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Abstract

This thesis is concerned with three distinct, but closely related, re-
search topics focusing on the unipotent elements of a connected re-
ductive algebraic group G, over an algebraically closed field k, and
nilpotent elements in the Lie algebra g = LieG.

The first topic is a determination of canonical forms for unipotent
classes and nilpotent orbits of G. Using an original approach, we
begin by obtaining a new canonical form for nilpotent matrices, up to
similarity, which is symmetric with respect to the non-main diagonal
(i.e. it is fixed by the map f : (xi,j) 7→ (xn+1−j,n+1−i)), with entries
in {0, 1}. We then show how to modify this form slightly in order to
satisfy a non-degenerate symmetric or skew-symmetric bilinear form,
assuming that the orbit does not vanish in the presence of such a
form. Replacing G by any simple classical algebraic group, we thus
obtain a unified approach to computing representatives for nilpotent
orbits for all classical groups G. By applying Springer morphisms,
this also yields representatives for the corresponding unipotent classes
in G. As a corollary, we obtain a complete set of generic canonical
representatives for the unipotent classes of the finite general unitary
groups GUn(Fq) for all prime powers q.

Our second topic is concerned with unipotent pieces, defined by G.
Lusztig in [Unipotent elements in small characteristic, Transform.
Groups 10 (2005), 449–487]. We give a case-free proof of the con-
jectures of Lusztig from that paper. This presents a uniform picture
of the unipotent elements of G, which can be viewed as an extension
of the Dynkin–Kostant theory, but is valid without restriction on p.
We also obtain analogous results for the adjoint action of G on its Lie
algebra g and the coadjoint action of G on g∗. We also obtain sev-
eral general results about the Hesselink stratification and Fq-rational
structures on G-modules.

Our third topic is concerned with generalised Gelfand-Graev repre-
sentations of finite groups of Lie type. Let u be a unipotent element
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in such a group GF and let Γu be the associated generalised Gelfand-
Graev representation of GF . Under the assumption that G has a con-
nected centre, we show that the dimension of the endomorphism alge-
bra of Γu is a polynomial in q (the order of the associated finite field),
with degree given by dimCG(u). When the centre of G is discon-
nected, it is impossible, in general, to parametrise the (isomorphism
classes of) generalised Gelfand-Graev representations independently
of q, unless one adopts a convention of considering separately various
congruence classes of q. Subject to such a convention, we extend our
result.

We also present computational data related to the main theoretical
results. In particular, tables of our canonical forms are given in the
appendices, as well as tables of dimension polynomials for endomor-
phism algebras of generalised Gelfand-Graev representations, together
with the relevant GAP source code.
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Chapter 1

Introduction

We assume that the reader is familiar with the general theory of algebraic groups

and the core theory of unipotent elements. Nevertheless, in this introduction we

shall review the latter, before outlining the content of the thesis. We shall also

review more specialist background material as required.

1.1 Basic facts about unipotent, nilpotent and

semisimple elements

1.1.1 Throughout this thesis, G will denote a connected reductive algebraic group

over an algebraically closed field k. We begin by recalling a result of fundamental

importance, namely the Jordan-Chevalley decomposition. This says that for all

g ∈ G, there exist unique elements gu, gs ∈ G such that g = gsgu = gugs, and

that for any embedding of G as a closed subgroup of some general linear group

GLn(k) (recall that such an embedding is always possible), gu and gs correspond

to unipotent and semisimple linear transformations respectively. We thus define

g to be unipotent if gs = 1 and semisimple if gu = 1. One could, at this point,

justify the study of unipotent elements by the fact that one can answer many

questions about general elements of G by answering questions about unipotent

and semisimple elements respectively. Whilst this is indeed a powerful and oft-

used technique, it is not the full story, since the theory of unipotent elements is

a vast and beautiful subject in its own right and has many profound applications
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1. INTRODUCTION

in representation theory.

Also playing a central role in this thesis is the related theory of nilpotent

elements in the Lie algebra g = LieG. Identifying G with a closed subgroup of

some GLn(k) again, we define x ∈ g to be nilpotent if it is a nilpotent matrix

and semisimple if it is diagonalisable. Note that nilpotent elements of g are also

ad-nilpotent elements of g, but there may be ad-nilpotent elements of g which are

not nilpotent. This prompts us to bear in mind that our Lie algebras will always

be the Lie algebras of a connected reductive algebraic group G and so the notion

of nilpotency in intrinsically linked to G. To illustrate, if g is the one-dimensional

commutative Lie algebra then we may take G to be either the additive group k
+

or the multiplicative group k×. In the former, all elements are nilpotent, while in

the latter only 0 is. There is also a version of the Jordan-Chevalley decomposition

for g, which states that for any x ∈ g there exists a unique semisimple element

xs ∈ g, and nilpotent element xn ∈ g, such that x = xs + nn and [xs, xn] = 0.

1.1.2 One salient feature of the research described herein is that we have tried

to focus on results that are applicable in positive characteristic, often using the

(easier) characteristic zero setting as a starting point. One reason for this is

to obtain results which may be regarded as ‘characteristic-free’ in some sense,

but also it has allowed us to obtain many results about finite groups of Lie

type and their (ordinary) representation theory. We will encounter a number

of situations where there is a divergence in behaviour attributable to changing

from characteristic zero to positive characteristic during the course of this thesis.

This phenomenon is to be expected, of course, as the following basic examples

illustrate. Firstly, when chark = p > 0 one may characterise unipotent elements

as those g ∈ G such that gp
k

= 1 for some k ≥ 0, whereas non-identity unipotent

elements have infinite order when chark = 0. Also, a simplifying feature of the

characteristic zero situation is that an element of a semisimple Lie algebra is, in

fact, nilpotent if, and only if, it is ad-nilpotent.

The last remark may lead one to wonder what role G plays in the nilpotent

theory. The reason, of course, is that we are interested not only in unipotent

and nilpotent elements per se but their orbits under the AdG-action. These

turn out to have very interesting algebro-geometric properties, and a huge quan-

2



1. INTRODUCTION

tity of insightful research has been produced over the past 50 years, which has

painted a good picture for us. One of the most important results is the finite-

ness of unipotent orbits in G, proved in positive characteristic in [Lusztig, 1976].

(The characteristic zero case follows from [Dynkin, 1955] and [Kostant, 1959].)

Lusztig’s proof is interesting in that it is short and uses the (ordinary) represen-

tation theory of finite groups of Lie type in a non-trivial way. The corresponding

result for nilpotent orbits was proved in [Holt and Spaltenstein, 1985]. This relies

on a computer, however, and no non-computational proof is known to exist at

present.

1.1.3 The finite set of unipotent classes can be endowed with a poset structure

as follows: For two unipotent classes C1, C2 of G, we set

C1 E C2 ⇐⇒ C1 ⊂ C2,

where the bar denotes Zariski closure. For example, it is well-known that the

unipotent classes in GLn(k) are parametrised by the partitions of n via the Jor-

dan canonical form; the poset on unipotent classes described above then agrees

with the poset induced by the dominance ordering on the partitions of n under

this parametrisation. The set of nilpotent orbits can be endowed with a poset

structure in exactly the same manner. These posets have been investigated in de-

tail in [Spaltenstein, 1982] and provide a useful way of visualising the underlying

geometry.

1.2 Frobenius endomorphisms

1.2.1 Approximately half of the results in this thesis concern finite groups of

Lie type, and so we had better recall a few facts about these. Assume that

chark = p > 0 and let q be a power of p. Let n ≥ 1 and consider the map

Fq : GLn(k)→ GLn(k), defined by

Fq : (gi,j) 7→ (gqi,j).

3



1. INTRODUCTION

F4
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Ã1
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Figure 1.1: The poset structure for F4 in good characteristic

This is called the standard Frobenius endomorphism. For an arbitrary connected

reductive group G, we will call a map F : G → G a Frobenius endomorphism

if there is an embedding of G as a closed subgroup of some GLn(k), such that

some power of F is a standard Frobenius endomorphism. Whilst succinct, a

more useful and general approach is to first define an Fq-rational structure on

a k-variety V to be an Fq-variety V0 such that V = V0 ⊗Fq k. Then the map

F : V 7→ V given by F0⊗ id, where F0 raises the functions on V0 to the qth power,

is called the Frobenius endomorphism of V , corresponding to this Fq-rational

structure. If such a map is defined on the underlying variety of G and is also a

group morphism, then it is a Frobenius endomorphism of G, as defined above.

We will often use the language of Fq-rational structures on G in this thesis, in

which case we will implicitly have a fixed Frobenius endomorphism in mind. For

an accessible account, refer to [Digne and Michel, 1991, Chapter 3].

A Frobenius endomorphism turns out to be a bijective homomorphism of
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1. INTRODUCTION

algebraic groups, but not an isomorphism of algebraic groups. However, it is an

isomorphism of abstract groups. The fixed point set

GF = {g ∈ G | F (g) = g}

is a finite group called a finite group of Lie type.

1.2.2 Finite groups of Lie type inherit many nice group-theoretic properties from

their ambient connected reductive groups; we again refer the reader to [Digne and

Michel, 1991] for details of these, but we recall here several particularly useful

and important facts.

The first is the Lang-Steinberg theorem, which states that the self-map on G

defined by g 7→ g−1F (g) is surjective. We will use it several times in our results.

Recall that a connected reductive groupG is characterised, up to isomorphism,

by its root datum (X(T ),Σ, Y (T ),Σ∨), where X(T ) (resp. Y (T )) is the character

group (resp. cocharacter group) of some maximal torus T ≤ G, and Σ and Σ∨

are the corresponding root system and coroot system of G respectively, together

with a perfect pairing X(T )×Y (T )→ Z, and bijection Σ↔ Σ∨. As an extension

of this, a finite group of Lie type may be characterised, up to isomorphism, by

its extended root datum (X(T ),Σ, Y (T ),Σ∨, τ, q), where τ is a permutation of

X(T ) which fixes Σ and q is a prime power.

We will call a closed subgroup of G rational if it is fixed by F . It is well-

understood that the structure of G is governed by several important families

of subgroups, namely the Borel subgroups, parabolic subgroups, unipotent sub-

groups, tori and Levi subgroups. By considering rational such subgroups, which

are known to exist and behave reasonably well, we may obtain counterparts in

the finite groups GF , which also behave well. One particularly nice consequence

of this is the following elegant formula for the order of GF :

∣∣GF
∣∣ = q|Σ

+| ∣∣T F ∣∣ ∑
w∈W

q`(w), (1.1)

where T is a rational maximal torus of G; W is the corresponding Weyl group

with length function `; Σ is the root system with respect to T ; and Σ+ is a set

5



1. INTRODUCTION

of positive roots. This follows from a version of the Bruhat decomposition for

GF , using the fact that the order of the unipotent subgroups of GF are powers

of q and that the maximal unipotent subgroups are Sylow p-subgroups and have

order q|Σ
+|. The formula (1.1) is a basic example of a ‘polynomial in q’. This is a

deceptively subtle concept which, roughly speaking, means a quantity which can

be written as a polynomial in the prime power q, such that this polynomial is

still valid when we vary q whilst keeping the root system and τ fixed. We will be

very interested in polynomials in q in this thesis, especially in Chapters 3 and 4.

1.3 Springer morphisms

1.3.1 Let Guni denote the set of unipotent elements of G and gnil the set of

nilpotent elements of g. It is well known that Guni and gnil are closed irreducible

subvarieties of G and g respectively, both of dimension equal to the number of

roots.

We say that p is good for G if p is greater than the coefficient of the highest root

in each component of the root system of G, expressed as an integer combination

of simple roots. If p is not good then it is said to be bad. Since the notion of

good and bad primes will be important later, we remind the reader that

p = 2 is bad if, and only if, G has a component not of Type A,

p = 3 is bad if, and only if, G has a component of exceptional type, and

p = 5 is bad if, and only if, G has a component of Type E8 .

For convenience, we will also often consider zero to be a good prime. (Here

‘component’ refers to an irreducible component of the root system of G.)

Springer has shown (cf. [Springer and Steinberg, 1970, Theorem III.3.12])

that if G is a simple, simply-connected group and chark is either zero or a good

prime for G then there is a bijective, G-equivariant morphism of varieties

σ : Guni → gnil,

which we call a Springer morphism.

6



1. INTRODUCTION

1.3.2 Despite the restrictiveness of the above hypothesis, this result has useful

implications for an arbitrary connected reductive group G, which we now explain.

The natural homomorphism G→ G/Z(G) induces a bijection between Guni and

(G/Z(G))uni. The latter is semisimple with trivial centre and so there is a bijec-

tive homomorphism onto a semisimple group of adjoint type which preserves the

unipotent classes. But groups of adjoint type are direct products of simple groups

of adjoint type and therefore we may reduce to considering these simple groups of

adjoint type separately. Finally, we may move back to the corresponding simple

simply-connected group using the restriction of the map we have just mentioned.

It follows that we may use Springer morphisms to build a bridge between Guni

and gnil for any connected reductive group G, provided, of course, that chark is

not bad. This bridge is a dimension-preserving bijection from unipotent classes

to nilpotent orbits, which respects their geometric structure, and allows one to

transfer theorems from one domain to the other. This is especially useful when

one considers that g is a vector space, thus allowing the full force of linear algebra

to be invoked. When p is bad, Springer morphisms do not exist, and in this case

even the number of unipotent classes and nilpotent orbits generally do not agree.

1.3.3 Assume that chark = p > 0 is a good prime for G. Given a Frobenius

endomorphism F : G→ G and a Springer morphism σ : Guni → gnil, there exists

a (possibly non-unique) Frobenius endomorphism on g (i.e. a Frobenius endo-

morphism on g as a variety, which is also a morphism of Lie algebras), which we

will also denote by F , and which is compatible with the Frobenius endomorphism

on G. By compatible, we mean that the following diagram commutes:

Guni
F−−−→ Guniyσ yσ

gnil
F−−−→ gnil

See [Springer and Steinberg, 1970, Theorem III.3.12] for more details. E.g., if

G is a classical matrix group and F is the Frobenius endomorphism which acts

by raising matrix entries to the qth-power, then there exists a Springer morphism

such that the Frobenius endomorphism defined in the same way on g is compatible

7



1. INTRODUCTION

with F ; see Section 2.5 for explicit examples of such Springer morphisms.

1.4 Classification results

1.4.1 Let G be as before and let G′ denote a group with the same root datum

as G over the complex numbers and g′ its Lie algebra. Further assume that G′

is a simple adjoint group. Then we have a Springer morphism σ : G′uni → g′nil.

(In characteristic zero the unipotent and nilpotent varieties of isogenous simple

groups are naturally isomorphic, and so we may drop the requirement that G

be simply-connected in this case.) Let e ∈ g′ be a nilpotent element. Then the

Jacobson-Morozov theorem says that e lies in a subalgebra of g′ isomorphic to

sl2(k). (From now on we will refer to a set of standard generators of such a

subalgebra as an sl2-triple.) It was shown in [Kostant, 1959] that this induces a

bijection between G′-orbits of nilpotent elements and G′-orbits of subalgebras of

g′ isomorphic to sl2(C). The latter were determined in [Dynkin, 1955] in terms of

weighted Dynkin-diagrams (cf. Theorem 2.2.1), which are Dynkin diagrams with

a number from {0, 1, 2} attached to each node, although only certain combinations

are allowed. Dynkin showed that by considering g′ as an sl2(C)-module, one can

naturally define an action of SL2(C) on g′. Thus, one obtains a homomorphism

of algebraic groups SL2(C)→ (Aut g′)◦ = G′. (The latter equality holds since G′

is adjoint.) Let

D̃G′ =

{
ω ∈ Y (G′)

∣∣∣∣∣ ∃ ω̃ ∈ Hom(SL2(C), G′)

with ω(ξ) = ω̃
[
ξ
ξ−1

] }
. (1.2)

When G acts on a set X, let X/G denote the set of G-orbits in X. Then we have

the following bijection of finite sets:

{unipotent classes of G′} 1−1←→ D̃G′/G′. (1.3)

In fact, (1.3) holds even when we relax the assumption that G′ is simple and

adjoint, by well-known reduction arguments (see, e.g., [Carter, 1993, Chapter 5]).

8



1. INTRODUCTION

1.4.2 Whilst (1.3) is a classification of unipotent classes and nilpotent orbits,

it is not a very useful one since the right-hand side is not particularly tractable.

One can, however, use this to obtain a useful classification using weighted Dynkin

diagrams, since to each unipotent class one may attach a unique weighted Dynkin

diagram. This process is sometimes referred to as the Dynkin-Kostant classifi-

cation — we will say more about this in later chapters, where we will use it

extensively. One drawback of this as a classification, however, is that there is not

a uniform way of describing all possible admissible weighted Dynkin diagrams.

It is worth noting that a more natural approach is given by the Bala-Carter

theorem ([Bala and Carter, 1974]1) which offers a recursive classification of nilpo-

tent orbits. One begins with the notion of a distinguished nilpotent element: a

nilpotent element x ∈ g is called distinguished if each torus contained in CG(x)

is contained in the centre of G. An orbit itself is called distinguished if all of

its elements are distinguished. If an orbit is not distinguished then there exists

a Levi subgroup L ≤ G, with dimL < dimG, such that its intersection with

LieL is distinguished for L. By induction one thus reduces the classification of

nilpotent orbits to a classification of distinguished nilpotent orbits, which turns

out to be a tractable problem. Since we will not use the Bala-Carter theory in

any explicit way in this thesis, we will say no more about it, except to recommend

the accessible account in [Carter, 1993, Chapter 5].

1.4.3 Now assume that p = chark ≥ 0. It was shown in [Springer and Steinberg,

1970] that if p > 3(h− 1), where h is the Coxeter number of G, then everything

described in Subsection 1.4.1 remains true, by essentially the same proofs, since

the Jacobson-Morozov theorem is available for such fields. When p ≤ 3(h − 1)

the sl2-theory may no longer be available and so an entirely different approach is

necessary. However, Pommerening’s extension of the Bala-Carter theorem implies

that, in fact, this parametrisation extends to any good p. I.e., the set D̃G′/G
′ nat-

urally and simultaneously parametrises the unipotent classes of G for all G with

1This was proved under the assumption that chark > 3(h−1). It was subsequently extended
to good characteristic in [Pommerening, 1977] and [Pommerening, 1980], although the proof
was extremely long and relied on case-by-case analyses. [Jantzen, 2004] was the first to give a
uniform proof, which was subsequently significantly shortened first in [Premet, 2003], and then
in [Tsujii, 2008].

9



1. INTRODUCTION

the same root datum as G′, regardless of good characteristic. Since a Springer

morphism also exists in good characteristic, we see that D̃G′/G
′ also parametrises

the nilpotent orbits. In summary, we have the bijections

{nilpotent orbits of g} 1−1←→ {unipotent classes of G} 1−1←→ D̃G′/G′, (1.4)

valid whenever chark is either zero or a good prime for G. One may therefore

parametrise unipotent classes and nilpotent orbits in a characteristic-free manner

using D̃G′/G
′. Spaltenstein has shown further that this parametrisation preserves

the poset structure and dimensions of classes, as well as certain compatibility rela-

tions between parabolic subgroups, across all ground fields of good characteristic

([Spaltenstein, 1982, Théorème III.5.2]). We will state this precisely and use it

explicitly in Chapter 4.

When p is a bad prime for G, the number of unipotent classes is often greater

than |D̃G′/G
′|, and, since Springer morphisms do not exist when p is bad, these

need not be in bijection with the nilpotent orbits. Both have been determined in

all cases, however. (See [Carter, 1993, pp. 180–183] for a bibliographic account.)

It turns out that, in all cases, the cardinality of the set Guni/G is less than or

equal to that of gnil/G.

1.5 Structure of the thesis

Chapter 2 is concerned with obtaining canonical forms for elements of unipotent

classes and nilpotent orbits for the classical algebraic groups, as well as GUn(Fq).
We begin with some relevant background results in Section 2.1 before obtain-

ing some auxiliary combinatorial results about the Dynkin-Kostant theory for

G = GLn(k) in Section 2.2. This allows us to prove the existence of a non-

canonical nilpotent representative with certain special properties. In Section 2.3

we present a combinatorial algorithm which transforms the non-canonical rep-

resentative into a canonical form for nilpotent AdG-orbits in gln(k), and which

is symmetric with respect to the non-main diagonal (i.e. it is fixed by the map

f : (xi,j) 7→ (xn+1−j,n+1−i)), and has entries in {0, 1}. In Section 2.4 we show

how to modify this form slightly in order to satisfy a non-degenerate symmetric

10



1. INTRODUCTION

or skew-symmetric bilinear form, assuming that the orbit does not vanish in the

presence of such a form. Replacing G by any simple classical algebraic group,

we thus obtain a unified approach to computing representatives for nilpotent or-

bits of all classical Lie algebras. In Section 2.5 we apply Springer morphisms,

thus yielding representatives for the corresponding unipotent classes in G. As

a corollary, we obtain a generic canonical form for the unipotent classes in the

finite general unitary groups GUn(Fq) for all prime powers q. No such form was

known until now. Tables of these forms for 2 ≤ n ≤ 5 can be found in Appendix

A. This chapter is based on [Clarke, 2011b], which is to appear in Mathematical

Proceedings of the Cambridge Philosophical Society.

Our goal in Chapter 3 is to prove the conjectures of G. Lusztig about so-called

unipotent pieces, which can be viewed as an extension of Dynkin-Kostant theory

to bad primes. In Section 3.1 we define unipotent pieces and state the conjectured

properties, following [Lusztig, 2005], before outlining various additional related

results that we have obtained. We will need an array of tools from geometric

invariant theory at our disposal in order to prove Lusztig’s conjectures and we

will develop these in the subsequent three sections. In Section 3.2 we review the

Kempf-Rousseau theory of optimal one parameter subgroups of G, which regards

unipotent and nilpotent elements as G-unstable elements in the sense of geometric

invariant theory. In Section 3.3 we prove a modified version of the Kirwan-Ness

theorem. The original result offers a criterion for optimality of a G-unstable

element of a G-module: our modification allows us to formulate this for the action

of a parabolic subgroup of G on its unipotent radical, which is not a module

in general. Our other main tool for proving Lusztig’s conjectures is a famous

result of Seshadri concerning G-instability in the group scheme-theoretic setting.

We introduce the required machinery in Section 3.4 before stating Seshadri’s

theorem and then proving a related auxiliary result. In Section 3.5 we prove

Lusztig’s conjectures for unipotent pieces in a completely case-free manner. In

Section 3.6 we obtain two very general results about the Hesselink stratification

of G-modules, which are a by-product of the earlier results. We show that, in

a precise sense, the stratification of G-modules is independent of base field. We

also show that, in the presence of an Fq-rational structure, the cardinality of the

fixed-point set of a G-module arising by reduction mod-p from a G′-module may

11



1. INTRODUCTION

be regarded as a polynomial in q. Finally, in Section 3.7 we consider the natural

analogues of unipotent pieces in g and its dual g∗, which are called nilpotent

pieces, before formulating and proving Lusztig’s conjectures for these situations

too. This chapter is based on the preprint [Clarke and Premet, 2011].

In Chapter 4 we assume that G is a connected reductive algebraic group

defined over the finite field Fq, and let F denote the corresponding Frobenius

endomorphism, so that GF is a finite group of Lie type. In Section 4.1 we review

key standard concepts such as regular unipotent elements and (ordinary) Gelfand-

Graev representations, before defining generalised Gelfand-Graev representations

(hereafter GGGRs) and giving an overview of relevant background results. In

Section 4.3 we lay down a rigorous framework for the notion of “polynomials

in q”, which will allow us to formulate our results precisely. In Section 4.4 we

use a character formula for GGGRs from [Kawanaka, 1985] for groups of Type

A to prove our main result, that the dimension of a generalised Gelfand-Graev

module, associated to a unipotent element u ∈ GF , is a polynomial in q, with

degree given by dimCG(u) in the case where G = GLn(Fq) or GUn(Fq). In

Section 4.5 we use a character formula from [Lusztig, 1992] to extend this to

an arbitrary connected reductive algebraic group G, defined over Fq, provided

that q is not too small and the centre of G is connected. When the centre of

G is disconnected, it is impossible, in general, to parametrise the (isomorphism

classes of) generalised Gelfand-Graev representations independently of q, unless

one adopts a convention of considering various congruence classes of q separately.

Subject to such a convention we extend our result. This chapter is based on

[Clarke, 2011a], which is to appear in Transactions of the American Mathematical

Society.

We also include two appendices of related computational content. Appendix

A contains explicit tables of the canonical forms which we derive in Chapter 2,

followed by source code for a GAP implementation of the algorithm for computing

the symmetric canonical form. Appendix B contains tables of the dimensions

of endomorphism algebras of GGGRs for G = GLn(Fq) and GUn(Fq). These

were also computed in GAP, using an implementation of Kawanaka’s character

formula, and so we include the relevant source code for this as well.

12



Chapter 2

Computing unipotent and

nilpotent canonical forms: a

symmetric approach

2.1 Introduction

The Jordan canonical form for square matrices over an algebraically closed field

k can be thought of as a canonical form for conjugacy classes of the general

linear group G = GLn(k), or AdG-orbits of the general linear Lie algebra gln(k).

More generally, for an element of an algebraic group G, we have the Jordan-

Chevalley decomposition; cf. Subsection 1.1.1. This existence result does not,

however, yield a method for finding a representative for these unique elements,

up to the G-action, in contrast to the Jordan canonical form. A number of

algorithms for obtaining explicit representatives have been obtained, though, for

unipotent and nilpotent elements, and the purpose of this Chapter is to add a

new approach to this list, such that the representatives obtained have useful and

interesting properties. Note that if we know an explicit Springer morphism then

the problem of finding unipotent class representatives is equivalent to that of

finding nilpotent orbit representatives. For all the groups that we consider an

explicit Springer morphism is indeed known; cf. Section 2.5.

Let G be of classical type. Gerstenhaber has given a method for computing
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representatives of nilpotent orbits of G when the characteristic of the field is not

2; cf. [Gerstenhaber, 1961]. In characteristic zero, Popov has described another

one, which is a by-product of his determination of the strata of the nullcone of

a linear representation of an algebraic group; cf. [Popov, 2003]. The flavour of

these approaches is quite different from the present one though and each relies

on an analysis of the intrinsic classical root system, whereas in ours one only

ever needs to consider the root system of Type A. In this sense our approach

stresses the relationship between nilpotent orbits in g and those in the ambient

gln(k). We also note that [De Graaf, 2008] contains a probabilistic ‘trial and error’

algorithm for computing representatives of nilpotent orbits over any algebraically

closed field. Whilst the parameters may be set so as to deliver arbitrarily large

probability of success, the representatives obtained are not canonical. Using a

computer implementation De Graaf has computed representatives of all nilpotent

orbits in exceptional Lie algebras.

Our main result (from which the other results are derived using compara-

tively less effort) is Theorem 2.3.3, which describes a canonical matrix form,

which we call the symmetric form, for nilpotent Ad GLn(k)-orbits in gln(k), pro-

vided chark 6= 2. The key features of this form are that it is upper triangular,

symmetric with respect to the non-main diagonal (i.e. it is fixed by the map

f : (xi,j) 7→ (xn+1−j,n+1−i)), and its entries lie in {0, 1}. The proof of this can be

divided into roughly two phases. First we prove the existence of a non-canonical

representative which enjoys certain nice properties. For this we use the Dynkin-

Kostant classification of nilpotent orbits combined with an algebro-geometric ar-

gument. This will allow us to describe a calculus of ‘elementary operations’ that

may be performed on the entries of this representative whilst remaining in the

original orbit. These are then applied in the second phase of the proof to give an

algorithm with the flavour of Gaussian elimination which puts the representative

into the prescribed canonical form. The corresponding canonical forms for the

other classical Lie algebras are then derived using short additional phases to this

algorithm. We remark that the algorithms used to prove that these canonical

forms are indeed representatives of the prescribed orbits are not needed when it

comes to the task of merely writing down the representative, in the same way

that one is able to write down a matrix in Jordan canonical form without having
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to know the proof of the corresponding theorem. The algorithm used to write

down a matrix in symmetric form is very simple and we include GAP source code

for this in Appendix A. Using the explicit Springer morphisms from [Kawanaka,

1985] one is then able to compute corresponding unipotent normal forms in G.

Moreover, since these Springer morphisms are compatible with standard Frobe-

nius endomorphisms Fq our unipotent normal forms of G also lie in GFq .

As we shall see, our symmetric form sometimes does not correspond to the

‘correct’ orbit in characteristic 2; cf. Remark 2.2.3. However, when this is the

case we are still able to find a canonical form fixed by the composite of f and a

standard Frobenius endomorphism, Fq. We then show how to use these modified

forms to obtain generic canonical forms for the unipotent classes in the finite

groups GUn(Fq), for all prime powers q. No canonical form for the unipotent

classes of GUn(Fq) was known until now.

2.2 The general linear Lie algebra

2.2.1 We shall now show how to obtain a non-canonical orbit representative

which enjoys certain nice properties; we will exploit these properties later to

obtain a canonical representative. We set G = GLn(k) and g = gln(k), but note

that there is essentially no difference between this and the special linear case when

one is concerned with nilpotent orbits or unipotent classes. (The situation is less

straightforward in the finite setting.) We fix, once and for all, a nilpotent element

e ∈ gnil corresponding, by the Jordan canonical form, to some partition µ ` n.

We denote its AdG-orbit by Oe. Let T and B be the diagonal maximal torus and

upper-triangular Borel subgroup of G respectively, and denote the corresponding

root system by Σ. Let t be the standard diagonal maximal torus of g, and, for

1 ≤ i ≤ n, let εi be the linear map t→ k which picks out the ith diagonal entry.

We may then denote a set of positive roots by Σ+ = {εi − εj |1 6 i < j ≤ n},
and let Xεi−εj denote the elementary matrix with a 1 in the (i, j)th position and

0 elsewhere. Then the root spaces are of the form kXεi−εj . We denote the set of

simple roots corresponding to Σ+ by Π = {α1, . . . , αn−1}, where αi = εi − εi+1.

We present the main results from the Dynkin-Kostant-Springer-Steinberg the-

ory as follows (see, e.g., [Kawanaka, 1985, pp. 177–178] and the references there).
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Note that, since we will only apply this in the case where Σ is of Type A, an

elementary proof is possible, by following, e.g., [Lusztig, 2005, §2].

Theorem. With the above set-up, there exists a Z-grading

g =
⊕
i∈Z

gi

of g, depending only on Oe, with the following properties.

(i) Each gi is a sum of root spaces.

(ii) We may assume (by replacing by a conjugate if necessary) that e ∈ g2.

