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CFD Backgroud

CFD: Computational Fluid Dynamics

Whittle Laboratory - Turbomachinery
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Turbomachinery
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Compute requirements

Steady models (no wake/blade interaction etc.)

1 blade 0.5 Mcells 1 CPU hour
1 stage (2 blades) 1.0 Mcells 3 CPU hours
1 component (5 stages) 5.0 Mcells 20 CPU hours
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Compute requirements

Steady models (no wake/blade interaction etc.)

1 blade 0.5 Mcells 1 CPU hour
1 stage (2 blades) 1.0 Mcells 3 CPU hours
1 component (5 stages) 5.0 Mcells 20 CPU hours

Unsteady models (with wakes etc.)

1 component (1000 blades) 500 Mcells 0.1M CPU hours
Engine (4000 blades) 2 Gcells 1M CPU hours
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Objectives

Can CFD be made to run faster by using other types of
processors?

How to make sure it will continue to get faster with
better processors in the future?
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Background

Many−coreMulti−coreSingle−core
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Processor design

P ≈
√

Ntrans

For a modern chip, Ntrans ≈ 4 · 108

100 small cores with 4 · 106 transistors each gives 10
times the performance as 1 big core
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Everyone is going parallel

Every major chip vendor is switching to many-core
processors

All future processors will be massively parallel
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NVIDIA Tesla
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IBM Cell
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Sun Niagara
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Intel Larrabee
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Challenges

Every processor has different characteristics (and in
some cases languages and libraries)

Codes have to be rewritten

More difficult - use to have 1 process/thread per core
with 1 MB cache

Thousands of threads/processes per core

10-100KB on-chip memory per core
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Benefits

Possible to achieve step change in performance NOW

Once the job is done, can expect to scale with Moore’s
Law like in the 80s and 90s
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Scientific computing

There are two possible approaches

Horizontal: Single language for all problems

Vertical: Different language for every problem
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A View From Berkeley

Scientific computing consists of seven different applications

1. Dense Linear Algebra

2. Sparse Linear Algebra

3. Spectral Methods

4. N-Body Methods

5. Structured Grids

6. Unstructured Grids

7. MapReduce
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A View From Berkeley

Scientific computing consists of seven different applications

1. Dense Linear Algebra

2. Sparse Linear Algebra

3. Spectral Methods

4. N-Body Methods

5. Structured Grids

6. Unstructured Grids

7. MapReduce

Red applications relevant to CFD
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The Seven Dwarfs
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The Seven Dwarfs
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Structured grids

Basic spatial discretisation for many CFD solvers

Solvers consist of a series of stencil operations +
boundary conditions
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Stencil operations

i, j+1, k

i, j, k+1

i+1, j, k

i, j−1, k

i, j, k−1

i−1, j, k
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Stencil operations

Evaluate ∂
2u
∂x2 on a regular grid:

DO K=2,NK-1

DO J=2,NJ-1

DO I=2,NI-1

D2UDX2(I,J,K) = (U(I+1,J,K) - 2.0*U(I,J,K) +

& U(I-1,J,K))/(DX*DX)

END DO

END DO

END DO
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Boundary conditions

Set a variable to a fixed value on the i = 0 face:

DO K=1,NK

DO J=1,NJ

U(0,J,K) = 300.0

END DO

END DO
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SBLOCK

Vertical approach to structured grids

Mini-language and library

Can target any processor without changing the solver
definition

Currently supports CPUs and NVIDIA GPUs (Cell
support is coming)
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Fundamental abstraction

Blocks with patches
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Stencil kernels

kind = "stencil"

avin = ["dx"]

bpin = ["u"]

bpout = ["d2udx2"]

inner_calc = [

{"lvalue": "d2udx2"

"rvalue": """u[1][0][0] - 2.0f*u[0][0][0] +

u[-1][0][0])/(dx*dx)"""

]
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Kernel compilation
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TBLOCK

Developed in-house at the lab by John Denton

Blocks with arbitrary patch interfaces

Simple and fast algorithm

15,000 lines of Fortran 77

Main solver routines are only 5,000 lines

Widely used in industry and academia
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Turbostream

Turbostream is TBLOCK in SBLOCK

2000 lines of C

3000 lines of Python kernels

Code generated from Python kernels is 15,000 lines

Source code is very similar to TBLOCK – every
subroutine has an equivalent SBLOCK kernel
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Speed-up results

Two different scenarios
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High-end desktop

2 Intel Quad Cores

6 NVIDIA GPUs

£3,000

30x speed-up

Can do routine design calculations in less than 2
minutes
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Cluster

4 GPUs in 1 U (NVIDIA Tesla)

But needs extra control unit

Not as dense as CPU clusters (yet)

Speed-ups of 10x on a per-cost, per-watt basis
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Cluster

We now have one of these!
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Cluster scaling

Scaling when increasing job size:
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Conclusions

Many-core processors can speed up CFD calculations

Difficult to support all platforms and mantain portability
through hand-coding

Use a framework instead - write once run anywhere
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