
ar
X

iv
:0

80
7.

28
23

v1
 [

he
p-

ph
]

 1
7

Ju
l 2

00
8

Preprint typeset in JHEP style - HYPER VERSION Cavendish-HEP-08/10

An Iterative Rejection Sampling Method

A. Sherstnev

Cavendish Laboratory, University of Cambridge,

JJ Thomson Avenue, Cambridge, CB3 0HE, UK

and

Scobeltsyn Institute of Nuclear Physics of Lomonosov Moscow State University,

Moscow, Russia, 119992 (on leave)

Abstract: In the note we consider an iterative generalisation of the rejection sampling

method. In high energy physics, this sampling is frequently used for event generation, i.e.

preparation of phase space points distributed according to a matrix element squared |M |2
for a scattering process. In many realistic cases |M |2 is a complicated multi-dimensional

function, so, the standard von Neumann procedure has quite low efficiency, even if an

error reducing technique, like VEGAS, is applied. As a result of that, many of the |M |2
calculations go to “waste”. The considered iterative modification of the procedure can

extract more “unweighted” events, i.e. distributed according to |M |2. In several simple

examples we show practical benefits of the technique and obtain more events than the

standard von Neumann method, without any extra calculations of |M |2.

Keywords: Rejection sampling, Monte Carlo Simulation, Iterative algorithms .

http://arXiv.org/abs/0807.2823v1
http://jhep.sissa.it/stdsearch

Contents

1. Introduction 1

2. Iterative von Neumann procedure 2

3. The stopping rule for iterations 5

4. Numerical examples 6

5. Discussion and Conclusions 8

6. Acknowledgements 9

1. Introduction

Simulated events of particle scattering are one of the main tools both in modern theoretical

research and in current experimental analyses in the high energy physics (HEP). Usually

the events are prepared by means of Monte Carlo techniques. The reason for the success

of the methods is very clear: current simulation problems require realistic events of the

processes 2 → N , where N is set by the accelerator energy and is equal to several hundreds

for the LHC, for instance. But even applied approximations such as partons showers and

zero width decays for the final particles leave us with N ≈ 3 − 10. This large number

corresponds to a 5 − 25 dimension phase space. Owing to the large number of dimensions

and complexity of the investigated functions – the matrix elements squared – we cannot

rely on deterministic grid methods due to the well-known “curse of dimensionality”.

The standard scheme applied is the following: at first we prepare a matrix element

squared symbolically (by hand or automatically), construct an importance sampling func-

tion, again manually or automatically by applying, for example, VEGAS [1]; obtain an

estimation of the total integral (the total cross section), for chosen cuts and parameters,

by the classic Monte-Carlo method, find the function maximum (or an array of maxima,

since stratified sampling may be worth applying), generate enough weighted events for the

function, and perform the “hit-and-miss” von Neumann procedure [2]. The final step maps

the weighted points, distributed according to the importance sampling function, to a subset

of the sample – realistic independent unweighted events distributed according to the matrix

element squared. This is the general and oversimplified scheme of functioning of almost

all modern Monte-Carlo generators, see for example the review [3]. Useful information on

current mathematical Monte-Carlo techniques applied in HEP can also be found in the

short review by Weinzierl [4].

– 1 –

Although the scheme described guarantees that the unweighted events are distributed

according to the function considered, the selection efficiency usually is not too high, espe-

cially if the function has lots of sharp peaks. The main reason is that importance sampling

functions are simple functions and they have much smoother behaviour and describe the

real function behaviour in a very crude approximation. As a result we get lots of calculated

points going into the “waste bin”. Since the cost calculating of the investigate function

can be quite large it would be worth considering whether we can extract more information

(e.g. more unweighted events) from the “waste”. The most obvious way to achieve this

goal is to repeat the von Neumann procedure with the rejected phase space points. It is

rather clear that these points can be used for the task, but with worse quality. Since, at

the first rejection stage, some points have been accepted and, so, removed from the sample

of the weighted events, we should change the weights of all remaining points. The paper

is devoted to the construction of a procedure, which gives us the possibility to use the

rejected points iteratively.

