
CFD Solvers on Many-core
Processors

Tobias Brandvik

Whittle Laboratory

CFD Solvers on Many-core Processors – p.1/36



CFD Backgroud

CFD: Computational Fluid Dynamics

Whittle Laboratory - Turbomachinery

CFD Solvers on Many-core Processors – p.2/36



Turbomachinery

CFD Solvers on Many-core Processors – p.3/36



Compute requirements

Steady models (no wake/blade interaction etc.)

1 blade 0.5 Mcells 1 CPU hour
1 stage (2 blades) 1.0 Mcells 3 CPU hours
1 component (5 stages) 5.0 Mcells 20 CPU hours

CFD Solvers on Many-core Processors – p.4/36



Compute requirements

Steady models (no wake/blade interaction etc.)

1 blade 0.5 Mcells 1 CPU hour
1 stage (2 blades) 1.0 Mcells 3 CPU hours
1 component (5 stages) 5.0 Mcells 20 CPU hours

Unsteady models (with wakes etc.)

1 component (1000 blades) 500 Mcells 0.1M CPU hours
Engine (4000 blades) 2 Gcells 1M CPU hours

CFD Solvers on Many-core Processors – p.5/36



Objectives

Can CFD be made to run faster by using other types of
processors?

How to make sure it will continue to get faster with
better processors in the future?

CFD Solvers on Many-core Processors – p.6/36



Background

Many−coreMulti−coreSingle−core

CFD Solvers on Many-core Processors – p.7/36



Processor design

P ≈
√

Ntrans

For a modern chip, Ntrans ≈ 4 · 108

100 small cores with 4 · 106 transistors each gives 10
times the performance as 1 big core

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
8Number of transistors

P
er

fo
rm

an
ce

CFD Solvers on Many-core Processors – p.8/36



Everyone is going parallel

Every major chip vendor is switching to many-core
processors

All future processors will be massively parallel

CFD Solvers on Many-core Processors – p.9/36



NVIDIA Tesla

CFD Solvers on Many-core Processors – p.10/36



IBM Cell

CFD Solvers on Many-core Processors – p.11/36



Sun Niagara

CFD Solvers on Many-core Processors – p.12/36



Intel Larrabee

CFD Solvers on Many-core Processors – p.13/36



Challenges

Every processor has different characteristics (and in
some cases languages and libraries)

Codes have to be rewritten

More difficult - use to have 1 process/thread per core
with 1 MB cache

Thousands of threads/processes per core

10-100KB on-chip memory per core

CFD Solvers on Many-core Processors – p.14/36



Benefits

Possible to achieve step change in performance NOW

Once the job is done, can expect to scale with Moore’s
Law like in the 80s and 90s

CFD Solvers on Many-core Processors – p.15/36



Scientific computing

There are two possible approaches

Horizontal: Single language for all problems

Vertical: Different language for every problem

CFD Solvers on Many-core Processors – p.16/36



A View From Berkeley

Scientific computing consists of seven different applications

1. Dense Linear Algebra

2. Sparse Linear Algebra

3. Spectral Methods

4. N-Body Methods

5. Structured Grids

6. Unstructured Grids

7. MapReduce

CFD Solvers on Many-core Processors – p.17/36



A View From Berkeley

Scientific computing consists of seven different applications

1. Dense Linear Algebra

2. Sparse Linear Algebra

3. Spectral Methods

4. N-Body Methods

5. Structured Grids

6. Unstructured Grids

7. MapReduce

Red applications relevant to CFD

CFD Solvers on Many-core Processors – p.18/36



The Seven Dwarfs

CFD Solvers on Many-core Processors – p.19/36



The Seven Dwarfs

CFD Solvers on Many-core Processors – p.20/36



Structured grids

Basic spatial discretisation for many CFD solvers

Solvers consist of a series of stencil operations +
boundary conditions

CFD Solvers on Many-core Processors – p.21/36



Stencil operations

i, j+1, k

i, j, k+1

i+1, j, k

i, j−1, k

i, j, k−1

i−1, j, k

CFD Solvers on Many-core Processors – p.22/36



Stencil operations

Evaluate ∂
2u
∂x2 on a regular grid:

