7] = [y, 5] = L, ¥ 1= Lt 7]
- L"‘:Lu,SJ? [o(t,.,,S] = (el €1 7 [*ak:,fj =0

and [V“S'S*] ¥ [Vks,SJ =0 . . . < . < < .. (4.8).

From (4.6) end(4.8), S leaves quasi-particle occupation numbers unchanged

(4.7)

but reduces the total number of electrons by two. It can therefore be inter-
preted as the operator which removes a bound pair of electrons.ﬁ Similarly
ST creates a bound pair.
Since S is a classical variable, (sect. 2)
[s*s]=0 - _ _ _ . . . (49
to order IANN . This may be compared with the commutation relations for a

boson state macroscopicelly occupied. In that case fo(*,o(./ :', while o % =V,

¥
In the theory of Gor'kov (1958) it is the operator which changes [M+2) into ““)
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and xjﬁx may be regarded as commuting (Bogoliubov et. al. 1959).

We next derive commutation relations between N and the guasi-particle

operators. From (4.2) add (4.6) we obtain
[N, “:u_g:l:“zks
(N, & Jot
[N; bols ] ~Xeks
[V, oty s 7 s

Thus e and h creation operators respedtively increase and decrease N by
cne, and vice versa for destruction operators. This is analogoum to the
behaviour of electron and hole operators, and is the reason for the nomen-
clature used.

Any relation gatisfied by Bogoliubov operators mey be extended to a
relation between generalised quasi-particle operators imxtk® by applying
the canonical transformation generated by eiNe, thus producing a relation
between @ operators, (4.1), replacing the © operators by genersalised quasi-
particle operators, and expressing any power of eie left over in terms of
3 or ST'operators. In this way we can obtain the relations

ocel«s =S ' d‘*kks
°(+kks: S °‘+2ks (9 )
Yes = S Ky '-” :
O("\U - S*"(eks -
[“‘st,“ek's' ]+ = [“:w Re kk's’J N Skk' 3“. \
[Mehs ,“hu'x'].; = §w Sls' gt

1‘* 1hks. A e k's'-'+ - Skk‘ ‘S“' §

and all other anticommtators sre zero,
+ ,g* )

« ksxh\u— Vu; {
A _ ’r(‘H})_

% Wks a‘Q\LS - ;
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Finally we note the formule for the Hamiltonian in the guasi-particle

approximetion:

H?—Es)’kseks Y PR P

5. The effect of a change in the origin of energy.

The treatment of sections 3and 4 is valid only when energies are measured
relative to the Fermi energy. However, the only effect of chenging the origin
of emergy vwill be on the Hamiltonian and on the evolution of the system with
time. If the origin of energy is changed so that the Fermi energy becomes )N.
the only effect on the Hamiltonian is to add the terwlAPJ, changing (4.14) into

H:E,ykseks+ AV . v s om s (5el)e

Using (4.3), (4.5), (4.6), (4.8), (4.10) and (4.12), we deduce

(H, «hied = (e + ) i

[H, «, 17 (6= Mty (5.2)
[H,NQ‘“J: (_eu"\)deks '
[H s J= (=€t Dty

(K, 571 = 2x8° } (5.32)
[H,5] = =2)§

From these eyuations it ig seen that the generalised operators remain
good quasi-perticle operators with an erbitrary energy origin, in contrast
to the Bogoliubov operators.

We shall impose the requirement that the relations expressing the self-
consistent field in terms of s rmst not involve Xkmm the time explicitly.
This defines the time dependence of s, and from (5.p) it is seen that s has

imaginary expouential time dependence with frequency 2%/1'\ . This time depend-

can be regarded as due to the generation of collective excitations by the

perturbing term AN added to the Hamiltonian.
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6. The analogy between a guperconductor and a rotating solid.

Our conclusions concerning the physical significance of the above con-
siderations can be better understood if the properties of a femiliar gystem,
which 1s closely analogous to a superconductor, are kept in mind. This is
that of a so0lid congtrained by frictionless forces to rotate about a fixed

component
axig (cf. Andergon 1958). In such a systemn the zsmpmwx of angular momentum
gbout the axis is constant and quantised to values mh (neglecting complic-
ations due to spin). This follows from syrmetry properties, just as the
conservation of totel charge, Ne, doegs in any systen of electrons. However,
in a solid there is also a variable ¢, whose existence is due instead to
broken symmetry, describing the orientation of the solid. The single-valued
ei’ corresponds closely to the parameter s in superconductors. To continue
the analogy, corresponding to the states in superconductors which have the
sane quasi~particle distribution but different totsl number of electrons,
are states of a solid which are identical apart from their angular ~omentun

(cf. states of a molecule which have all their guantun numbers equal except

the rotational ones), and can to a good approximation be obtained from each

e
other by applying the operators € ‘¢(cf. the operators 5,51 in the super-

conéucting case). States with a definite ¢ are superpositions of these states
with definite phases, just like the states of the restricted ensembles in a
superconductor.

To complete the analogy we note thal what corresponds to the xk Fermi
energy of the superconductor is the angular velocity of the rotating body,
since both determine the frequency with which the classical variable rotates,

wvhile the angular momentum of the rotating body corresponds to the number of
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&7 electrons in the superconductor, as noted above.