In fact, the idea of using rejected points is not quite new. For example, an iterative

von Neumann procedure for the extraction of random bits from an independent but biased

bit array was constructed in [5]. It originates from one of von Neumann’s ideas published

in his famous paper [2]. In this paper we generalise another procedure set out in the paper

- rejected sampling.

As we mentioned earlier the initial sample should be prepared with an importance

sampling function, in order to increase selection efficiency. Since we are interested in

an automated procedure, we will use the VEGAS algorithm, the de facto standard of

importance sampling in HEP. It is worth noticing that VEGAS itself can be improved, as

is described in Ohl’s paper [6]. For some practical and historical reasons we will apply the

slightly adapted VEGAS algorithm from CompHEP [7].

In Sec. 2 we give some mathematical arguments in favour of the iterative von Neumann

procedure and formulate the method itself. In Sec. 3 we define a stopping rule for the

method. Three model, but rather realistic, examples are considered in Sec. 4. Final

remarks and conclusions are given in the section 5.

2. Iterative von Neumann procedure

We start from the standard “hit-and-miss” von Neumann procedure applied to a non-

negative function f(x̄), where x̄ = {x1, ..., xd} is a point in the d-dimension phase space.

For simplicity we limit ourselves to a bounded domain D in the phase space. At first, we

prepare a sample of N phase space points {x̄i}N , i = 0, ..., N−1 in D, distributed according

to an importance sampling distribution g(x̄), where g(x̄) is a positive function normalised

with the condition
∫

D
g(x̄)dx̄ = 1. So, the corresponding weight ωi of each point is equal

to f(x̄i)/g(x̄i). Having the weights we can estimate the total integral

Itot =

∫

D

f(x̄)dx̄ ≈ 〈f〉1̄ = 〈f/g〉ḡ =
1

N

N−1
∑

i=0

ωi,

– 2 –

where we denote an estimation of the integral with a sample of uniformly distributed points

〈·〉1̄. We can also obtain an estimation of the accuracy given by σ2 = 〈ω2〉ḡ − 〈ω〉2ḡ – the

standard deviation. The next step is to pick out a subset of the point distributed according

to f(x̄) from {x̄i}N . Let us formulate the standard rejection sampling procedure1:

• Generate a random number 0 < ξ < 1

• Compare Wi = ωi/ω0, if Wi > ξ - accept the point to the final sample.

• Repeat the procedure for all points in the sample.

It is obvious that the final sample of accepted points is distributed according to f(x̄). But

we also obtain the second sample of the rejected points. Usually the sample is much larger

than the sample of accepted points. So, the main question of this note is whether we can

extract something useful from analyzing the rejected points. Our answer is affirmative.

Namely, we will construct a procedure, which “returns” the rejected point sample to (al-

most) the initial position before the von Neumann procedure was applied. Thus, we will

build an iterative Monte-Carlo rejection sampling.

The possibility of the procedure is based on two observations. First, we can apply

the “hit-and-miss” algorithm for points distributed according to any importance sampling

function. The only conditions we require is our ability to calculate the function at each point

in the initial sample and the positivity of the function, since g(x̄i) goes to denominator.

Certainly, the acceptance efficiency will be strongly dependent on the chosen function. The

second observation (or, strictly speaking, a limitation) is the relevance of the maximum

value of f(x̄) at x̄0. If we take ω0 for the “hit-and-miss” procedure the point will be

accepted by construction, since the acceptance probability of the point is equal to 1.0.

So, the rejected points will describe the region near x̄0 worse then any other region, and

further samples constructed at the next rejection steps will become worse and worse. Thus,

we must formulate a simple criterion which ensures a sufficiently reasonable description of

the region around the “maximum” in the new accepted sample and stops iteration if the

description becomes “too poor” (see more details of the criterion in the next section).