(iii) pe =
⊕

i≥0 gi is the Lie algebra of a standard (block upper-triangular)

parabolic subgroup Pe of G.

(iv) le = g0 is the Lie algebra of the block-diagonal Levi subgroup Le of Pe.

(v) For i ≥ 1, ue,i =
⊕

j≥i gi is the Lie algebra of a connected normal unipotent

subgroup Ue,i of Pe. In particular, Ue,1 is the unipotent radical of Pe.

(vi) Each gi is AdLe-stable.

(vii) Oe ∩ g2 is dense in g2.

(viii) There exists a unique additive function he : Σ→ Z, fixed by the non-trivial

graph automorphism of the Dynkin diagram of G, such that

(a) he(α) ∈ {0, 1, 2} for each α ∈ Π;

(b) gi =
⊕

he(α)=iXα.

The Dynkin diagram with nodes labelled by the numbers h(αi), corresponding

to the simple roots, is called the weighted Dynkin diagram associated to Oe. We

may partition Σ into the following subsets. For i ∈ Z set

Σi = {α ∈ Σ | h(α) = i} = {α ∈ Σ | Xα ⊆ gi}.

16



2. COMPUTING UNIPOTENT AND NILPOTENT CANONICAL
FORMS: A SYMMETRIC APPROACH

2.2.2 We explicitly construct the function h for groups of Type A as follows. Let

µ = (µ1 ≥ µ2 ≥ · · · ≥ µr). Then for each µi, consider

Yi = {µi − 1, µi − 3, . . . , 3− µi, 1− µi}.

Viewing Y =
∐

i Yi as a multiset of n integers, arrange in decreasing order:

Y = {ν1 ≥ ν2 ≥ · · · ≥ νn}.

Then we define h on Π by putting h(αi) = νi− νi+1. This uniquely determines h

by the additivity property.

In [Shoji, 1998, §2], it is shown how to construct Σ1. Generalising this we

construct Σ2. Let Πε be the set of simple roots with h-weight ε for ε = 1, 2. For

αi ∈ Π1 or Π2 let ai be the smallest integer such that ai > i and h(αai) 6= 0,

and let bi be the largest integer such that bi < i and h(αbi) 6= 0. Then we obtain

rectangular subsets

Ψi = {εs − εt | bi + 1 ≤ s ≤ i, i+ 1 ≤ t ≤ ai}.

(If ai (resp. bi) does not exist, then set ai = n (resp. bi = 0).) Then, as observed

in [Shoji, 1998, §2], we have a disjoint union

Σ1 =
∐
αi∈Π1

Ψi.

Now we construct Σ2. A pair Ψi,Ψj ⊆ Σ1 are said to be adjacent if h(αk) = 0

whenever i < k < j. We will also say that αi and αj are adjacent when this is

the case. For each adjacent pair Ψi, Ψj we define another subset Ψi,j of Σ+ by

Ψi,j = {εs − εt | bi + 1 ≤ s ≤ i, j + 1 ≤ t ≤ aj}.

Then we have another disjoint union

Σ2 =

 ∐
αi,αj∈Π1

Ψi,j

∐( ∐
αk∈Π2

Ψk

)
,
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where the first union is taken over adjacent pairs. We shall call the Ψi,j and

Ψk appearing in the above decomposition the blocks of Σ2, and the subspaces

⊕α∈Ψi,jkXα and ⊕α∈ΨkkXα the blocks of g2.

2.2.3 Clearly g2 = ⊕α∈Σ2kXα, and we now have a description of Σ2. This is a

good start, but we will need to collect some more information about g2 before

proceeding. Define sequences l1 ≥ l2 ≥ l3 ≥ . . . and k1 ≥ k2 ≥ k3 ≥ . . . (related

to the dual partitions of the purely odd and purely even parts of µ) as follows.

For i ≥ 1 set

li = #{µj odd | µj ≥ 2i− 1},

and

ki = #{µj even | µj ≥ 2i}.

Lemma. g2 consists of matrices of the form

x =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⋱
A3

A2

A1

C

B1

B2

B3 ⋱

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

satisfying the following properties.

(i) All entries are zero outside the rectangular blocks Ai, Bi, C, and these blocks

correspond to the blocks of g2.

(ii) The entries xi,j inside the blocks may be arbitrary, and for all such entries

i < j.
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(iii) The block structure is symmetric with respect to the non-main diagonal, i.e.

it is fixed by the map f : (xi,j) 7→ (xn+1−j,n+1−i).

(iv) Each row (resp. column) intersects at most one block.

(v) The middle block C, which is necessarily square by (iii), exists if, and only

if, some µi is even.

(vi) The blocks may be partitioned into subsets I = {. . . , Ai2 , Ai1 , Bi1 , Bi2 , . . . }
and J = {. . . , Aj2 , Aj1 , C,Bj1 , Bj2 , . . . } with the following properties:

(a) J = ∅ if C does not exist.

(b) Each of I and J is a symmetric block structure with respect to the

non-main diagonal.

(c) Air is an lr+1 × lr matrix (and hence Bir is an lr × lr+1 matrix).

(d) Ajr is a kr+1 × kr matrix (and hence Bjr is a kr × kr+1 matrix).

(e) Set C = Aj0 = Bj0, Ai0 = Bi1 and Bi0 = Ai1. Then row k of x

intersects Air (resp. Ajr , Bir , Bjr) if, and only if, column k intersects

Air+1 (resp. Ajr+1 , Bir−1 , Bjr−1).

Proof. The first four parts are clear from the construction. Observe that (v) is

equivalent, by symmetry, to there existing a root α of weight 2 which is fixed by

the non-trivial graph automorphism Π → Π. If all µi are even then it is easy to

see that such a root exists in Π, i.e. the central node of the Dynkin diagram. If at

least one, but not all, µi are even then the middle part of the sequence of weights

of Π is of the form 1, 0, . . . , 0, 1, with the two 1s equidistant from the centre.

Then α may be taken to be the sum of the roots corresponding to these 1s and

the intervening 0s. If all the µi are odd then the middle part of the sequence of

weights of Π is of the form 2, 0, . . . , 0, 2, . . . , with the two 2s equidistant from the

centre. Thus, a root fixed by the graph automorphism cannot have weight 2.

We will now construct the sets I and J . If µ has both odd and even parts

choose i to be minimal such that µi − µi+1 is odd. Then

Yi ∪ Yi+1 = {µi − 1, µi − 3, . . . , µi − (µi − µi+1), µi+1 − 1, µi+1 − 2, µi+1 − 3, . . . ,
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3− µi+1, 2− µi+1, 1− µi+1, (µi − µi+1)− µi, . . . , 3− µi, 1− µi}.

It follows that each integer k, such that µi+1 ≥ k ≥ −µi+1, appears with non-zero

multiplicity in Y , and that an integer k such that µ1 − 1 ≥ k ≥ µi+1, appears

with non-zero multiplicity in Y if, and only if, it has the same parity as µ1 − 1.

We thus obtain a symmetric partition of Π into three parts as follows.

Π = {α1, . . . , αι̂} ∪ {αι̂+1, . . . , αn−ι̂} ∪ {αn+1−ι̂, . . . , αn−1},

where ι̂ is the largest number such that ι̂ < (n− 1)/2 and h(αι̂) = 2. Assume for

now that µ does not consist only of even parts. Then the blocks of g2 of the form

Ψi, which are in bijection with the simple roots of weight 2, may be split into

two sets of adjacent blocks corresponding to the end parts of the above partition.

The blocks of the form Ψi,j are in bijection with sets of adjacent roots of weight

1 from the middle part. If µ does consist only of even parts then only blocks of

the form Ψi occur in g2.

Let αm1 , αm2 , αm3 , . . . denote the elements of Π1 with m1 ≤ m2 ≤ m3 ≤ · · · ,
and set

A = {Ψi | αk ∈ Π2} ∪Ψm1,m2 ∪Ψm3,m4 ∪Ψm5,m6 ∪ · · ·

and

B = Ψm2,m3 ∪Ψm4,m5 ∪Ψm6,m7 ∪ · · · .

It is clear that A and B partition the roots which determine g2 and that each is a

union of blocks. Set {A,B} = {I, J} so that J contains the central block. Then

(vi) follows from this construction. (See also the example below.)

Example. If µ has only odd or only even parts then the elements of Y , disre-

garding multiplicities, are µ1− 1, µ1− 3, . . . , 3−µ1, 1−µ1 and therefore the only

weights that can occur are {0, 2}. In this case all blocks are of the form Ψi and

we should set I = Σ2 and J = ∅ if all parts are odd and vice versa if all parts are

even.

2.2.4 Given an n × n matrix x and a union of blocks X, we will denote by xX

the matrix obtained by replacing all entries of x which do not correspond to X

by zero. If X is a block, we will also refer to xX as a block of x. Our eventual
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canonical form will be an element x ∈ Oe ∩ g2, with entries in {0, 1}, such that

f(xAi) = xBi for i ≥ 1, and f(xC) = xC if C exists. By the density of Oe ∩ g2 in

g2, we may obtain a representative in any non-empty open set. In what follows,

we view g2 as an affine space in its own right, and therefore ignore coordinates of

g outside of g2. We will use the following open set.

Let M = 2dim g2dim g2
1/2 and then consider all polynomials fi (i ∈ I, some

indexing set) in dim g2 indeterminates of degree at most M, with coefficients in

{0,±1}. Define V = V (fi) to be the zero locus of the fi and let S = g2 \V be the

corresponding open set in g2. Hence, by density, we may choose a representative

x ∈ Oe∩S. (The number M might seem rather arbitrary here but its nature will

become clear later when we consider an algorithm for putting x into symmetric

form.)

2.3 An algorithm to obtain canonical forms

2.3.1 In what follows we assume that x ∈ Oe ∩ S is chosen in the manner

explained above, and fixed. We now move on to the second phase of the proof

of Theorem 2.3.3. This is based on the fact that the Le-orbit of x is contained

in Oe ∩ g2. For this we will need some new terminology. We shall refer to the

rows and columns of the blocks Ai and C as those inherited from the ambient

matrix, but it will be convenient for us to invert this definition for the blocks Bi

(for i ≥ 1).

Lemma. For any block X and any elementary row or column operation on xX ,

there exists l ∈ Le such that conjugation by l on x agrees with this operation. If

X = Air (resp. Ajr , Bir , Bjr), then, for row operations, l can be chosen so that it

acts trivially on all other blocks except xAir+1
(resp. xAjr+1

, xBir+1
, xBjr+1

), and,

for column operations, so that it acts trivially on all other blocks except xAir−1

(resp. xAjr−1
, xBir−1

, xBjr−1
). Furthermore, these pairs of actions are described in

Tables 2.1 and 2.2.

Proof. It is clear from Lemma 2.2.1 that there exists such an elementary matrix

l in G. The proof follows from the observation that the non-diagonal, non-zero

entries of l correspond to roots of weight zero; thus l ∈ Le by Theorem 2.2.1.
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Table 2.1: Duality of operations for xI (general case)
row operation on xAir column operation on xAir+1

(resp. xAjr , xBir , xBjr ) (resp. xAjr+1
, xBir+1

, xBjr+1
)

swap rows a and b swap columns a and b
multiply row a by λ multiply column a by λ−1

add λ times row a to row b add −λ times column b to column a

Table 2.2: Duality of operations for xI (special case)
column operation on xAi1 column operation on xBi1

swap columns a and b swap columns a and b
multiply column a by λ multiply column a by λ−1

add λ times column a to column b add −λ times column b to column a

This allows us to consider xI and xJ separately.

2.3.2 We will now show how to symmetrise xI . First consider the central pair of

blocks of xI . Rather than using the column numbering from the ambient matrix,

we shall translate this for ease of notation. Our set-up is as in Figure 2.1.

Ai1 Bi1

3
2

1

...

1
2
3

. . .

co
lu
m
ns

colum
ns

l
1

...

l 1

. . .

row
s ro

w
s

Figure 2.1: Central pair of blocks in xI

Form ≥ 1, we define anm×mmatrix Jm as follows: (Jm)i,j = 1 if i+j = m+1,

and 0 otherwise.

Now the column operations are in duality as in Table 2.2. Using these dual

operations, together with arbitrary row operations, we may obtain Figure 2.2,
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where the dotted lines in the blocks denote diagonal arrays of l2 ones and the

blank space zeros. This is achieved as follows.

1. Perform Gauss-Jordan elimination to put Ai1 in the desired form.

2. Perform row operations until the rightmost square of Bi1 is Jl2 .

3. Using column operations in Bi1 , delete all entries not in this rightmost

square.

Ai1 Bi1

3
2

1

...

1
2
3

. . .

co
lu
m
ns

colum
ns

l
1

...

l 1

. . .

row
s ro

w
s

Figure 2.2: Central pair of blocks in xI

Remark. Implicit in 2 is that the rank of the rightmost l2× l2 sub-matrix of Bi1

has remained maximal (i.e. equal to l2) throughout 1. This is valid because of

the way S was constructed. Indeed, first note that the initial representative x

has this property, or else a determinant polynomial will be satisfied. Proceeding

by induction, assume that we have completed a certain number of steps of the

Gauss-Jordan algorithm, and denote the resulting Bi1-component by xBi1 and the

resulting rightmost l2 × l2 sub-matrix of Bi1 by xZ . Let the inductive hypothesis

be that the determinant of every square sub-matrix of xBi1 may be written as a

Laurent polynomial in the entries of the initial representative x, with coefficients

in {0,±1}. Letting x′Z denote our sub-matrix after one more elementary column

operation on Ai1 , we may write

detx′Z = detxZ + λ detxY , (2.1)
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if the operation results in a column from outside xZ being added into xZ , where

xY is another sub-matrix of xBi1 and λ is as in Table 2.2. Or,

detx′Z = λ detxZ , (2.2)

if we encounter an internal column operation on xZ . Then one checks that λ is

either ±1 or a product of entries from Ai1 and their inverses, up to sign. It follows

that det x′Z is a Laurent polynomial in the entries of the initial representative x,

by the inductive hypothesis. If this vanishes then we may construct a polynomial

in the entries of the initial representative x, with coefficients in {0,±1} which also

vanishes. This contradicts our choice of set S, since the degree of the polynomial

will be lower than the bound M.

Next, if l2 is even, then move the columns corresponding to the left half of

the copy of Jl2 in Ai1 to the far left of Ai1 using swapping operations. Together

with the dual actions on Bi1 , we obtain the symmetric Figure 2.3, where the dots

denote a diagonal array of l2/2 1s.

Ai1 Bi1

3
2

1

...

1
2
3

. . .

co
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m
ns

colum
ns

l
1

...

l 1

. . .

row
s ro

w
s

Figure 2.3: Symmetrised central pair of blocks in xI (l2 even)

If l2 is odd, the above step will clearly not work. In this case, we do not seek

symmetry immediately. Rather, perform the column swaps using the leftmost

(l2 − 1)/2 columns of I in Ai1 . The result will be asymmetric, but the only

asymmetries will be that column l1 + 1− (l2 + 1)/2 of Ai1 has a 1 in the middle

while column (l2 + 1)/2 of Bi1 consists of 0s, and vice versa, as in Figure 2.4,

where the filled circle denotes a 1 and the blank circle a 0.
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Figure 2.4: Central pair of blocks in xI (l2 odd)

For xI in general we consider the sequence of pairs

(Ai1 , Bi1), (Ai2 , Bi2), (Ai3 , Bi3), . . . (2.3)

in order. I.e. we iteratively move out from the centre. We now explain how

each of these can be reduced to the case already dealt with. Any elementary

column operation on a block in a new pair (Aik , Bik) will inevitably induce a row

operation on its neighbour (with subscript ik−1, currently described by Figure 2.3

or 2.4), thus knocking it out of canonical form. However, there exists a single

elementary column operation on the latter which rectifies this. Then we apply

the same process to its neighbour and so on until we reach the other member of

(Aik , Bik). This creates a duality of operations on (Aik , Bik) which agrees with

Table 2.2, and so we reduce to the central pair case without damaging the pairs of

blocks in between. It might be helpful to view the intervening blocks as a mirror

along which one reflects. Eventually, all pairs of blocks will be as in Figure 2.3

or 2.4. To achieve overall symmetry, we must now address those of the form

Figure 2.4.

For simplicity of notation consider the central pair case first. We obtain the

symmetrised form, Figure 2.5, by the following sequence of operations (together

with their duals).

1. Add column l1 + 1− (l2 + 1)/2 to column (l2 + 1)/2 in Ai1 .

2. Add 1/2 times column l1 + 1− (l2 + 1)/2 to column (l2 + 1)/2 in Bi1 .
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3. Multiply row (l2 + 1)/2 of Bi1 by 2.

4. Multiply column l1 + 1− (l2 + 1)/2 of Ai1 by 2.

5. One may also need to multiply the central rows of Ai2 , Ai3 , Ai4 , . . . by 2

depending on the parity of the l1, l2, l3, . . . .

The same method works for pairs as in Figure 2.4 in general, however, in order

to exploit the mirror property at each stage we must take the sequence (2.3) in

the opposite order. This results in the desired canonical form for xI .

•

•

•

•

Ai1 Bi1

3
2

1

...

1
2
3

. . .

co
lu
m
ns

colum
ns

l
1

...

l 1

. . .

row
s ro

w
s

Figure 2.5: Symmetrised central pair of blocks in xI (l2 odd)

2.3.3 We will now show how to symmetrise xJ . A slightly ugly part of the

symmetrising algorithm in the last section was the fact that asymmetric pairs,

as in Figure 2.4, may be part of the central mirror arrangement that is built up,

necessitating a second phase to the algorithm. The algorithm for symmetrising

xJ also uses a mirror arrangement of intervening blocks, but symmetrising xJ is

more straightforward as only one phase is needed. However, the presence of a

central square block requires a slightly different calculus of dual operations.

First use arbitrary operations to transform C into Jk1 , as in Figure 2.6. Be-

cause of this, for any elementary operation on the left of the central block, there

exists an elementary operation on the right which cancels it out, and vice versa.

Combining this duality with the usual duality on adjacent blocks described in

Table 2.1, Table 2.3 gives a duality of column operations on the pair (xAj1 , xAj1 )

26



2. COMPUTING UNIPOTENT AND NILPOTENT CANONICAL
FORMS: A SYMMETRIC APPROACH

in xJ . Notice that, because of the way we have labelled the columns in Figure

2.6, Tables 2.2 and 2.3 are identical. Now we will show how to obtain Figure 2.6,

which acts as a mirror for operations on (xAj2 , xAj2 ).

Table 2.3: Duality of operations for xJ
column operation on xAj1 column operation on xBj1

swap columns a and b swap columns a and b
multiply column a by λ multiply column a by λ−1

add λ times column a to column b add −λ times column b to column a

Using Table 2.3, we may symmetrise the pair (xAj1 , xBj1 ) using the following

operations (and their duals). One may check that the result is described by

Figure 2.6.

1. Put xAj1 in the desired form using column operations.

2. Obtain the identity matrix on the leftmost part of xBj1 using row operations.

3. Add suitable scalar multiples of the columns of this identity matrix to elim-

inate the rest of xBj1 .
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1
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· · ·
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ns · · ·· ·
· c
ol
um

ns
· ·
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w
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Figure 2.6: Symmetrised central arrangement in xJ

It is clear that this configuration allows Table 2.3 and the above algorithm to

be extended to each of the pairs in the sequence

(Aj1 , Bj1), (Aj2 , Bj2), (Aj3 , Bj3), . . . (2.4)
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in order. This completes the symmetrisation of xJ .

2.3.4 We have now proved our main result, which we state precisely as follows.

Theorem. Let µ ` n, and let Oµ ⊂ gln(k) denote the nilpotent orbit correspond-

ing, via the Jordan canonical form, to µ. Considering the blocks described by

Lemma 2.2.1 let x denote the following matrix:

(i) The entries of x agree with Figure 2.3 if l2 is even, and Figure 2.5 if l2 is

odd, on blocks Ai1 , Bi1 and Figure 2.6 on blocks Aj1 , Bj1 and C.

(ii) For k ≥ 2, the entries of x corresponding to Aik , Ajk , Bik and Bjk are

chosen in the same manner as Ai1 , Aj1, Bi1 and Bj1 respectively.

(iii) All other entries are zero.

Then x ∈ Oµ.

Example. We illustrate the symmetrising algorithm via the orbit corresponding

to the partition λ = (4, 4, 2) in gl10(k). Since all parts of λ are even, I = ∅,
therefore we may skip straight to Subsection 2.3.3. We have three blocks as in

the following illustration, Aj1 , C = Aj0 = Bj0 , and Bj1 . (So a1,1 is in the (1, 3)-

position of x and b3,2 is in the (8, 10)-position.) Recall that the initial element x

was chosen to be in Oλ and the specially constructed open set S. In step (A) we

have performed Gauss-Jordan elimination to put C into the desired form. Note

that Aj1 and Bj1 will still have maximal rank because of the way we chose S.

In step (B) we have performed column operations to obtain the desired form on

Aj1 . Recall that every time we perform a column operation on Aj1 this induces

a row operation on C, which is then put back into the desired from by a suitable

column operation on C. Bj1 may change in the process, but its rank will remain

maximal. Thus, in step (C) we may use row operations on Bj1 (remember that

the rows of Bj1 correspond to columns of the ambient matrix) to obtain the

penultimate array shown. Finally, in step (D) we have subtracted b′′3,2× column

3 from column 1 and we have subtracted b′′3,1× column 2 from column 1 in Bj1 to

obtain the desired form. Of course these will filter through C again, but the effect
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on Aj1 will be benign — we will have added multiples of column 1 to columns 2

and 3, but column 1 consists of zeros.

x =

a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

c1,1 c1,2 c1,3

c2,1 c2,2 c2,3

c3,1 c3,2 c3,3

b1,1 b1,2

b2,1 b2,2

b3,1 b3,2

(A)−→

a′1,1 a′1,2 a′1,3
a′2,1 a′2,2 a′2,3

0 0 1

0 1 0

1 0 0

b′1,1 b′1,2
b′2,1 b′2,2
b′3,1 b′3,2

(B)−→

0 0 1

0 1 0

0 0 1

0 1 0

1 0 0

b′′1,1 b′′1,2
b′′2,1 b′′2,2
b′′3,1 b′′3,2

(C)−→

0 0 1

0 1 0

0 0 1

0 1 0

1 0 0

0 1

1 0

b′′′3,1 b′′′3,2
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(D)−→

0 0 1

0 1 0

0 0 1

0 1 0

1 0 0

0 1

1 0

0 0

Remark. In order to symmetrise pairs of blocks described by Figure 2.4, we

implicitly assumed that 2 6= 0. In fact, this is crucial since, when the characteristic

is not 2, the matrix




1 1

1

1




is the symmetric canonical form corresponding to (3, 1) ` 4. However, in charac-

teristic 2, it has Jordan form (2, 2). Using a computer we have also found similar

examples for n = 5, 6 and 7 in characteristic 2.

2.4 The symplectic and orthogonal Lie algebras

2.4.1 We now consider the other classical algebras. More precisely, let G be a

simple classical algebraic group of Type Bl, Cl or Dl, together with the adjoint

action on the nilpotent variety gnil of its Lie algebra g. By considering the natural

matrix representation of g we may compute the set of elementary divisors of an

element of each orbit, thus defining a partition of 2l for groups of Type Cl and

Dl and of 2l+ 1 for groups of Type Bl. Letting P(n) denote the set of partitions

of n and writing n = 2l or 2l + 1 accordingly, the corresponding map

{ orbits of g } −→ P(n)

is an injection if G is of Type Bl or Cl, while for a group of Type Dl very even

partitions (i.e. those consisting of only even parts, each having even multiplicity)
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correspond to two orbits. If G is of Type Bl or Dl then the image consists

precisely of those partitions in which even parts occur with even multiplicity,

while the image for Type Cl consists of those partitions in which odd parts occur

with even multiplicity. We shall refer to the partitions not in the image as bad.

Using this classification of orbits we may use the notation Oµ to denote an orbit

corresponding to a partition µ. (It is customary, when µ is very even, to denote

the two orbits by O′µ,O
′′
µ.)

Let M be an n× n matrix over k. Then the set of n× n matrices X over k

satisfying the condition

XTM +MX = 0, (2.5)

is a Lie algebra under the commutator operation. We construct the classical

algebras by selecting a suitable M , following the standard text [Carter, 2005].

(But note that our choices of M differ slightly from those in [Carter, 2005].)

By considering the restriction of GLn(k)-orbits on gln(k) we will show how

to obtain a canonical representative for each of these orbits by modifying slightly

the symmetric canonical form from Theorem 2.3.3 so that it satisfies (2.5). See

the tables in Appendix A for examples.

Clearly it is impossible to modify a canonical element x (as in Theorem 2.3.3)

corresponding to a bad partition so that it satisfies (2.5). In view of this we

start by observing a characterisation of bad partitions in terms of a feature of the

block structure of g2. Then, assuming the absence of this feature we present a

sequence of elementary operations on x so that x satisfies (2.5). By Lemma 2.2.1

this characterisation is as follows. For Type Cl the bad partitions correspond to

the existence of a block in I with an odd number of rows. For Types Bl and Dl

they correspond to the existence of a block in J with an odd number of rows.

2.4.2 We shall start by dealing with Type Cl. Here we let

M =

(
Jl

−Jl

)
. (2.6)
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Then, writing

X =

(
X11 X12

X21 X22

)
,

in terms of l × l blocks, X ∈ sp2l(k) if, and only if, X12 = f(X12), X21 = f(X21)

and X11 = −f(X22).

The canonical form x from Theorem 2.3.3 already satisfies the conditions on

X12 and X21. It suffices, therefore, to change all non-zero entries of X22 from 1

to −1. Now the absence of bad partitions means that blocks of the form Figure

2.5 can not occur, and so there is at most one 1 in each row. It follows that we

can rescale the non-zero entries of x independently using row operations and thus

obtain the desired form.

2.4.3 Now we shall deal with Type Dl. Let M = J2l. Then, writing

X =

(
X11 X12

X21 X22

)
,

in terms of l×l blocks, X ∈ so2l(k) if, and only if, X12 = −f(X12), X21 = −f(X21)

and X11 = −f(X22).

This time more work is required since rescaling alone will not be sufficient to

satisfy the condition on X12, if C exists, as it will have non-zero entries fixed by f .

We therefore begin by obtaining a new form for C such that xC = −f(xC). The

new xC will still be a permutation matrix, although it will now have all entries on

the diagonal fixed by f equal to 0. First observe that we may perform operations

on the top k1 − k2 columns of the existing xC without changing any other entry

of x. We may therefore reverse the order of these columns. Similarly, one may

perform operations on the bottom k2 − k3 columns of xC without changing any

other entry of x, via the mirror afforded by Bj1 . Hence, we may reverse the order

of these columns too. We continue this process until we have transformed xC

into a matrix with copies of (various sized) identity matrices lined up along the

diagonal fixed by f , with zeros elsewhere, and the rest of x left unchanged. We

may now rescale some of the entries of xC to −1 so that xC = −f(xC), provided

that each of the numbers k1 − k2, k2 − k3, k3 − k4, . . . is even, i.e. provided that
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µ is not bad.

To finish one just rescales all non-zero entries of theB-blocks from 1 to−1. For

this we simply multiply all rows by −1 on Bi1 , Bi3 , Bi5 , . . . and Bj1 , Bj3 , Bj5 , . . . .

Remark. In the case that µ is very even this only corresponds to one of the two

orbits associated to µ.

2.4.4 Lastly, we deal with Type Bl. Let M = J2l+1, and write

X =

 X11 X12 X13

X21 X22 X23

X31 X32 X33

 ,

where X11, X13, X31 and X33 are l × l matrices, X12 and X32 are l × 1 matrices,

X21 and X23 are 1× l matrices, and X22 is a 1× 1 matrix. Hence, X ∈ so2l+1(k)

if, and only if, X13 = −f(X13), X31 = −f(X31), X22 = 0, X11 = −f(X33),

X21 = −f(X32), and X12 = −f(X23).

The canonical form is obtained in exactly the same manner as for Type Dl.

2.5 Unipotent canonical forms in G and GF

2.5.1 In this section we explain how to compute canonical forms for unipotent

elements corresponding to the nilpotent ones we obtained previously. Assume

that G = GLn(k) or one of the groups

{x ∈ GLn(k) | xTMx = M},

where M is as in the previous chapter, defined over the field with q elements,

where q is a power of a good prime for G. Let F denote the corresponding

Frobenius endomorphisms on G and g = LieG. (Recall that we require the

property F (g · x) = F (g) · F (x) for g ∈ G, x ∈ g, where · denotes the adjoint

action.) In this setting there exists a Springer morphism σ : Guni −→ gnil which

commutes with the F -actions. In fact, we can write out such a map explicitly

for classical groups following [Kawanaka, 1985]. For G = GLn(k), together with
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Fq, we may take Springer’s morphism to be x 7→ x − 1. For Types B, C and

D, with untwisted Frobenius endomorphisms, it is easy to check that the Cayley

map x 7→ (x− 1)(x+ 1)−1 works.

2.5.2 Now we shall focus on the finite unitary groups. Assume, initially, that

chark ≥ 3. When G has a disconnected centre, or is of Type B,C or D, the

F -stable unipotent classes may split into several GF -orbits and so there are more

unipotent conjugacy classes in GF than in G. Using a Springer morphism we

may therefore map our nilpotent representatives from g into G(noting that they

are all F -stable) to obtain some unipotent representatives in GF , but more work

would be needed to obtain a full set of representatives. However, if G = GLn(k)

then this splitting does not occur for any Frobenius endomorphism. Hence we

may compute a full set of representatives for the unipotent classes of GF in this

case. In the case of finite general linear groups then we simply take the elements

x + 1 ∈ GF = GLn(Fq) where x varies over the symmetric canonical forms from

Theorem 2.3.3. Alternatively, the Jordan canonical form also affords a perfectly

good set of representatives in this case. The author believes, though, that in the

case of the finite unitary groups GF = GUn(Fq) no canonical form for unipotent

elements was known until now.

We will use the following twisted Frobenius endomorphism on G = GLn(k).

For (gi,j) ∈ G, let

F ((gi,j)) = (gqn+1−j,n+1−i)
−1. (2.7)

We will use the compatible Frobenius endomorphism on g = gln(k) given by

F ((gi,j)) = (gqn+1−j,n+1−i), (2.8)

for (gi,j) ∈ g. We also note that the map given by

F−((gi,j)) = −(gqn+1−j,n+1−i), (2.9)

for (gi,j) ∈ g is also commonly used, and may be more convenient in certain

situations. Naturally, we have chosen to use (2.8) as it fixes the representatives

obtained in Theorem 2.3.3.
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Proposition. Let α ∈ Fq2 \ Fq. Then the map

σ : g 7→ (g − 1)(α− αqg)−1, (2.10)

with inverse

σ−1 : x 7→ (1 + αqx)−1(αx+ 1),

is a G-equivariant bijective morphism Guni → gnil which commutes with (2.7) and

(2.8).