T. Physical significance of the S operator.

In this section we shall consider various questions concerning the phys-
ical interpretation and o nsequences of the preceeding theory, and in part-
icular the existence of the S operator and restricted ensembka.‘

In the first place we shall discuss the question of whether it is actually
possible to do an experiment to observe the value of g. Some light ié thrown
on thisg by the fact that 5 does not commute with N. This implies that sny
observation of s, the eigenvalue of S,cannot be performed without changing N,
the number of electrons in the system, Hence it is not possible to determine
g simply by subjecting the supercohductors to electromagnetic fields, for
example. A complementary fact is that the result of any observation wiich
does not alter the value of N is independent of s, and calculations can be
done just as well with a restricted ensemble (as in the usual Bogoliubov/RPA
methods) as with the true grand cenonical ensemble. This is because one can

trengform any one regtricted ensemble intodany other one by applying an

operator eiNe, which does not alter the matrix elements of any operator

vhich commutes with N. The analogous property in the case of the rotating
golid is that its internal properties ere independent of its oriemtatim,
owing to the symmetry of the Hamiltonian.

Next we may note that if somehow we manage to observe the velue of g,
the system is left in a state which is a superposition with definite phase

relations of statew with different values of N. Wick et. al. (1952) have

® of. Wick et. al. (1952).
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suggested that such states doEx not exist, and that systems with an indef-
inite number of electrons can be described only by density matrices. However
Anderson (private communication) has disputed this on grounds connected with
the basic postulates of quantum mechenics. Another releveant point is that s
can be cszused to change merely by altering the abselute potential of the
g sten. Whether the absolute potentiel has any meening is enother question
beset by philosophibcal difficultis. We shall therefore not diseuss further
the/problem of a single superconductor, but go on %o the case of two super-
conductors.

In the first place we shall cousider a system composed of two entirely
gseperate subsystems 1 and r, each containing a superconducting region. The
total nunber of electrons I will be the sun of the numbers in the two regions

Njend Ny, and the Haniltonian E the sun of two Hamiltonians Hj and Hy. There

will be two pair operators Sl,Sr(and ensenmble parameters sj,sp,) since the

gelf-consistent field equations do not connect self-consistent field para-
nmeters in different regions. Commmtation relations for two operators in the
squne region will be the same as for a single region, while two operators
in different regions commte or anticoimmute according to the nunber of fermion
operators they co?a?in. It is easily seen that while 8 and 8, do not commmte
with N, S{Sr and‘ﬁ&éi do commute with N but not with Ny or N,. Their expect-
ation values sfbr end s¥s] depend on the phase difference between s and sp.
By similar arguments to those used in the case of a single superconductor we
arrive at the following conclusionss

(a). The phase difference can be measured (in theory, at any rate)

wvithout adding electrons to the whole system, but not without sllowing elect-

rons to pass from one region to the other.

¥ At added ‘wn peocfy. Ha argumenk of, Wick ek.al- dowomet n fack oply Tor aupgaqosions
e(,mb_h difformg from cack her dy an oven wmber of dedrons, el as theoe
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(b) If a quantity can be observed without ellowing electrons to pass
from one region to the other, its value is independent of the phase difference,
but a quantity whose measurement necessitates allowing electrons to pass from
one region to the other may depend on the phage difference.

(c) States in which there is a definite phase difference, i. e. eigen-
states of SirSr mist be states in which the numbers of electrons in the two
regions are indefinite, but since Slfsr commites with N they can contain a

definite totsl number of electrons, and so no difficulties of principle are

involved. where Vi, MM%N

-21()\1—)\,-)1:/1'\___8—1@\"&/11‘ Hence all

LY

(@) s;ksr has time dependence @

quantities dependent on the phase difference oscillete with frequency 2eV/h.
It is mainly on account of this fact that the Bogoliubov/EPA theory cannot
cope with the present situation.

The question of abgolute potential does not arise in this case. Never-
theless the gysten does exhibit the paradoxical behaviour discussed by
Ahsronov and Bohm (1$59), that its behemiour can be affected by the existence
of electric fields through which no electrons are able to pass. To see this,
suppose thet the phase difference is measured at a time t;. The phase differ=-
at a later time t, will depend on the integrated value of the potentizal
difference between the regions over the interval between %; and t,. This
potential difference implies the existence of eleciric fielés in the space
between the regions. However, it is necessary to allow electrons to pass
through this field only at t; and t,, when the measurements of phame diff-
erence are being made, anc not during the intcrwening time.

It should be noted that the initial phase difference existing when the
two regions first become superconducting is completely uncertain, in the

qushtun-nechanical sense, but once it has been measured its future vsalue
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can be predicted if the potential difference is known (eventually statist-
jeal and quantum-mechsanical fluctuations will make the phase difference

uncertain again until snother observation is made).

6. The properties of coupled superconductors.

8.1.Introduction.

In section 7 we saw that the physical consequences of the exigtence of
the s parameters are connected with processes in which electrons can be
transferred from one region to the other. We shall therefore now consider the
possibilitie s that can occur when a small amount of electiron transfer is
posgible, i.e. there is veak coupling between the twod gubsystems. An example
of this is a system contzining two superconductors between which tunnelling
is possible. Another example of coupling occurs when two superconducting
regions are joined by a normal region, though here the coupling is very strong,
gince electron trangfer is not inhibited by a potential barrier. This coup-
ling can be expressed mathematically by adding a transfer term Hp to the

Hamiltonish. In the case of tunneling one normally assunes that HT is composed

of terms like Tlrairar, representing transfer of an electron from a state r

in one region to a stste 1 in the other. The sitnation is more complicated
in the came of superconductors joined by a normal region, since there is &
time lag between the disappearsnde of an electron from one superconductor
and its reappearence in the other. The unitd of time which one would expect
to be relevant in superconductors is Planck's constant divided by the energy
gap, 1,60 ~ 10~ sec. For exsmple this is the length of time for vhich a
virtual state obtained by exciting a pair of quasi-particles cen exist. In

this time an electron travels a coherence length. Hence electron tunnelling
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can be treated as an instantaneous process, but electron transfer between !
two superconductors separsted by a normal region of thickness comparable with
or greater than a coherence length can not.