Therefore, our goal is twofold. First, we must construct a distribution function for the

rejected points (we make it in this section). After that, we have to see whether the rejected

points are still able to describe f(x̄) without serious drawbacks, especially in the region

around fmax.

The first problem can be solved by considering the densities of points in three samples:

a) the initial one, b) the sample of accepted points after the “hit-and-miss” procedure, and

c) the sample of rejected points. The densities are equal to

ρini(x̄) = N · g(x̄) ≡ N · g0(x̄),

ρacc(x̄) = α · Nacc · f(x̄),

ρrej(x̄) = Nrej · g1(x̄),

1We will assume the point x̄0 has the maximum weight ω0 = f(x̄0)/g(x̄0) in the sample.

– 3 –

where we assume the importance sampling functions are normalised to 1.0 and α is respon-

sible for normalisation of f(x̄): α = 1/
∫

f(x̄)dx̄ ≈ 1/Itot. Nacc and Nrej are the numbers

of accepted and rejected points correspondingly and N = Nacc +Nrej. Our first problem is

to find the function g1(x̄). Since the samples of accepted and rejected points are obtained

from the initial sample we can make use of the following key equation:

ρini(x̄) = ρacc(x̄) + ρrej(x̄) (2.1)

Substituting our expressions for the densities we obtain

g1(x̄i) = (N − α · Nacc · ωi)g0(x̄i)/Nrej ,

where ωi is the initial weight of the i-th point (for the importance sampling function

g0(x̄) ≡ g(x̄)). Since the proper weights of the rejected points distributed according to

g1(x̄) are f(x̄i)/g1(x̄i) we can obtain the final formula for the weight of the point x̄i (if it

has been rejected):

ω′

i =
(1 − ǫ) · ωi

1 − ǫ · ωi/Itot

, (2.2)

where ωi is the point weight before rejection sampling, ω′

i is its weight according to the

distribution g1(x̄), and ǫ is the acceptance efficiency for the sample.

The first consequence of the formula is that we do not need to calculate the new

importance sampling function g1(x̄) for the next iteration at all. The new weights of

the rejected points are calculated from the old ones by means of a very simple function

f(z) = A · z/(1 − B · z). Thus, we come back to the first step and can repeat the von

Neumann rejection procedure based on the new weights. Obviously, the second iteration

will bring less points since larger weights became larger and vice versa.

Accordingly the iterative Monte-Carlo “hit-and-miss” procedure has a very simple

formulation:

1. Prepare a sample of points {x̄i}N with weights ωi = f(x̄i)/g(x̄i) and estimate Itot

2. Perform the von Neumann procedure for the sample.

3. Re-calculate the weights of the rejected points according the formula (2.2) and find

the point with the maximum weight. It will be the next x̄0.

4. Check whether the sample satisfy a stopping condition. If not, repeat the iterations

starting from point 2.

It is interesting to mention that the transformation (2.2) is stable during iterations. If

we perform m iterations and accept N
(1)
acc, ..., N

(m)
acc points in the iterations, then we obtain

ω
(n)
i =

(1 − ǫ(n)) · ωi

1 − ǫ(n) · ωi/Itot

,

where ǫ(n) =
∑m

i=1 ǫ(i)
∑m

i=1 N
(i)
acc/N .

– 4 –

Let’s estimate the a priori number of events, which would be accepted at the (n+1)th

iteration, if we know the information from the previous stage. In order to accept a point,

we compare its weight with a uniformly distributed number ξ. So, we can say that ωi/ω0 is

the probability of the point to be accepted. Since the transformation (2.2) does not change

the maximum point, we can write down

N (n+1)
acc = N

(n)
rej

Itot

ω
(n),′

0,rej

= Itot

(

N
(n)
tot

ω
(n)
0,rej

− N (n)
acc

)

= N
(n)
tot (1/ω

(n)
0,rej − 1/ω

(n)
0,tot),

where N
(n)
tot , N

(n)
acc , and N

(n)
rej are the numbers of points in the sample before nth iteration,

and the numbers of accepted and rejected points at the iteration. ω
(n)
0,tot, ω

(n)
0,rej and ω

(n),′

0,rej

are the maximum weight in the whole sample before the nth iteration, the maximum weight

of rejected points only and the point weight calculated according to (2.2). In the formula

we use an approximate equality for the a priori and a posteriori acceptance efficiency at

the nth iteration: ǫest = Itot/ω0 ≈ ǫreal = Nacc/N .