Proof. The only non-trivial thing to check is that for all g ∈ Guni, we have

σ(F (g)) = F (σ(g)). This can be checked explicitly be writing these Frobenius

endomorphisms in terms of familiar matrix operations as follows. We have

F (g) = JnFq(g
−T )Jn,

for g ∈ Guni, where Fq denotes the standard qth-power Frobenius endomorphism,

and

F (x) = JnFq(x
T )Jn,

for x ∈ gnil.

Corollary. If x ∈ gnil is F -stable, then σ−1(x) ∈ GF .

Remark. If one uses (2.9), the Cayley map is suitable if the characteristic is not

2; a map suitable for any positive characteristic appears in [Kawanaka, 1985].

2.5.3 We may now compute representatives for unipotent classes in the finite

general unitary groups, by applying the map σ−1 from Proposition 2.5.2 to the

canonical forms described by Theorem 2.3.3, provided chark 6= 2. We may adapt

these representatives slightly to obtain a canonical set of representatives valid for

arbitrary characteristic. Recall that the algorithm used in the proof Theorem

2.3.3 fails in characteristic 2 when trying to pass from a situation described by

Figure 2.4 to one described by Figure 2.5. In fact symmetry, whilst remaining in

g2, is impossible in some situations, as we saw in Remark 2.3.3.

However, instability under f need not obstruct stability under F = Fq ◦ f ,
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Figure 2.7: F -stable central pair of blocks in xI (l2 odd)

which is another way of writing (2.8). We may obtain mere F -stability in all

cases as follows, transforming Figure 2.4 to Figure 2.7.

1. Choose α ∈ Fq2 \ Fq.

2. Multiply row (l2 + 1)/2 of Bi1 by 1 + αq−1.

3. Multiply row (l2 + 1)/2 of Ai1 by α.

4. Add αq(1 + αq−1)−1 times column l1 + 1 − (l2 + 1)/2 to column (l2 + 1)/2

in Bi1 .

5. Add α−1 times column l1 + 1− (l2 + 1)/2 to column (l2 + 1)/2 in Ai1 .

6. One may also need to rescale the central rows of Ai2 , Ai3 , Ai4 , . . . depending

on the parity of the l1, l2, l3, . . . .

In Appendix A we have computed tables of all of the symmetric forms for

nilpotent matrices from this chapter corresponding to partitions of n, for n =

2, 3, 4 and 5, together with the unipotent canonical forms for GUn(Fq). In the

interest of a generic approach we have used the F -stable form of Figure 2.7 even

when chark 6= 2 in these tables.
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Chapter 3

Unipotent elements in small

characteristic

3.1 Introduction and statement of results

3.1.1 In what follows k will denote an algebraically closed field of arbitrary

characteristic p ≥ 0, unless stated otherwise. Recall that we denote by G′ a

connected reductive group over the complex numbers with the same root datum as

G, with Lie algebra denoted by g′. As we discussed in Subsection 1.4.1 there exists

a uniform classification of unipotent classes and nilpotent orbits when chark is

good, and the set D̃G′/G
′ may be used as a parameter set in all cases. Moreover,

the parametrisation respects many important geometric properties of the set of

orbits and classes, such as their poset structures. When chark is a bad prime for

G, however, this breaks down, as then even the number of classes and orbits do

not agree with |D̃G′/G
′| in general.

A case-by-case classification of unipotent classes and nilpotent orbits does

exist in the case of bad primes, however, and the poset structures have been com-

puted explicitly in [Spaltenstein, 1982]. These posets are not entirely dissimilar

to the corresponding posets in good characteristic, and indeed one may observe

that the latter may be identified with sub-posets of the former. In [Lusztig, 2005]

Lusztig has devised the notion of unipotent pieces in an attempt to unify these

disparate good and bad prime pictures at a geometric level. The salient features
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of unipotent pieces, which we define shortly, are that they should be unions of

unipotent classes, which are parametrised by D̃G′/G
′, so that in good character-

istic they are precisely the unipotent classes, but in bad characteristic, although

they may consist of more than one class, they should exhibit the same geometric

features as the corresponding unipotent classes in good characteristic.

3.1.2 Following [Lusztig, 2005] we now define unipotent pieces. First note that

Y (G)/G is naturally isomorphic to Y (G′)/G′. (Indeed, in each case we may

restrict to one parameter subgroups of a fixed maximal torus, say T and T ′, since

all maximal tori are conjugate. Then the orbits are precisely the Weyl group

orbits on the Z-modules Y (T ), Y (T ′), which can be identified unambiguously.)

We let D̃G denote the unique G-stable subset of Y (G) whose image in Y (G′)/G′

corresponds to D̃G′/G
′ under this bijection; cf. (1.2). Corresponding to D̃G

we define DG to be the set of sequences M= (GM0 ⊃ GM1 ⊃ GM2 ⊃ · · · ) of closed

connected subgroups of G such that for some ω ∈ D̃G we have

LieGMi =

{
x ∈ g

∣∣∣∣ lim
ξ→0

ξ1−i(Adω(ξ))x = 0

}
.

The notion of a limit here is defined as follows. If f : k× → V is a morphism of

varieties and v ∈ V , then we use the notation limξ→0 f(ξ) = v to mean that f

may be extended to a morphism f̃ : k→ V such that f̃(0) = v.

The obvious map D̃G → DG induces a bijection D̃G/G
∼→ DG/G on the set

of G-orbits. Assume that ω ∈ D̃G corresponds to some GM0 , and T is a maximal

torus of GM0 containing Imω, and let Σ denote the root system of G relative to

T . Then one can show that

GM0 = 〈T, Uα | α ∈ Σ, 〈α, ω〉 ≥ 0〉 , and

GMi = 〈Uα | α ∈ Σ, 〈α, ω〉 ≥ i〉 for i ≥ 1 ,

where the Uα are the root subgroups of G relative to T . From this characterisation

we see that GM0 is a parabolic subgroup of G, with unipotent radical GM1 , and that

GMi is normalised by GM0 for any i ≥ 0.

For any G-orbit N ∈ DG/G, let H̃N =
⋃
M∈NG

M
2 . It is straightforward to
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see that each set H̃N is a closed irreducible variety stable under the conjugation

action of G; see Lemma 3.5.2. We now define

HN = H̃N \
⋃
N′ H̃

N′ ,

where the union is taken over all N′ ∈ DG/G such that H̃N
′ $ H̃N. The subsets

HN are called the unipotent pieces of G. We also define

XM = GM2
⋂
HN,

for each M∈ DG, where N is the G-orbit of M. Since HN is the complement of

finitely many non-trivial closed subvarieties of H̃N, it is open and dense in H̃N,

hence it is locally closed in Guni. The subset HN is G-stable since its complement

in H̃N is. Consequently, XM is open and dense inGM2 , and stable under conjugation

by GM0 .

3.1.3 Lusztig has stated the following five properties in [Lusztig, 2005] and con-

jectured that they should hold for all connected reductive groups G over alge-

braically closed fields.

P1. The sets XM (M∈ DG) form a partition of Guni, i.e. Guni =
⊔
M∈DG X

M.

P2. For every N ∈ DG/G the sets XM (M∈ N) form a partition of HN. More

precisely, HN is a fibration over N with smooth fibres isomorphic to XM

(M∈ N).

P3. The locally closed subsets HN (N ∈ DG/G) form a (finite) partition of Guni,

i.e. Guni =
⊔
N∈DG/G HN.

P4. For any M∈ DG we have that GM3X
M = XMGM3 = XM.

P5. Suppose k is an algebraic closure of Fp and let F : G→ G be the Frobenius

endomorphism corresponding to a split Fq-rational structure with q − 1 suf-

ficiently divisible. Let M∈ DG be such that F (GMi ) = GMi for all i ≥ 0 and let

N be the G-orbit of M∈ DG. Then there exist polynomials ϕN(t) and ψM(t)
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in Z[t] with coefficients independent of p such that ϕN(q) = |HN(Fq)| and

ψM(q) = |XM(Fq)|.

When p is good, properties P1– P4 follow from Pommerening’s classification;

see [Jantzen, 2004], [Pommerening, 1977], [Pommerening, 1980]. It is proved in

[Lusztig, 2005], [Lusztig, 2008] and [Lusztig, 2011] that P1– P5 hold for classical

groups (any p) by a case-by-case analysis. For groups of type E (any p) properties

P1– P5 can be deduced from [Mizuno, 1980], although this is unsatisfactory since

the extensive computations which the results of that paper are based on are largely

omitted, and these results are known to contain many misprints. As mentioned

in [Lusztig, 2005, p. 451] it is desirable to have an independent verification of

properties P1– P5 for groups of type E.

More recently Lusztig has introduced natural analogues of the unipotent pieces

XM (M∈ DG) and HN (N ∈ DG/G) for the adjoint G-module g and its dual g∗

and called them nilpotent pieces of g and g∗. Replacing Guni by the nilpotent

varieties Ng and Ng∗ (see Subsection 3.2.1) he conjectured that properties P1–

P5 should hold for them as well. We stress that the G-modules g and g∗ are

very different when p = 2 and G is of type B, C or F4 and when p = 3 and

G is of type G2. In all other cases there exists a G-equivariant bijection Ng
∼→

Ng∗ which restricts to a bijection between the corresponding nilpotent pieces

and induces a 1 – 1 correspondence between the orbit sets Ng/G and Ng∗/G; see

[Premet and Skryabin, 1999, §5.6] for more details. It is worth mentioning that

the coadjoint action of G on g∗ plays a very important role in studying irreducible

representations of the Lie algebra g.

Remark. In P5 one must implicitly identify the sets DG whilst letting q vary,

i.e. by either introducing the language of group schemes or, equivalently, fixing

a maximally split maximal torus of G and choice of positive roots for each alge-

braically closed ground field. We will take the former approach in this Chapter.

Later, in Chapter 4 we will also wish to consider quantities which are given by

polynomials in q, but the situation there is more subtle and so, in Section 4.3, we

set up a rigorous framework within which to formulate precise statements about

polynomials in q.
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In [Lusztig, 2008], [Lusztig, 2011] and [Lusztig, 2010], it is proved that prop-

erties P1 – P5 hold for Ng when G is a classical group and for Ng∗ in the case

where G is a group of type C. Very recently the coadjoint case for groups of type

B was settled by Ting Xue, a former PhD student of Lusztig; see [Xue, 2011]. In

proving P1 – P5 for classical groups Lusztig and Xue relied on intricate counting

arguments involving linear algebra in characteristic 2 and combinatorics.

The main goal of this chapter is to give a uniform proof of the following using

Hesselink’s theory of the stratification of nullcones.

Theorem. Let G be a reductive group over an algebraically closed field of char-

acteristic p ≥ 0 and g = LieG. Let G be one of G, g or g∗ and write XM(G) for

the piece XM of G labelled by M∈ DG. Then P1– P5 hold for G. In particular,

the centraliser in G of any element in XM(G) is contained in GM0 .

We mention for completeness that the definition of nilpotent pieces used by

Lusztig and Xue for G classical differs formally from Lusztig’s original definition

in [Lusztig, 2005] which we follow. However, Theorem 3.1.3 implies that both

definitions give rise to the same partitions of Ng and Ng∗ ; see Remark 3.7.3 for

more details. It is far from clear whether the definition of Lusztig and Xue can

be used for exceptional groups in arbitrary characteristic.

Remark. Regarding P2, Lusztig has also predicted that each piece HN(G) is a

smooth variety and there exists a G-equivariant fibration f : HN(G)� N ∼= G/GM0

such that f−1(M) ∼= XM for all M∈ N. We stress that this conjecture remains open,

in general, and we know of no counterexamples.

It is well-known that the sets Guni, Ng and Ng∗ coincide with the subvarieties of

G-unstable elements of the G-varieties G, g and g∗, respectively (we assume that

G acts on itself by conjugation). Therefore each set admits a natural stratification

coming from the Kempf–Rousseau theory, which we review in Section 3.2. In

fact, such a stratification was defined in [Hesselink, 1979] for any affine G-variety

V with a distinguished point ∗ fixed by the action of G. It is often referred

to as the Hesselink stratification of the variety of Hilbert nullforms of V . In

Section 3.5 we show that every piece HN(G) coincides with a Hesselink stratum

of G and conversely every Hesselink stratum of G has the form HN(G) for a unique
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N ∈ DG/G. We also identify the subsets XM(G) (M∈ DG) with the blades of the

variety of nullforms of G. (As in the theorem we assume here that G is one of G,

g or g∗.)

In order to relate the pieces HN(G) (N ∈ DG/G) with Hesselink strata we first

upgrade certain reductive subgroups of G involved in the Kempf–Ness criterion

for optimality of one parameter subgroups to reductive Z-group schemes split over

Z, and then make use of a well-known result from [Seshadri, 1977] on invariants

of reductive group schemes. This is done in Section 3.4. After relating unipotent

and nilpotent pieces with Hesselink strata we deduce rather quickly that P1– P4

hold for G, g and g∗.

3.1.4 Proving that P5 holds for G, g and g∗ requires more effort. Since our

arguments involve induction on the rank of the group we have to look at a much

larger class of finite-dimensional rational G-modules.

Let G be a reductive Z-group scheme split over Z and suppose that k contains

an algebraic closure of Fp. SetG′ = G(C) andG = G(k). We say that aG-module

V is admissible if there is a finite-dimensional G′-module V ′ and an admissible

lattice V ′Z in V ′ such that V = V ′Z ⊗Z k. Recall that a Z-lattice in V ′ is called

admissible if it is stable under the action of the distribution algebra DistZ(G); see

[Jantzen, 1987] for more details. For any pth power q we may regard the finite

vector space V (Fq) = V ′Z ⊗Z Fq as an Fq-form of the k-vector space V .

Since G is a reductive group, the invariant algebra k[V ]G is generated by

finitely many homogeneous polynomial functions f1, . . . , fm on V . TheG-nullcone

of V , denoted NG,V or simply NV , is defined as the zero locus of f1, . . . , fm in V .

We set NV (Fq) = NV ∩ V (Fq).

Theorem. For every admissible G-module V there is a polynomial nV (t) ∈ Z[t]

such that |NV (Fq)| = nV (q) for all q = pl. The polynomial nV (t) depends only

on the G′-module V ′, but not on the choice of an admissible lattice V ′Z, and is the

same for all primes p ∈ N.

In fact, a more general version of Theorem 3.1.4 is established in Subsec-

tion 3.6.2 which takes care of non-split Frobenius actions on G. Property P5

for Ng and Ng∗ now follows almost at once since both g and g∗ are admissible
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G-modules; see Section 3.7. Proving P5 for Guni requires some extra work; see

Corollary 3.7.3. Theorem 3.1.4 enables us to show that the classical results of

Steinberg and Springer on the cardinality of Guni(Fq) and Ng(Fq) respectively,

are equivalent. It also enables us to compute the cardinality of Ng∗(Fq) thereby

generalising a recent result of Lusztig proved for G classical; see [Lusztig, 2010]

and [Xue, 2011].

Corollary. Let N = dimG − rankG. Then |Ng(Fq)| = |Ng∗(Fq)| = qN for any

pth power q and any prime p ∈ N.

Once we observe that both g and g∗ are admissible G-modules coming from

the adjoint G′-module g′, Corollary 3.1.4 becomes a consequence of Steinberg’s

formula |Guni(Fq)| = qN and the existence for p � 0 of a G-equivariant isomor-

phism between Ng and Guni; cf. Subsection 4.4.4. Indeed, Theorem 3.1.4 then

ensures that the polynomial ng(t) = ng∗(t) has coefficients independent of p.

3.2 The Kempf–Rousseau theory

Although much of this theory goes back to [Mumford, 1965], [Kempf, 1978] and

[Rousseau, 1978], our set-up here is inspired by [Hesselink, 1979], [Slodowy, 1989]

and [Tsujii, 2008].

3.2.1 Let V be a pointed G-variety, i.e. a G-variety with a distinguished point

∗ ∈ V fixed by the action of G. We will assume further that V is non-singular

at ∗, although many results still hold even when ∗ is singular. Let H be a closed

reductive subgroup of G. Then a point v ∈ V is called H-unstable if there exists

some λ ∈ Y (H) such that limξ→0 λ(ξ) · v = ∗. Otherwise we say that v is H-

semistable.

Theorem. (The Hilbert-Mumford criterion; see [Mumford et al., 1994]) The fol-

lowing are equivalent.

(i) v is H-unstable.

(ii) f(v) = 0 for each regular function f ∈ k[V ]H which vanishes at ∗.
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(iii) ∗ ∈ H · v.

The set of all G-unstable elements is called the nullcone, denoted NV . It

is well-known that k[V ]H is generated (as a k-algebra with 1) by finitely many

elements, and so NV is Zariski-closed in V . (In positive characteristic this requires

the Mumford conjecture proved in [Haboush, 1975].) If we take V = g, with

adjoint G-action and ∗ = 0, then in all characteristics Ng = gnil. Similarly,

if V = G, with the conjugation action and ∗ = 1G, then in all characteristics

NG = Guni.

3.2.2 Let ψ : X → Y be a morphism of affine varieties, and let ψ∗ : k[Y ]→ k[X]

be its comorphism. Let y ∈ Y and let Iy be the maximal ideal of y in k[Y ]. We

define the coordinate ring of the schematic fibre ψ−1(y) to be k[X]/ψ∗(Iy)k[X]

(cf. [Eisenbud, 1995, §14.3]). Now let v ∈ V and λ ∈ Y (G). If limξ→0 λ(ξ) · v = ∗
and v 6= ∗, then the fibre of the extended morphism at ∗ has coordinate ring

k[T ]/(Tm) for some m, where T is an indeterminant.

We now define a function which can be used to measure instability. Given

λ ∈ Y (G) we define a function m(−, λ) : V −→ N t {±∞} as follows:

m(v, λ) =


−∞ if limξ→0 λ(ξ) · v does not exist;

0 if limξ→0 λ(ξ) · v = v′ 6= ∗;
m (as above) if limξ→0 λ(ξ) · v = ∗ (v 6= ∗) ;

+∞ if v = ∗.

Note that v ∈ V is H-unstable if, and only if, m(v, λ) ≥ 1 for some λ ∈ Y (H).

For a set X ⊂ V we also define m(X,λ) = infv∈X m(v, λ), and say that X is

uniformly unstable if m(X,λ) ≥ 1 for some λ ∈ Y (G).

3.2.3 Let λ ∈ Y (G). We let G (resp. Z) act on Y (G) by g · λ : ξ 7→ gλ(ξ)g−1

(resp. nλ : ξ 7→ λ(ξ)n) for all ξ ∈ k. The identity element of G will be denoted
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by 1G. We define some subgroups of G associated to λ as follows:

P (λ) =

{
g ∈ G

∣∣∣∣ lim
ξ→0

λ(ξ)gλ(ξ)−1 exists

}
,

L(λ) = CG(Imλ),

U(λ) =

{
g ∈ G

∣∣∣∣ lim
ξ→0

λ(ξ)gλ(ξ)−1 = 1G

}
.

Let T be a maximal torus of L(λ) (and therefore a maximal torus of G). If Σ

is the root system of G relative to T , then

P (λ) = 〈T, Uα | α ∈ Σ, 〈α, λ〉 ≥ 0〉 ,

L(λ) = 〈T, Uα | α ∈ Σ, 〈α, λ〉 = 0〉 ,

U(λ) = 〈Uα | α ∈ Σ, 〈α, λ〉 ≥ 1〉 .

Hence P (λ) is a parabolic subgroup of G with unipotent radical U(λ). The

following is now a straightforward exercise.

Lemma. Let v ∈ V and λ ∈ Y (G). Then m(g · v, λ) = m(v, g · λ) = m(v, λ) for

all g ∈ P (λ). In particular, for i ≥ 0, the set of v ∈ V such that m(v, λ) ≥ i is

P (λ)-invariant.

3.2.4 We define the set of virtual one parameter subgroups of G as follows. Let

YQ(G) = (N× Y (G))/ ∼,

where ∼ is the equivalence relation on N × Y (G) such that (n, λ) ∼ (m,µ) if,

and only if, nµ = mλ. Note that Y (G) is naturally a subset of YQ(G) and the

action of G on Y (G) naturally induces an action on YQ(G). If T is a torus, then

Y (T ) is a free Z-module, and so YQ(T ) ∼= Y (T ) ⊗Z Q may be regarded as a

Q-vector space. We extend our measure of instability to YQ(G) as follows. For

λ ∈ YQ(G), we have that nλ ∈ Y (G) for some n ∈ N and so we may define

m(v, λ) = n−1m(v, nλ).

A squared norm mapping on YQ(G) is a G-invariant function q : YQ(G)→ Q≥0
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whose restriction to YQ(T ) for any maximal torus T is a positive definite quadratic

form. By an averaging trick (cf. [Springer, 1998, §7.1.7]) one can always define

a W -invariant positive definite quadratic form q on YQ(T ). For an arbitrary

λ ∈ YQ(G), let g ∈ G be such that g · λ ∈ YQ(T ). Then define q(λ) = q(g · λ).

One checks that this defines a squared norm mapping on YQ(G) by observing

that the G-orbits on YQ(G) restrict to the W -orbits on YQ(T ). We define a map

‖ · ‖q : YQ(G)→ R≥0 by ‖λ‖q =
√
q(λ) for all λ ∈ YQ(G), which we call a norm

on YQ(G). From now on we will fix such a norm, and drop the subscript q. Let

X ⊂ V and λ ∈ Y (G) \ {0}. We say that λ is optimal for X if

m(X,λ)

‖λ‖
≥ m(X,µ)

‖µ‖
for all µ ∈ Y (G) \ {0}.

If v ∈ V then, for ease of notation, we will often identify it with the set {v} and

thus talk about one parameter subgroups which are optimal for v. Usually the

notion of optimality depends on the norm, but in the special case that V = gnil or

Guni, with adjoint or conjugation action respectively, or when V is a G-module,

it is independent of the norm by [Hesselink, 1978, Theorem 7.2]. Note that

if λ is optimal for some set, then so is any non-zero scalar multiple of λ. It

will be convenient therefore to have a canonical way of choosing an element in

(Q×λ)∩Y (G) and for this we use the following notion from [Slodowy, 1989]. We

say that λ is primitive if we cannot write λ = nµ for any integer n ≥ 2 and

µ ∈ Y (G). If X ⊂ V is uniformly unstable, we let ∆X denote the set of all

primitive elements in Y (G) which are optimal for X.

Remark. Hesselink has defined a similar set in [Hesselink, 1979], denoted ∆(X).

This corresponds to a canonical choice for optimal virtual one parameter sub-

groups. Let λ ∈ ∆X . Then ∆(X) = 1
m(X,λ)

∆X . We will need to use both sets

later. To avoid confusion we will use ∆̃X to denote ∆(X), except in Subsection

3.6.1, where it would be cumbersome to do so.

Theorem. ([Kempf, 1978], [Rousseau, 1978]) Let X ⊂ V be uniformly unstable.

(i) We have ∆X 6= ∅ and there exists a parabolic subgroup P (X) in G such that

P (X) = P (λ) for all λ ∈ ∆X .
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(ii) We have ∆X = {g · λ | g ∈ P (X)} for any λ ∈ ∆X .

(iii) If T is a maximal torus of P (X), then Y (T ) ∩ ∆X contains exactly one

element, which we denote by λT (X).

(iv) For any g ∈ G we have that ∆g·X = g∆Xg
−1 and P (g · X) = gP (X)g−1.

The stabiliser GX = {g ∈ G | g ·X = X} is contained in P (X).

3.2.5 We now restrict to the special case where V is a finite-dimensional rational

G-module with, as usual, ∗ = 0. Let T be a maximal torus of G with Weyl group

W . A very useful set of tools for analysing the T -instability and optimality of

subsets of V are certain polytopes in YQ(T ) defined in terms of weights of the

T -action on V . Let XQ(T ) = X(T ) ⊗Z Q, and let ( , ) be a W -invariant inner

product on YQ(T ) induced by the norm ‖·‖. Then there is a Q-linear isomorphism

φT : XQ(T ) → YQ(T ) defined uniquely by the relation 〈χ, λ〉 = (φT (χ), λ) for all

χ ∈ XQ(T ) and λ ∈ YQ(T ).

Consider the weight space decomposition V =
⊕

χ∈X(T ) Vχ of V with respect

to T , where

Vχ = {v ∈ V | t · v = χ(t)v for all t ∈ T} .

Then for any v ∈ V we may uniquely write v =
∑

χ∈X(T ) vχ with vχ ∈ Vχ. If

X ⊂ V , we define ST (X) = {χ ∈ X(T ) | vχ 6= 0 for some v ∈ X}, and let KT (X)

denote the convex hull (or Newton polytope) of φT (ST (X)) in YQ(T ). Then we

have the following.

Lemma. (Cf. [Slodowy, 1989]) Let X ⊂ V and T be a maximal torus of G.

(i) If λ ∈ Y (T ), then m(X,λ) = minµ∈φT (ST (X)) (µ, λ) = minµ∈KT (X) (µ, λ).

(ii) There exists a unique element µT (X) ∈ KT (X) of minimal norm.

(iii) The set X is uniformly T -unstable if, and only if, µT (X) 6= 0, in which case

we have that ‖µT (X)‖2 = m(X,µT (X)).

(iv) If X is T -unstable and λT (X) is the unique primitive scalar multiple of

µT (X), then ∆X,T = {λT (X)}.
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3.2.6 Resume the more general assumption that V is a G-variety. For i ≥ 0 and

λ ∈ YQ(G), we denote by V (λ)i be the set of elements v ∈ V with m(v, λ) ≥ i,

a closed subvariety of V . Let X ⊂ V be uniformly unstable and suppose that

λ ∈ ∆X and k = m(X,λ). Then we define the saturation of X to be the set

S(X) = V (∆X)k. This is well-defined by Theorem 3.2.4(ii) and Lemma 3.2.3.

We call a set saturated if it is uniformly unstable and equal to its own saturation.

Assume, temporarily, again that V is a G-module with ∗ = 0. We may grade

V , with respect to λ, as a direct sum of subspaces

V (λ, i) =
{
v ∈ V | λ(ξ) · v = ξiv for all ξ ∈ k×

}
,

for i ∈ Z. Then a saturated set X ⊂ V may be written as

X = V (∆X)k =
⊕

i≥k V (λ, i),

where λ ∈ ∆X and k = m(X,λ). Letting T be a maximal torus of CG(Imλ),

it is not hard to see that the V (λ, i) are sums of weight subspaces of V . More

precisely,

X =
⊕
〈χ,λ〉≥k Vχ.

Since all maximal tori of G are conjugate and V has finitely many T -weights, the

number of conjugacy classes of saturated subsets of V is finite.

The following result of Hesselink shows that the description of saturated sets

in the general situation, in which V is a G-variety, may be reduced to the above

consideration. (Note that since ∗ is G-invariant, the tangent space T∗ V naturally

becomes a G-module.)

Proposition. ([Hesselink, 1979, Proposition 3.8]) If X is a saturated subset of V ,

then T∗X is a saturated subset of T∗ V which is isomorphic to X and satisfies

∆T∗X = ∆X . The application of T∗ is a bijection from the class of saturated

subsets of V to the class of saturated subsets of T∗ V .

In particular, the saturated sets in the adjoint action of G on itself are con-

nected unipotent subgroups.

By virtue of Proposition 3.2.6 we may implicitly identify a saturated set with

its tangent space, so that Lemma 3.2.5 now makes sense for arbitrary saturated
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sets. We now gather some basic facts about saturated sets that will be useful

later. First we need the following definitions. Given a uniformly G-unstable

subset X of V we define

‖X‖ = min
{
‖µT (g ·X)‖ : g ∈ G, 0 6∈ KT (g ·X)}.

Note that ‖X‖ is the minimal distance from the origin to a point in a finite union

of polytopes of the form KT (g ·X) for some g ∈ G, and it is independent of the

choice of T . It follows from Lemma 3.2.5 that

‖X‖ = inf{‖λ‖ : λ ∈ Y (G), m(X,λ) ≥ 1}

(cf. [Hesselink, 1979], p. 143).

Lemma. Let X and Y be uniformly unstable subsets of V .

(i) S(X) is uniformly unstable, ∆S(X) = ∆X and ∆̃S(X) = ∆̃X .

(ii) ∆̃X = ∆̃Y if, and only if, Y ⊂ S(X) and ‖X‖ = ‖Y ‖.

(iii) X ⊂ S(X) = S(S(X)).

(iv) If X ⊂ Y , then ‖X‖ ≥ ‖Y ‖.

(v) If g ∈ G, then g · S(X) = S(g ·X).

Proof. This is a straightforward exercise. Cf. [Hesselink, 1979, Lemma 2.8].

3.2.7 Following [Hesselink, 1979, §4] now define some equivalence relations on

NV . For x, y ∈ NV we set

x ≈ y ⇔ ∆̃x = ∆̃y;

x ∼ y ⇔ ∆̃g·x = ∆̃y for some g ∈ G.

We call an equivalence class [v] = {x | x ≈ v} a blade and an equivalence class

G[v] = {x | x ∼ v} a stratum. Hesselink gives the following description of blades

and strata.
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Lemma. Let v ∈ NV . Then

(i) [v] = {x ∈ S(v) : ‖x‖ = ‖v‖}.

(ii) [v] is open and dense in S(v).

(iii) GS(v) is an irreducible closed subset of NV .

(iv) G[v] = {x ∈ GS(v) : ‖x‖ = ‖v‖}.

(v) G[v] is open and dense in GS(v).

We will eventually show that when V = Guni the strata are precisely Lusztig’s

unipotent pieces. To that end the following result will be crucial.

Proposition. Let v ∈ V . Then

G[v] = GS(v) \
⋃
GS(v′),

where the union is taken over all saturated sets S(v′) such that GS(v′) $ GS(v).

Proof. Let v, v′ ∈ NV be such that GS(v′) ⊆ GS(v). To prove the proposition, it

is sufficient to show that GS(v′) = GS(v) if, and only if, ‖v‖ = ‖v′‖.
Suppose that GS(v′) = GS(v). Then there exists g ∈ G such that g ·v′ ∈ S(v).