8.2, general properties of coupled superconductors.

We shell now congider some general features of the behaviour of emupled
guperconductors, in the first plade by considering the ansalogous system of
two interacting rotating bodies. To give a concrete picture of the inter-
action, we may suppose that the bodies are megnetised and that the inter-
action is megnetic. Corregponding to the current passing fromy ome region
to the other, which is proportional to the rate of transfer of electrons, is
the couple between the two solids, which is equalfto the rate of transfer of
angular momentum. The analogy to current being fed into onme region and out
of the other by an external source is the application of equal and opposite
couples to the two solids, and the analogy to the potential difference between
the regions is the difference in the anguler velocities of the solids.

In the case of the roteting solids, there are two types of contribution
to the couple between them. The first is a dissipative kind ( eddy currents,
etc.), which exists only when the solids have different angular gelocities,
and tends to make their angular velocities the same. Lhe second, the direct
interaction between the magnetic moments, is non-dissipative and produces &
steady couple when the solids have the same angul:r velocity, and 1ts exist-
ence is intimately connected with the broken symmeiry, which picks out a
definite direction in each solid. If one replaces the words *solidt*, fcouple!

and tangular velocity' by 'region','current? and 'potential' respectively,

one is imme#diately struck by the analogy with ohmic currents and supercurrents.
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be i
The causes of ohmic currents are well kmown, and will notAdiscussed further

here, The second contribution arises from the fact that the rate of tramsfer
of quente depends on the phase difference between the classical variables,
and we shall now consider possible czuses of this inm the case of supercond-
uctivity.n One way in which the phase difference could enter is through the
operation of coherence factors.# These arise from interference between the
two processes ky=>k, and 4kz$-%q(Bardeen, Cooper and Schrieffer 195%), and
the phase difference between the matrix elenents which have to be added would
depend on the phase difference between the s parameters in the two regions,
if kqand k, were states in different regions. It is at first sight surprising
hat these two processes should interfere, since they involve electron trensfer
in opposite directtons. This paradoxicel result is due to the fact that any
knowledge of the phase difference necessarily iwplies a lack of knowledge of
the numbers of electrons in the two regions, and so wave functions with this
property rust be used to demonstrate the interference. To take the simplest
possible example, if the initial state is E*N‘,NéFb*NfFZ,NZ-Z » where yq .
is o gtate with 1 electrons in one region and m in the other, operation of
the trensfer term in the hawniltonian produces & state containing the term
(aT(__*I'LT_)N’M»,\)NL-I , where T_, T, are the coefficients of the terms in
L. vwhich transfer electrons in the two directions. It is clear that in this

T
circumstence interference between the two procecses can occur,aﬂ\d‘d&l He MW

The other main cause of dependence of the current on the phase difference

is the possibility of transfer of a bound pair from one region to the other.

% petailed calculations in the case of tunneling are performed in gection 9.

# Contrast Berdeen (1961), whose srguments we find unconvineinge.
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In nmathematical form, if at t=0 the system is in a state‘*’, at a later time

there is a finite probability that the gystem will be in the state %:S,*’,

in which a pair has been transferred from region r to region l. To explore
the consequences of this, we shall siunplify the model by supposing that this
ig the only possible process,. e shall also make the approximation that it
takes place instantaneously. The process is in fact a second order one,
gince it invblves the trenster of two electrons, and the energies of the
intermediate state differ from the initial and final state energies by an
amount of the order of the energy gaps Heunce the effective time for the
process is that mentioned earlier, h divikded by the energy gap, and the
approximation should be valid if the phase difference veries only slightly
in that time,i.e. if the potential difference is. small comparec to the voltage
corresponding tp the gap energy.

We shall therefore assume HTsmsl S ik%f% S (B.2.1).
The current from region 1 to region r is therefore

T=eN, = ie/k [H¢+H,,.+H-,. N,] =ie/WLHy N,J
= Dielk (M) S, —MTSIS,), Ay (%6).
If the two regions are restricted ensembles, we deduce that
(7> = —2ieh Msfs,-MTsrs) - . . . (6.22)

This shows explicitly the dependence of the curreni on the phase difference.
An unusual festure is that the current is linear in the matrix element,
vwhereas one normally thinks of the probability of a process in quentun mech-
anics as being proportional to its square. However,‘in the usual situation
in which one calculates transition probabilities there are o large number of

gtates with small occupation numbers, whereas here we are cdealing with a

transition between just two states, wiose occupation numbers are large. The
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seme feature is apporent in the analogy of the rotating solids. The transfer
of angular momentun may be regarded as due to the virtual emiszion of a
photon by one solid followed by its absorption by the other, =nd the matrix
element is thus proportional to the product of their magnetic moments. The
couple between the solids is also proportionel to their product, and is
therefore linear in the matrix element.

This linear dependence of the currents on the matrix element is very
important to the question of their possible observation in tunnelling. If
T is a typical matrix element for single eleckron transfer, the matrix elem-
ent for transfer of pairs will be proportional to |T1l. since it is a second
order process. Hence the pair current is also proportional to |T1z. The
normel quasi-particle current is proportionsl to |T1las well, since the ususl
e rturbation theory applies to it. Hence the pair current is proportional to
the Quasi-particle current, and not to its square, as might be thought. If
it were proportionsl to its square it would be extremely small, since the
tunnelling probability for even a single quasi-particle is very small in the
specinens normally used. We shall suppose that & similar expression to (8.2.2)
holds even when pair transfer is not instantaneous.

