
a a c a b

a a c d

a

b

c

d

JUMBO is an OpenSource toolkit addressing the semantic and ontological impedances that are
major barriers to interoperability in computational chemistry and physics. Users build
XMLSchemas from generic XML components to support particular computational tasks, such as
high-throughput chemistry. JUMBO components provide a complete semantic description of
information to or from a code such as MOPAC or GAMESS. Codes are edited to use JUMBO
libraries as adapters to program-independent XML objects, or output is transduced using a generic
parser, JUMBOMarker. The JUMBO system is designed for flexible collaborative contributions.

Existing codes in quantum mechanics or
crystal/molecular mechanics/dynamics rely on
“FORTRAN-like” input and output with
variable and misunderstandable semantics and
ontology. Typical examples are the lack of
explicit scientific units or fuzziness over
whether a molecule has a charge. It is difficult
to chain the output of one program into the
input of the next so human “cut-and-paste” is
frequent. JUMBO allows authors and users to
wrap these codes in XML and convert them to
workflow components.

JUMBO uses context-independent
XMLSchema components to assemble problem-
specific bespoke schemas. It has been
developed for computational chemistry and
crystal physics, with ca 250 components based
on CML (Chemical Markup Language[3][4][5]).
However many of these are generic to physical
science (matrices, units, geometry, etc.) and
users in other domains can create extend these
for their own purposes. Many information
components in physical science require
semantic support through procedural code (e.g.
interconversions of units, calculation of
molecular mass). JUMBO is therefore designed
to create fully functional code automatically
from the schemas. Although some Java-based
systems (Castor[8], JAXB[9], XMLBeans[10], etc.)
can do this in Java, we require greater language
support (e.g. FORTRAN) and customisability.
Many components such as <scalar> are

abstract and rely on dictionaries (v.i.) to add
semantics and ontology. In practice many of the
concepts in a program are not in the schema but
provided by domain-specific dictionaries.

The ultimate goal is to provide simple and
flexible tools to XMLise existing and future
computational codes so they can be used as
“black-boxes” in eScience workflows. Some
authors have adopted this approach and
embedded calls to JUMBO libraries in their
code for input and output. However in some
cases native legacy methods must still be used
(for example where we do not have access or
permission to modify source). In these cases we
use XSLT to create legacy inputs and have
developed a generic parser, JUMBOMarker, to
translate “logfiles” to marked-up XML.

The JUMBO process consists of:
� Assembling a schema from components.

These components can include additional
support such as validation protocols,
examples and declarative semantics.

� Translating the schema to the target
language (Java, C++, Python, FORTRAN).

� Compiling the schema to libraries and
creating documentation (javadoc, HTML,
PDF, Wiki).

� Compiling the examples and validating the
code against them.

� Linking the libraries into the problem-
specific code(s) or

� Writing a JUMBOMarker template to
parse the output of the code to XML.

Additionally users create dictionary entries

for their code and domain. A code may give rise
to several hundred dictionary entries (e.g. for
input and output quantities, strategies).

The final problem-specific code, libraries,
converters, and templates are then integrated
into an XML-aware “black-box” component,
often run as an ant procedure (Figure 1).

Figure 1. Computation flow for a molecule-
based code, “foo”. The main XML flow is down
the center, and JUMBO-based XMLization of
the code is shown by blue dots. Many
components are semantically enhanced by the
foo-specific and the generic CMLComp
dictionaries.

3.1 Schema

The schema is built from four types of
components:
� elements. Each is defined in a separate

xsd:element.
� attributeGroups. Every attribute in the

schema is defined in a separate
xsd:attribute contained in an
xsd:attributeGroup. Many
attributes are used by several elements and
although some are only used by one
element, all are potentially re-usable.

� types. All types in the schema are defined
as separate elements, either
xsd:simpleTypes or
xsd:complexTypes.

� examples. These exercise the functionality
of the element or attribute, validate the

schema and can be compiled into
procedural code for testing.

A user can create a schema from all

components (cmlAll) or a small subset to
avoid schema bloat. Compilation is rapid so that
iterative design and testing is supported, and the
approach used protects users from the most
forbidding aspects of XMLSchema.

3.2 Linking JUMBO

The schema-derived input/output libraries (Java,
C++, Python, F90) then provide complete
access to the compiled information objects
(domain-specific DOMs). Each code can then
use these libraries as adapters to program-
independent XML objects (Figure 2).

Figure 2. Code with embedded JUMBO
libraries

3.3 Libraries

Besides the automatic creation of schema-
derived libraries JUMBO uses a range of
libraries to provide semantic behaviour, and the
Java version is shown in Figure 3

Figure 3 The modules and dependencies in
JUMBO

The distribution includes

� euclid - general maths, arrays, matrices,
2- and 3-D geometry

� pmrdom A wrapper (delegation) for a
W3C DOM (such as Xerces or Java1.4) to
provide subclassable public constructors.

� base. The CMLDOM design creates an
interface (CMLFoo.java) and an
implementation (FooImpl.java) for
each xsd:element subclassed from
base.

� schema - code to convert the custom
Schema to target languages.

� gui. A generic GUI builder.
� marker (JUMBOMarker). An XML-

based language supporting structured
regular expressions for parsing semi-
structured documents to XML

� legacy. Converters between legacy
formats and CML.

� jcp (JChempaint), cdk (Chemistry
Development Kit), cif are OpenSource
chemistry/crystallography toolkits.

� vecmath, printf, log4j and jaxen
are generic OpenSource libraries.

� tools: per-element classes adding non-
schema functionality to a CMLDOM
element (v.i.)

� xsl. Stylesheets for generic rendering.

The JUMBO system uses:

� ant script(s) (build.xml) to compile and
run all functions.