3. The stopping rule for iterations

The procedure constructed in the previous section lacks only one element – a reasonable

stopping rule. In order to find the condition let us look at the formula (2.2) in more detail.

It fails to produce sensible weights if the function f(ω) = 1−ǫ·ω/Itot is less than or equal to

zero. It is clear that the worst case happens if we substitute the maximum weight ω0. Let us

show that 1−ǫ ·ω0/Itot = 0 “on the average”. As we pointed out above, the probability of a

point to be accepted is equal Wi = ωi/ω0. Since any accepted point increases the accepted

point sample, the average number of accepted point is Nacc =
∑N

i=0 Wi = N · Itot/ω0 or

1 − ǫ · ω0/Itot = 0. So, it looks as the standard von Neumann procedure picks out all

possible points and already the first re-weighting brings us to an inapplicable state of the

iterative method. But, the solution of the drawback happens automatically, merely due

to the definition of the von Neumann procedure. By construction, x̄0 always falls within

the accepted point sample, and for almost all rejected points the formula (2.2) gives a

finite answer. It also makes clear the source of the extra events. We effectively lower the

normalised factor ω0 → ω0,rej < ω0, so there is a room for more accepted events. But

the reduction is rather smart and does not spoil the statistical sense of accepted events.

Certainly the rejected events give a cruder estimation of the function and in realistic cases

there exists a neighbourhood of x̄0 where we do not have any rejected points at all. So,

we lose some part of the total integral. As we see in the next section the total integral in

iteration tends to decrease and, thus, further iterations give an underestimated simulation

of our function f(x̄).

Not we can formulate a natural criterion of the stopping condition for the iterative

procedure. At the beginning we have a sample which gives us an estimation of the total

integral with some error. It is estimated from the standard deviation calculated using the

sample. We can continue the iterations as long as the integral estimations at the first and

– 5 –

m-th steps I
(0)
tot and I

(m)
tot satisfy the following inequality

|I(0)
tot − I

(m)
tot | ≤ σ0 + σm, (3.1)

where σ0,m are the standard deviations at the first and m-th steps. In this case, we

still properly estimate the function f(x̄) at the m-th step, in general, and can extract

points distributed according to the function. Now we are able to formulate the algorithm

completely:

1. Prepare a sample of points {x̄i}N with calculated weights ωi = f(x̄i)/g(x̄i) and

estimate Itot

2. Perform the von Neumann procedure for the sample

3. Re-calculate weights of the rejected points according the formula (2.2) and find the

point with the maximum weight. It will be the next x̄0

4. Check whether all the calculated weights are positive. If not, stop iteration

5. Estimate the total integral value and check whether the inequality (3.1) holds true.

If yes, repeat the iteration starting from point 2, otherwise stop.

The final problem we come across is the question whether we can mix accepted events

obtained in the all iterations. In fact, it is easy to prove that the accepted events have equal

weights Itot = 〈f〉1̄ = 〈ω〉ḡ(x). The points are distributed according to g(x̄) = f(x̄)/〈f〉, if

we substitute the expression to the weight formula ωi = f(x̄i)/g(x̄i) = 〈f〉. In each step in

the algorithm we obtained events with different weights, but they are distributed within

the sample statistical error and can be considered as statistically the same.

4. Numerical examples

In order to check the practicality of the method we consider three different numerical

examples of application of the method to complicated multidimensional functions.