8.3. Supercurrents, DC and AC.

As in the case of coupled rotating solids, there are two possible types
of behaviour, depending on whether the potential difference between the regions
is zero or non-zero. ife shall first consider the case of zero potentisl diff-
erence. In that case { he phase difference remains constant with time and a
supercurrent given by (8.2.2) flows. This current is due %o the transfer of

bound pairs from one region to the other. Assuming there to be no other cont-

ributions to the current when the potential difference is zero, there is a
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maximum current, J. = 4\M) e/ T - - .. . C. . (8.3.1)
vhich can be cé:ried in thig way.x Analogously, in the case of the coupled
rotating solids, there is a maxirmum couple which can be transmitted Prom

one to the other without allowing relative mstimmrotetion. If equal and
opposite couples of less than the maxigum are applied to the solids, they
will rotate until the couple which they exert on each other becomes eguzol

to the applied couple. Similarly, if current less than the criticsl value

is fed into a system of two coupled superconductors, initially a potential
difference will be set up, which will cause the phage difference to change
until the supercurrent becomes equal to the current fed in,

Coupling between the two regions so as to allow & supercurrent to pass
between them can be achieved in practice by placing them in congtact. Super-
currents have also been observed between two superconductors with s thin
nornal region in between{Smith et. al. 1961). The calculation of section 9
indicates that it may also be possible to observe supercurrents in tunnelling.

Now we consider the case when there is a finite potential difference ketw
between the two regions. In that case sf*sr oscillates with frequency

v=2eV/h, and so by (8.2.2) the current slso oscillates with this frequency,#
end has amplitude ‘HM'e/f\:T‘ « There is in this case no DC pair current, to
first order in M (though there will be +the ususal guaxt dissipative quasi-

particle current), and this can be attributed to the fact that the process of

® It is possible that M mey depend on J, the current flowing from one
region to the other. However, if J, is small the variation in 1 when W<,
can be neglected. e shall therefore ignore this complication, though it is

the dominant effect in determining the critical current in bulk superconductorse.

# 1ﬂN corresponds to 483.6 lMe/s, and .. 1 Gels to 2.068 mV.
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transfer of a bound pair from one region to the other no longer conserves
energy. However, the process of transfer is possible if a photon of the
correct frequency is emitted, and this emigsion cen be regarded as radiation
produced oy the oscillating supercurrents. The explenstion as a pair transfer
process with photon emission does not require the assumption of definite
phase relationships between the two regions. Since photons have a continuous
energy distribution conventional perturbation theory applies, and leasds to

a rate of photon emission proportional to |Fﬂz'. This agrees with the inter-
pretation in terms of oscillating currents proportional to |P1' » Since the
number of photons radiated by an oscillating current is proportional to the
gquare of its amplitude.

The energy of the emitted photons comes from the transfer of pairs through
the potential difference, eand in order to maintain the systen in a steady
state the energy rust be supplied from a current source. The itwo-superconductor
systen is in fact a direct DC to AC converter. The conversion is a spontan-
eous emission process, rather than one of stimulated emission as in s maser#

8.4. The effect on supercurrents of thermal fluctuations
and electrostatic energy.

The existence of the supercurrents discussed in §.3 depends on the phases
of the two regions being locked together by the coupling. It is clear that if
the coupling is small enough the locking together of phases will be destroyed
by thermal fluctuations. e may derive a criterion for the occumence of phase
locking by noting that (€.2.1) expresses the interaction energy as a function
of the phase difference, and shows that it varies between the limits iﬂzmﬂ.
An excitation energy #"W\ is thus required to enable the phases to rotate

freely relative to each other, and in order that this should not be caused by

therma) fluctuations, we must have
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In terms of the critical current (eqn. £.3.1),

JeDekT/R . . . . . ... (8.a2).
Putting T~1°K, this gives ch>2x10"8A. The lifetime of the supercurrent ;buld
be expected to increase exponentially with increase in |M|, and so for super-
currents to last for macroscopic time intervals it should be sufficient to
have Jo> fuA. If J,, as defined by £8.3.1), is less than 0.5uAs steady super-
currents with zero potential difference should not occur, but Jo still hes
significance as the amplitude of the oscillatory currents occuring at =
non-zero potential difference.

Another factor which must be considered as possibly limiting the occunmence
of supercurrents is that of electrostatic energy. This has the effect of
inhibiting the transfer of pairs from one region to the other, and tending to
prevent the locking of phases, which requires pair transfer. Since the energy

geained by'matching phases is42|“ﬂ s and the energy required to transfer a

pair of electroms is 2e2/C, where C is the capacitance between the regions,

L
the condition for phase matching to be favoured is -%; <K“2|N|.., .. (8.4.3).

 Since the condition 4IM\>7kT st also be satisfied, this will be so provided
that e2/C< YT, i.e. C>>4e2/kT~ 10" 2pF.for T=1K. It is clear from this that
the effect of the electrostatic energy id normally negligible compared with
that of thermal fluctuations.

8.5. Interaction of supercurrents with radiation: induced supercondhctivity.

We shall now investigate the phenomena that can occur when external

electromagnetic radiation is present in the system, We shall regard the effect

of the radiation as simply producing oscillations in the potential difference

between the regions. Since the rate of change of phase difference is propor-
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tional to the potémtial difference, the pair current will no longer have
congtant frequency but will be frequency modulated. If the mean potential
difference is V, and the frequency of the incident radiation is v , the pair
current will have Fourier components of frequency lzgw/kj:nyl (n integral).
Radiation of this frequency can then be emittefl. Quen tum-mechanically, the
process consists of the transfer of a pair from one region to the other, with
absorption or stimilated emission of quanta of the incident rediation, wikk
and emission of another photon to make up the energy difference.