Hence ‖v′‖ = ‖g · v′‖ ≥ ‖S(v)‖ = ‖v‖ by Lemma 3.2.6. Similarly we can find

h ∈ G such that h · v ∈ S(v′) and deduce that ‖v′‖ ≤ ‖v‖, and thus ‖v′‖ = ‖v‖.
Conversely, suppose that ‖v′‖ = ‖v‖. Since GS(v′) ⊆ GS(v), there exists

g ∈ G such that g · v′ ∈ S(v). Then Lemma 3.2.6(ii) yields ∆̃g·v′ = ∆̃v, and

so S(g · v′) = S(v). Hence g · S(v′) = S(v) by Lemma 3.2.6(v). It follows that

GS(v′) = GS(v).

3.3 A modification of the Kirwan–Ness theorem

3.3.1 Let λ ∈ Y (G) \ {0} and let T be a maximal torus of G containing Imλ.

(This is equivalent to T being a maximal torus of L(λ).) Then we define

T λ = 〈Imµ | µ ∈ Y (T ), (µ, λ) = 0〉 ,

L⊥(λ) =
〈
T λ, DL(λ)

〉
.

50



3. UNIPOTENT ELEMENTS IN SMALL CHARACTERISTIC

Note that L⊥(λ) is independent of the choice of T since (gTg−1)λ = gT λg−1 for

all g ∈ G. Also, T λ is a subtorus of T and L⊥(λ) = T λ · DL(λ) is a connected

reductive group by [Springer, 1998, Corollary 2.2.7], [Borel, 1991, §IV.14.2].

3.3.2 We now restrict to the special case where V is a G-module with, as usual,

∗ = 0. In [Slodowy, 1989], [Popov and Vinberg, 1994], [Tsujii, 2008] the following

generalisation of the Kirwan–Ness theorem is proved.

Theorem. (Cf. [Kirwan, 1984], [Ness, 1984]) Let v ∈ V \{0} and λ ∈ Y (G)\{0}.
Assume that k = m(v, λ) ≥ 1 and write v =

∑
i≥k vi with vi ∈ V (λ, i) (and

vk 6= 0). Then λ is optimal for v if, and only if, vk is L⊥(λ)-semistable.

Our goal is to obtain an analogous result for the conjugation action of G on

the unipotent variety. Our proof is modelled on the proof in [Tsujii, 2008] of

the above result. We will need the following lemmas from [Slodowy, 1989] and

[Tsujii, 2008] for this task.

3.3.3 We continue to assume that V is a G-module with ∗ = 0. It follows

from [Borel, 1991, Proposition 8.2(c)] that an element of XQ(T λ) may be lifted

to an element of XQ(T ). In fact, XQ(T λ) may be naturally identified with the

orthogonal projection of XQ(T ) onto the hyperplane {χ ∈ XQ(T ) | (χ, λ) = 0}.
The following lemma shows that this projection behaves well with respect to

optimality.

Lemma. (Cf. [Slodowy, 1989]) Let λ ∈ Y (G) \ {0} and v ∈ V (λ, k) for some

k ∈ N. If T is a maximal torus of G containing Imλ then µTλ(v) = µT (v)− k
(λ,λ)

λ.

3.3.4 We continue to assume that V is a G-module with ∗ = 0. The following is

the key lemma used in the proof of Theorem 3.3.2.

Lemma. ([Tsujii, 2008, Lemma 2.6]) Let T be a maximal torus of G and assume

that v ∈ V \{0} is T -unstable. Let k = m(v, λT (v)) and v′ ∈ v+
⊕

i>k V (λT (v), i).

Then λT (v) = λT (v′).
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3.3.5 We now assume that V = Guni with ∗ = 1G. Let λ ∈ Y (G) and let T be a

maximal torus of L(λ) with corresponding G-root system Σ. Recall that for each

root α ∈ Σ we denote the corresponding root subgroups by Uα, and we have that

Ru(P (λ)) = U(λ) = 〈Uα | α ∈ Σ, 〈α, λ〉 ≥ 1〉 ,

where Ru(P (λ)) denotes the unipotent radical of P (λ). In fact, U(λ) is directly

spanned by the root subgroups Uα with 〈α, λ〉 ≥ 1; see [Borel, 1991, §IV.14].

Hence the product morphism

π : Uα1 × Uα2 × · · · × Uαn −→
∏
〈α,λ〉≥1 Uα = U(λ)

is an isomorphism of varieties, with respect to any choice of ordering

{α1, . . . , αn} = {α ∈ Σ | 〈α, λ〉 ≥ 1},

which we now fix once and for all. Moreover, since each of the root subgroups

Uα = 〈xα(t) | t ∈ k〉 is isomorphic to the additive group k
+, this gives an iso-

morphism f : U(λ)
∼−→ An(k). Consider An(k) as a vector space with basis

indexed by the set {1, 2, . . . , n}. It becomes a T -module by letting t ∈ T act on

the ith basis vector by scalar multiplication by αi(t). With respect to this f is

T -equivariant. From now on we will implicitly regard U(λ) as a T -module.

We define the following L(λ)-stable closed subvarieties of U(λ) for each i ≥ 1:

Let {β1, β2, . . . , βl(i)} = {α ∈ Σ | 〈α, λ〉 = i}, and set

U i(λ) = π(Uβ1 × Uβ2 × · · · × Uβl(i)).

These give a direct product decomposition of U(λ) into T -submodules, and we

may identify

U(λ) ∼= U1(λ)× U2(λ)× · · · × U r(λ),

for some positive integer r, so that for any u ∈ U(λ) we may write, with unique-

ness, π−1(u) = (u1, u2, . . . , ur) with ui ∈ U i(λ). For λ 6= 0 and u 6= 1G define

m′(u, λ) = min{i | ui 6= 1G} and m′(u, λ) = +∞ for u = 1G. Then we have the

following.
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Lemma. Let λ ∈ Y (G) \ {0} and u ∈ U(λ). Then m′(u, λ) = m(u, λ).

Proof. If u = 1G, the statement is obvious, so suppose u 6= 1G. For each root αi

let mi = 〈αi, λ〉. Then we have a morphism of varieties ` : A1(k)→ U(λ) given by

t 7−→ λ(t)uλ(t)−1 for t ∈ k× and `(0) = 1G. Writing u = π−1(uα1 , uα2 , . . . , uαn)

with uαi = xαi(ξi) ∈ Uαi , we have

`(t) = π−1
(
λ(t)uα1λ(t)−1, λ(t)uα2λ(t)−1, . . . , λ(t)uαnλ(t)−1

)
= π−1

(
xα1(ξ1t

〈α1, λ〉), xα2(ξ2t
〈α2, λ〉), . . . , xαn(ξnt

〈αn, λ〉)
)

= π−1
(
xα1(ξ1t

m1), xα2(ξ2t
m2), . . . , xαn(ξnt

mn)
)
.

Without loss of generality assume that m1 ≤ m2 ≤ · · · ≤ mn and m′(u, λ) = mk

for some k ≤ n, so that ξi = 0 for i < k. Then, identifying k[U(λ)] and k[A1(k)]

with the polynomial rings k[T1, . . . , Tn] and k[T ] respectively, the comorphism

`∗ sends g = g(T1, . . . , Tn) ∈ k[U(λ)] to g(0, . . . , 0, ξkT
mk , . . . , ξnT

mn). Hence, if

I = 〈T1, . . . , Tn〉 is the maximal ideal of 1G ∈ U(λ), then the ideal `∗(I) of the

schematic fibre `−1(u) is generated by ξkT
mk , . . . , ξnT

mn . As ξk 6= 0, it follows

that the coordinate ring of the schematic fibre `−1(u) equals k[T ]/(Tmk).

Now consider the composition A1(k)
`−→ U(λ)

ι−→ Guni. If ι(1G) = 1G has

maximal ideal I ′ of k[Guni], then ι∗(I ′) = I, so (ι ◦ `)∗(I ′) = `∗ ◦ ι∗(I ′) = `∗(I),

which completes the proof.

3.3.6 For i ≥ 1, we set Ui(λ) = 〈Uα | α ∈ Σ, 〈α, λ〉 ≥ i〉 , a connected nor-

mal subgroup of U(λ). The group L(λ) acts rationally on the affine variety

Vi(λ) = Ui(λ)/Ui+1(λ) ∼= U i(λ). The variety Vi(λ) is a connected abelian unipo-

tent group. It may be regarded as a vector space over k with basis v1, . . . , vl(i)

consisting of the images of xβ1(1), . . . , xβl(i)(1) in Ui(λ)/Ui+1(λ). Our convention

here is that ξ1v1 + · · · + ξl(i)vl(i) is the image of
∏l(i)

j=1 xβj(ξj) in Ui(λ)/Ui+1(λ)

for all ξi ∈ k. The preceding remarks then imply that the torus T ⊂ L(λ) acts

linearly on Vi(λ) ∼= U i(λ) with the vj being weight vectors of Vi(λ) with respect

to T . In view of Chevalley’s commutator relations it is straightforward to see that

each root subgroup Uα with 〈α, λ〉 = 0 acts linearly on Vi(λ) as well. It follows

that the group L(λ) acts linearly and rationally on Vi(λ). In other words, each

vector space Vi(λ) is a rational L(λ)-module.
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We are now ready to state and prove the following version of the Kirwan–Ness

theorem.

Theorem. Let u 6= 1G be a unipotent element of G and λ ∈ Y (G)\{0}. Assume

that u ∈ U(λ) and let k = m(u, λ). Then λ is optimal for u if, and only if, the

image of u in Vk(λ) = Uk(λ)/Uk+1(λ) is L⊥(λ)-semistable.

Proof. In proving the theorem we may assume without loss of generality that λ

is primitive. We follow Tsujii’s arguments from [Tsujii, 2008, Theorem 2.8] very

closely.

First suppose λ is optimal for u and let k = m(u, λ). Then u lies in the set

Uk(λ)\Uk+1(λ) by Lemma 3.3.5. Let ū denote the image of u in the L⊥(λ)-module

Vk(λ) = Uk(λ)/Uk+1(λ). We must show that ū is semistable with respect to all

maximal tori of L⊥(λ). Of course, each of these has the form T λ for some maximal

torus T of L(λ). In particular, λ ∈ Y (T ) and hence λ = λT (u) by our assumption

on λ. Note that Lemma 3.2.5 can be used in our present (non-linear) situation in

view of Proposition 3.2.6 applied with G = T . Then k = (µT (u), λT (u)), so that

µT (u) ∈ {µ ∈ KT (u) | (µ, λT (u)) = k} = KT (ū).

Therefore µT (u) = µT (ū) and λT (u) = λT (ū). Let µ ∈ Y (T ) \ {0}. Then

Lemma 3.2.5 implies that

m(u, λT (u))

‖λT (u)‖
=

k

‖λT (u)‖
=

m(ū, λT (u))

‖λT (u)‖
=

m(ū, λT (ū))

‖λT (ū)‖
≥ m(ū, µ)

‖µ‖
.

Since ST (ū) ⊆ ST (u) we have that m(ū, µ) ≥ m(u, µ). Then λT (ū) lies in

∆T,u = {λT (u)}, implying that µTλ(ū) and λ are proportional; see Lemma 3.3.3.

Since λ is orthogonal to µTλ(ū) ∈ Y (T λ) it must be that ‖µTλ(ū)‖ = 0. Hence ū

is T λ-semistable by Lemma 3.2.5(iii).

Conversely, suppose that ū is L⊥(λ)-semistable. The parabolic subgroups

P (λ) and P (u) have a maximal torus in common, T ′ say; see [Humphreys, 1975,

Corollary 28.3]. We may choose w ∈ U(λ) with T = wT ′w−1 ⊂ L(λ) so that

λ ∈ Y (T ). Then ū is T λ-semistable by the assumption and hence µTλ(ū) = 0 by

Lemma 3.2.5. Applying Lemma 3.3.3 we now get µT (ū) = k
(λ,λ)

λ. It follows that

λ = λT (ū). We claim that also λ = λT (wuw−1).
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In order to prove the claim we first recall that U(λ) has a T -module struc-

ture such that Ui(λ)/Ui+1(λ) ∼= U i(λ) as T -modules for all i ≥ 1; see Subsec-

tion 3.3.5. Then λT (ū) = λT (uk). In view of Lemma 3.3.4, we need to show

that the k-component of wuw−1 is uk (which will then be the minimal non-trivial

component of wuw−1, by Lemma 3.2.3). Write u =
∏
〈α,λ〉≥k uα and assume that

w =
∏n

i=1 xαi(ζi) for some ζi ∈ k. Then Chevalley’s commutator relations yield

wuw−1 =
∏
α∈Σ
〈λ,α〉≥k

wuαw
−1 ∈

∏
α∈Σ
〈λ,α〉≥k

(
uα
∏
i,j>0

iα+jβ∈Σ

Uiα+jβ

)

⊆
( ∏

α∈Σ
〈λ,α〉≥k

uα

)
· Uk+1(λ) ⊆ ukUk+1(λ).

Hence λ = λT (wuw−1) as claimed. To complete the proof of the theorem note that

T ⊂ wP (λ)w−1 = P (wuw−1), and so λ ∈ ∆wuw−1 = ∆u by Theorem 3.2.4.

Remark. For each β ∈ Σ with 〈β, λ〉 = k we let vβ denote the image of xα(1) in

Vk(λ) = Uk(λ)/Uk+1(λ) and write Xβ for the tangent vector of the root subgroup

Uβ = 〈xβ(t) | t ∈ k〉 in g = LieG. Then

(Adxβ(t)) y ≡ y + t[Xβ, y]
(
mod g⊗ t2k[t]

)
(∀ y ∈ g⊗ k[t]).

The map vβ 7→ Xβ extends uniquely up to a linear isomorphism between Vk(λ)

and the subspace g(λ, k) = span {Xβ | 〈β, λ〉 = k} of g; we call it ηk. Using

Chevalley’s commutator relations and our definition of the vector space structure

on Vk(λ) at the beginning of this subsection it is straightforward to see that ηk

is an isomorphism of L(λ)-modules. If G and T are defined over Z, then so is ηk.

3.4 Reductive group schemes and a theorem of

Seshadri

We now briefly review reductive group schemes before stating a result of Seshadri

which we will need later. For a general reference see [Jantzen, 1987], for example.
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3.4.1 For an affine variety X over k, we say that X is defined over Z if there is

an embedding of X into some affine space An(k) such that the radical ideal I(X)

of X is generated by elements of Z[X1, . . . , Xn]. (This is the same as requiring

that k[X] ∼= Z[X] ⊗Z k, where Z[X] = Z[X1, . . . , Xn]/(I(X) ∩ Z[X1, . . . , Xn]).)

A morphism φ : X → Y of k-varieties defined over Z is said to be defined over Z
if it can be written in terms of elements of Z[X1, . . . , Xn]. (This is the same as

requiring that its comorphism restricts to a homomorphism φ∗ : Z[Y ]→ Z[X] of

Z-algebras.)

When X is defined over Z we may associate to it a reduced affine algebraic

Z-scheme, i.e. a functor X : AlgZ → Set such that if A,A′ are Z-algebras and

ψ : A → A′ is a Z-algebra homomorphism then X(A) = HomZ -alg(Z[X], A) and

X(ψ) : α 7→ ψ ◦α for each α ∈ HomZ -alg(Z[X], A). We identify X(A) with the set

{a ∈ An | f(a) = 0 for all f ∈ I(X) ∩ A[X1, . . . , Xn]}.
If G is an affine algebraic group over k, then we say that G is defined over

Z if it is so as a variety and the product and inverse morphisms are defined

over Z. (This is the same as requiring that the Hopf algebra structure on k[G]

restricts to one on Z[G].) In this case we may associate to it (using Jantzen’s

terminology) a reduced algebraic Z-group, i.e. a functor G : Alg
k
→ Grp defined

as above, with the group structure on G(A) defined via the Hopf algebra structure

on A[G] = Z[G]⊗Z A for each Z-algebra A. From now on we call such a functor

a Z-group scheme. G is said to be Z-split if there exists a maximal torus T of G

such that there is an isomorphism T
∼→ k

× × · · · × k
× which is defined over Z

and the root morphisms of T are defined over Z.

It has been shown by Chevalley that every connected reductive algebraic group

over an algebraically closed field k may be obtained by extension of scalars from

a reduced algebraic Z-group, and that many familiar subgroups and actions are

also defined over Z; cf. [Chevalley, 1961]. This allows one to pass information

between the characteristic zero and prime characteristic settings; see [Jantzen,

1987]. We will use this to relate optimal one parameter subgroups of groups

in arbitrary characteristic to those with the same root system defined over C.

This will eventually allow us to use the parameter set D̃G′/G
′ from Section 3.1

in arbitrary characteristic.
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3.4.2 Let G be a reductive Z-group scheme and let X be a reduced affine algebraic

Z-scheme. We will say that G acts on X if, for any Z-algebra A, there is a map

φA : G(A) × X(A) → X(A), functorial in A, given by polynomials over A. If G

acts on an affine space An
Z (regarded as a Z-scheme) then we say that this action

is linear if, for any Z-algebra A, g ∈ G(A), the map φA(g) : An
Z(A) → An

Z(A) is

A-linear.

We now state a result of Seshadri which allows one to pass information about

semistability between characteristics.

Theorem. (Cf. [Seshadri, 1977, Proposition 6]) Let k be an algebraically closed

field and let G be a reductive Z-group scheme acting linearly on An
Z. Suppose

that X is a G-stable open subscheme of An
Z and x ∈ X(k) is a semistable point.

Then there exists a G-invariant F ∈ Z[An
Z] = Z[X1, . . . , Xn] such that F (x) 6= 0.

Furthermore, there is an open subscheme Xss of X such that for any algebraically

closed field k
′, the set Xss(k′) consists of the semistable points of X(k′).

3.4.3 In the next section we will prove our main result by applying Theorem 3.4.2

to a reductive Z-group scheme associated with L⊥(λ). To that end we will now

construct such a scheme. From now on assume that we have a fixed reductive

Z-group scheme G, which determines the reductive groups G,G′ that we are

interested in. In addition, let us fix a maximal torus T. Then there is a natural

identification of the one parameter subgroups of T(k) as k varies. It follows that

there is a reductive Z-group scheme L, the scheme-theoretic centraliser of a one

parameter subgroup λ of T, which gives rise to the groups L(λ). The groups

L⊥(λ) may also be obtained from a reductive Z-group scheme, but since this is

not a standard result we will now give an explicit construction.

Recall that a root datum of a connected reductive group, or reductive Z-group

scheme, is a quadruple (X(T ),Σ, Y (T ),Σ∨), with respect to a fixed maximal

torus, together with the perfect pairing X(T ) × Y (T ) → Z and the associated

bijection Σ → Σ∨ between the roots and coroots of G with respect to T . If we

forget about the fixed torus T and merely regard X(T ) and Y (T ) as abstract

free abelian groups with finite subsets Σ and Σ∨ respectively, then the datum

is unique and moreover any such abstract root datum gives rise to a connected

reductive group, or reductive group Z-scheme. If G′ is another such group, or
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Z-group scheme, with datum (X(T ′),Σ′, Y (T ′),Σ′∨), then a homomorphism of

root data is a group homomorphism f : X(T ′)→ X(T ) that maps Σ′ bijectively

to Σ and such that the dual homomorphism f∨ : Y (T ) → Y (T ′) maps f(β)∨ to

β∨ for each β ∈ Σ′. A morphism of algebraic groups ψ : T → T ′ is said to be

compatible with the root data if the induced homomorphism ψ∗ : X(T ′)→ X(T )

is a homomorphism of root data.

Proposition. The connected reductive group L⊥(λ) is a Z-scheme theoretic sub-

group of L(λ). In other words, if L is a Z-group scheme such that L(k) = L(λ),

then there exists a Z-subgroup scheme L⊥ of L such that L⊥(k) = L⊥(λ).

Proof. Suppose that (X(T ),Σ, Y (T ),Σ∨) is the root datum of L(λ). It follows

then that the root datum of L⊥(λ), with respect to the maximal torus T λ, is(
X(T λ), {α|Tλ | α ∈ Σ}, Y (T λ), Σ∨

)
. We may also construct reductive Z-group

schemes from these data, say L (as above) for the former and L̃⊥ for the latter.

We now need to construct a subgroup scheme L⊥ of L, isomorphic to L̃⊥ which

gives rise to L⊥(λ). We start by showing that T λ is defined over Z as a subgroup

of T , so that we may construct a Z-group scheme T with subgroup scheme Tλ

which give rise to T and T λ respectively.

We know that T λ is a subtorus of codimension 1 in T (for it is a connected

subgroup of T and Y (T λ) has rank equal to l − 1 where l = dimT ). Therefore

T/T λ is a 1-dimensional torus. By [Borel, 1991, Corollary 8.3] the natural short

exact sequence 1 → T λ → T → T/T λ → 1 gives rise to a short exact sequence

of character groups 0 → X(T/T λ) → X(T ) → X(T λ) → 0. Since T/T λ is a one

dimensional torus, its character group X(T/T λ) is generated by one element, say

η. By the above η can be regarded as a rational character of T and

X(T ) ∼= Zη ⊕X(T λ). (3.1)

(One should keep in mind here that X(T λ) is a free Z-module of rank l− 1.) By

construction, η vanishes on T λ.

On the other hand, [Borel, 1991, Proposition 8.2(c)] shows that T λ coincides

with the intersection of the kernels of rational characters of T , say T λ =
⋂
χ∈A kerχ

where A is a non-empty subset of X(T ). If A contains a character of the

form aη + µ for some non-zero µ ∈ X(T λ) then T λ ⊆ ker η ∩ kerµ. But then
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dimT λ ≤ l − 2 because η and µ are linearly independent in XQ(T ). Since this is

false, it must be that A ⊆ Zη. As a result, T λ = ker η.

The above argument is characteristic-free since η can be described as the

unique, up to a sign, primitive element of X(T ) proportional to λ in XQ(T ),

which we identify with YQ(T ) by means of our W -invariant inner product. In

view of (3.1) we may regard η as one of the standard generators of the Laurent

polynomial ring C[T ]. This implies that η − 1 ∈ Z[T ] generates a prime ideal of

C[T ], thus showing that T λ = ker η is defined over Z. This enables us to construct

the desired subgroup scheme Tλ of T.

The inclusion Tλ ⊂ T induces a homomorphism of root data, and by [Jantzen,

1987, Proposition II.1.15] (and the proof) there exists an injective homomorphism

of Z-group schemes ι : L̃⊥ ↪→ L which agrees on the root subgroups. We may

therefore take L⊥ to be the functor defined by A 7→ ι(L̃⊥)(A) for any Z-algebra A.

We know that this gives rise precisely to L⊥(λ) since the restriction of the functor

ι to the root subgroups determines it uniquely by [Jantzen, 1987, II.1.3(10)].

3.5 Unipotent pieces in arbitrary characteristic

3.5.1 We will need the following result, due to H. Kraft, during the proof of

our next theorem. This was not published by Kraft but the details can be found

in [Hesselink, 1978]; see Theorem 11.3 and the remarks in §12. Let (e, h, f) be

an sl2-triple of g′ and assume that we have the usual grading on g′ given by

g′(i) = {x ∈ g′ | [h, x] = ix} for all i ∈ Z. Let ρ : C× → (Aut g′)◦ be defined

by ρ(ξ)x = ξix if x ∈ g′(i). It follows that there is a one parameter subgroup

λ′ ∈ Y (G′) such that ρ = Ad ◦λ′. We then say that λ′ is adapted to e. (For full

details see [Springer and Steinberg, 1970, §E, p. 238].) If ν ∈ Hom(SL2(C), G′),

then we define ν∗ ∈ Y (G′) by composing ν with the map ξ 7→
[
ξ
ξ−1

]
.

Theorem. (H. Kraft, unpublished) The following are true.

(i) Let e ∈ g′nil and assume that λ′ ∈ Y (G′) is a one parameter subgroup adapted

to e. Then 1
2
λ′ ∈ ∆̃e.

(ii) Let u ∈ G′uni and assume that we have ν ∈ Hom(SL2(C), G′) such that

ν [ 1 1
1 ] = u. Then 1

2
ν∗ ∈ ∆̃u.
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3.5.2 We now turn our attention to the conjugation action of G on itself, that is

we assume that V = Guni and ∗ = 1G. Recall the subsets XM (M∈ DG) and HN

(N ∈ DG/G) introduced in Subsection 3.1.2.

Lemma. Each set H̃N is a closed irreducible variety stable under the conjugation

action of G.

Proof. It is clear that the set H̃N is G-stable. To see that it is closed, consider

the set

S =
{

(gGM0 , x) | g−1xg ∈ GM2
}
⊂ G/GM0 × H̃N.

If we show that S is closed, then H̃N is closed since it is the image under the

second projection of a closed set, and G/GM0 is a complete variety. In fact it is

sufficient to show that S′ = {(g, x) | g−1xg ∈ GM2 } is closed in G×G. Indeed, S

is isomorphic to the image of S′ under the quotient map η : G×G→ G/GM0 ×G
and it is explained in [Steinberg, 1974, p. 67], for instance, that η maps closed

subsets of G × G consisting of complete cosets of GM0 × {1G} to closed subsets

of G/GM0 × G. The set S′ is closed as it is the inverse image of GM2 under the

conjugation morphism G × G → G. Finally, the set H̃N is irreducible since

the product map G × GM2 → H̃N is a surjective morphism from an irreducible

variety.

Next we show that the sets from Subsection 3.1.2 defined by Lusztig are

precisely the sets from Subsection 3.2.7 defined by Hesselink.

Theorem. The following are true.

(i) The sets GM2 (M∈ DG) are the saturated sets of Guni.

(ii) The sets HN (N ∈ DG/G) are the strata of Guni.

(iii) The sets XM (M∈ DG) are the blades of Guni.

Furthermore, if ∆̃G denotes the subset of Y (G) consisting of elements which are

in some ∆̃X , for a uniformly unstable set X, then ∆̃G = 1
2
D̃G.

Proof. Let M∈ DG, and assume that µ ∈ Y (G) is associated to M under the nat-

ural map described in Subsection 3.1.2. Assume that ω ∈ Y (G′) comes from the
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same Z-scheme theoretic one parameter subgroup of T as µ. (Then Gµ is identi-

fied with G′ω under the canonical bijection Y (G)/G ↔ Y (G′)/G′.) So there ex-

ists ω̃ ∈ Hom(SL2(C), G′) such that ω̃∗ = ω, as in (1.2). Now let u′ = ω̃ [ 1 1
1 ] ∈ G′.

Then 1
2
ω ∈ ∆̃u′ by Theorem 3.5.1(ii).

Recall that U(ω) is the unipotent radical of (G′)M0 = L(ω) and let Uk(ω)

have the same meaning as in Subsection 3.3.6. Let ū′ denote the image of

u′ in V2(ω) = U2(ω)/U3(ω). Recall that V2(ω) ∼= g′(ω, 2) as L⊥(ω)-modules;

see Remark 3.3.6. By Theorem 3.3.6 the vector ū′ is L⊥(ω)-semistable. Since

V2(ω) ∼= g′(ω, 2) and the action on it by L⊥(ω) are defined over Z there exists an

affine scheme V2(ω)ss, acted on by L⊥, such that V2(ω)ss(C) = V ′2(ω)ss. (One

should keep in mind here that L⊥(ω) = L⊥(k) thanks to Proposition 3.4.3.)

Since ū′ ∈ V2(ω), applying Theorem 3.4.2 shows that V2(ω)ss has content over

any algebraically closed field. So over k, there exists ū ∈ V2(µ) ∼= g(µ, 2) which is

L⊥(µ)-semistable. Let u be a preimage of ū in U2(µ). By applying Theorem 3.3.6

again we see that µ is optimal for u. Also, since 1
2
ω ∈ ∆̃u′ , we see that 1

2
µ ∈ ∆̃u.

Hence GM2 = U2(µ) is a saturated set.

Conversely, suppose that S is a non-trivial saturated set in Guni. We may

assume that S = S(u) for some unipotent element u 6= 1G; see Lemma 3.2.6(ii),

for example. Let λ ∈ ∆u and k = m(λ, u). Then S = Uk(λ). Replacing u by a

G-conjugate we may assume further that λ ∈ Y (T ). As before, we identify Y (T )

and Y (T ′). Let ū denote the image of u in Vk(λ) = Uk(λ)/Uk+1(λ). Theorem

3.3.6 then implies that ū ∈ Vk(λ) is L⊥(λ)-semistable. Since Vk(λ) ∼= g(λ, k) as

L⊥(λ)-modules by Remark 3.3.6, we may again obtain an affine scheme Vk(λ)ss,

defined over Z and acted on by L⊥, such that Vk(λ)ss(k) = Vk(λ). Applying

Theorem 3.4.2 we again see that Vk(λ)ss has content over any algebraically closed

field, and may therefore find e′ ∈ g′(λ, k)ss ∼= Vk(λ)ss(C); see Remark 3.3.6.

By applying Theorem 3.3.6 we see that λ is optimal and primitive for e′. Since

we are now in characteristic zero, the Jacobson–Morozov theorem yields that there

exist f ′, h′ ∈ g′ such that (e′, h′, f ′) is an sl2-triple. Now let λ′ ∈ Hom(SL2(C), G′)

be such that λ′∗ ∈ Y (G′) is adapted to e′, so that e′ ∈ g′(λ′∗, 2). Applying Theorem

3.5.1 we see that 1
2
λ′∗ ∈ ∆̃e′ . Hence P (1

2
λ′∗) = P (λ) = P (e′). Since all maximal

tori in P (e′) = L(λ) · Ru(P (e′)) are conjugate we can find g ∈ Ru(P (e′)) such

that Im(λ′∗) and g(Imλ)g−1 lie in the same maximal torus, T say. Note that
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g · λ is optimal for (Ad g) e′ ∈ e′ +
∑

i>k g
′(λ, i). Applying Lemma 3.3.4 we see

that g · λ is optimal for e′ as well. Then g · λ ∈ Q×λ′∗ by Theorem 3.2.4(iii). It

is well-known that λ′∗ ∈ D̃G′ (see, e.g., [Carter, 1993, Proposition 5.5.6]), hence

g−1 · λ′∗ ∈ D̃G′ . But g−1 · λ′∗ = λ if λ′∗ is primitive and g−1 · λ′∗ = 2λ otherwise. So

we conclude that 2
k
λ ∈ D̃G′ in all cases. Then, associating a suitable M∈ DG to

2
k
λ, we have that S = U2( 2

k
λ) = GM2 . This completes the proof of (i). The claim

that ∆̃G = 1
2
D̃G also easily follows from these arguments. Part (ii) now follows

from (i) and Proposition 3.2.7. Part (iii) then follows from (i) and (ii).

3.5.3 We are now in a position to prove one of our main results.

Theorem. Properties P1– P4 hold for any connected reductive group over any

algebraically closed field. Moreover, CG(u) ⊂ G0
M for any u ∈ XM.