The first example is a sum of two Gaussians

f1(x̄) = Anorm ·
[

exp

(

−(x̄ − ā1)
2

2 · σ2
1

)

+ ξ6 · exp

(

−(x̄ − ā2)
2

2 · σ2
2

)]

(4.1)

in a 6-dimensional unit hypercube. For calculations we chose the following values of the

parameters: Anorm = 1.0, ξ6 = 729.0, σ1 = 0.06, σ2 = 0.02, ā1 = (0.2, 0.2, 0.2, 0.2, 0.2, 0.2),

and ā2 = (0.7, 0.7, 0.7, 0.7, 0.7, 0.7). We chose A2 = 729.0 in order to compensate for the

difference in the Gaussian widths.

At first, we prepared the VEGAS grid (10 iterations of the grid customization were

done) for the function and generated the initial sample of points; it contained approxi-

mately 4.5 · 106 points. After that, the iterative von Neumann procedure was carried out

with the sample. By definition, the first iteration corresponds to the standard von Neu-

mann selection. On the whole we made 25 iterations. No zero or negative weights were

– 6 –

calculated in the iterations. Fig 1 displays the total integrals and cumulative numbers of

points selected at each iteration. As we see our stopping rule 3.1 is satisfied at the 15th

iteration. Fig. 2 illustrates the quality of fitting of the two obtained samples. We fit the

histogram dNpoint/dx0 with the original function (certainly, in 1 dimension). The upper

plot corresponds to the first iteration sample only (the standard procedure), and the dis-

tribution for the sample of points combined for fifteen iterations is depicted in the lower

plot. The latter sample is 6.5 times bigger then the former sample. Although the quality

of fit for the iterative sample is slightly lower, all parameters of the original function are

reconstructed better than for the standard sample. So, we can conclude the built iterative

method works properly in this particular example.

iterN
0 5 10 15 20 25

to
t

I

2.25

2.26

2.27

2.28

2.29

2.3

2.31

2.32

2.33 p
o

in
ts

N

0

10000

20000

30000

40000

50000

60000

Figure 1: Values of the total integral and the cumulative number of selected events at iterations

of the iterative von Neumann procedure for the function (4.1).

The second example is a combination of two Breit-Wigner peaks in the 8-dimensional

unit hypercube. The exact formula is the following:

f2(x̄) = Anorm ·
[

1

(a1 − Y)2 + Γ2
1

+
ξ

(a2 − Y)2 + Γ2
2

]

, (4.2)

where we introduce the resonance variable Y =
∑3

i=0 xi. Again, we prepared a sample

of points in the phase space. The sample size was 2.8 · 106 points for the function with

– 7 –

parameters Anorm = 60.0, ξ = 0.167, Γ1 = 0.01, and Γ2 = 0.02. The two peaks are

located at the points a1 = 0.2 and a2 = 0.75. The resonances are taken for the sum of

four variables Y =
∑3

i=0 xi in order to make the function less sensitive for the VEGAS

customization. By definition, the first iteration of the iterative von Neumann procedure

gave the standard selection with the a posteriori efficiency ǫeff = 2.57%. After that

we repeated the procedure 16 times for the re-calculated weights (at each step). The

total integral values and numbers of selected points are reported in Fig. 3. Owing to the

stopping rule (3.1) we should combine samples of the first 6 iterations only. This results in

the total cumulative efficiency ǫeff = 4.41%. Again, we fit the histogram dNpoint/dY with

the original formula2. We see the iterative sample results in a better fit, i.e a smaller χ2

and more precise values of the function parameters.

The third example represents a non-symmetric function in a 20-dimensional hypercube:

f2(x̄) =
Anorm

(a1 + x0)20
. (4.3)

Since x0 ≥ 0 in the hypercube and the function approaches infinity at x0 = −a1, we

simulate the right-hand slope of the function, if a1 > 0. We chose the following values of

the function parameters: Anorm = 10−55 and a = 10−3. The initial sample had 2.23 · 106

points. The first (standard) iteration gave the a posteriori efficiency ǫeff = 3.29%. We

repeated the selection ten times and combined selected points in the final samples for

the five iterations, according to our sopping rule. The final efficiency is equal to 7.28%.