In a similarimanner to the situation in the absence of radiation, diff-
erent behaviour results when 2eV is an exact multiple of hv. In that case the
pair current has a zZero frequency component, which will depend on the phase
relationships between the incident radiation and the s parameters. Thusg the
Mesn current can take on a range of values while the potential difference
remains at nhy/2e. In other words, thzfcharacteristic has a portion of zero
slope resistance at a non-zero voltage. The width of this portion depends on
the intensity of the incident radiation. This phenomenon can be regarded as
superconductivity induceé by the radiation, and is due to pair transfer
accompenied by the absorption or stimulated emission of photons. It might
form the basis of a means of measuring h/e f or of accurate stabilisation
of very small voltages.

8.6. Spatial distribution of supercurrents.

We have so far been eoncernmed only with the total supercurrent and not
with its distribution in space. To investigate this, we shall idealise the
situation by supposing that the two regions have a common interface S, which

is to be regarded as composed of peairs of points, one on each side. The

¥
Suggested by Professor A. B. Pippard.
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transfer of electrons is then regarded as the annihilation of an electron at
a point on one side with the simumltaneous ceeation of an electron at the
corresponding point on the other side, i.e.

He = 3 HT oo (R) 4T, o (R ) o (0
where s is a spié index and 1 and r label points on the two sides of S. The
gecond order matrix element M for pair transfer is given by suming the
contributions to it over each pair of points at which the electrons cen cross,

and is proportional to
[\ * cploer |
300 T R st R ) e
5,5 PeS PeS 4=
where F;,F, are the Gor'kov functions (1958) which give the matrix elements

for destruction of pairs on the two sides. We have integrated over only one

time variable in order to obtain a finite result. We shall now make the

approximation of putting
F(P,s,:P',8',41)= T‘zglP,P')Slt,t')\HV,t) it sks’,

0 if s=m';
this is equivalent to neglecting spatial variation over a coherence length,
and making the same assumption as before about about the rapidity of changes
with time. \#'is the teffective superconducting wave function'. We then
obtain M= Sm(P) ds (8.6.1)
2 x
where W\(P\OC —rP \PQ (P) \P'_(P) - _— . (8.6.2).
Hence, from (8.2.2) the total supercurrent is proportional to
A
. 2 > . T ¥ * * }

J A =20k (L2400 g ) ccts =T (0, [P 5.7 ) S
Therefore, assuming that the current density at any point depends only on
quantities in the neighbourhood of that point, the supercurrent density is

S - * N *‘ *

N T T T O Cv o (8.6.3)

: =2k V¢ 8.6.4).
where ), o€ 2.ek b '-}’Q (P) 4/" (P) ) A | )
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If time-reversal symmetry exists in the absence of a magnetic field, then
"11 must be pure imfginary everywhere, since time reversal changes j—-j,
31—731* end sp-ys;*. Similarly, from the invarisnce of Hp under time reversal
it follows that m must be real.

8.7.Effects of magnetid fields.

To investigate the effects of megnetic fields we shall make use of the
result (Keller and Zumino 1961) that the change in phase of ¥ round a

closed curve in a superconductor is equalnto the fluxoid through it divided

=
by Rc/2e. Let Pand Q be two points in S, and C be a curve obtained by going

from P to Q in region 1 and Mack sgain in region r, and let § be the fluxoid
through C. In the result quoted , the phase change in 7 in going from one
superconductor to the other muat not be inédluded, but only the sum of the
phase changes which occur on traversing the portions of the curve which lie

in one superconductor only. Therefore

3 /(nes2e) = {40y - BB} + { p(P) —#(8,) }
= {4 (8,1 - ¢} ~{ g(R) =~ $(B) }
= Dg(q) —Da(pP),

where #§ is the phase angle of Y’ and A¢ its change in crossing S. Hence from
from (8.6.4) the difference in phase between the values of j, ot P and Q is
equal to § /(hc/2e). We see that the effect of a megnetic field is to caumse
the phase of j' to vary over S. The consequences of this depend on the amount
of coupling between the regions and the strength of the megnetié field. In
the first place, let us suppose that the coupling is so weak that the super-
currents induced do not appreciably affect the field. In this case a suffic-

iently large magnetic field will cause the pimzmxmf Itk critical weiwe—of

=
I am indebted to Dr. P.W.Anderson for pointing out the connection between

Phases end fluxoids.
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“$he-supercurrent to be reduced, owing to the variation of phase of j' over S.
This will start to happen when the fluxoid through the curve becomes of the
order of a flux quantum he/2e. If the superconducting regions are sufficiently
thick to prevent the field penetrating #ghk right through them, the curve ¢
can be drawn so that it is in a region of zero supercurrent, and then the

only contribution to the fluxoid comes from the flux inside C, and this can

be calculated from knowledge of the penetration depth of the superconductors.;
If one assumes a penetration depth of 10=7 cme, and the dimensions of S to

be of the order of lmma. one arrives at a relevant field of the order of
0.1gauss.

An Interesting situation occurs when S cnsists of two seperated regions
which are mmek so small that tkm J; can be taken to have constant phase in
each one. This might occur, for example, if two specimens of the Jype used
in tunnelling experiments were connected in parallel. In that case the curve
C would be a curve encircling the hole between the two parts of the circuit
which were in parallel. In this situation the total supercurrent is a periodic
function of the flux through the hole, the unit of periodieity being the flux
quantum hc/2e, bessuse Jy is effectively the sum of two terms, which vary in
relative phase as the flux is changed. Thig is very similar to the situation
pointed out by Aharonov and Bohm (1961, 1959), involving interference of
electrons which can travel along two different paths, between which there is
some magnetic flux., In that case the diffraction pattern has periodicity in
the flux with period he/e; in our case the unit is hc/2e instead, since the

interference is between pairs, which have charge 2e.