� XSLT stylesheets (xsl) for initial
assembly of the schema.

� Java code (nonschema) to process the
schema into Java (C++, etc.)

� XSLT and FOP to create documentation

3.4 Tools

The user also has access to a library of tools to
provide problem-independent functionality.
Thus MoleculeTool has over 100 methods
for managing and computing molecular
properties and wraps instances of (the schema-
derived) CMLMolecule. Tool functionality is
often complex and ours uses other OpenSource
libraries such as CDK and JCP.

3.5 Dictionaries

Figure 4. Dictionaries

Dictionaries (Figure 4) can be created and
enhanced independently of the compilation of
the schema into libraries. This allows users to
add ontological functionality without
recompiling the code. The community can then
rationalise these ontologies, providing more
general dictionaries and this has worked well in
computational chemistry where concepts are
well understood. By extension the system can

support any discipline where the components
can be captured as XMLSchemas.

3.6 JUMBOMarker

Where the code cannot be edited (technical or
legal reasons) JUMBO provides generic
adapters (Figure 5). To convert XML to legacy
input is straightforward using XSLT.
Transforming “flat-file” output to XML is more
challenging and a template-based parsing
mechanism, JUMBOMarker, is provided. The
user defines a set of structured Schema-like
XML templates as a grammar to model the
output of the code. These are populated with
regular expressions and work fast and
efficiently for codes such as MOPAC[7],
GULP[1] and GAMESS[6]. .
Retrieval and recall are very high – often 99%+
due to the formulaic output. The templates also
define potential data structures for re-use by
other programs or rendering agents.

Figure 5. Generic adapters for a specific code

3.7 Experience

The schema-derived input/output libraries (Java,
C++, Python, F90) then provide complete
access to the compiled information objects
(domain-specific DOMs). Each code can then
use these libraries as adapters to program-
independent XML objects (Figure 2).

The JUMBO strategy has so far been used
for 3 codes:
� GULP (crystal physics). This is in

FORTRAN and the JUMBO libraries have
been integrated using an F95 DOM (see
ref). A GULP-specific dictionary has been
created[2].

� MOPAC (semi-empirical quantum
mechanics). This is closed source so input
and output is in legacy managed by XSLT
and JUMBOMarker templates.

� GAMESS (general purpose computational
chemistry). We are working with the
authors to develop a black-box approach to
computation, using XSLT for evaluating
and transforming the input and either F95
libraries or wrapping for the output.

These have encouraged us to believe that

most computational chemistry workflow can be

assembled from components, with extensions
for each particular code. As more codes are
converted to or wrapped in CMLComp we shall
discover what concepts are common to all codes.
The dictionaries are a flexible way of
customising each code since it can be done by
the authors or users, who often understand the
code at the deepest level. Later it should be
possible to merge large parts of the dictionaries
into a common XML ontology for
computational chemistry and physics.

The JUMBO system is well suited to communal
distributed development where independent
groups create their dictionaries and add JUMBO
calls to some or all of the parts of their codes.
We are designing the next generation of code
generators on common pseudocode. Then with
language-specific serializers (Java, C++, Python
and F90) are used to create the appropriate
library for the application. The generic design of
the system makes it useful for a wide range of
tasks in physical sciences.

Because the results are in XML any generic
technologies can be used to manage and
enhance these We have used RSS to create
automatic “news feeds” for the results of
calculations, and Xindice to store and search the
archive. There are many uses of XSLT
combined with SVG or applets for rendering
and reusing the results.

We acknowledge support from

DTI/eScience project(YZ, SMT), NERC(JW),
Unilever Research (YZ, SMT, JAT).

We thank many members of the OpenSource
community, including CDK, JChemPaint; and
Dan Zaharevitz (NCI) for support for JUMBO.

 [1] J.D. Gale, GULP - a computer program for
the symmetry adapted simulation of solids,
JCS Faraday Trans., 93, 629, 1997.

[2] A. Garcia, P. Murray-Rust, J. Wakelin, The

use of XML and CML in Computational
Chemistry and Physics Programs, UK e-
Science All Hands Meeting, September
2004.

[3] P. Murray-Rust and H. S. Rzepa, CML

Schema, J. Chem. Inf. Comp. Sci., 43, 2003.

[4] P. Murray-Rust, R. C. Glen, Y. Zhang and J.
Harter, The World Wide Molecular Matrix -

a peer-to-peer XML repository for molecules
and properties, 163-164 “EuroWeb2002,
The Web and the GRID: from e-science to
e-business", Editors: B. Matthews, B.
Hopgood, M. Wilson, 2002 The British
Computer Society.

[5] P. Murray-Rust, R. C. Glen, H. S Rzepa, J. J.
P. Stewart, J. A. Townsend, E. L.
Willighagen, Y. Zhang, A semantic GRID
for molecular science, UK e-Science All
Hands Meeting, September 802-809, 2003.

[6] M.W. Schmidt, K.K. Baldridge, J.A. Boatz,
J.H. Jensen, S. Koseki, M.S. Gordon, K.A.
Nguyen, T.L. Windus, S.T. Elbert, General
Atomic and Molecular Electronic Structure
System (GAMESS), QCPE Bulletin, volume
10, 1990.

[7] J. J. P. Stewart., MOPAC: A General

Molecular Orbital Package, Quant. Chem.
Prog. Exch., 10:86, 1990.

[8] Castor, http://www.castor.org/.

[9] JAXB, http://java.sun.com/xml/jaxb/

[10] XMLBeans,

 http://xml.apache.org/xmlbeans/

	Abstract
	Introduction
	JUMBO strategy and infrastructure
	Architectire and Implementation
	Schema
	Linking JUMBO
	Libraries
	Tools
	Dictionaries
	JUMBOMarker
	Experience

	Summary
	References