DO K=2,NK-1

DO J=2,NJ-1

DO I=2,NI-1

D2UDX2(I,J,K) = (U(I+1,J,K) - 2.0*U(I,J,K) +

& U(I-1,J,K))/(DX*DX)

END DO

END DO

END DO

CFD Solvers on Many-core Processors – p.23/36



Boundary conditions

Set a variable to a fixed value on the i = 0 face:

DO K=1,NK

DO J=1,NJ

U(0,J,K) = 300.0

END DO

END DO

CFD Solvers on Many-core Processors – p.24/36



SBLOCK

Vertical approach to structured grids

Mini-language and library

Can target any processor without changing the solver
definition

Currently supports CPUs and NVIDIA GPUs (Cell
support is coming)

CFD Solvers on Many-core Processors – p.25/36



Fundamental abstraction

Blocks with patches

CFD Solvers on Many-core Processors – p.26/36



Stencil kernels

kind = "stencil"

avin = ["dx"]

bpin = ["u"]

bpout = ["d2udx2"]

inner_calc = [

{"lvalue": "d2udx2"

"rvalue": """u[1][0][0] - 2.0f*u[0][0][0] +

u[-1][0][0])/(dx*dx)"""

]

CFD Solvers on Many-core Processors – p.27/36



Kernel compilation

CFD Solvers on Many-core Processors – p.28/36



TBLOCK

Developed in-house at the lab by John Denton

Blocks with arbitrary patch interfaces

Simple and fast algorithm

15,000 lines of Fortran 77

Main solver routines are only 5,000 lines

Widely used in industry and academia

CFD Solvers on Many-core Processors – p.29/36



Turbostream

Turbostream is TBLOCK in SBLOCK

2000 lines of C

3000 lines of Python kernels

Code generated from Python kernels is 15,000 lines

Source code is very similar to TBLOCK – every
subroutine has an equivalent SBLOCK kernel

CFD Solvers on Many-core Processors – p.30/36



Speed-up results

Two different scenarios

CFD Solvers on Many-core Processors – p.31/36



High-end desktop

2 Intel Quad Cores

6 NVIDIA GPUs

£3,000

30x speed-up

Can do routine design calculations in less than 2
minutes

CFD Solvers on Many-core Processors – p.32/36



Cluster

4 GPUs in 1 U (NVIDIA Tesla)

But needs extra control unit

Not as dense as CPU clusters (yet)

Speed-ups of 10x on a per-cost, per-watt basis

CFD Solvers on Many-core Processors – p.33/36



Cluster

We now have one of these!

CFD Solvers on Many-core Processors – p.34/36



Cluster scaling

Scaling when increasing job size:

0 2 4 6 8 10 12 14 16
Number of GPUs

0

2

4

6

8

10

12

14

16

P
e
rf

o
rm

a
n
ce

CFD Solvers on Many-core Processors – p.35/36



Conclusions

Many-core processors can speed up CFD calculations

Difficult to support all platforms and mantain portability
through hand-coding

Use a framework instead - write once run anywhere

CFD Solvers on Many-core Processors – p.36/36


	CFD Backgroud
	Turbomachinery
	Compute requirements
	Compute requirements
	Objectives
	Background
	Processor design
	Everyone is going parallel
	NVIDIA Tesla
	IBM Cell
	Sun Niagara
	Intel Larrabee
	Challenges
	Benefits
	Scientific computing
	A View From Berkeley
	A View From Berkeley
	The Seven Dwarfs
	The Seven Dwarfs
	Structured grids
	Stencil operations
	Stencil operations
	Boundary conditions
	SBLOCK
	Fundamental abstraction
	Stencil kernels
	Kernel compilation
	TBLOCK
	Turbostream
	Speed-up results
	High-end desktop
	Cluster
	Cluster
	Cluster scaling
	Conclusions