3
Note that it is only fields tangential to the interface which are

important. Trapped flux going straight from one region to the other has no

effect on the phase of ji.
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We shall now consider what can happen when the coupling betwwen the
regions is sufficiently strong for the supercurrents to have an eppreciable
effect on the magnetic field. We shall for simplicity consider only the case
when the total supercurrent from one region to the other is zero, i.e. when
no external current is fed into the system. There will still be currents
across the interface, as can be seen from eqn. (8.6.3), since the phase of
j' is not constant in the presence of a magnetic field. These currents are
dmegnetic currents of the same type aw those encountered in bulk supercond-
uctors, and tend to screen out the magnetic field from the region between the
superconductors. More light is thrown on this by eqns. (8.2.1) and (8.6.1),
which show that the coupling energy is proportional to |M|, and that this is
greatest when m has the same phase everywhere, i.e. when the field is excluded.
For sufficiently small fields the gain in coupling energy resulting from
exclusion of the field is greater than the magnetic energy required to do so.
From this criterion one deduces a critical field given by

e R R
Selibageinmfoep@=— where d is the thickness o;f%ayer of penetration of the
field when it is not excluded, and j, is the critical supercurrent density.
Taking d=2x10™” cm., this gives

H,=0.05[J, ¢ 5 N : . ; . . . . . (8.7.2)
where H, is in gauss and j, in ampslcmz.

The effective distance D to which the field penetrates between the regions
is given by the relation H,/D=4vj,/c, which follows from Maxwell's equations
under the assumption of exponential decay with depth, and yields the result

D%=he/16w%5ged. + .+ 4 e e e e e e u(8.7.3).

5

Agein putting d=#x10~’ cm., this gives




D=0.04IJ§; cme .

where jc ia in ampslcm?

8.8. Swmary.

Summarising the results of this section, it can be said that if two
superconductors are coupled togbther strongly enough to overcome the effects
of thermal Fluctuations, they show to a limited extent the characteristic
properties of a single superconductor, in particular the exclusion of magnetic
fields and supercurrents. If, however,a finite potential difference exists
between the superconductors, these properties are lost and oscillatory ones

take their place.

9. Calculation of tunnelling currents.

We ﬁow turn to the calculation of the tunnelling current between two
superconductors. The method we use is a modification of the perturbation
treatment of Cohen et. al. (1962) for the case when only one region is super-
conducting, and is in the spirit of the Goldstone perturbation theory (1957).
This is bawed on the interaction picture, i.e. the evolution of operators
with time depends on the Hamiltonian without tunnellihg:

A=i/h(HptH, Al . L (9.
while the evolution of state vectors depends only on the small tunneling Zwm
Yerm: y=—=-U/KHs o (9.2)
This gives the same time dependence of the physically important matrix elements
as the more ususl Schrddinger and Heisenberg pictures. In order to avoid
difficulties resulting from the use of Fourier transforis 0f functions which

do not tend to zero at infinitely distant times, one normally multiplies HT

by eC, where € is a small positive constant which is allowed to tend %o
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zero. In the following calculation we shall always put & equal to zero as

gsoon as it is possible to do so whthout affecting the subsequent evaluations.
We mmst now consider the appropriate initial conditions. Since we wishoto
celculate the oscillating currents as well as the steady ones we suppose that
at t=-%0 the system consists of two independent restricted canonical ensembles,

which are then allowed to interact.

V.9
The point of using the interaction pictuee is that in, quasi-particle and

pair operators have the simple imaginary exponential time dependemce, as
follows from equations (5.2),(5.3) and (9.1). These neglect quasi-particle
interactions which complicate the time dependence, but these interactions
gshould not affect the tunnelling current. If, however, we had used the
Heisehberg picture part of the time dependence would have arisen from the
tunnelling term in the Hamiltonian and could not have been ignored.

The mean tunnelling current is given by

3(6)=terh & {a) =1etk (B, N,T),

( since the formula for the time derivative of expectation values involves
the total Hamiltonian)
=1em<[HT,Nr]) aieltE o (%) | [Bpow :(t)>

where Py is the weight of state k in the ensemble.

To calculate J(t) to second order in Hp, k(%) needs to be known to first
order. Integrating (9.2) we obtain to first order

[k(t)=(1-1mf €'y p(t")at)k(- w))-(l-imE(t))[k( 00)>
where E(t)= J Hp(t')dt. . . . . . . . . «(9.3)
Hence J(t)-ierkZpk<k(-w)I{Him:(t)} (&,.x,] ( 1-1RE(1) } | k(-0))

elta([ﬁn,.N,J E]> « » e & 5 2w = efoua)




-43~
where the expectation value is with respect to the ensemble at t= —o0 and
higher order terms have been omitted.