Proof. Properties P1 and P3 are immediate by Theorem 3.5.2 since the blades

and strata are equivalence classes on Guni. That the sets XM (M∈ N) form a

partition of HN for any N ∈ DG/G is also clear since HN =
⊔
M∈NX

M. Let g ∈ GM3
and u ∈ XM. Clearly gu ∈ GM2 . Let λ ∈ ∆u and let uk be the minimal component

of u with respect to λ. By the commutator relations uk is also the minimal

component of gu with respect to λ. By Theorem 3.3.6 we see that ∆u = ∆gu.

Now ‖u‖, ‖gu‖ are determined by the minimal component with respect to (any)

optimal one parameter subgroup. Hence, ‖u‖ = ‖gu‖ by Lemma 3.2.6(ii), and

so gu ∈ HN by Proposition 3.2.7(iv) and Theorem 3.5.2. Hence GM3X
M = XM.

Similarly XMGM3 = XM, and so P4 holds for G. Since the parabolic subgroup

G0
M = P (λ) is optimal for u, Theorem 3.2.4(iv) implies that CG(u) ⊂ G0

M.

3.6 The Hesselink stratification of G-modules

3.6.1 Previously we did not restrict chark but for this section and the next it will

be convenient to assume that chark = p > 0. As in Subsection 3.1.4 we denote by

G a reductive Z-group scheme split over Z and write G′ = G(C) and G = G(k).

Then G′ and G are connected reductive groups over C and k respectively. Let V ′

be a finite-dimensional rational G′-module. Given an admissible lattice V ′Z in V ′

we set V = V ′Z ⊗Z k. We call V an admissible G-module. Since the lattice V ′Z is
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stable under the action of the distribution Z-algebra Dist(G), the k-vector space

V is a module over Dist(G) = Dist(G) ⊗Z k. This gives V a rational G-module

structure; see [Jantzen, 1987, §II.1] for more details.

Let T be a toral group subscheme of G such that T ′ = T(C) is a maximal

torus of G′ and T = T(k) is a maximal torus of G. We may and will identify

the groups of rational characters X(T ′) and X(T ) and their duals Y (T ′) and

Y (T ). The lattice V ′Z decomposes over Z into a direct sum V ′Z =
⊕

µ∈X(T ) V
′
Z,µ of

common eigenspaces for the action of distribution algebra Dist(T) ⊂ Dist(G) and

base-changing this direct sum decomposition we obtain the weight space decom-

positions V ′ =
⊕

µ∈X(T ) V
′
µ and V =

⊕
µ∈X(T ) Vµ of V ′ and V with respect to T ′

and T respectively; see [Jantzen, 1987, II1.1(2)]. We mention for completeness

that dimC V
′
µ = dimk Vµ for all µ ∈ X(T ).

Theorem. The following are true.

(i) Let S′ and S denote the collections of saturated sets of V ′ and V associated

with the one parameter subgroups in Y (T ′) and Y (T ) respectively. There

exists a collection S of Dist(T)-stable direct summands of V ′Z such that

S′ = {S ⊗Z C | S ∈ S} and S = {S ⊗Z k | S ∈ S}.

(ii) For every S ∈ S we have that ∆(S ⊗Z C) ∩ YQ(T ′) = ∆(S ⊗Z k) ∩ YQ(T ).

(iii) The strata of V are parametrised by those of V ′.

(iv) The parametrisation from (iii) respects the dimensions of the strata. In

particular, the dimensions of the nullcones of V ′ and V agree.

Proof. (i) Let v′ ∈ V ′ and v ∈ V be unstable relative to T ′ and T respectively.

Let λ′ and λ be the sole elements of ∆̃v′,T ′ and ∆̃v,T respectively. Then we have

S(v′) =
⊕
〈µ,λ′〉≥1 V

′
µ and S(v) =

⊕
〈µ,λ〉≥1 Vµ. As we mentioned earlier, for every

µ ∈ X(T ) we have that V ′µ = Vµ,Z ⊗Z C and Vµ = Vµ,Z ⊗Z k. Since the sets of

weights of V ′ and V in X(T ′) = X(T ) coincide, part (i) follows.

(ii) Let S ∈ S. Our proof of part (i) and Remark 3.2.4 then show that

S = V ′(λ)k ∩ V ′Z for some λ ∈ Y (T ′) = Y (T ) and some positive integer k.
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Put L⊥ = L⊥(λ) and consider the actions of L⊥(C) and L⊥(k) on V ′(k, λ) and

V (k, λ) respectively. By Theorem 3.4.2, there is an open subscheme V(λ, k)ss of

VZ(λ, k) = V ′(k, λ) ∩ V ′Z with the property that V(λ, k)ss(C) is the set of L⊥(C)-

semistable vectors of V ′(k, λ) and V(λ, k)ss(k) is the set of L⊥(k)-semistable

vectors of V (k, λ). On the other hand, Theorem 3.3.2 tells us that λ is optimal

for an element in V ′(λ)k (resp. in V (λ)k) if, and only if, V(λ, k)ss(C) 6= ∅ (resp.

V(λ, k)ss(k) 6= ∅). This shows that either both sets ∆(S ⊗Z C) ∩ YQ(T ) and

∆(S ⊗Z k) ∩ YQ(T ) are empty or there exists a natural number m = m(S) such

that

∆(S ⊗Z C) ∩ YQ(T ) = ∆(S ⊗Z k) ∩ YQ(T ) =
1

m
λ.

This proves part (ii).

(iii) Consider a stratum G′[v] ⊂ V ′. Without loss of generality we may assume

that the blade [v] is T ′-unstable, since all maximal tori are conjugate in G′.

Then part (ii) gives us a blade [w] ⊂ V corresponding to [v]. Since all maximal

tori in G are conjugate as well, part (ii), in conjunction with our discussion in

Subsection 3.2.7, shows that any stratum G[w] ⊂ V is obtained by the above

construction in a unique way. Then the map G′[v] 7→ G[w] defines the required

parametrisation.

(iv) With [v] ⊂ V ′ and [w] ⊂ V as above we have that

dimCG
′[v] = dimCG

′ − dimC P (v) + dimC S(v)

and

dimkG[w] = dimkG− dimk P (w) + dimk S(w)

by [Hesselink, 1979, Proposition 4.5(c)]. It follows from part (i) that we have

dimC S(v) = dimk S(w), whilst the equality dimC P (v) = dimk P (w) follows from

the definition of P (λ) in Section 3.2.3. Hence dimCG
′[v] = dimkG[w], as re-

quired.

Since the set of T ′-weights of V ′ is finite, so is the set {KT (v′) | v′ ∈ V ′}. Then

Lemma 3.2.5 implies that the number of S ∈ S with ∆(S ⊗Z C) ∩ YQ(T ) 6= ∅ is

finite, too. In view of our earlier remarks we now get dimC NV ′ = dimkNV .

Remark. 1. In general, different lattices V ′Z may give rise to non-isomorphic G-
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modules. On the other hand, the theorem implies that the stratification does not

depend on the choice of lattice and is independent of the (algebraically closed)

field.

2. Let E(λ) denote the finite dimensional irreducible G-module of highest weight

λ ∈ X(T ). Then it is well-known that λ is a dominant weight and there exists an

admissible lattice, V ′′Z (λ), in the irreducible finite dimensional g′-module V ′(λ) of

highest weight λ such that E(λ) is isomorphic to a submodule of the G-module

V ′′
k

(λ) = V ′′Z (λ) ⊗Z k; see [Steinberg, 1968, §12, Exercise after Theorem 39]. If

ν ∈ Y (G) is optimal for a G-unstable vector v ∈ E(λ), then the definition in

Subsection 3.2.4 shows that it remains so for v regarded as a vector of V ′′
k

(λ).

Therefore the Hesselink strata of E(λ) are precisely the intersections of those of

V ′
k
(λ) with E(λ). Now Theorem 3.6.1(iii) implies the Hesselink strata of E(λ)

are parametrised by a subset of the Hesselink strata of the g′-module V ′(λ).

3.6.2 In this subsection we assume that k is an algebraic closure of Fp. Keeping

the notation of Subsection 3.4.3 we assume that (X(T ),Σ, Y (T ),Σ∨) is the root

datum of the reductive group scheme G. Let G = G(k) and write xα(t) for

Steinberg’s generators of the unipotent root subgroups Uα of G; see [Steinberg,

1968]. Choose a basis of simple roots Π in Σ and denote by Y +(T ) the Weyl

chamber in Y (T ) associated with Π. (It consists of all µ ∈ Y (T ) such that

〈α, µ〉 ≥ 0 for all α ∈ Π.) Let τ be an automorphism of the lattice X(T ) and

denote by τ ∗ the natural action of τ on Y (T ) = HomZ(X(T ),Z). Assume further

that τ preserves both Σ and Π and τ ∗ preserves Σ∨. Finally, assume that the

quadratic form q from Subsection 3.2.4 is invariant under τ ∗.

Now fix a pth power q = pl. Then it is well-known that τ gives rise to a Frobe-

nius endomorphism F = F (τ, l) : x 7→ xF , of the algebraic k-group G = G(k).

The endomorphism F is uniquely determined by the following properties:

1. (τη)(xF ) = η(x)q for all η ∈ X(T ) and x ∈ T ;

2. λ(t)F = (τ ∗λ)(tq) for all λ ∈ Y (T ) and t ∈ k×;

3. xα(t)F = xτα(tq) for all α ∈ R and t ∈ k;
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see [Digne and Michel, 1991, Theorem 3.17] for instance. Let V be an admissible

G-module endowed with an action of F such that

g(v)F = gF (vF ) for all g ∈ G and v ∈ V. (3.2)

As usual we require that the action of F is q-linear, that is (λv)F = λqvF for

all λ ∈ k and v ∈ V , and that each vector in V is fixed by a sufficiently large

power of F . In this situation one knows that the fixed point space V F is an

Fq-form of V . In particular, dimFq V
F = dimk V ; see [Digne and Michel, 1991,

Corollary 3.5]. We mention, for use later, that there is a natural q-linear action

of F on the dual space V ∗, compatible with that of G (recall that G acts on V ∗

via (g · ξ)(v) = ξ(g−1 · v) for all g ∈ G, ξ ∈ V ∗, v ∈ V ). Since V F is an Fq-form

of V , the dual space (V F )∗ contains a k-basis of V ∗, say ξ1, . . . , ξm. Then every

ξ ∈ V ∗ can be uniquely expressed as a linear combination ξ =
∑m

i=1 λiξi with

λi ∈ k and we can define F : V ∗ → V ∗ by setting ξF =
∑

i λ
qξi. Verifying (3.2)

for this action of F reduces to showing that g−1gF (ξ) = ξ for all ξ ∈ (V F )∗ and

g ∈ G, which is clear because (g−1)Fg(v) = v for all v ∈ V F .

There are many reasons to be interested in the cardinality of the finite set

NV
F = NV ∩ V F , and here we can offer the following general result.

Theorem. Under the above assumptions on F and V there exists a polynomial

nV (t) ∈ Z[t] such that |NV
F | = nV (q) for all q = pl. The polynomial nV (t)

depends only on V ′ and τ , but not on the choice of an admissible lattice V ′Z, and

is the same for all primes p ∈ N.

Proof. Let Λ(V ) denote the set of pairs (λ, k) where λ ∈ Y +(T ) is primitive and

k is a positive integer such V(λ, k)ss(k) 6= ∅ (the notation of Subsection 3.6.1).

Set Λ(V, τ) = {(λ, k) ∈ Λ(V ) | τ ∗λ = λ} and define

H(λ, k) = G ·
(
V(λ, k)ss(k)⊕

⊕
i>kV (λ, i)

)
,

the Hesselink stratum associated with (λ, k) ∈ Λ(V ). Now recall that we have

V(λ, k)ss(k) = V (λ, k) \ NV (λ,k) where NV (λ,k) is the set of all L⊥(λ)-unstable
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vectors of V (λ, k). To ease notation we set

V (λ, ≥ k)ss = V(λ, k)ss(k)⊕
⊕

i>kV (λ, i).

If µ ∈ Y (G) is optimal for a non-zero vector v ∈ NV
F , then so is µF , forcing

P (v) = P (µ) = P (µF ) = P (v)F . So the optimal parabolic subgroup of v is

F -stable. But then P (v) contains an F -stable Borel subgroup which, in turn,

contains an F -stable maximal torus of G; we shall call it T1. Since both T and

T1 are F -stable maximal tori contained in F -stable Borel subgroups of G, there

is an element g1 ∈ GF such that T1 = g−1
1 Tg1; see [Digne and Michel, 1991, 3.15].

Then Y (T ) contains an optimal one parameter subgroup for g1(v) ∈ V F , say µ1.

Lemma 3.2.5(iv) yields τ ∗µ1 = µ1. Since the unipotent radical U(µ1) of P (µ1) is

contained in the Borel subgroup of G associated with our basis of simple roots

Π, we see that µ1 ∈ Y +(T ).

Now suppose v ∈ H(λ, k)F , so that v = gw for some w ∈ V (λ, ≥ k)ss and

g ∈ G . Let g1 ∈ GF and µ1 ∈ Y +(T ) be as above (so that µ1 is optimal for

v1 = g1(g′w) ∈ V F ). Note that T ⊂ L(µ1) ⊂ P (v1). We may assume without

loss of generality that µ1 is primitive in Y (G). Since w and v1 are in the same

Hesselink stratum of V it must be that G ·∆v1 = G ·∆w. This yields the equality

(G · µ1) ∩ Y (T ) = (G · λ) ∩ Y (T ) which, in turn, implies that that µ1 and λ are

conjugate under the action of the Weyl group W on Y (T ). Since both λ and µ1

are in Y +(T ), we get µ1 = λ.

As a result, we deduce that τ ∗λ = λ. Hence both P (λ) and V (λ, ≥ k)ss

are F -stable. Applying [Hesselink, 1979, Proposition 4.5(b)] now yields that

gF ∈ gP (w). We choose in GF a set of representatives X(λ, τ, q) for GF/P (λ)F ,

so that

|X(λ, τ, q)| = |GF/P (λ)F |.

As P (λ) is an F -stable connected group, the Lang–Steinberg theorem shows that

g−1gF = x−1xF for some x ∈ P (v); see [Digne and Michel, 1991, Theorem 3.10]

for instance. Then gx−1 ∈ P (λ)F and hence no generality will be lost by assuming

that g ∈ X(λ, τ, q).

According to [Hesselink, 1979, Proposition 4.5(b)] there is an F -equivariant

bijection between the fibre productG×P (λ)V (λ, ≥ k)ss ∼= (G/P (λ))×V (λ, ≥ k)ss
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and the stratum H(λ, k). Since v ∈ V F and g ∈ GF we have that g(wF ) = gw,

which shows that w ∈ V (λ, ≥ k)ss
F . As a consequence,

|H(λ, k)| = |X(λ, τ, q)| · |V (λ, ≥ k)ss
F | = fτ,λ(q) · qN(λ, k)

(
qn(λ,k) − |NV (λ,k)

F |
)

(3.3)

where fτ,λ(q) = |X(λ, τ, q)| = |GF/P (λ)F |, N(λ, k) =
∑

i>k dimV (λ, i), and

n(λ, k) = dimV (λ, k).

After these preliminary remarks we are going to prove our theorem by induc-

tion on the rank of G. If rankG = 0, then G = {1G} and hence k[V ]G = k[V ].

Therefore NV
F = {0} and we can take 1, a constant polynomial, as nV (t). Now

suppose that rankG > 0 and our theorem holds for all connected reductive groups

of rank < rankG. Since for every λ ∈ Λ(V, τ) we have that rankL⊥(λ) < rankG

and each L⊥(λ)-module V (λ, i) is admissible by our discussion in Subsection 3.6.1,

there exist polynomials nV (λ,i)(t) ∈ Z[t] with coefficients independent of p and our

choice of an admissible lattice V ′Z(λ, i) in V ′(λ, i) such that |NV (λ,i)
F | = nV (λ,i)(q).

Next we note that for every λ ∈ Y (T ) with τ ∗λ = λ there is a polynomial

fτ,λ ∈ Z[t] with coefficients independent of p such that fτ,λ(q) = |GF/P (λ)F | for

all pth powers q and all p. Indeed, it is immediate from [Digne and Michel, 1991,

Proposition 3.19(ii)] that fτ,λ can be chosen as a quotient aτ,λ/bτ,λ of two coprime

polynomials aτ,λ, bτ,λ ∈ Z[t] with coefficients independent of p. Since fτ,λ(q) ∈ Z
for infinitely many q ∈ Z, it must be that deg bτ,λ = 0. Therefore fτ,λ ∈ Q[t].

On the other hand, GF/P F is the set of Fq-rational points a smooth projective

variety defined over Fp. Applying [Goodwin and Röhrle, 2009a, Lemma 2.12] one

obtains that fτ,λ ∈ Z[t], as stated.

Putting everything together we now get

|NV
F | = 1 +

∑
(λ, k)∈Λ(V,τ)

|H(λ, k)F |

= 1 +
∑

(λ, k)∈Λ(V,τ)

fλ,τ (q) · qN(λ,k)
(
qn(λ,k) − nV (λ,i)(q)

)
.

Since the data
{(
n(λ, k), N(λ, k)

)
| (λ, k) ∈ Λ(V, τ)

}
arrives unchanged from the

G′-module V ′ and is independent of p by Theorem 3.6.1, this is a polynomial in q

with integer coefficients independent of p and the choice of admissible lattice.

68



3. UNIPOTENT ELEMENTS IN SMALL CHARACTERISTIC

Remark. In the notation of Subsection 3.6.1, the distribution algebra DistZ(G)

acts naturally on the Z-algebra Z[V ′Z] and we may consider the invariant algebra

of this action, which coincides with Z[V ′Z]G. According to [Seshadri, 1977, §II],
the algebra Z[V ′Z]G is generated over Z by finitely many homogeneous elements.

The ideal of Z[V ′Z] generated by these elements defines a closed subscheme of the

affine scheme SpecZ[V ′Z] which we denote by N(V ′Z). It follows from [Seshadri,

1977, Proposition 6(2)] that for any prime p ∈ N the nullcone NV coincides with

the variety of closed points of the affine k-scheme N(V ′Z) ×SpecZ Speck. At this

point Theorem 3.6.2 shows that the affine Z-scheme N(V ′Z) is strongly polynomial-

count in the terminology of N. Katz. Applying [Katz., 2008, Theorem 1(3)] we

now deduce that the polynomial nV (t) from Theorem 3.6.2 is closely related with

the E-polynomial E(NV ′ ;x, y) =
∑

i,j ei,jx
iyj ∈ Z[x, y] of the complex algebraic

variety NV ′ . More precisely, we have that E(NV ′ ;x, y) = nV (xy) as polynomials

in x, y; see [Katz., 2008, p. 618] for more details. This shows that the coefficients

of nV (t) are determined by Deligne’s mixed Hodge structure on the compact

cohomology groups Hk
c (NV ′ ,Q).

Define n′V (t) = (nV (t)−1)/(t−1). As n′V (q) = Card
{
F×q v | v ∈ NV

F , v 6= 0
}

for all pth powers q, it is straightforward to see that n′V (t) is a polynomial in t.

The long division algorithm then shows that n′V (t) ∈ Z[t]. We conjecture that

the polynomial n′V (t) has non-negative coefficients. This conjecture holds true for

G = SL2 where one can compute n′V (t) explicitly for any admissible G-module

V . The details are left as an exercise for the interested reader.

3.7 Nilpotent pieces in g and g∗

3.7.1 We now define nilpotent pieces in the Lie algebra g completely analogously

to the definition of unipotent pieces, that is, we partition gnil = Ng into locally

closed G-stable pieces, indexed by the unipotent classes in G′ = G(C). For

convenience, we now allow chark = p ≥ 0. For M∈ DG and i ≥ 0 we define

gMi = LieGMi . For any G-orbit N ∈ DG, let H̃N(g) =
⋃
M∈N g

M
2 . This is a closed

irreducible G-stable variety by the proof of Lemma 3.1.2. We define the nilpotent
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pieces of g to be the sets

HN(g) = H̃N(g) \
⋃
N′ H̃

N′(g),

where the union is taken over all N′ ∈ DG/G such that H̃N
′
(g) $ H̃N(g). We also

define

XM(g) = gM2
⋂
HN(g),

for each M∈ DG, where N is the G-orbit of M. Since HN(g) is the complement

of finitely many non-trivial closed subvarieties of H̃N(g), it is open and dense

in H̃N(g), hence it is locally closed in gnil. The subset HN(g) is G-stable since

its complement in H̃N(g) is. Consequently, XM(g) is open and dense in gM2 , and

stable under the adjoint action of GM0 .

Recall from Subsections 3.5.1 and 3.5.2 that for any M∈ DG there is an

element g ∈ G and a one parameter subgroup ω ∈ Y (T ) = Y (T ′), coming from a

rational homomorphism SL2(C) → G′, such that 1
2
ω ∈ ∆̃x for some x ∈ g′(2, ω)

and gMk =
⊕

i≥k g(i, g · ω) for all k ∈ Z. Note that different g ∈ G with this

property have the same image in GM0 /G. Given µ ∈ Y (G) and i ∈ Z we denote

by g∗(i, µ) the subspace in g∗ consisting of all linear functions that vanish on

each g(j, µ) with j 6= −i. Now define (g∗)Mk =
⊕

i≥k g∗(i, g · ω), for k ∈ Z.

The preceding remark shows that this is independent of the choice of g ∈ G and

therefore the subspaces (g∗)Mk are well-defined.

In a completely analogous way we now define the nilpotent pieces of the dual

space g∗. For any G-orbit N ∈ DG, we let H̃N(g∗) =
⋃
M∈N(g∗)M2 , a closed irre-

ducible G-stable subset of g∗, and put

HN(g∗) = H̃N(g∗) \
⋃
N′ H̃

N′(g∗),

where the union is taken over all N′ ∈ DG/G with H̃N
′
(g∗) $ H̃N(g∗). We define

XM(g∗) = (g∗)M2
⋂
HN(g∗),

for each M∈ DG. Arguing as before we observe that each HN(g∗) is a G-stable,

locally closed subset of Ng∗ . Hence XM(g∗) is open and dense in gM2 , and stable
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under the coadjoint action of GM0 .

3.7.2 In the next two subsections we study the nullcone Ng∗ associated with

the coadjoint action of G on the dual space g∗ = Homk (g,k). Recall that

(g · ξ)(x) = ξ((Ad g−1)x) for all g ∈ G, x ∈ g, ξ ∈ g∗. It is immediate from

the Hilbert–Mumford criterion (our Theorem 3.2.1) that ξ ∈ Ng∗ if and only if ξ

vanishes on the Lie algebra of a Borel subgroup of G. The nilpotent linear func-

tions ξ ∈ Ng∗ play an important role in the study of the centre of the enveloping

algebra U(g) and were first investigated in our setting in [Kac and Weisfeiler,

1976]. In characteristic zero the Killing form induces a G′-equivariant isomor-

phism g′ ∼= (g′)∗. However, in positive characteristic it may happen that g 6∼= g∗

as G-modules.

We first assume that the group G is simple and simply connected. Rather

than study g∗ directly, we will present a slightly different construction which

will allow us to combine Theorems 3.6.1 and 3.6.2 with classical results from

[Dynkin, 1955] and [Kostant, 1959] on Ng′ . As before, we fix a set of simple

roots Π in Σ and denote the corresponding set of positive roots by Σ+. Let

C′ = {Xα, Hβ α ∈ Σ, β ∈ Π} be a Chevalley basis of g′ and denote by g′Z the

Z-span of C′ in g. Then the following equations hold in g′Z:

(i) [Hα, Xβ] = 〈β, α〉Xβ for all α ∈ Π, β ∈ Σ;

(ii) [Xβ, X−β] = Hβ for all β ∈ Π, where Hβ = deβ
∨ is an integral linear

combination of Hα = deα
∨ with α ∈ Π;

(iii) [Xα, Xβ] = Nα,βXα+β if α + β ∈ Σ, where Nα,β = ±(q + 1) and q is the

maximal integer for which β − qα ∈ Σ;

(iv) [Xα, Xβ] = 0 if α + β /∈ Σ;

see [Steinberg, 1968, §1], for example. As usual, 〈α, β〉 = 2(α, β)/(α, α), where

( , ) is a scalar product on the R-span of Π, invariant under the action of the

Weyl group W of Σ. We may assume, by rescaling if necessary, that (α, α) = 2

for every short root α of Σ. Let α̃ denote the maximal root, and α0 the maximal

short root in Σ+ respectively, and set d = (α̃, α̃)/(α0, α0). Recall that a prime
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p ∈ N is called special for Σ if d ≡ 0 (mod p). The special primes are 2 and 3.

To be precise, 2 is special for Σ of type B`, C`, ` ≥ 2, and F4, whilst 3 is special

for Σ of type G2.

Since G is assumed to be simply connected, we have that g = LieG = g′Z⊗Zk

(cf. [Borel, 1970, §2.5] or [Jantzen, 1991, §1.3]). Also, the distribution algebra

DistZ(G) identifies canonically with the unital Z-subalgebra of the universal en-

veloping algebra U(g′) generated by all Xn
β /n! with β ∈ Σ and n ∈ N. The algebra

UZ is known as Kostant’s Z-form of U(g) and was first introduced in [Kostant,

1966]. Thus, a Z-lattice V ′Z in a finite-dimensional g′-module V ′ is admissible if,

and only if, it is invariant under all operators Xn
α/n! (n ∈ N) under the obvious

action of U(g′) on V ′. For instance, g′Z itself is admissible, since g′Z = UZ ·Xα̃.

We now recall very briefly how admissible lattices give rise to rational G-

modules. Let V = V ′Z ⊗Z k. Since Distk(G) = DistZ(G) ⊗Z k = UZ ⊗Z k,

the action of UZ on V ′Z gives rise to a representation of Distk(G) on Endk V ,

and hence to a rational linear action of G on V ; see [Jantzen, 1987, §§II.1.12,

II.1.20] for more details. Given X ∈ UZ we denote the induced linear transfor-

mations on V ′Z and V by ρZ(X). We then define invertible linear transformations

xβ(t) =
∑

n≥0 t
nρZ(Xn

β /n!) on V , for each β ∈ Σ, where t ∈ k. (Note that the

sum is finite since the Xβ act nilpotently on V ′.) The set
{
xβ(t) β ∈ Σ, t ∈ k

}
generates a Zariski-closed, connected subgroup G(V ) of GL(V ). Since G is simply

connected and hence a universal Chevalley group in the sense of [Steinberg, 1968],

the linear group G(V ) is a homomorphic image of G. For any admissible lattice

V ′Z in a finite-dimensional g′-module V ′, we thus obtain a G-module structure on

V = V ′Z ⊗Z k.

Now we define a symmetric bilinear form 〈 , 〉 : g′Z × g′Z → Z by setting

〈Xα, Xβ〉 = 0 if α + β 6= 0,

〈Hα, Hβ〉 =
4d(α, β)

(α, α)(β, β)
for all α, β ∈ Σ,

〈Xα, X−α〉 =
2d

(α, α)
for all α ∈ Σ,

and extending to g′Z by Z-bilinearity. Note that this is well-defined, since the

condition (α0, α0) = 2 ensures that the image is indeed in Z; see the tables in
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[Bourbaki, 1975]. Obviously we may extend 〈 , 〉 to symmetric bilinear forms

〈 , 〉C on g′ = g′Z ⊗Z C, and 〈 , 〉k on g = g′Z ⊗Z k.

In is proved in [Premet, 1997, p. 240] that the bilinear form 〈 , 〉C is a scalar

multiple of the Killing form κ of g′ = LieG′. In particular, 〈 , 〉C is G′-invariant.

This, in turn, implies that

〈X(u), v〉 = 〈u,X>(v)〉 for all u, v ∈ V ′Z and X ∈ UZ, (3.4)

where > stands for the canonical anti-automorphism of U(g). Since x> = −x for

all x ∈ g′, it is straightforward to see that > preserves the Z-form UZ of U(g′).

(In fact, the map > : UZ → UZ is nothing but the antipode of the Hopf algebra

UZ = DistZ(G).) As a consequence, the bilinear form 〈 , 〉k on g = LieG is

G-invariant.

Lemma. If p is non-special for Σ, then the radical of 〈 , 〉k coincides with the

centre z(g) of the Lie algebra g. If p is special for g, then Rad 〈 , 〉k 6⊆ z(g).

Proof. The first statement of the lemma is [Premet, 1997, Lemma 2.2(ii)]. For

the second statement, we note that the image of Xα0 in g =
(
g′Z/pg

′
Z
)
⊗Fp k lies

in the radical of 〈 , 〉k, but not in the centre of g. (Recall that G is assumed to

be simply connected.)

The lemma hints at the fact that g and g∗ are similar as G-modules if p is

non-special, but very different if p is special. Nevertheless, as we will see, we may

construct an alternative admissible lattice g′′Z ⊂ g′ which gives rise to another G-

module g′′Z⊗Z k such that 〈 , 〉 induces a non-degenerate pairing between g′′Z⊗Z k

and g in all cases. This will enable us to identify the G-modules g′′Z ⊗Z k and g∗.

3.7.3 We define g′′Z = {x ∈ g′ | 〈x, y〉 ∈ Z, ∀ y ∈ gZ}, a Z-lattice in g′. It is

immediate from (3.4) that g′′Z is an admissible lattice. Consequently, we obtain a

G-module structure on the vector space g′Z ⊗Z k. We also obtain a G-invariant

pairing

〈 , 〉∗
k

: g×
(
g′′Z ⊗Z k

)
−→ k. (3.5)

We will now exhibit a basis of g′′Z dual to our Chevalley basis C′, with respect to

〈 , 〉. Thus, we will show that the pairing 〈 , 〉∗
k

is non-degenerate. Let t′ be the
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Cartan subalgebra of g′ spanned by {Hα | α ∈ Π}. Let {H ′α | α ∈ Π} be the dual

basis of t′ with respect to the restriction of 〈 , 〉C to t′. (These may be thought of

as the fundamental weights of the dual root system Σ∨.) This extends to a basis

C =
{
H ′α | α ∈ Π

} ⊔ {
Xβ | β ∈ Σ long

} ⊔ {
(1/d)Xβ | β ∈ Σ short

}
of g which is dual to our Chevalley basis C′ with respect to 〈 , 〉C. Specifically,

the corresponding pairing of basis elements is as follows:

Hα ↔ H ′α if α ∈ Π,

Xβ ↔ X−β if β ∈ Σ is long,

Xβ ↔ (1/d)X−β if β ∈ Σ is short.