The total integral values and numbers of selected points are reported in Fig. 5. Since we

cannot improve the accuracy of Anorm by our method, we are interested in the quality of

the reconstruction of a only. We fit the histogram dNpoint/dx0 with the original formula.

Again, we see that the iterative sample results in smaller χ2 and more precise value of a

(see Fig. 6).

5. Discussion and Conclusions

A simple generalisation of the standard von Neumann procedure has been constructed. The

method is based on the observation that in realistic Monte-Carlo calculations we always

have an uncertainty in the estimation of the total integral. This means we can repeat

the standard von Neumann rejection sampling several times until we are within limits of

the uncertainty. As soon as we exceed the limit the final sample will start to give worse

results. Since we exclude some points in the rejection sampling we must rearrange weights

of points in the rejected sample. We found that the transformation is universal (it does

not depend on the function considered) and extremely simple – the key formula (2.2). The

second obstacle which can prevent iteration is negative weights of some points. This can

2Strictly speaking, for the fitting procedure we must multiply the expression (4.2) by Y 3 since we

prepared the sample parametrised with {x0, ...x7}, but the resonance variable is the combination Y =
P3

i=0
xi. If we transform the initial parametrisation into the most natural one, which contains Y, integration

over the other re-defined variables gives us an extra factor Y N−1 in the numerator. In our case, N is equal

to 4.

– 8 –

happen especially in the case of very low selection efficiency. So, we formulated a stopping

rule for the iterative procedure, which permits one to stay within a well-defined statistical

interpretation of selected points and to combine all samples obtained in the iterations into

one.

It is worth stressing that, by definition of our method, we cannot improve the accuracy

of the total integral or, in other words, the quality of the reconstruction of the total

normalization constant of a function under consideration. Moreover, since we select points

with larger weights, the rejected point sample gives a biased estimation of the total integral.

Of course we can prevent bad behaviour of the iteration process by application of the

stopping rule (3.1).

Three numerical examples show the procedure can really bring practical benefits in

calculations. Owing to the simplicity of the procedure it can have a very broad area of

application. In fact, almost every sampler, satisfying the condition that we should be able

to prepare a set of independently generated points with weights, can be supplemented with

a code producing more points iteratively. The method can be easily generalised to stratified

sampling, since it can be applied independently in each stratum.

As the first realistic application we are going to implement the method in the Monte-

Carlo generators CompHEP [8] and Herwig++ [9]. Certainly, the method can be adopted

by other popular codes (e.g. PYTHIA, MadGraph, Alpgen, Sherpa) [10].

6. Acknowledgements

I would like to thank Bryan Webber and Deirdre Black for useful discussions and remarks.

I would like to acknowledge the British STFC for the award of a Responsive Research

Associate position, RFBR (the RFBR grant 07-07-00365-a), and European Union Marie

Curie Research Training Network MCnet (contract MRTN-CT-2006-035606) for partial

support of the project.

References

[1] G. P. Lepage, J. Comput. Phys. 27 (1978) 192.

[2] J. von Neumann, Nat. Bureau Standards, 12 (1951) 36

[3] M. A. Dobbs et al., arXiv:hep-ph/0403045.

[4] S. Weinzierl, arXiv:hep-ph/0006269.

[5] Y. Peres, Iterating Von Neumann’s Procedure for Extracting Random Bits The Annals of

Statistics, 20, No. 1 (1992) 590-597.

[6] T. Ohl, Comput. Phys. Commun. 120 (1999) 13 [arXiv:hep-ph/9806432].

[7] A. Pukhov, Nucl. Instrum. Meth. A 502 (2003) 596.

[8] E. Boos et al. [CompHEP Collaboration], Nucl. Instrum. Meth. A 534 (2004) 250

[arXiv:hep-ph/0403113].

[9] M. Bahr et al., arXiv:0804.3053 [hep-ph].