We shall assume that the system has time-reversal symmetry and symmetry
with respect to rétations in spin space, with the same convention as in
section 3 concerning the direction of spin of a state. Time-reversal symmetry
prlays an essential part in the succeeding argument, but the assumption of
gymmetry under rotations in spin space is made only in order to demonstrate
the essential features of the calculation without becoming involved in the
complications of generalising the RPA theory to pairing with general time-
reversged. states.‘ Results which are essentially the same are obtained if this
is done. Taking this assumption and the discussion of (8.t) imxtw into eccount,
we can write Hp in the form

: 2‘% (Tlralf atT_; .-r"rl a_r+Tr1a;!’ al-l»T__r'_la.fra_l) ee  so  ss  s(9.5)
where as usuel 1 and r distinguish states on the two sides. Since HT is
Hermitean and has time reversal symmetry,

T ASPY oo we  se ee  ee  ae  es (9.6)

*

-’I'lr e e [ R ] L e e e (9.7)

T-l i -r-

From (9.5),

[HT,N;=E% (Tlrai+aT+T_l'_raiia_r-Trla;'ar-T_r’_laj;a_l) O (N
If HT is ex;ressed in terms of quasi-particle operators, each term has expon-
ential time dependence and the integration necessary to evaluate E can be
performed immediately. If (9.8) is also expressed in terms of quasi-particle

omrators and the resulting expressions substituted into (9.4), the expression

3
In particular, notational difficulties arise from the fact that double
application of the time reversal transformation to a fermion operator changes
its sign. The assumption neccessary in the general case to ensumre that all
contributions to the supercurrent at absolute zero are in phase is that
<a{(Thd?is vositive for all states k, where T is the time reversal trans-

formation.
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for J reduces to terms consistiig of the expectation values of products of
four quasi-particle 0peraf01:w: two in each region, with respect to the res-
tricted ensemble at t=-00, when tumm the regions are independent. The only
such products with non-zero expectation values are of the form o(ﬂ 0 Ir Xﬁ_
where each f can be either an e or an h. Their expectation values can be
obtained in terms of the mean occupation numbers by using (4.5),(4.12) and
(4.13).

We shall now give the formulae obtained by following this procedure snd
outline the intermediate stages of the calculation.

Substituting (4.4) into (9.5) we obtain

+ t T
H i {Tﬂr(ueur elo €r°+u '(Qloo(l\yl+ AR h£|°<2r0+vv °(I\‘e; Arl)

f VX g0 X J’
+ T‘l—r(uzur‘x 20 %er| = Yo Vi el “""0 Ve Yr g0 “erd +Vo Y- Xiso Xhvo )

+ Hemitean conjugate tema (h-c.) aa o oe e ) oo .(9.9)

The calculation of E(t) (eqn. 9.3) involves the evaluat‘i(on of integrals such as
t Et. + , i _ .t t 6*‘(h€f€e~h ‘Ey)/'k)t’
J-Q e X o0 (e “ero(t Jat' = %ol (o) °(e,rolc)f\w € ’

- °(+ (0) o (o)e{€+(()94’@(“/\;—"6-)/*‘)*/[{64— l (>\e+ 6{‘ /\y-"e‘p-)/t}

edo erd

= — (Kot (t)oeolt)/ (eV +6—6-"ly)

where ‘177\6 » and gives the result

ugu.— MQVr

E= (t_li" {Tey eV Feg—€, 0y "(uu vt T Q_v+ee+er—1y‘ °(do dktn
* evft:;_sir\ Cne( Mero +QV‘:2€::_EV_;,‘ %ol °(Ln)
+'T-0,~‘f (F\l:-\‘erf?:_:;‘_ °<Il| X a,%—%—:/f;;‘ °(:‘Q, K:ra
- {\7\%5;5:&_;?:\ Augo Xerl + e\\//i::+@,~|'q kau“;o)\}’“ﬂ L

dt!

{110)
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Substituting (4.4) into (9.8) we obtain
- . T 'f f
(.8, )= %.{ T e (82 ¥e1 o¥erdt M Ye¥e1 it 1% n1 X erg? 1 V%01 Frt)
t t ot
T_y, -r (810 ) {Xory =01 V01 X0~ 10 %01 Xer V1 V¥ n1 S hrol R e o+ (92 11)
The terms with non-zero expectation value in the commutator of (9.11) and (9.10)

are of two distinct types:

+ T —t !
(1 e rePecPe10) X erd bro¥eio “eroo%lo 310°(ero
- 1 -
=t ) o %e1c%eroXero ~%10%e10%er0 ero
= )’10(“’)’1.0)"(“\’10 ) \/ro from (4.5) and (4.12)

= V0 Vo -

P

+ 1 s 2 T t
and [ 010 ¥ero’™ 1ol = K o1 Xerdu1med Xn10 hro 610 ero

ot + b oot
%0 mXn16¥erdnro! h1d e10 hroSero

- t
= Vi1 U=V 5o+ (1=v1 51 %0,

from (4.12) and (4-13),

:—6'10‘ yrc)sl*‘Sr.

Substituting (9.10) and (9.11) into (9.4), end ueing (9.6) and (9.7) we Obtain

. L, T — _— _—
7= ""*c'e.? IT, Iz[u! “Weo¥y) wetv 4G A ) vt (T - V) 2 - )
v fr - - 2 QA |
eV+ ¢p- €~y W"Gl"fr"w eV~¢to—-€r -1 eV—e, 4 €. -1
4+ UoVeu vy §y Siy Yo—ved %0 — Vri =1+ 7+, " — Vg + Vo, S:(

eVieo—€,-1) eVt éepy (w‘“’. quee-fpirl e\/—6£+€,—|‘v‘

+hedors - ‘ . (9.42)

whére r.3., denotes terms obtained by reversing spins, i.e. in%erchanéing Oand‘;

in the spin suffixes. This can be written in the form
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¥ * A
J.!T0+Jtsl Sr+J‘ Sr 510 o oo o oo .0 .e (9.',).
Jo is:the DC component of the current at a finite voltage, while the other

terms are the phase-dependent terms discussed in (8.2), which have no DC

1 .
component except at zero voltage. Since A-in = P’k"‘"’“ém) » (P=principal value),