Moreover, it is easy to check that C is a Z-basis of g′′Z, as required. Since the

lattice g′′Z is admissible, we see that the bases C′ ⊗ 1 of g = g′Z ⊗Z k and C ⊗ 1

of g′′Z ⊗Z k are dual to each other with respect to 〈 , 〉∗
k
. This shows that g

and g∗ ∼= g′′Z ⊗Z k are admissible G-modules associated with different admissible

lattices in g′.

Now suppose that G is semisimple and simply connected. Then G is a direct

product of simple, simply connected groups and the above arguments carry over

to G in a straightforward fashion. In particular, (3.5) is still available for a

suitable choice of an admissible lattice g′′Z ⊂ g′ and g∗ ∼= g′′Z ⊗Z k as G-modules.

Theorem. Let G be a connected reductive group over an algebraically closed field

k of characteristic p ≥ 0 and let G be g or g∗. If k is an algebraic closure of Fp,
assume further that we have a Frobenius endomorphism F : G→ G corresponding

to an Fq-rational structure of G. Then P1– P5 hold for G and the stabiliser Gx

of any element x ∈ XM(G) is contained in the parabolic subgroup GM0 of G.

Proof. Let U be an F -stable maximal connected unipotent subgroup of G. It fol-

lows from the Hilbert–Mumford criterion (our Theorem 3.2.1) that Ng = (AdG) ·
u where u = LieU . Since U ⊂ DG, we have that Ng ⊆ Nḡ where ḡ = LieDG. As

any ξ ∈ Ng∗ vanishes on a Borel subalgebra of g, the restriction map g∗ → ḡ∗,

ξ 7→ ξ|ḡ, induces a G-equivariant injection η : Ng∗ → Ng∗ . But η is, in fact, a
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bijection since every linear function on u can be extended to a nilpotent linear

function on g.

Let G̃ be a semisimple, simply connected group isogeneous to DG. Let

ι : G̃ → DG be an isogeny and let Ũ be the connected unipotent subgroup

of G̃ with ι(Ũ) = U . Let g̃ = Lie G̃ and ũ = Lie Ũ . Then deι : g̃ → ḡ maps

ũ isomorphically onto u and induces a G̃-equivariant bijection between Ng̃ and

Nḡ = ḡnil. Let T̃ be a maximal torus of G̃ normalising ũ and T = ι(T̃ ), a maximal

torus of G normalising u. We regard u∗ and ũ∗ as subspaces of ḡ∗ and g̃∗ respec-

tively, by imposing that every ξ ∈ u∗ vanishes on the T -invariant complement of

u in g and every ξ̃ ∈ ũ∗ vanishes on the T̃ -invariant complement of ũ in g̃. Then

the linear map (deι)
∗ : ḡ∗ → g̃∗ induced by deι restricts to a linear isomorphism

between u∗ and ũ∗. Since the map (deι)
∗ is G̃-equivariant, it induces a natural

bijection between Ng̃∗ = (Ad∗ G̃) · ũ∗ and Ng∗ = (Ad∗G) · u∗. It is clear from

our description of F in Subsection 3.6.2 that there is a Frobenius endomorphism

F̃ : G̃→ G̃ such that ι ◦ F̃ = F |DG. Furthermore, T̃ and Ũ can be chosen to be

F̃ -stable.

The above discussion shows that in proving the theorem we may assume that

the group G is semisimple and simply connected. Then both g and g∗ are ad-

missible G-modules. More precisely, g = gZ ⊗Z k and g∗ = g′′Z ⊗Z k for some

admissible lattices g′Z and g′′Z in g′. Then Theorem 3.6.1 shows that P1 −P3 for

g∗ can be reduced to showing the corresponding statements for g, together with

[Hesselink, 1978, Proposition 4.5], which shows that for every N ∈ DG/G there is

a surjective morphism HN → G/GM0 whose fibres are exactly the blades XM with

M∈ N.

The proof of P1 −P3 for g is completely analogous to the proof of Theorem

3.5.2. Of course it is much easier since we may use Tsujii’s result (Theorem 3.3.2)

in its original form, and there is no need for Section 3.3.

In order to show that P4 holds for G it suffices to establish that for every

x ∈ XM(G) the optimal parabolic subgroup P (x) coincides with G0
M. Also, the

inclusion Gx ⊂ G0
M follows from Theorem 3.2.4(iv).

It remains to show that P5 holds for G, so suppose from now on that k is an

algebraic closure of Fp and F = F (τ, l) where q = pl; see Subsection 3.6.2. As

explained there, we have a natural q-linear action of F on g∗ compatible with the
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coadjoint action of G. We adopt the notation introduced in the course of proving

Theorem 3.6.2. It follows from Theorem 3.5.1 that the set Λ(g, τ) = Λ(g∗, τ)

consists of all pairs
(
λ′N, k

)
such that λ′N ∈ Y +(T ) is primitive, k ∈ {1, 2} and

2
k
λ′N is adapted by a suitable nilpotent element in the adjoint G′-orbit labelled

by N. Then (3.3) yields

ϕNG (q) = |HN(G)F | = fτ,λ′N(q) · qN(λ′N, k)
(
qn(λ′N,k) − |NG(λ′N,k)

F |
)

= fτ,λ′N(q) · qN(λ′N, k)
(
qn(λ′N,k) − nG(λ′N,k)(q)

)
.

If M∈ N is such that F (GMi ) = GMi for all i ≥ 0, then the proof of Theorem 3.6.2

also yields that τ ∗(λ′N) = λ′N and

ψMG (q) = |XM(G)F | = qN(λ′N, k)
(
qn(λ′N,k) − nG(λ′N,k)(q)

)
.

As the L⊥(λ′N)-modules g(λ′N, k) and g∗(λ′N, k) come from different admissible

lattices of the (L⊥(λ′N))(C)-module g′(λ′N, k), applying Theorem 3.6.2 shows that

ψMg (q) = ψMg∗(q) are polynomials in q with integer coefficients independent of p.

This, in turn, implies that so are ϕNg (q) = ϕNg∗(q), completing the proof.

Corollary. Let G be a connected reductive group defined over an algebraic clo-

sure of Fp and assume that we have a Frobenius endomorphism F : G → G

corresponding to an Fq-rational structure on G. Then P5 holds for G.

Proof. Let M∈ DG be such F (GMi ) = GMi for all i ≥ 0 and let N be the orbit of M

in DG/G. Then gGM0 g
−1 = P (λ′N) and gGMi g

−1 = Ui(λ
′
N) for some g ∈ G, where

i ≥ 1. If s is the order of τ ∗, then there exists r ∈ N with r ≡ 1 (mod s) such

that XM(G)F
r

6= ∅. Then HN(G)F
r

6= ∅ and the argument used in the proof of

Theorem 3.6.2 shows that τ ∗(λ′N) = τ ∗r(λ∗N) = λ′N. Since τ ∗(λ′N) = τ ∗r(λ∗N) by our

choice of r, we see that P (λ′N) is F -stable. Hence gFGM0 (gF )−1 = gG0g
−1 forcing

g−1gF ∈ NG(GM2 ) = GM0 . As GM0 is connected and F -stable, the Lang–Steinberg

theorem shows that g−1gF = x−1xF for some x ∈ GM0 ; see [Digne and Michel,

1991, Theorem 3.10]. Replacing g by gx−1 we thus may assume that g ∈ GF . In

conjunction with Theorems 3.3.6 and 3.5.2 this shows that

∣∣XM(G)F
∣∣ =

∣∣π−1
(
V2(λ′N)ss

F )∣∣ (3.6)
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where V2(λ′N)ss stands for the set of all L⊥(λ′N)-semistable vectors of the L(λ′N)-

module V2(λ′N) = U2(λ′N)/U3(λ′N) and π : U2(λ′N)F → V2(λ′N)F is the map induced

by the canonical homomorphism U2(λ′N) � V2(λ′N). Now the argument used in

the proof of Theorem 3.6.2 yields

∣∣HN(G)F
∣∣ =

∣∣GF/P (λ′N)F )
∣∣ · ∣∣π−1

(
V2(λ′N)ss

F )∣∣. (3.7)

In view of Remark 3.3.6 we have that

∣∣V2(λ′N)ss
F ∣∣ =

∣∣g(λ′N, 2)ss
F ∣∣. (3.8)

Since the group U3(λ′N) is connected and F -stable, the Lang–Steinberg theorem

shows that for every v ∈ V2(λ′N)ss
F there is an element ṽ ∈ V2(λ′N)ss

F such that

π(ṽ) = v. From this it is immediate that

π−1(v) = ṽ · U3(λ′N)F
(
∀ v ∈ V2(λ′N)ss

F )
. (3.9)

Combining (3.6), (3.8) and (3.9) we obtain that

∣∣XM(G)F
∣∣ =

∣∣π−1
(
V2(λ′N)ss

F )∣∣ =
∣∣g(λ′N, 2)ss

F ∣∣ · ∣∣U3(λ′N)F
∣∣. (3.10)

As we know by Remark 3.3.6, for each i ≥ 3 the connected abelian group

Vi(λ
′
N) = Ui(λ

′
N)/Ui+1(λ′N) is a vector space over k isomorphic to g(λN, i). Since

τ ∗λ′N = λ′N, it is equipped with a q-linear action of F . Therefore

|Vi(λ′N)F | = qdim g(λ′N, i), i ≥ 3; (3.11)

see [Digne and Michel, 1991, Corollary 3.5], for example. Since every group Ui(λ
′
N)

with i ≥ 3 is connected and F -stable, the Lang–Steinberg theorem yields that

for every u ∈ Vi(λ
′
N)F there exists ũ ∈ Ui(λ

′
N)F whose image in Vi(λ

′
N)F equals

u. This, in turn, implies that every quotient Vi(λ
′
N)F with i ≥ 3 has a section in

Ui(λ
′
N)F ; we call it Ṽi(λ

′
N). Then

∣∣U3(λ′N)F
∣∣ =

∏
i≥3

∣∣Ṽi(λ′N)F
∣∣. (3.12)
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Together (3.10), (3.11) and (3.12) show that

∣∣XM(G)F
∣∣ =

∣∣π−1
(
V2(λ′N)ss

F )∣∣ =
(
qdim g(λ′N, 2) −

∣∣Ng(λ′N, 2)
F
∣∣) · qdim g(λ′N,≥3).

As a result, |XM(G)F | = |XM(g)F | = ψMg (q) for every M as above. Now (3.7)

yields |HN(G)F | = |HN(g)F | = ϕNg (q). In view of Theorem 3.7.3 this implies that

P5 holds for G.

Remark. 1. In the appendix to [Lusztig, 2011] and more recently in [Lusztig,

2010], Lusztig and Xue proposed a definition of nilpotent pieces for classical

groups which avoids the partial ordering of nilpotent orbits. Given M∈ DG choose

g ∈ G as in Subsection 3.7.1 and define gM!
2 to be the set of all x =

∑
i≥2 xi ∈ gM2

with xi ∈ g(i, g · ω) and CG(x2) ⊂ GM2 . Similarly, let (g∗)M!
2 be the set of all

ξ =
∑

i≥2 ξi ∈ (g∗)M2 with ξi ∈ g∗(i, g · ω) such that the stabiliser of ξ in G is

contained in GM0 . According to the definition of Lusztig and Xue, the blades and

nilpotent pieces of g are

{
gM!

2 | M∈ DG

}
and

{
(AdG) · gM!

2 | N ∈ DG/G
}

respectively, whilst the blades and nilpotent pieces of g∗ are

{
(g∗)M!

2 | M∈ DG

}
and

{
(Ad∗G) · (g∗)M!

2 | N ∈ DG/G
}

respectively, where M is implicitly taken to be a representative of N in each case.

Lusztig and Xue proved that for G classical these subsets stratify Ng and Ng∗ .

On the other hand, Theorem 3.7.3 implies that XM(g) ⊆ gM!
2 and XM(g∗) ⊆ (g∗2)M!

for every M∈ DG. But equality must hold in each case because the blades, too,

stratify the nullcones. This shows that for G classical both definitions lead to the

same stratifications of Ng and Ng∗ .

2. The proof of Corollary 3.7.3 shows that for any p > 0 there exists a bijec-

tion between Guni
F and gnil

F which maps every non-empty subset XM(G)F onto

XM(g)F and every non-empty subset HN(G)F onto HN(g)F .

3. It follows from [Seshadri, 1977, Proposition 6(2)] that for every N ∈ DG/G

there is a homogeneous regular function fN ∈ Z[g′Z(λ′N, 2)] invariant under the
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natural action of the group scheme L⊥(λ′N) and such that for any algebraically

closed field k the variety Ng(λ′N, 2) coincides with the zero locus of the image of fN

in k[g(λ′N, 2)] = Z[g′Z(λ′N, 2)]⊗Zk; see [Premet, 2003, §2.4] for a related discussion.
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Chapter 4

The endomorphism algebra of

generalised Gelfand-Graev

representations

4.1 Introduction and background material

4.1.1 In order to define Gelfand-Graev representations and their generalisations,

we shall need to recall some facts about regular unipotent elements of G, following

[Digne and Michel, 1991]. Heuristically, a regular element is one which is least

likely to commute with other elements, or, more precisely, if the dimension of

its centraliser is minimal. In fact, it is easy to show that this dimension always

equals the rank of G. The theory of regular elements of G is very important and

has numerous applications in representation theory. It can largely be reduced

to the study of regular unipotent elements of G since, if x = su is the Jordan

decomposition of an element x ∈ G. Then x is regular if, and only if, u is regular

in C◦G(s). However, it can be difficult to work with regular unipotent elements,

and the only known proof that they even exist is highly non-trivial.

Of fundamental importance is the fact that all regular unipotent elements are

conjugate. Moreover, this regular unipotent class is an open dense subset of Guni.

It is thus the unique maximal element of the poset structure on unipotent classes.

If G has a connected centre and p is a good prime for G, then the centraliser CG(u)
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is connected for any regular unipotent element u. We will use this fact several

times in this chapter.

Of course, we can define regular nilpotent elements in a completely analogous

manner, and all of the above facts hold for these too.

4.1.2 Now assume that G is defined over Fq with corresponding Frobenius en-

domorphism F . Fix a rational Borel subgroup B of G and a rational maximal

torus T ≤ B, so that we get a rational unipotent subgroup U = Ru(B) and Levi

decomposition B = U o L. Closely related to regular unipotent elements are

regular characters of UF , which are used to construct Gelfand-Graev characters.

We now explain how to construct and classify the regular characters of UF before

defining Gelfand-Graev characters and describing some of their basic properties.

Let Π denote a basis of the root system Σ relative to T , and Σ+ the corre-

sponding set of positive roots. Recall that the Frobenius endomorphism F acts on

Π via an automorphism τ of X(T ). (This action is non-trivial only for non-split

groups GF , such as the unitary groups. In those cases the action can be identified

with a non-trivial graph automorphism of the Dynkin diagram of G.) As we have

seen in the previous chapter U may be written as a product U =
∏

α∈Σ+ Uα for

any order on the positive roots. Then the derived group of U may be written as

DU =
∏

α∈Σ−Π Uα, using Chevalley’s commutator relations. We would first like to

describe the structure of the abelian group UF/(DU)F ∼= (U/DU)F . As we have

seen earlier U/DU is isomorphic to a direct product of the images of the Uα for

α ∈ Π. The action of F then permutes these summands. Explicitly, let O denote

an orbit of τ in Π, and UO the image of
∏

α∈O Uα in U/DU . Then UO is F -stable

and UF
O is isomorphic to UF |O|

α for any α ∈ O. Furthermore, the F - and T -actions

are compatible with the natural isomorphism of varieties UO
∼=
∏

α∈O Uα. Since

root subgroups are isomorphic to the additive group of k, it follows that

UF/(DU)F ∼= F+
q|O1| × · · · × F+

q|Ok|, (4.1)

where O1, . . . ,Ok are the τ -orbits in Π. We may now define a linear character of

UF to be regular if the following hold:

(i) Its restriction to the subgroup (DU)F is trivial (i.e. it is lifted from a
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character of the group in (4.1)).

(ii) Its restriction to UF
O for any τ -orbit O in Π is non-trivial.

With very few exceptions, (DU)F = D(UF ), in which case (i) above is not

necessary as this is automatic for linear characters. (E.g. [Howlett, 1974, Lemma

7] lists the three exceptions for quasi-simple groups.) Also note that the action

of T F on Irr(UF ) preserves regular characters.

We now come to our main definition. Let ψ be a regular character of UF .

Then the induction IndG
F

UF ψ is called a Gelfand-Graev character of GF . One of

the most celebrated results on Gelfand-Graev characters is the following, due

to Steinberg. (Special cases were proved previously by Gelfand and Graev, and

Yokonuma.)

Theorem. (Cf. [Steinberg, 1968, Theorem 49]) Gelfand-Graev characters are

multiplicity-free.

The idea in Steinberg’s proof is to construct the endomorphism algebra of a

Gelfand-Graev representation and then show that it is abelian.

We shall now determine when two Gelfand-Graev characters coincide, and

classify the distinct ones. First note that by Clifford theory,

IndG
F

UF ψ = IndG
F

UF ψ
′

if, and only if, ψ and ψ′ are T F -conjugate. So the task is reduced to determining

the T F -orbits of regular characters. This leads us to the following well-known re-

sult, which we prove here since the proof in [Digne and Michel, 1991] is somewhat

sketchy.

Proposition. The Gelfand-Graev characters are in bijection with the F -twisted

conjugacy classes of Z(G)/Z(G)◦. In particular, there is only one if the centre of

G is connected.

Proof. Assume that G is semisimple; the general case is similar. By our observa-

tion above our task is reduced to showing that the T F -orbits of regular characters

of UF are in bijection with the F -twisted conjugacy classes of Z(G)/Z(G)◦. First
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consider U/DU as a direct sum of the images of Uα for simple α. We may refer to

those elements which have no non-trivial direct summand as the regular elements

of U/DU . The regular elements of UF/(DU)F = (U/DU)F are in bijection with

the regular characters of UF by (4.1). Moreover, they are also isomorphic as T F -

sets. Therefore, it is sufficient to prove the result for the former. We will show

that any two regular elements of U/DU are T -conjugate. Then the result follows

from the Lang-Steinberg theorem, and the fact that the stabiliser of a regular

element is Z(G).

Let l = |Π|. The action of T on

U/DU ∼= k
+ × · · · × k+ (l times)

may be thought of as a homomorphism of algebraic groups

φ : T → H = k
× × · · · × k× (l times),

given by φ(t) = (α1(t), . . . , αl(t)). It is sufficient, therefore, to show that φ is

surjective. Now, by their simplicity, the elements of Π are linearly independent

in the character group X(T ), thought of as a free Z-module. So
∏
αi
mi (mi ∈ Z)

are distinct (abstract group) homomorphisms from T to k
×, and as such (see,

e.g., [Humphreys, 1975, Lemma 16.1]), they are linearly independent as elements

of k[T ]. On the other hand, if we denote the coordinate functions of H by γi, then

we have that φ∗(γi) = αi for each i. But k[H] has basis
∏
γi
mi (mi ∈ Z), which

shows that φ∗ is injective, and hence φ is dominant. Being a homomorphism of

algebraic groups, φ must also be surjective.

4.1.3 We keep the same notation as in Subsection 4.1.2 and we additionally let

F denote a Frobenius endomorphism on g which is compatible with the one on

G and that p is a good prime for G. We follow the construction of generalised

Gelfand-Graev representations (hereafter GGGRs) in [Kawanaka, 1985]. The

basic idea is to associate various GGGRs to each nilpotent AdG-orbit of g, such

that the the GGGRs associated with the regular orbit are precisely the ordinary

Gelfand-Graev representations. We note that Kawanaka states a list of properties

[Kawanaka, 1985, (1.1.1)] which he says must hold in order to define GGGRs, but
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later shows these to be unnecessary in [Kawanaka, 1986].

For a nilpotent element e ∈ gF we associate a Z-grading g =
⊕

i∈Z gi as in

Theorem 2.2.1. We denote by Ui the unipotent subgroups Ue,i from Chapter 2

and let ui = LieUi. Using the explicit choice of Springer morphisms σ from

[Kawanaka, 1985] and [Kawanaka, 1986], we have that σ(Ui) = ui for i ≥ 1, and

the ‘log-like’ property for u ∈ Ui, v ∈ Uj, i, j ≥ 1,

σ(uv)− σ(u)− σ(v) ∈ ui+j. (4.2)

For x ∈ g, we let x 7→ x∗ denote the F -stable opposition automorphism, i.e. an

involutive automorphism such that t∗ = t and u∗i = u−i for i ≥ 1, where t = LieT .

We let 〈 , 〉 denote an F - and G-stable symmetric bilinear form on g such that

〈x, [y, z]〉 = 〈[x, y], z〉 ,

for x, y, z ∈ g, and

X⊥α = t⊕
∑
β∈Σ\α

kX−β.

(For a simple Lie algebra, clearly the only option is the Killing form, up to a

scalar.) Then define

λ : g→ k by λ(x) = 〈e∗, x〉.

Then the composition

U2
σ−→ u2

λ−→ k (4.3)

is a homomorphism of algebraic groups. The final ingredient required is a ‘once-

and-for-all fixed’ non-trivial additive character ψ of Fq. Since both λ and σ are

F -stable, so we may define a linear character

∆ : UF
2

σ−→ uF2
λ−→ Fq

ψ−→ Q̄l. (4.4)

One may check that the skew-symmetric bilinear form (, ) on g1, defined by

(x, y) = 〈e∗, [x, y]〉 (4.5)
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is non-degenerate. It follows that dim g1 is even and that there exists an F -stable

subspace S ≤ g1 of dimension (dim g1)/2, such that for all x, y ∈ S,

〈e∗, [x, y]〉 = 0.

(Hence, S is a Lagrangian subspace.) We then define a subalgebra

u1.5 = S⊕ u2.

It follows that U1.5 = σ−1(u1.5) is an F -stable subgroup of G, and, furthermore,

U2 ≤ U1.5 ≤ U1,

and [
UF

1 : UF
1.5

]
=
[
UF

1.5 : UF
2

]
. (4.6)

Using properties of p-groups it is not hard to show that ∆ is extendible to a

linear character ∆∼ of UF
1.5. Then the representation Γe of GF induced from ∆∼

is called the generalised Gelfand-Graev representation of GF associated to e.

We denote the character of Γe by γe. If e′ is in the same GF -orbit as e then

γe = γe′ . Also, γe does not depend on the choice of S or extension ∆∼. The name

is justified by the fact that if e is a regular nilpotent element then Γe is indeed

the usual Gelfand-Graev representation from Subsection 4.1.2. Our convention

will be to consider all representations of GF to be over Q̄l, to remind us of the

connections with Deligne–Lusztig theory, which will soon become apparent. By

means of a suitable Springer morphism we may also define GGGRs associated to

rational unipotent elements, whence we will use the notation Γu, for u ∈ GF
uni.

4.2 The endomorphism algebra of a GGGR

As we have seen, we may associate a generalised Gelfand-Graev representation to

each unipotent class of a finite group of Lie type GF . These representations have

deep connections with the geometry of the unipotent classes of G, and have been

key tools in the ongoing programme to determine the ordinary character tables of
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all finite groups of Lie type, due to their relationship with Green functions, and

thus Deligne–Lusztig characters. Character formulas for GGGRs have performed

a key role in this regard, since they allow one to deduce information about ir-

reducible constituents. In the seminal article [Kawanaka, 1985] where GGGRs

are defined for the first time Kawanaka has given character formulas for GGGRs

in terms of Green polynomials in the case of general linear and unitary groups.

Inspired by this, Lusztig has obtained a similar formula, valid for an arbitrary

finite group of Lie type (with p sufficiently large), expressed in terms of inter-

section cohomology complexes of closures of unipotent classes with coefficients

in various local systems; [Lusztig, 1992]. Using the fact that the inner product

of a complex character with itself is equal to the dimension of its endomorphism

algebra, in this Chapter we study the dimensions of endomorphism algebras of

GGGRs using these character formulas.

Naturally, the prime power q features heavily in these character formulas and

in such situations it is useful to think of q as a variable. However, as we saw in

the previous Chapter, care is needed in order to formulate precise and meaningful

statements. This notion is central in the theory of finite groups of Lie type as

it allows generic behaviour to be observed, i.e. behaviour which is independent

of the associated finite field. The set-up for this chapter is inspired by the set-

up in the recent papers [Goodwin and Röhrle, 2009b] and [Goodwin and Röhrle,

2009a], in which the notion of polynomials in q is used extensively. It was pointed

out by the referee of the paper on which this chapter is based that this set-up

goes back to [Broué et al., 1993]; the authors use the term generic finite reductive

group there to refer to the family of groups obtained by varying q.

Under a certain assumption on the root datum of G (ensuring that the centre

of G, together with all groups with the same root datum but with a possibly

different associated prime power q, are connected), we shall explain what we

mean by the statement “the dimension of a generalised Gelfand-Graev module

is a polynomial in q”, before proving it. We will also show that the degree of

this polynomial is given by the dimension of the centraliser (in G) of a unipotent

element in GF from the class associated with that module. (For groups with

a component of Type E8 we may need to dichotomise our set-up, depending

on the value of q modulo 3.) When G has a disconnected centre we cannot
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even parametrise the generalised Gelfand-Graev characters independently of q

in general, and so we cannot hope for such a clean statement here. However,

similar behaviour is exhibited in the disconnected centre case, and we have found

that a suitable way to capture this is to consider q as a variable, but whilst only

allowing certain congruence classes of q. Subject to this restriction we extend the

aforementioned results to this situation too.

As we have seen, Steinberg has shown that (ordinary) Gelfand-Graev rep-

resentations are multiplicity-free (although this was proved previously for split

groups in [Yokonuma, 1967] and [Yokonuma, 1968]). Moreover, when the centre

is connected they contain |Z(G)F |ql irreducible constituents. O. Brunat has gen-

eralised this formula to the disconnected centre case; see [Brunat, 2010, Theorem

3.5]. His formula is of the form |Z(G)◦F |f where f is a polynomial in q. So when

the centre of G is connected this number may be viewed as a polynomial in q

of degree rankG, the latter agreeing with the dimension of the centraliser of a

regular unipotent element. This fact can also be extended to the disconnected

centre case using Brunat’s formula, provided one adopts a suitable convention

to control the number |Z(G)◦F | as q varies. Now clearly, for ordinary Gelfand-

Graev representations, this number is also the dimension of the endomorphism

algebra, hence the results of this chapter are a generalisation of this property of

the Steinberg-Yokonuma-Brunat formula to generalised Gelfand-Graev represen-

tations.

The author is grateful to Cédric Bonnafé for pointing out some interesting

results on the dimension of the endomorphism algebra of a GGGR which appear

in the recent PhD thesis of O. Dudas, obtained using only elementary methods;

cf. [Dudas, 2010, Chapter 3]. Let du be the dimension of the endomorphism

algebra of the GGGR associated to an F -stable unipotent element u, where F

is a Frobenius endomorphism associated to a split Fq-rational structure. Dudas

has shown, for instance, that if G is a quasi-simple adjoint group, and if u lies

in the minimal unipotent class (i.e. the unique non-trivial unipotent class Cmin

such that Cmin = Cmin ∪ {1G}), then

du =
|CG(u)F ||Cmin

F |
|UF

1 ||UF
2 |

,
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where U1, U2 are certain F -stable closed unipotent subgroups associated to u by

the Dynkin-Kostant theory; cf. Theorem 2.2.1. However, our tables in Appendix

B imply that this closed formula is not true in general, for other unipotent classes.

More generally, he shows that for an arbitrary F -stable unipotent element u,

du
|UF

1 ||UF
2 |

|CG(u)F |
∈ N.

He also shows that

lim
q→∞

q− dimCG(u)du = 1,

which is verified by our main result.

This chapter is organised as follows. In Section 4.3 we lay down the rigorous

foundation necessary to formulate precise statements involving polynomials in q.

In Section 4.4 we prove our main result in the special case of general linear and

unitary groups, using Kawanaka’s character formula. In Section 4.5 we extend

this to a much more general setting, using Lusztig’s character formula. Although

Section 4.4 is essentially a special case of Section 4.5, it is considerably easier

to understand, conceptually, the ingredients of the former, and may serve to

illuminate the latter.

4.3 Polynomials in q

4.3.1 Recall that a connected reductive algebraic group is uniquely determined by

its root datum (X(T ),Σ, Y (T ),Σ∨), and that a related finite group of Lie type is

uniquely determined by the following; cf. [Digne and Michel, 1991, Theorem 3.17].

1. A root datum (X(T ),Σ, Y (T ),Σ∨).

2. A prime power q.

3. An automorphism τ of X(T ) which preserves Σ.

Now suppose we have a quantity attached to a fixed choice of data 1 and 3

above, which is a function of various prime powers q. If there exists a polynomial

f ∈ Q[x] such that the quantity is given by f(q) for those q under consideration,
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then we say that this quantity is a polynomial in q. In the same spirit, we may

also talk about quantities which are independent of q. When we write G we will

sometimes mean a fixed group with an associated fixed prime power q (sometimes

the notation G(q) is used), but sometimes, by abuse, we will talk about properties

of G which are independent of q, in which case we are, strictly speaking, referring

to properties of the root datum, together with τ .

For the statement “dim EndQ̄lGF Γu is a polynomial in q” to be meaningful,

we first need to establish that the number of distinct generalised Gelfand-Graev

characters is fixed as we vary q, and that they can be parametrised independently

of q. But since the generalised Gelfand-Graev characters are parametrised by the

unipotent classes of GF we shall focus on the latter. Clearly we will need to fix,

once and for all, a root datum (X(T ),Σ, Y (T ),Σ∨), and automorphism τ .

Before we begin the discussion of unipotent classes we fix some data which

will play a part both in the current situation and later on when we will wish to

compare GF -classes of certain rational subgroups of G, across different values of

q. We fix a maximally split maximal torus T ≤ G for each prime power, and

a simple system Π ⊂ Σ such that τ(Π) = Π. Then this uniquely determines a

rational Borel subgroup B ⊃ T .

In order to parametrise geometric unipotent classes and F -stable geometric

unipotent classes independently of q we apply an idea of N. Spaltenstein of using

a group G′ with the same root datum as G but over a field of characteristic zero,

as a reference point. (We could, alternatively, employ the language of group

schemes again, as in Chapter 3, but since we can get away without using such

heavy machinery here we will do so.) We let T ′ be a maximal torus of G′ and B′ a

Borel subgroup of G′ containing T ′. For this discussion we restrict our attention

to q which are powers of a good prime for our fixed root datum. (Recall that this

restriction is also necessary to define generalised Gelfand-Graev representations.)

Spaltenstein has shown that there exists a map πG : G′uni/G
′ → Guni/G, which is

characterised by the following three properties:

(i) It is an isomorphism of posets.