– 9 –

[10] T. Sjostrand, S. Mrenna and P. Skands, Comput. Phys. Commun. 178 (2008) 852

[arXiv:0710.3820 [hep-ph]]; F. Maltoni and T. Stelzer, JHEP 0302 (2003) 027

[arXiv:hep-ph/0208156]; M. L. Mangano, M. Moretti, F. Piccinini, R. Pittau and

A. D. Polosa, JHEP 0307 (2003) 001 [arXiv:hep-ph/0206293]; T. Gleisberg, S. Hoche,

F. Krauss, A. Schalicke, S. Schumann and J. C. Winter, JHEP 0402 (2004) 056

[arXiv:hep-ph/0311263].

– 10 –

0x
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0
 /

d
 x

1
d

 f

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7 Entries 5648

 / ndf 2χ 32.685597 / 47

 ξ 0.094433± 2.849851
 1a 0.001097± 0.200810
 2a 0.000383± 0.700601
 1σ 0.000805± 0.057820
 2σ 0.000282± 0.020001

Standard von Neumann procedure

0x
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0
 /

d
 x

1
d

 f

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7 Entries 38747

 / ndf 2χ 52.733027 / 55

 ξ 0.037938± 3.030261
 1a 0.000435± 0.200031
 2a 0.000144± 0.699982
 1σ 0.000304± 0.060281
 2σ 0.000105± 0.019789

Iterative von Neumann procedure

Figure 2: The dNpoint/dx0 distribution for the example (4.1) for two approaches, the standard

von Neumann procedure (upper plot) and the iterative von Neumann procedure (lower plot). Both

curves are fitted with the original function (for 1 dimension). It is worth noticing that ξ = 6
√

ξ6,

since this is an one-dimensional histogram. – 11 –

iterN
0 2 4 6 8 10 12 14 16

to
t

I

6.82

6.84

6.86

6.88

6.9

6.92

p
o

in
ts

N
0

20

40

60

80

100

120

140

160

310×

Figure 3: Values of the total integral and the cumulative number of selected events at iterations

of the iterative von Neumann procedure for the function (4.2).

– 12 –

3 + x2 + x1 + x0Y = x
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

 /
d

 Y
2

d
 f

0

0.05

0.1

0.15

0.2

0.25
Entries 71946

 / ndf 2χ 122.665182 / 136

 ξ 0.000466± 0.016113
 1a 0.000092± 0.199971
 2a 0.000296± 0.750647

 1Γ 0.000077± 0.010007

 2Γ 0.000352± 0.019674

Standard von Neumann procedure

3 + x2 + x1 + x0Y = x
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

 /
d

 Y
2

d
 f

0

0.05

0.1

0.15

0.2

0.25
Entries 115789

 / ndf 2χ 115.154734 / 137

 ξ 0.000376± 0.016478
 1a 0.000072± 0.199988
 2a 0.000236± 0.750355

 1Γ 0.000060± 0.009990

 2Γ 0.000283± 0.020006

Iterative von Neumann procedure

Figure 4: The dNpoint/dY distribution for the example (4.2) fitted for two approaches, the stan-

dard von Neumann procedure (upper plot) and the iterative von Neumann procedure (lower plot).

– 13 –

iterN
0 2 4 6 8 10

to
t

I

5.26

5.2605

5.261

5.2615

5.262

5.2625

5.263

5.2635

5.264

p
o

in
ts

N
0

50

100

150

200

250

300

350

310×

Figure 5: Values of the total integral and the cumulative number of selected events at iterations

of the iterative von Neumann procedure for the function (4.3).

– 14 –

0x
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

-310×

0
 /

d
 x

3
d

 f

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Entries 73781

 / ndf 2χ 160.606406 / 98

a 0.000004± 0.000990

Standard von Neumann procedure

0x
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

-310×

0
 /

d
 x

3
d

 f

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Entries 163134

 / ndf 2χ 123.645873 / 98

a 0.000003± 0.000995

Iterative von Neumann procedure

Figure 6: The dNpoint/dx0 distribution for the example (4.3) fitted for two approaches, the stan-

dard von Neumann procedure (upper plot) and the iterative von Neumann procedure (lower plot).

– 15 –