Jo» which consists of terms derived from the first row of (9.12), can be

written as
o~ 2—%2 b lTerl { ‘hl Uy (T’c—o -Vro) 5‘eV+E,z"€r‘)+‘4£erz'('| + Vo +75) § ev+ E¢+&,.)
4y (o7, Vo0 ) § (V—to- 6) 4 v (= T+ )b (eV-eet &)}

+rs .. (U4)

T
+ Vgluv

(9.14) can be cast into a form in which u and v do not eppear, as in
the case considered by Cohen et. al. (1962). To do this one notes that ref-
lection gbout the Fermi surface leaves T, € and ¥ unchanged, to a good
epproximation, but changes uk2 into l-‘uk2 and vk2 into l-vka, so that one
can omit the factors ukz and vkz in (9.14) if the region of integration over
omixrxeaskxefxixxmt both 1 and r is confined to one side of the Fermi
gurfece in each term. If one then defines single-electron energies and occup-

ation numbers by the relations

D €, < ke
Ek:{ M ¥ €, el > ke 1.15)

-~ |~ Y‘“ \k'ékF
"o { Vi )' el 7 ke 116)

wkers then (9.14) reduces to
To= T2 Tl Ui R ) § (B~ b L o)

This is the same as the result expected on the single-electron picture, the

probabilities of tunnelling from the state 10 to the state r0 and vice versa

2 2T

being ;16/\\ Tlr 10 S ) V\Qo “"\rn) * h-—QrIL S (E{'o‘Eb’o)
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amd. N,y (l""\f.) }g ”:?r,lJ (E?o - Er-o) ‘-eop.m-m:eg
Thits our formula for the DC component of the current agrees with that obtained
from the single electron picture. However, the latter model is devoid of
physical reality, since it effectively assumes that quasi-particles suddenly
change from electrons to holes at the Fermi surface, with a corresponding
discontinuity in single-electron energies(eqn. 9.15), This excludes, for
example, processes in which a quasi-particle outside the Fermi surface on
one side crosses the barrier and becomes a quasi-particle inside the Fermi
surface on the other side. The wrong value for the current would be obtained
in general if the discontinuity in properties were supposed to take place
elsé:}here than on the Fermi surface. In & superconductor quasi-particles in
fact change continuously from electrons to holes in a region near the Fermi
surface, and our eqn. (9.14) reflects the lack of any discontinuity.

We shall now consider the phase-dependent currents. J] is equal to the
coefficient of sf‘sr in the second row of (9.12) plus reversed spin terms,
and can be decomposed into deltsa function and principal value parts. In anal-
ging it we shall assume that W, vy is always positive. Its reality follows from
time-reversal symmetry, and consideration of the RPA equations shows that it

cen be taken as positive for all k if a suitably averaged matrix element for

electron-electron interactions.\4h_k;“$_k‘ yis negative, i.e. esgsentially the

game as the condition for superconductivity itself, though it might be violated
over a smell part of the Fermi surface.

The delte function part of J’ has a very similar structure to JO’ and can
be considered as the correction to Jo for coherence effects. With the above
asgunmption about WV, it can be seen that when 8, and s, are in phase the

" A added n proof: WY, com change aign
betomer Rrs ak nome ot on Re deemh
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contribution to the current from the tunnelling of quasi-particles (the first

and fourth terms of $.12) is increased and the contribution from crestion and

destnetion of pairs of quasi particles, one on each side, (the second and

third terms of 9.12) is decreased. The principal value part of Ji IS due to the Tumnelling of
airs, is Zero when 5 and 5. are in phare, and has the typical form of a second order matrix eloment .

We shall now consider what remainsg of J y 8t zero voltage, when the delta

function terms cancel. J 1 then reduces to

_ 21 L Yo — Ve 1=V, )
T AT v v (P2 & P——e-;—;f- tre

At gbsolute zero, vV = 0 » 80 only the second term contributes, and all contrib-
utions to it are in phase. At finite temperatures the second term becomes

less in magnitude, and the critical supercurrent is further reduced by the

first term (since V is a decreasing function of € ).
Finally we shall calculate the tunnelling supercurrent at absolute zero,

using the féllowing quentities derived from the BCS theory:
-1 4
uw = 2 €
€
ne 2 GemN, ezA
0 e LD

)
where A is half the full energy gap and N, assumed constant, is the density

of states in the normal metal. The factor 2 arises from the fact thate& 1is
pogitive for states on both sides of the Fermi surface. We shall replace H},\l
by M, an averaged value over all pairs of states of given energies, and

=213
neglect its dependence on energy. The critical supercurrent J Jis then given by

l
T. - b | ae T
NNQNW € de (€Q+Er)'J(Cgl‘AeL)\/(evl—Ar—L)

deQ * de,
MNQNAj s I

(€, +€) --/(E::—'Arlj

dfg k™ (€2/A..)
G R VAl Ny

= = MM,N,A,AJ
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[ o]
4 tdt = A
= £ MNeNv%Arj N (BRIt 3,5 (hatidg €, = Areakt) ... (3.B)
+® (8, /Ay)
In the case when AefA,fA » this can be converted immediately into s
standard integral: ;D T+ eMV, N, A _
T.5 %NN:;N?A Jotmexﬁ-it = .Ke : BN Al L))

Comparing this with the formula for the current flowing when the metals are
in the normal state, J= %M%er. we see that the critical supeecurrent at
absolute zero is equal to the current flowing in the normal state at a voltage

equal to /. times the full energy g8D.
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