(ii) It preserves the dimensions of classes.
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(iii) It satisfies certain compatibility relations between parabolic subgroups in G

and G′ containing B and B′ respectively.

Cf. [Spaltenstein, 1982, Théorème III.5.2].

Since this map is uniquely defined we may use it as a means of parametrising

the geometric unipotent classes of G independently of q. Now the Frobenius

endomorphism F on G may be written as F = Fq ◦ F0 = F0 ◦ Fq where Fq is

determined by the multiplication by q map on the character group of T , whilst

F0 is an automorphism of G of finite order, determined uniquely by τ . Then F0

determines also a map F ′0 on G′ in the same manner. Clearly the maps F and

F ′0 induce permutations on Guni/G and G′uni/G
′ respectively and, moreover, the

following diagram commutes:

G′uni/G
′ πG−−−→ Guni/GyF ′0 yF

G′uni/G
′ πG−−−→ Guni/G

(The only non-trivial thing to show here is that Fq acts trivially on Guni/G,

a fact which follows from the Springer correspondence; cf. [Geck and Malle,

2000, p. 24].) It follows that our parametrisation of geometric unipotent classes

respects the F -action, and thus we have a q-independent parametrisation of F -

stable unipotent classes of G.

4.3.2 We now turn our attention to the unipotent classes of GF . For this we will

need to assume that X/ZΣ is torsion-free. Let C be an F -stable unipotent class in

G and fix an F -stable point u ∈ C. Then, by the Lang-Steinberg theorem, theGF -

orbits in CF are parametrised by the F -conjugacy classes of A(u) = CG(u)/C◦G(u).

Explicitly, this is done as follows: For each F -conjugacy class in A(u), choose a

representative a; then choose ga ∈G such that g−1
a F (ga) = ȧ for some representa-

tive ȧ of a in CG(u); then {gaug−1
a } is a set of representatives for the GF -conjugacy

classes in CF .

The next step is to make a special choice for u for which the F -action on A(u)

is as simple as possible and so that we have a more canonical reference point in

C for when we vary q. Thankfully, this is possible by an idea of T. Shoji. If G
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is simple modulo its centre and Σ is not of type E8 then u may be chosen to be

a so-called split element (proved in [Shoji, 1983], [Shoji, 1982], and [Beynon and

Spaltenstein, 1984]; see also the survey [Shoji, 1987, §5]). We omit the definition

here, but suffice to say that split elements in C comprise a unique GF -conjugacy

class and, if u is a split element, F acts trivially on A(u). Thus, the GF classes

in CF correspond canonically to the conjugacy classes of A(u). In fact, suppose

u′ ∈ G′ is a unipotent element whose G′-class agrees with the G-class of u under

Spaltenstein’s map, then we may write down an explicit bijection between the

conjugacy classes of A(u) and A(u′). (See [McNinch and Sommers, 2003, p. 336]

for the details of this bijection, although this is based on earlier work in [Mizuno,

1980] and [Alekseevskii, 1979].) In this manner we can label the unipotent classes,

and hence the generalised Gelfand-Graev characters, of GF independently of q.

4.3.3 We now consider groups of type E8. Following [Kawanaka, 1986, Proposi-

tion 1.2.1] we dichotomise the situation according to whether q is congruent to 1

or −1 modulo 3. (Note that we do not consider the case where q is a power of 3

since this is a bad prime for E8.) From now on, when we refer to “polynomials

in q” or “treating q as a variable” we tacitly assume that we have fixed one or

the other of these situations. In fact we only really need this distinction when u

is in the geometric unipotent class with Bala-Carter label E8(b6) (corresponding

to Mizuno label D8(a3)). In this case there is a GF -class of split elements if q is

congruent to 1 modulo 3 (and hence the GF -classes may be parametrised indepen-

dently of q as before), but split elements do not exist in this class if q is congruent

to −1 modulo 3. However, it is possible to deal with this case explicitly. (E.g. it

is known that there are precisely three GF -classes and that their class sizes are

given by different polynomials so we could, for instance, label these classes by

these known polynomials.) This distinction is also implicitly used in Section 4.5

since Green functions, which appear there, have an analogous q-dependence issue

for groups of type E8.

4.3.4 By a well-known process of reduction in the theory of unipotent classes

of reductive groups we may also lift the assumption that G be simple modulo

its centre. (See the standard text [Carter, 1993, Ch. 5] for a general treatment,
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and [Goodwin and Röhrle, 2009a, p. 7] for a discussion relevant to the current

context.)

In summary, we have the following:

Proposition. Fix a root datum (X(T ),Σ, Y (T ),Σ∨) and automorphism τ of

X(T ) which preserves Σ, and assume that X/ZΣ is torsion-free. Then we may

parametrise the unipotent classes (and therefore the generalized Gelfand-Graev

characters) of all finite groups of Lie type which have this data independently of

the associated prime power q, provided q is a power of a good prime.

4.3.5 We will also make use of the following important result, sometimes implic-

itly.

Proposition. With the set-up of Proposition 4.3.4, let R be a set of q-independent

labels for the unipotent classes of these groups. For each power q of a good prime

and each r ∈ R, let ur,q be a representative of the corresponding unipotent class.

Then, allowing q to vary, the order of the centraliser of ur,q is a polynomial in q.

Proof. This is [Goodwin and Röhrle, 2009b, Proposition 3.3]. The proof appeals

to the Lusztig-Shoji algorithm for computing Green functions.

4.4 Type A: Kawanaka’s formula

4.4.1 In this section we set G = GLn(k) and endow it with a split or non-split

Fq-rational structure, with corresponding Frobenius endomorphism F , so that GF

is GLn(Fq) or GUn(Fq). Using [Kawanaka, 1985, (3.2.14)] we prove the following:

Theorem. Let G and F be as above, u ∈ GF a unipotent element, and Γu the

corresponding generalised Gelfand-Graev representation. Then the dimension of

the endomorphism algebra EndQ̄lGF Γu is a monic polynomial in q with rational

coefficients. Moreover, its degree is given by the dimension of the centraliser

CG(u).

Note that we need no condition on p here since all primes are good. Be-

fore we can state Kawanaka’s formula we must first explain the ingredients from
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[Kawanaka, 1985]. The unipotent classes of G are parametrised by the partitions

of n, via the Jordan normal form, and the rational points of such a class comprise

a single GF -class. We may therefore denote a typical generalised Gelfand-Graev

character by γλ, where λ ` n. We may also use partitions to label the non-zero

values of generalised Gelfand-Graev characters since they are known to vanish

on non-unipotent elements. We shall therefore adopt the convention of writing

γλ(µ) for the character value of γλ on the class corresponding to µ.

4.4.2 We now introduce the necessary notation to state Kawanaka’s character

formula. We set ε = 1 or −1 depending on whether F is split or not, respectively.

If λ = (λ1, λ2, . . . , λr) ` n then we define

n(λ) =
∑
i

(i− 1)λi.

With reference to a fixed rational maximal torus T , we may, by the Lang-

Steinberg theorem, label the GF -classes of rational maximal tori by the F -classes

of the Weyl group W = NG(T )/T ∼= Sn. If T is the diagonal maximal torus then

F acts trivially on W and therefore we may label these by the classes of W and,

thus, by the partitions of n. (Here we have chosen the Frobenius endomorphism

defining GUn(Fq) to be F (g) = Fq(g
−T ), where g ∈ G and Fq is a standard

Frobenius endomorphism. Note that this is different from our earlier choice (2.7),

but it is well-known that the resulting fixed-point groups are G-conjugate.) With

this set-up we denote representatives of the GF -classes of rational maximal tori

by Tλ for λ ` n, and define

Wλ = (NG(Tλ)/Tλ)
F .

For λ = (λ1, λ2, . . . , λr(λ)) ` n, we set

sgnε(λ) = εbn/2c(−1)n+r(λ),

and

eλ(t) =
∏
i

(1− tλi).
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Qµ
λ(t) ∈ Z[t] will denote the Green polynomial with parameters λ, µ ` n (cf.

[Macdonald, 1979]). Finally, we define a rational function

Xµ
λ (t) = tn(µ)Qµ

λ(t−1).

In fact this is a polynomial of degree n(µ) by [Macdonald, 1979, Chapter III, §7].

Now we may state Kawanaka’s formula.

Theorem. ( [Kawanaka, 1985, (3.2.14)] ) With the above set-up,

γµ(λ) = εn(µ)
∑
ρ`n
|Wρ|−1 sgnε(ρ)qneρ((εq)

−1)Xµ
ρ (εq)Qλ

ρ(εq).

4.4.3 Recall that a Green function of GF is the restriction of a Deligne-Lusztig

virtual character RT,θ to GF
uni. In the case of general linear groups these are

simply Green polynomials, and for unitary groups they are of the form Qµ
λ(−q).

We shall need the following orthogonality formula for Green functions. (See, e.g.,

[Shoji, 1987].) Let λF denote the unipotent class in GF corresponding to λ ` n.

Then

|GF |−1
∑
λ`n
|λF |Qλ

ρ(εq)Q
λ
π(εq) =

|NG(Tρ, Tπ)F |
|T Fρ ||T Fπ |

, (4.7)

where NG(Tρ, Tπ) = {n ∈ G |n−1Tρn = Tπ}.

4.4.4 Now dim EndQ̄lGF Γµ may be written as

〈γµ, γµ〉 = |GF |−1
∑
λ`n
|λF |

(∑
ρ`n
|Wρ|−1 sgnε(ρ)qneρ((εq)

−1)Xµ
ρ (εq)Qλ

ρ(εq)

)

×

(∑
π`n
|Wπ|−1 sgnε(π)qneπ((εq)−1)Xµ

π (εq)Qλ
π(εq)

)
,

which is a polynomial in q. Indeed, it is easy to check that it is a rational function

of the form f/|GF | for some f ∈ Q[q]. (We consider |GF | as a polynomial in q

here.) So f(q)/|GF | ∈ Z for infinitely many q. By applying the division algorithm
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we may write f = g|GF | + r, where deg r < deg |GF |. It follows that for some

integer c, cr(q)/|GF | ∈ Z for all q. But the limit as q → ∞ is 0, so r = 0 and

the claim follows. We label this argument by ♣ as we shall reuse it later. The

fact that conjugacy class sizes are given by polynomials in q can be deduced by

applying ♣ and the orbit-stabiliser theorem to Proposition 4.3.5.

Now we will show that the degree of this polynomial is dimCG(u), where u

is in the class corresponding to µ by the Jordan normal form. For GLn(k) it is

known that dimCG(u) = n+2n(µ). (Adapt, e.g., the corresponding result, [Geck,

2003, Proposition 2.6.1], for SLn(k).) To make the derivation tidier we define an

equivalence relation on Q[q], denoted ≈, by setting f ≈ g if deg f = deg g, for

f, g ∈ Q[q]. Under this relation the above expression is equivalent to

q−n
2+n+2n(µ)

∑
λ`n
|λF |

(∑
ρ`n

qneρ((εq)
−1)(−1)r(ρ)

|Wρ|
Qλ
ρ(εq)

)

×

(∑
π`n

(−1)r(π)

|Wπ|
Qλ
π(εq)

)

≈ q−n
2+n+2n(µ)

∑
ρ,π`n

qneρ((εq)
−1)(−1)r(ρ)+r(π)

|Wρ||Wπ|
∑
λ`n
|λF |Qλ

π(εq)Qλ
ρ(εq)

≈ q−n
2+n+2n(µ)

∑
ρ`n

qneρ((εq)
−1)|GF |

|Wρ||T Fρ |
(by (4.7))

≈ qn+2n(µ)
∑
ρ`n

1

|Wρ|
≈ qn+2n(µ),

where we have used the fact that |T Fρ | = qneρ((εq)
−1). So, to complete the proof

of Theorem 4.4.1, it remains to show that dim EndQ̄lGF Γµ is monic. Indeed,

observe that the coefficient of the leading term has been preserved in the above

until the last line. Using the fact (see, e.g., [Kawanaka, 1985]) that Wρ
∼= CSn(ρ),

the centraliser in the symmetric group of an element of cycle type ρ, we see that

∑
ρ`n

1

|Wρ|
=
∑
ρ`n

| cl(ρ)|
n!

= 1, (4.8)

which completes the proof of Theorem 4.4.1.
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4.5 The general case: Lusztig’s formula

4.5.1 Inspired by Kawanaka’s work, Lusztig has derived another character for-

mula ([Lusztig, 1992, Theorem 7.3]), valid for any connected reductive group, but

assuming that p is large enough in the sense of [Lusztig, 1992] throughout this

section. I.e., large enough so that the Jacobson-Morozov theorem holds, and that

the log map may be used as a Springer morphism. Lusztig’s formula, however, is

rather more geometric and is given in terms of intersection cohomology complexes

of closures of unipotent classes with coefficients in various local systems. We will

use it to prove the following.

Theorem. Let G be a connected reductive group, defined over Fq, with root datum

(X(T ),Σ, Y (T ),Σ∨) and Frobenius endomorphism F . Let u ∈ GF be a unipotent

element and let Γu be the corresponding generalised Gelfand-Graev representation.

Then, assuming that X/ZΣ is torsion-free, the dimension of the endomorphism

algebra EndQ̄lGF Γu is a monic polynomial in q with rational coefficients. More-

over, its degree is given by the dimension of the centraliser CG(u).

4.5.2 In [Lusztig, 1992] a generalised Gelfand-Graev representation Γφ is associ-

ated to each homomorphism φ : sl2 → g, where g = LieG. However, for conve-

nience we will use the equivalent notation Γe = Γφ, where e ∈ g is the nilpotent

element which is the image under φ of the matrix with 1 in the (1, 2)-position and

0 elsewhere. This is defined on certain rational points of the nilpotent variety gnil

of g, but can be made into a usual generalised Gelfand-Graev representation as

follows. For any Frobenius endomorphism on G there exists an AdG-compatible

Frobenius endomorphism on g. (We denote the Frobenius endomorphism on g

also by F . Hence, the domain of Γe is gFnil.) Furthermore, by [Springer and Stein-

berg, 1970, Theorem 3.2], there exists a Springer morphism (i.e. a G-equivariant

bijective morphism of varieties) σ : Guni → gnil which is compatible with these

Frobenius endomorphisms. For the purposes of this chapter, then, we can and

will identify unipotent and nilpotent elements via σ. Then for u ∈ GF
uni, x ∈ GF ,

Γu(x) =

{
Γσ(u) ◦ σ(x) if x ∈ GF

uni,

0 otherwise.
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4.5.3 The basic parameter set used in [Lusztig, 1992] is the set I of all pairs

(O,F ), where O is a nilpotent orbit in g and F is an irreducible, G-equivariant,

Q̄l-local system on O, up to isomorphism. By starting with a closed subgroup

L of G, which is the Levi subgroup of some parabolic subgroup of G, we may

obtain another parameter set in the same manner. In this way, we obtain triples

(L, O,L ), where O is a nilpotent AdL-orbit in l = LieL, and L is an irreducible,

L-equivariant, Q̄l-local system on O, given up to isomorphism. Using the gen-

eralised Springer correspondence we can partition the set I into blocks, and to

each block we may associate (the G-orbit of) such a triple (a cuspidal triple).

By [Lusztig, 1992, §4] the elements of these blocks are naturally parametrised

by the irreducible characters of the Weyl group WL = NG(L)/L. There is a single

block associated with the maximal tori, since all maximal tori are G-conjugate

and contain only the trivial unipotent class. We shall call this block the principal

block, by analogy with Harish-Chandra theory.

4.5.4 In each class C fix a representative u once and for all, and consider the

component group A(u) = CG(u)/C◦G(u). This acts naturally on the stalk Fu of

a G-equivariant local system F on C, and thus gives rise to a finite-dimensional

Q̄l-representation of A(u). On the other hand, if ρ ∈ IrrA(u) then we may obtain

the irreducible G-equivariant local system HomA(u)(ρ, π∗Q̄l), where

π : G/CG(u)◦ → G/CG(u) ∼= C

is a finite étale covering with group A(u) (cf. [Shoji, 1988, p. 74]). We shall

denote by NG the set of all pairs (C,ψ), where C is a unipotent class in G and

ψ ∈ IrrA(u). By the above, I may be naturally identified with NG, using a

Springer morphism.

4.5.5 Assume now that G is defined over Fq, with Frobenius endomorphism F .

Then F acts on I by

F : (O,F )→ (F−1(O), F ∗(F )),
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where F ∗(F ) is an inverse image of local systems. If C is F -stable and u ∈ CF , we

also let F act on NG in the obvious manner, and then the F -actions are compatible

with our identification of I and NG. If C is not F -stable, more care is needed to

describe the action. (But it is still respected by F .) The correspondence between

blocks and triples (L, O,L ) also respects the F -action (cf. [Lusztig, 1986a, 24.2]).

Thus, F permutes the blocks. In fact only the F -stable blocks feature in Lusztig’s

character formula, so we will not be interested in blocks which are not F -stable.

(Note that the principal block is always F -stable.)

4.5.6 Following the natural parametrisation of the elements of a block I0 (asso-

ciated with a triple (L, O,L )) by the irreducible characters of WL, we set

IrrWL = {Vι | ι ∈ I0}

(where the Vι are regarded as modules). For ι = (O,F ) ∈ I0 we define

supp(ι) = O. With respect to a fixed rational Levi subgroup L, we may parametrise

the GF -orbits of the rational Levi subgroups which are G-conjugate to L by the

F -classes of WL, using the Lang-Steinberg theorem, in the same manner as for

maximal tori. We let ZLw denote the centre of the Levi subgroup Lw correspond-

ing to the F -class of w ∈ WL. (In fact ZLw is connected if Z(G) is by [Digne and

Michel, 1991, Lemma 13.14].) We also let z(l) denote the centre of l = LieL.

Theorem. ([Lusztig, 1992, Theorem 7.3]) Let G be a connected reductive group

with a split Fq-structure, and let I0 be an F -stable block and let (γe)I0 : gF → Q̄l

be the function defined by∑
ι,ι′,ι1∈I0

qf
′(ι,ι1)ζ−1|WL|−1

∑
w∈WL

Tr(w, Vι) Tr(w, Vι̂1)|Z◦FLw |P
′
ι′,ιYι′(−f)Xι1 ,

where

f ′(ι, ι1) = − dim supp(ι1)/2 + dim supp(ι)/2

−(dim(AdG)e)/2 + (dim g/z(l))/2,
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ζ is a certain fourth root of 1 and ι 7→ ι̂ is a certain bijection I0 → I0 (both

defined in [Lusztig, 1992]). Then

γe =
∑
I0

(γe)I0 ,

where I0 runs over the set of all F -stable blocks.

Remark. The functions Xι,Yι are analogous to the Green polynomials in The-

orem 4.4.2 (in fact, related to generalised Green functions). These are certain

nilpotently supported functions gF → Q̄l, and the P ′ι′,ι are related combinatorial

objects (cf. [Lusztig, 1992, §§6.4 – 6.6]). Much is known about these in the spe-

cial case that I0 is the principal block and we shall exploit this information in

the course of the proof of Theorem 4.5.1.

We will now prove Theorem 4.5.1 under the assumption that G has a split Fq
structure. Since this is equivalent to τ acting trivially on Π, it follows that all

geometric unipotent classes are F -stable. We show how to remove this assumption

in the next subsection.

4.5.7 In addition to the set-up of Section 4.3 we must show that the F -stable

blocks may be parametrised independently of q, in order to establish a rigorous

foundation for the proof of Theorem 4.5.1. Before we consider blocks, however,

we first describe a treatment of Levi subgroups which is independent of q. Recall

that, with respect to fixed data (X(T ),Σ, Y (T ),Σ∨, τ), we have fixed a choice of

maximally split maximal torus for each prime power q, and that we have fixed

a simple system Π ⊂ Σ (such that τ(Π) = Π) so that a rational Borel subgroup

B ⊃ T is determined. For each subset J ⊂ Π such that τ(J) = J we let PJ denote

the corresponding standard parabolic subgroup containing B, and LJ the unique

Levi subgroup of PJ containing T . Since both T and B are F -stable, so are PJ

and LJ . As mentioned above the GF -orbits of F -stable Levi subgroups conjugate

to LJ are parametrised by the F -classes of WLJ . We have thus parametrised all

F -stable Levi subgroups of G (up to GF -action) independently of q.
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4.5.8 Now we move on to consider blocks. As mentioned a block is F -stable pre-

cisely when the corresponding triple (L, O,L ) is F -stable. I.e. its image under F

is in the same G-orbit. Any such L is G-conjugate to some LJ so we may assume

that our triple is (LJ , O,L ). Since the F -action on unipotent classes is indepen-

dent of q, the same is true of nilpotent orbits, since Springer morphisms respect

the F -action. So, in order to parametrise the F -stable blocks independently of

q it just remains to parametrise the irreducible, L-equivariant, Q̄l-local systems

independently of q. But, as mentioned earlier, these are naturally parametrised

by the elements of IrrA(u), for any u such that σ(u) ∈ O. If we choose u to be

a split element then we can thus obtain such a q-independent parametrisation,

analogous to the parametrisation of unipotent classes of GF considered earlier.

In the special case that split elements do not exist we may, by our previous

discussion in Section 4.3, choose u to be from a GF -class corresponding to a

fixed q-independent label, which is sufficient for the current task. Note that in

all cases F acts trivially on A(u). (For u split this is clear; for the other case

see [Kawanaka, 1986, 1.2.1]). Thus F preserves the isomorphism classes of the

corresponding local systems. In summary we have the following.

Lemma. The F -stable blocks are parametrised independently of q.

4.5.9 For the remainder of this subsection we assume that G has a split Fq-
structure. Define, for ι, ι′ in the same F -stable block,

ωι,ι′ = |WL|−1q− codimO/2−codimO′/2+dim z(l)
∑
w∈WL

Tr(w, Vι) Tr(w, Vι′)
|GF |
|Z◦FLw |

where O = supp(ι) and O′ = supp(ι′). Set ωι,ι′ = 0 if ι, ι′ are in different blocks

(cf. [Lusztig, 1992, §6.5]). Also define

αι,ι′ =
∑
w∈WL

Tr(w, Vι) Tr(w, Vι′)|Z◦FLw |.

One may check, using the relations from [Lusztig, 1992, §§6.5, 6.6] that∑
x∈gFnil

Xι(x)Xι′(x) = ωι,ι′ .

100



4.THE ENDOMORPHISM ALGEBRA OF GENERALISED
GELFAND-GRAEV REPRESENTATIONS

It follows that the class functions (γe)I0 are mutually orthogonal. We may there-

fore write

〈γe, γe〉 =
∑
I0

〈(γe)I0 , (γe)I0〉 ,

summing over the F -stable blocks. Each summand may be written as follows.

|GF |−1
∑

ι,ι1,j,j1∈I0

qf
′(ι,ι1)+f ′(j,j1)|WL|−2αι,ι̂1αj,ĵ1ωι1,j1

×
∑

ι′,j′∈I0

P ′ι′,ιYι′(−f)P ′j′,jYj′(−f). (4.9)

4.5.10 From now on we will assume that X/ZΣ is torsion-free so that we may

begin talking about polynomials in q as in Section 4.3. |Z◦FLw | can be seen to be a

polynomial in q by, e.g., [Carter, 1993, p.74].

Lemma. Under the assumptions of Theorem 4.5.1, dim EndQ̄lGF Γe is a polyno-

mial in q with rational coefficients, and, for each block I0,

|GF | 〈(γe)I0 , (γe)I0〉

is a Laurent polynomial in q with rational coefficients.

Proof. By Lemma 4.5.8 we may consider the contribution from each F -stable

block independently. The second statement is clear with respect to the top line

of (4.9) if the ωι,j are polynomials in q for any ι, j ∈ I0. But this follows from

Argument ♣, used with the fact (cf. [Lusztig, 1992, §6.5]) that the ωι,j are

integers. The corresponding statement for the P ′ι,j then follows from the fact

that they are defined ([Lusztig, 1992, p. 151]) in terms of the ωι,j. Now let

ι = (O,F ) ∈ I0 and assume (as we may, since G has a split Fq-structure) that O

is F -stable, and let x ∈ OF and u = σ−1(x). Then Yι(x) is defined (cf. [Lusztig,

1992, §6]) in terms of the action of A(u) on the stalk Fu at u, and a certain

choice of scalar multiple. Subject to the conventions of Section 4.3 Fu and the

action of A(u) on it are independent of q. So it remains to check that this scalar

multiple can be chosen independently of q. One way of seeing this is via [Geck,
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1999, (2.2)], where the scalar is uniquely determined by a choice of extension of

the character of A(u) corresponding to F to the semidirect product A(u)〈F 〉.
Hence, the scalar can be chosen independently of q. The second statement then

follows by applying Argument ♣.

4.5.11 Define the degree of a Laurent polynomial
∑
αit

i to be the largest integer

i such that αi 6= 0. Then by Lemma 4.5.10, in order to prove Theorem 4.5.1 it is

sufficient to consider

deg
(
|GF | 〈(γe)I0 , (γe)I0〉

)
for the various blocks. The following lemma describes some properties of the

degrees of polynomials involved in (4.9) in the case that I0 is the principal block.

Lemma. Let ι, ι′, ι0 belong to the principal block, with supp(ι0) equal to the regular

nilpotent orbit, and let n = rankG. Then the following hold.

(i) ι0 is unique with this property.

(ii) degωι,ι′ ≤ (dim supp(ι) + dim supp(ι′))/2, with equality if ι = ι′.

(iii) degαι,ι′ ≤ n, with equality if, and only if, ι = ι′.

(iv)
∑

ι′∈I0
P ′ι′,ιYι′(−f) = 1 if ι = ι0.

(v) f ′(ι′, ι) ≤ f ′(ι0, ι), with equality if, and only if, ι′ = ι0.

Proof. If u is regular then A(u) = 1 since CG(u) is connected ([Carter, 1993,

Proposition 5.1.6]). This shows that the regular nilpotent class can only appear

in one element of I . Moreover, it must be in the principal block, by the Springer

correspondence (cf. [Carter, 1993, §12.6]). This proves (i). (ii) is equivalent to

showing that

deg
∑
w∈WL

Tr(w, Vι) Tr(w, Vι′)
|GF |
|Z◦FLw |

≤ dimG− n, (4.10)

with equality if ι = ι′. Since we are in the principal block, Z◦FLw = T Fw , and its

order is always a polynomial in q of degree n. (See, e.g., [Carter, 1993, Chapter
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2].) Then the required statement is an elementary exercise in character theory

and properties of sums of rational functions. (iii) follows by a similar argument.

Since I0 is the principal block we may use the theory of Green functions (as

opposed to generalised Green functions), and for this we refer to [Shoji, 1987,

§5]. We may define related class functions associated with irreducible characters

of the Weyl group as follows. For χ ∈ Irr(W ), let

Qχ = |W |−1
∑
w∈W

χ(w)QTw .

Then, for ι ∈ I0, the principal block, we have

Qι =
∑
j∈I0

Pj,ιYj,

where χ ↔ ι is the Springer correspondence. Since the element of Irr(W ) cor-

responding to ι0 by the Springer correspondence is the trivial character, the ex-

pression in (iv) may be written as Q1(−f)(q−1). But Q1 = 1 by, e.g., [Digne and

Michel, 1991, Proposition 12.13].

(v) follows from the fact that the dimension of the regular nilpotent orbit is

strictly greater than that of the others.

4.5.12 We may now deduce the following.

Proposition. Let I0 be the principal block. Then

deg
(
|GF | 〈(γe)I0 , (γe)I0〉

)
= dimG+ dimCG(u).

Proof. We will show that the required degree is obtained by a careful choice of

parameters ι, ι1, j, j1. We choose ι = j = ι0, the unique parameter corresponding

to the regular orbit, and then choose ι1 = j1 such that ι̂1 = ι. (This is a unique

choice since ˆ is a bijection.) With this fixed choice we see, by Lemma 4.5.11,

that the degree is given by

2f ′(ι0, ι1) + degαι0,ι̂1 + degαι0,ι̂1 + degωι1,ι1

= dimG+ dim supp(ι0) + n− dim(AdG)e.
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It is known that the regular orbit has dimension dimG − n. It follows that we

obtain the required degree. To complete the proof, note that by Lemma 4.5.11,

any deviation from this choice of ι, ι1, j, j1 gives rise to a polynomial of strictly

lower degree.

4.5.13 One can check (using (4.9)) that |GF |〈(γe)I0 , (γe)I0〉 is, in fact, monic.

But this is not sufficient to prove Theorem 4.5.1 since it may be the case that the

leading terms from non-principal blocks exceed or annihilate this contribution.

We shall, however, show that this is impossible, by describing some of the features

of non-principal blocks. The associated Levi subgroups will no longer be maximal

tori and so we have

deg |Z◦FLw | = rankLw = dim z(l) =: m < n. (4.11)

Lemma. Let ι, ι′ belong to the non-principal block I0. Then the following hold.

(i) No element of I0 is supported by the regular orbit.

(ii) degωι,ι′ ≤ (dim supp(ι) + dim supp(ι′))/2, with equality if ι = ι′.

(iii) degαι,ι′ ≤ m, with equality if, and only if ι = ι′.

Proof. This follows from (4.11) and the proof of Lemma 4.5.11.

4.5.14 We may now deduce, for a non-principal block I0, that the degree of a

typical term of

|GF | 〈(γe)I0 , (γe)I0〉

with respect to (4.9) is not greater than

f ′(ι, ι1) + f ′(j, j1) + degαι,ι̂1 + degαj,ι̂1 + degωι1,j1 ,

but this is strictly less than dimG + dimCG(u). This completes the proof of

Theorem 4.5.1.
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4.6 Groups with a non-split Fq-structure

4.6.1 In the previous subsection the analysis of (4.9) was made easier by the

fact that the geometric unipotent classes were fixed by the Frobenius action. (In

particular it was possible to deduce useful information about the Yι.) For non-

split groups we may reduce to a situation where the only functions Yι that appear

are such that supp(ι) is F -stable. We do this by considering a transposed version

of generalised Gelfand-Graev characters as follows (see [Lusztig, 1992, §7.5]) .

Let O be an F -stable nilpotent orbit such that ι = (O,F ) belongs to an F -

stable block I0, and let x1, . . . , xr be representatives for the GF -classes in OF .

Let a denote the order of CGF (xi), for some i. (Clearly a is independent of i.)

Also, let ai denote the order of CGF (xi)
F . Then we define

γι =
r∑
i=1

aa−1
i Yι(xi)γxi .

We also have

γxi = a−1
∑
k

Yk(xi)γk,

where the sum is taken over the F -fixed k such that supp(k) = O. Hence we may

write

〈γxi , γxi〉 = a−2
∑
k,l

Yk(xi)Yl(xi) 〈γk, γl〉 . (4.12)

4.6.2 In [Lusztig, 1992] there is a formula for the γι, valid for split groups, which is

analogous to the one in Theorem 4.5.6. Lusztig also hints at how to alter various

formulas contained in [Lusztig, 1992] to make them valid for non-split groups.

This is carried out explicitly in [Digne et al., 2003], from which we borrow the

following formula ([Digne et al., 2003, (6.1)]):

γι =
∑

ι,ι1∈I0

qf
′(ι,ι1)ζ−1a|WL|−1

∑
w∈WL

Tr(wF, Ṽι) Tr(wF, Ṽι̂1)|Z◦wFL |P ′ι0,ιει1Xι1 .

Here, Ṽι are certain extensions of Vι to modules for the group WL〈F 〉. In

[Lusztig, 1986b, §2.2] they are chosen in an explicit and unique way, which is

105



4.THE ENDOMORPHISM ALGEBRA OF GENERALISED
GELFAND-GRAEV REPRESENTATIONS

independent of q. Lusztig calls them the preferred extensions. By [Digne et al.,

2003, Remark 3.6], the scalar ει1 = ±1 is determined by a preferred extension

and thus is also independent of q.

Thus, we have

〈γk, γl〉 = |GF |−1
∑

ι,ι1,j,j1∈I0

qf
′(ι,ι1)+f ′(j,j1)a2|WL|−2αι,ι̂1αj,ĵ1ωι1,j1

×ει1P ′k,ιεj1P ′l,j, (4.13)

where

αι,j =
∑
w∈WL

Tr(wF, Ṽι) Tr(wF, Ṽι̂1)|Z◦wFL |

this time.

By combining (4.12) and (4.13) we obtain an expression for the dimension of a

generalised Gelfand-Graev representation in which no function Yι appears unless

supp(ι) is F -stable. Theorem 4.5.1 now follows for non-split groups by applying

the same argument that we used for the split case to this expression.

4.7 Groups with a disconnected centre

4.7.1 In this subsection we consider what happens when we remove the assump-

tion that X/ZΣ is torsion-free. In this situation Z(G) may have a disconnected

centre. (In fact this occurs for G = G(pm) precisely when X/ZΣ has no p′-

torsion.) It should be clear from the discussion in Section 4.3 that the parametri-

sation of F -stable geometric unipotent classes is still independent of q. The

difficulty arises when we try to parametrise, independently of q, the GF -classes

of rational points in some CF , where C is an F -stable geometric unipotent class.

In fact this is impossible in general since even the number of GF classes in CF

may depend on q. We now explain a way of getting around this difficulty.

First note that split elements still exist and are unique up to GF -conjugacy.

(We may ignore the E8 difficulty this time as there is only one isogeny class

associated with this group and it has the property that X/ZΣ is torsion-free.)

For a given finite group of Lie type GF , with data (X(T ),Σ, Y (T ),Σ∨, τ) and
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prime power q0, set D = D(GF ) to be the set of prime powers q1 such that the

component groups of F -stable geometric classes of G(q1) are isomorphic to those

of G(q0) (via Spaltenstein’s map), and furthermore that the F -action respects

these isomorphisms. Then if f ∈ Q[x] is a polynomial such that some quantity

associated with (X(T ),Σ, Y (T ),Σ∨, τ) is given by f(q) for all q ∈ D, then we say

that this quantity is a polynomial in q on D.

4.7.2 For given data (X(T ),Σ, Y (T ),Σ∨, τ) it should be possible to write down

an explicit list of the possible sets D, for simple simply connected groups at

least. The discussion on [Goodwin and Röhrle, 2009a, p. 8] would be a good

starting point. We briefly illustrate what might happen by means of an example;

cf. [Goodwin and Röhrle, 2009a, Example 2.6]. When G = SL3, with standard

Frobenius map, and u ∈ C, where C is the regular unipotent class, there are

three possibilities for D, depending on the congruence of q modulo 3. When q is

a power of 3, A(u) = 1. When q is congruent to 1 modulo 3, A(u) ∼= Z/3Z, with

F acting trivially. When q is congruent to 2 modulo 3, A(u) ∼= Z/3Z, but this

time F acts non-trivially.

4.7.3 We now state and prove the main result of this subsection.

Theorem. Let G be a connected reductive group, defined over Fq, with root datum

(X(T ),Σ, Y (T ),Σ∨) and Frobenius endomorphism F , and let D = D(GF ) be as

above. Let u ∈ GF
uni and let Γu be the corresponding generalised Gelfand-Graev

representation. Then the dimension of the endomorphism algebra EndQ̄lGF Γu is

a monic polynomial in q on D with rational coefficients. Moreover, its degree is

given by the dimension of the centraliser CG(u).

Proof. The proof essentially works in the same way as for groups with a connected

centre. We will assume here, for simplicity, that G has a split Fq-structure,

although the non-split generalisation carries over to this case, as before. First note

that the statement of the theorem is meaningful, in the sense that the generalised

Gelfand-Graev characters are naturally parametrised independently of q ∈ D, by

the above discussion. Next, note that Lemmas 4.5.8 and 4.5.10 still hold in this

situation. Indeed, the set I and its partition into blocks, as well as the F -action
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on it, only depends on (X(T ),Σ, Y (T ),Σ∨), and the component groups, together

with their F -action. The analysis of (4.9) required in the proof of Lemma 4.5.10

poses no new difficulty, although the reason why |Z◦FLw | is a polynomial in q is

somewhat deeper in this case (see, e.g., [Carter, 1993, pp.73,74]).

The statement of Lemma 4.5.11 remains true here also, although establishing

the truth of (i) requires a different argument since it may not be the case that

A(u) = 1 for a regular unipotent element any more. However, (i) is equivalent to

there only being one Springer representation associated with the regular nilpotent

orbit. But this is clear from Springer’s construction (as described in, e.g., [Carter,

1993, §12.6]). This fact also means that the special parameters chosen in the proof

of Lemma 4.5.12 may be chosen again in the current situation and thus this result,

and the monic property, remain true too. Finally, Lemma 4.5.13, (i) may not be

true in the current situation, but (ii) and (iii) are true and these are, in fact,

sufficient to deduce that polynomials associated with non-principal blocks have

degree strictly less than dimG+ dimCG(u).
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canonical forms using GAP

We now present tables of all of the nilpotent canonical forms from Chapter 2 which

correspond to partitions of n for n ∈ {2, 3, 4, 5}, together with the unipotent

canonical forms for GUn(Fq), as in Subsection 2.5.3. These were computed using

the computer algebra package GAP [GAP Group, 2008]. We omit the trivial

orbits/classes, corresponding to the partition [1, . . . , 1]. We begin with n = 2.

Recall that α may be taken to be any element in Fq2 \ Fq.

Partition Jordan form Symmetric form sp2(k) GU2(Fq)

[2]

(
1
) (

1
) (

1
) (

1 α− αq

1

)

Next we have n = 3. Notice the gap in the [2, 1]-row, owing to the fact that

the corresponding class in gl3(k) vanishes upon restriction to so3(k).

Partition Jordan form Symmetric form so3(k) GU3(Fq)

[3]




1

1







1

1







1

-1







1 α− αq α2q − αq+1

1 α− αq

1




[2, 1]




1






1






1 α− αq

1

1




On Pages 110 and 111 we present the tables for n = 4 and 5 respectively.

Recall that for the very even partition [2, 2] only one of the two orbits in so4(k)

is represented.
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P
a
rt
it
io
n

J
o
rd

a
n
fo
rm

S
y
m
m
et
ri
c
fo
rm

sp
4
(k)

so
4
(k)

G
U

4
(F

q
)

[4
]

    

1

1

1

    

    

1

1

1

    

    

1

1

-1

    

    

1
α
−

α
q

α
2
q
−

α
q
+
1

α
2
q
+
1
−
α
3
q

1
α
−

α
q

α
2
q
−

α
q
+
1

1
α
−

α
q

1

    

[3
,1
]

    

1

1

    

    

1
1

1 1

    

    

1
1

-1 -1

    

    

1
α
−

α
q

α
2
−

α
q
+
1

α
3
q
−

α
q
+
2

1
α
q
+
1
−

α
2
q

1
α
−

α
q

1

    

[2
,2
]

    

1

1

    

    

1

1

    

    

1

1

    

    

1

-1

    

    

1
α
−

α
q

1
α
−

α
q

1

1

    

[2
,1
,1

]

    

1
    

    

1
    

    

1
    

    

1
α
−

α
q

1

1

1

    
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P
a
rt
it
io
n

J
o
rd

a
n
fo
rm

S
y
m
m
et
ri
c
fo
rm

so
3
(k)

G
U

5
(F

q
)

[5
]

      

1

1

1

1

      

      

1

1

1

1

      

      

1

1

-1

-1

      

       

1
α
−

α
q

α
2
q
−

α
q
+
1

α
2
q
+
1
−
α
3
q

α
4
q
−
α
3
q
+
1

1
α
−

α
q

α
2
q
−

α
q
+
1

α
2
q
+
1
−
α
3
q

1
α
−

α
q

α
2
q
−

α
q
+
1

1
α
−

α
q

1

       

[4
,1

]

      

1

1

1

      

      

1

1

1

      

       

1
α
−

α
q

α
2
q
−

α
q
+
1

α
2
q
+
1
−
α
3
q

1
α
−

α
q

α
2
q
−

α
q
+
1

1

1
α
−

α
q

1

       

[3
,2

]

      

1

1

1

      

      

1

1

1

      

       

1
α
−

α
q

α
2
q
−

α
q
+
1

1
α
−

α
q

1
α
−

α
q

1

1

       

[3
,1

,1
]

      

1

1

      

      

1
1

1 1

      

      

1
1

-1 -1

      

       

1
α
−

α
q

α
2
−

α
q
+
1

α
3
q
−

α
q
+
2

1
α
q
+
1
−

α
2
q

1

1
α
−

α
q

1

       

[2
,2

,1
]

      

1

1

      

      

1

1

      

      

1

-1

      

       

1
α
−

α
q

1
α
−

α
q

1

1

1

       

[2
,1

,1
,1

]

      

1
      

      

1
      

       

1
α
−

α
q

1

1

1

1

       
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We now present a GAP function SymmetricForm( list ) for computing the

symmetric form matrix from Theorem 2.3.4 corresponding to any given partition

of a natural number, written as a list of its parts. Functions for the other normal

forms can also be created rather easily by using this function.

# we begin by constructing the functions l_i and k_i from Page 18

l:=function(p,i)

local r, j;

r:=0;

for j in [1..Length(p)] do

if IsOddInt(p[j]) and p[j] >= 2*i - 1 then

r:=r+1;

fi;

od;

return r;

end;

k:=function(p,i)

local r, j;

r:=0;

for j in [1..Length(p)] do

if IsEvenInt(p[j]) and p[j] >= 2*i then

r:=r+1;

fi;

od;

return r;

end;

# now we define the function which computes the symmetric form

# corresponding to a partition
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SymmetricForm:=function(p)

local I, J, n, M, i, j;

I:=[]; J:=[];

n:=Sum(p);

M:=NullMat(n,n);

# first we’ll compute J: the top right and bottom left corner of

# each of the blocks C, B_{j_1}, B_{j_2}, B_{j_3}, ... is stored

if k(p,1) <> 0 then

J[1]:=[[(n-l(p,1))/2,(n+l(p,1))/2+1],[(n-l(p,1))/2

-(k(p,1)-1),(n+l(p,1))/2+1+(k(p,1)-1)]];

i:=1;

while k(p,i+1) <> 0 do

J[i+1]:=[[J[i][2][2],J[i][2][2]+(l(p,i+1)+1)],

[J[i][2][2]-(k(p,i)-1),J[i][2][2]+(l(p,i+1)+1)+(k(p,i+1)-1)]];

i:=i+1;

od;

fi;

# now we’ll compute I: the top right and bottom left corner of each

# of the blocks B_{i_1}, B_{i_2}, B_{i_3}, ... is stored

if l(p,2) <> 0 then

I[1]:=[[(n+l(p,1))/2,(n+l(p,1))/2+k(p,1)+1],

[(n+l(p,1))/2-(l(p,1)-1),(n+l(p,1))/2+k(p,1)+1+(l(p,2)-1)]];

i:=1;

while l(p,i+2) <> 0 do

I[i+1]:=[[I[i][2][2],I[i][2][2]+(k(p,i+1)+1)],

[I[i][2][2]-(l(p,i+1)-1),I[i][2][2]+(k(p,i+1)+1)+(l(p,i+2)-1)]];

i:=i+1;

od;

fi;
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# starting with our n by n matrix of zeros M we now insert 1s in

# the appropriate places for all blocks in J

if k(p,1) <> 0 then

for j in [0..k(p,1)-1] do

M[J[1][2][1]+j][J[1][2][2]-j]:=1;

od;

i:=1;

while k(p,i+1) <> 0 do

for j in [0..k(p,i+1)-1] do

M[J[i+1][2][1]+j][J[i+1][2][2]-j]:=1; # 1s for the B-blocks

M[n+1-(J[i+1][2][2]-j)][n+1-(J[i+1][2][1]+j)]:=1; # A-blocks

od;

i:=i+1;

od;

fi;

# we now insert 1s in the appropriate places for all blocks in I

i:=0;

while l(p,i+2) <> 0 do

for j in [0..Int((l(p,i+2)+1)/2)-1] do

M[I[i+1][2][1]+j][I[i+1][2][2]-j]:=1;# B-blocks

M[I[i+1][1][1]-j][I[i+1][1][2]+j]:=1; # B-blocks

M[n+1-(I[i+1][2][2]-j)][n+1-(I[i+1][2][1]+j)]:=1; # A-blocks

M[n+1-(I[i+1][1][2]+j)][n+1-(I[i+1][1][1]-j)]:=1; # A-blocks

od;

i:=i+1;

od;

return(M);

end;
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dim EndQ̄lGF
Γu using GAP

We now present tables listing the dimensions of the endomorphism algebras of all

GGGRs for the general linear and general unitary groups, up to rank 7. These

were computed in GAP using the character formula from [Kawanaka, 1985], to-

gether with data from the CHEVIE library; cf. [Geck et al., 1996].

Group Class Dimension of the endomorphism algebra

GL2(q)
[1, 1] q(q + 1)(q − 1)2

[2] q(q − 1)

GL3(q)

[1, 1, 1] q3(q2 + q + 1)(q + 1)(q − 1)3

[2, 1] (q3 + q2 − 1)(q − 1)2

[3] q2(q − 1)

GL4(q)

[1, 1, 1, 1] q6(q2 + q + 1)(q2 + 1)(q + 1)2(q − 1)4

[2, 1, 1] q(q5 + q4 + q3 − q − 1)(q + 1)(q − 1)3

[2, 2] (q5 − q2 + 1)(q + 1)(q − 1)2

[3, 1] q(q3 + q2 − 1)(q − 1)2

[4] q3(q − 1)

GL5(q)

[1, 1, 1, 1, 1] q10(q4 + q3 + q2 + q + 1)(q2 + q + 1)(q2 + 1)(q + 1)2(q − 1)5

[2, 1, 1, 1] q3(q7 + q6 + q5 + q4 − q2 − q − 1)(q2 + q + 1)(q + 1)(q − 1)4

[2, 2, 1] q(q8 + q7 + q6 − q4 − 2q3 − q2 + q + 1)(q + 1)(q − 1)3

[3, 1, 1] (q4 + q2 − 1)(q3 + q2 − 1)(q + 1)(q − 1)3

[3, 2] q(q6 + q5 − q3 − q2 + 1)(q − 1)2

[4, 1] q2(q3 + q2 − 1)(q − 1)2

[5] q4(q − 1)
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Group Class Dimension of the endomorphism algebra

GL6(q)

[1, 1, 1, 1, 1, 1] q15(q4 + q3 + q2 + q + 1)(q2 + q + 1)2(q2 + 1)(q2 − q + 1) [continued. . . ]

(q + 1)3(q − 1)6

[2, 1, 1, 1, 1] q6(q9 + q8 + q7 + q6 + q5 − q3 − q2 − q − 1)(q2 + q + 1) [continued. . . ]

(q2 + 1)(q + 1)2(q − 1)5

[2, 2, 1, 1] q3(q11 + q10 + 2q9 + q8 + q7 − q6 − 2q5 − 3q4 − 2q3 + q + 2) [continued. . . ]

(q + 1)2(q − 1)4

[2, 2, 2] q4(q8 − q4 − q3 + q + 1)(q2 + q + 1)(q + 1)(q − 1)3

[3, 1, 1, 1] q(q10 + q9 + q8 + q7 − q5 − 2q4 − 2q3 + q + 1)(q2 + q + 1) [continued. . . ]

(q + 1)(q − 1)4

[3, 2, 1] (q11 + 2q10 + 2q9 + q8 − q7 − 3q6 − 4q5 − 2q4 + 3q3 [continued. . . ]

+3q2 − 1)(q − 1)3

[3, 3] q2(q7 − q4 + 1)(q + 1)(q − 1)2

[4, 1, 1] q(q4 + q2 − 1)(q3 + q2 − 1)(q + 1)(q − 1)3

[4, 2] q2(q6 + q5 − q3 − q2 + 1)(q − 1)2

[5, 1] q3(q3 + q2 − 1)(q − 1)2

[6] q5(q − 1)

GL7(q)

[1, 1, 1, 1, 1, 1] q21(q6 + q5 + q4 + q3 + q2 + q + 1)(q4 + q3 + q2 + q + 1) [continued. . . ]

(q2 + q + 1)2(q2 − q + 1)(q2 + 1)(q + 1)3(q − 1)7

[2, 1, 1, 1, 1, 1] q10(q11 + q10 + q9 + q8 + q7 + q6 − q4 − q3 − q2 − q − 1) [continued. . . ]

(q4 + q3 + q2 + q + 1)(q2 + q + 1)(q2 + 1)(q + 1)2(q − 1)6

[2, 2, 1, 1, 1] q5(q15 + q14 + 2q13 + 2q12 + 2q11 + q10 − 2q8 − 3q7 − 4q6 [continued. . . ]

−3q5 − q4 + 2q2 + 2q + 1)(q2 + q + 1)(q + 1)2(q − 1)5

[2, 2, 2, 1] q3(q15 + q14 + q13 + q12 − q10 − 2q9 − 3q8 − 2q7 [continued. . . ]

+2q5 + 3q4 + 2q3 − q − 1)(q2 + q + 1)(q + 1)(q − 1)4

[3, 1, 1, 1, 1] q3(q13 + q12 + q11 + q10 + q9 − q7 − 2q6 − 2q5 − 2q4 [continued. . . ]

+q2 + q + 1)(q2 + q + 1)(q2 + 1)(q + 1)2(q − 1)5

[3, 2, 1, 1] q(q15 + 2q14 + 3q13 + 3q12 + 2q11 − 3q9 − 6q8 − 7q7 [continued. . . ]

−5q6 + q5 + 6q4 + 6q3 + q2 − 2q − 1)(q + 1)(q − 1)4

[3, 2, 2] q(q14 + q13 + q12 − q10 − 2q9 − 2q8 − q7 + q6 [continued. . . ]

+3q5 + 2q4 − 2q2 − q + 1)(q + 1)(q − 1)3

[3, 3, 1] q(q12 + q11 + q10 − q8 − 2q7 − 2q6 − q5 + 2q4 + 3q3 [continued. . . ]

+q2 − q − 1)(q + 1)(q − 1)3

[4, 1, 1, 1] (q12 + q11 + q10 + q9 − q7 − 2q6 − 3q5 + 2q3 + 2q2 − 1) [continued. . . ]

(q2 + q + 1)(q + 1)(q − 1)4

[4, 2, 1] q(q11 + 2q10 + 2q9 + q8 − q7 − 3q6 − 4q5 − 3q4 + 2q3 [continued. . . ]

+4q2 + q − 1)(q − 1)3

[4, 3] q3(q8 + q7 − q5 − q4 + 1)(q − 1)2

[5, 1, 1] q2(q4 + q2 − 1)(q3 + q2 − 1)(q + 1)(q − 1)3

[5, 2] q3(q6 + q5 − q3 − q2 + 1)(q − 1)2

[6, 1] q4(q3 + q2 − 1)(q − 1)2

[7] q6(q − 1)
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Group Class Dimension of the endomorphism algebra

GU2(q)
[1, 1] q(q + 1)2(q − 1)

[2] q(q + 1)

GU3(q)

[1, 1, 1] q3(q2 − q + 1)(q + 1)3(q − 1)

[2, 1] (q3 − q2 + 1)(q + 1)2

[3] q2(q + 1)

GU4(q)

[1, 1, 1, 1] q6(q2 + 1)(q2 − q + 1)(q + 1)4(q − 1)2

[2, 1, 1] q(q5 − q4 + q3 − q + 1)(q + 1)3(q − 1)

[2, 2] (q5 + q2 − 1)(q + 1)2(q − 1)

[3, 1] q(q3 − q2 + 1)(q + 1)2

[4] q3(q + 1)

GU5(q)

[1, 1, 1, 1, 1] q10(q4 − q3 + q2 − q + 1)(q2 + 1)(q2 − q + 1)(q + 1)5(q − 1)2

[2, 1, 1, 1] q3(q7 − q6 + q5 − q4 + q2 − q + 1)(q2 − q + 1)(q + 1)4(q − 1)

[2, 2, 1] q(q8 − q7 + q6 − q4 + 2q3 − q2 − q + 1)(q + 1)3(q − 1)

[3, 1, 1] (q4 + q2 − 1)(q3 − q2 + 1)(q + 1)3(q − 1)

[3, 2] q(q6 − q5 + q3 − q2 + 1)(q + 1)2

[4, 1] q2(q3 − q2 + 1)(q + 1)2

[5] q4(q + 1)

We now present an example of the GAP code that we used to compute these

tables. The first part contains data extracted from the CHEVIE library specific

to the group, in this case GU4(q). The second part contains functions which do

not need to be changed when we vary the group.

q:=Indeterminate(Rationals, "q");

######### DATA INPUT ####################

GRank:= 4;

# the rank of the group

epsilon:=-1;

# set to 1 for GL and -1 for GU

GSize:= (q+1)^4*(q-1)^2*(q^2+1)*q^6*(q^2-q+1);

# the cardinality of the group
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Group Class Dimension of the endomorphism algebra

GU6(q)

[1, 1, 1, 1, 1, 1] q15(q4 − q3 + q2 − q + 1)(q2 + q + 1)(q2 + 1)(q2 − q + 1)2 [continued. . . ]

(q + 1)6(q − 1)3

[2, 1, 1, 1, 1] q6(q9 − q8 + q7 − q6 + q5 − q3 + q2 − q + 1)(q2 + 1) [continued. . . ]

(q2 − q + 1)(q + 1)5(q − 1)2

[2, 2, 1, 1] q3(q11 − q10 + 2q9 − q8 + q7 + q6 − 2q5 + 3q4 − 2q3 + q − 2) [continued. . . ]

(q + 1)4(q − 1)2

[2, 2, 2] q4(q8 − q4 + q3 − q + 1)(q2 − q + 1)(q + 1)3(q − 1)

[3, 1, 1, 1] q(q10 − q9 + q8 − q7 + q5 − 2q4 + 2q3 − q + 1)(q2 − q + 1) [continued. . . ]

(q + 1)4(q − 1)

[3, 2, 1] (q11 − 2q10 + 2q9 − q8 − q7 + 3q6 − 4q5 + 2q4 + 3q3 [continued. . . ]

−3q2 + 1)(q + 1)3

[3, 3] q2(q7 + q4 − 1)(q + 1)2(q − 1)

[4, 1, 1] q(q4 + q2 − 1)(q3 − q2 + 1)(q + 1)3(q − 1)

[4, 2] q2(q6 − q5 + q3 − q2 + 1)(q + 1)2

[5, 1] q3(q3 − q2 + 1)(q + 1)2

[6] q5(q + 1)

GU7(q)

[1, 1, 1, 1, 1, 1] q21(q6 − q5 + q4 − q3 + q2 − q + 1)(q4 − q3 + q2 − q + 1) [continued. . . ]

(q2 + q + 1)(q2 + 1)(q2 − q + 1)2(q + 1)7(q − 1)3

[2, 1, 1, 1, 1, 1] q10(q11 − q10 + q9 − q8 + q7 − q6 + q4 − q3 + q2 − q + 1) [continued. . . ]

(q4 − q3 + q2 − q + 1)(q2 + 1)(q2 − q + 1)(q + 1)6(q − 1)2

[2, 2, 1, 1, 1] q5(q15 − q14 + 2q13 − 2q12 + 2q11 − q10 + 2q8 − 3q7 + 4q6 [continued. . . ]

−3q5 + q4 − 2q2 + 2q − 1)(q2 − q + 1)(q + 1)5(q − 1)2

[2, 2, 2, 1] q3(q15 − q14 + q13 − q12 + q10 − 2q9 + 3q8 − 2q7 [continued. . . ]

+2q5 − 3q4 + 2q3 − q + 1)(q2 − q + 1)(q + 1)4(q − 1)

[3, 1, 1, 1, 1] q3(q13 − q12 + q11 − q10 + q9 − q7 + 2q6 − 2q5 + 2q4 [continued. . . ]

−q2 + q − 1)(q2 + 1)(q2 − q + 1)(q + 1)5(q − 1)2

[3, 2, 1, 1] q(q15 − 2q14 + 3q13 − 3q12 + 2q11 − 3q9 + 6q8 − 7q7 [continued. . . ]

+5q6 + q5 − 6q4 + 6q3 − q2 − 2q + 1)(q + 1)4(q − 1)

[3, 2, 2] q(q14 − q13 + q12 − q10 + 2q9 − 2q8 + q7 + q6 [continued. . . ]

−3q5 + 2q4 − 2q2 + q + 1)(q + 1)3(q − 1)

[3, 3, 1] q(q12 − q11 + q10 − q8 + 2q7 − 2q6 + q5 + 2q4 − 3q3 [continued. . . ]

+q2 + q − 1)(q + 1)3(q − 1)

[4, 1, 1, 1] (q12 − q11 + q10 − q9 + q7 − 2q6 + 3q5 − 2q3 + 2q2 − 1) [continued. . . ]

(q2 − q + 1)(q + 1)4(q − 1)

[4, 2, 1] q(q11 − 2q10 + 2q9 − q8 − q7 + 3q6 − 4q5 + 3q4 + 2q3 [continued. . . ]

−4q2 + q + 1)(q + 1)3

[4, 3] q3(q8 − q7 + q5 − q4 + 1)(q + 1)2

[5, 1, 1] q2(q4 + q2 − 1)(q3 − q2 + 1)(q + 1)3(q − 1)

[5, 2] q3(q6 − q5 + q3 − q2 + 1)(q + 1)2

[6, 1] q4(q3 − q2 + 1)(q + 1)2

[7] q6(q + 1)
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GClasses:=[[1,1,1,1], [2,1,1], [2,2], [3,1], [4]];

# the partitions corresponding to the possible unipotent classes

GreenPolyTable:= [[(q^2+1)*(q^2+q+1)*(q+1)^2,

-(q-1)*(q+1)*(q^2+1)*(q^2+q+1),

(q^2+1)*(q^2+q+1)*(q-1)^2, (q^2+1)*(q-1)^2*(q+1)^2,

-(q+1)*(q^2+q+1)*(q-1)^3],

[(q+1)*(3*q^2+2*q+1), -q^3+q^2+q+1, -(q-1)*(q^2+1),

-(q-1)*(q+1), (q+1)*(q-1)^2],

[(q+1)*(2*q+1), q+1, 2*q^2-q+1, -(q-1)*(q+1), -q+1],

[3*q+1, q+1, -q+1, 1, -q+1] ,

[1, 1, 1, 1, 1]];

# Green polynomials, where the order is so that the (i,j)th entry

# of the array is Q^{GClasses[i]}_{GClasses[j]};

# note that the same table is used for both GL and GU

ClassSizes:= [1, (q+1)*(q-1)*(q^2+1)*(q^2-q+1),

(q+1)^2*(q-1)*(q^2+1)*q*(q^2-q+1),

(q^2+1)*(q-1)^2*(q+1)^2*q^2*(q^2-q+1),

(q^2-q+1)*q^3*(q^2+1)*(q-1)^2*(q+1)^3];

# listed in the same order as GClasses

######################################

GreenPolysq:=function(l,r)

return GreenPolyTable[Position(GClasses,l)][Position(GClasses,r)];

end;

# function which calls the (l,r)th entry from GreenPolyTable

GreenPolysepsilonq:=function(l,r)

if GreenPolysq(l,r) = 1 then

return 1;

else
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return Value(GreenPolysq(l,r), epsilon*q);

fi;

end;

# function which returns GreenPolysq(l,r) evaluated at epsilon*q

nLambda:=function(l)

local i, n;

n:=0;

for i in [1..Length(l)] do

n := n + (i-1)*l[i];

od;

return n;

end;

# cf. Page 92

GreenX:=function(m,l)

local f;

if GreenPolysq(m,l) = 1 then

f:= q^(nLambda(m));

else

f:= Value(GreenPolysq(m,l),q^(-1))*q^(nLambda(m));

fi;

if f = 1 then

return 1;

else

return Value(f, epsilon*q);

fi;

end;

# cf. Page 93

# this function is evaluated at epsilon*q, rather than q

eLambda:=function(l)

local i, e;
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e:=1;

for i in [1..Length(l)] do

e := e*( 1 - q^(l[i]) );

od;

return e;

end;

# cf. Page 93

W:=function(l)

local i, j;

i:=1; j:=1;

while j <= Maximum(l) do;

i:=i*(j^Number(l, n-> n = j))*Factorial(Number(l, n-> n = j));

j:=j+1;

od;

return i;

end;

# cf. Page 92

sgn:=function(l)

return epsilon^(Int(GRank/2))*(-1)^(GRank+Length(l));

end;

# cf. Page 92

GGGR:=function(m,l)

local i, r;

i:=0;

for r in GClasses do

i:=i+(sgn(r)*(q^GRank)*Value(eLambda(r),epsilon*q^(-1))

*GreenX(m,r)*GreenPolysepsilonq(l,r))/(W(r));

od;

return i*epsilon^(nLambda(m));

end;
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# cf. Theorem 4.4.2

InnerProd:=function(m,r)

local i, l;

i:=0;

for l in GClasses do

i:=i + ClassSizes[Position(GClasses,l)]*GGGR(m, l)*GGGR(r, l);

od;

return i/GSize;

end;

# inner product formula for GGGRs

for i in GClasses do

Print(i);

Print("\n");

Print(Reversed(Factors(InnerProd(i,i))));

Print("\n");

od;

# this lists each class together with the list of irreducible

# factors of the dimension polynomial of the corresponding

# endomorphism algebra
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