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In 2008 we published the first set of guidelines for standardizing research in autophagy. Since 

then, research on this topic has continued to accelerate, and many new scientists have entered the 

field. Our knowledge base and relevant new technologies have also been expanding. 

Accordingly, it is important to update these guidelines for monitoring autophagy in different 

organisms. Various reviews have described the range of assays that have been used for this 

purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure 

autophagy, especially in multicellular eukaryotes.  

 For example, a key point that needs to be emphasized is that there is a difference between 

measurements that monitor the numbers or volume of autophagic elements (e.g., 

autophagosomes or autolysosomes) at any stage of the autophagic process versus those that 

measure flux through the autophagy pathway (i.e., the complete process including the amount 

and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results 

in autophagosome accumulation must be differentiated from stimuli that increase autophagic 

activity, defined as increased autophagy induction coupled with increased delivery to, and 

degradation within, lysosomes (in most higher eukaryotes and some protists such as 

Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that 

investigators new to the field understand that the appearance of more autophagosomes does not 

necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate 

because of a block in trafficking to lysosomes without a concomitant change in autophagosome 

biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. 

It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating is 

competence is a crucial part of the evaluation of autophagy flux, or complete autophagy. 
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 Here, we present a set of guidelines for the selection and interpretation of methods for use 

by investigators who aim to examine macroautophagy and related processes, as well as for 

reviewers who need to provide realistic and reasonable critiques of papers that are focused on 

these processes. These guidelines are not meant to be a formulaic set of rules, because the 

appropriate assays depend in part on the question being asked and the system being used. In 

addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in 

every situation, and we strongly recommend the use of multiple assays to monitor autophagy. 

Along these lines, when attempting to block autophagy through genetic manipulation it is 

imperative to delete or knock down more than one autophagy-related gene because individual 

Atg proteins, or groups of proteins, are involved in other cellular pathways; not all Atg proteins 

can be used as a specific marker for an autophagic process. In these guidelines, we consider these 

various methods of assessing autophagy and what information can, or cannot, be obtained from 

them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to 

encourage technical innovation in the field. 

 

Introduction 

Many researchers, especially those new to the field, need to determine which criteria are 

essential for demonstrating autophagy, either for the purposes of their own research, or in the 

capacity of a manuscript or grant review.
1
 Acceptable standards are an important issue, 

particularly considering that each of us may have his/her own opinion regarding the answer. 

Unfortunately, the answer is in part a “moving target” as the field evolves.
2
 This can be 

extremely frustrating for researchers who may think they have met those criteria, only to find out 

that the reviewers of their paper have different ideas. Conversely, as a reviewer, it is tiresome to 
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raise the same objections repeatedly, wondering why researchers have not fulfilled some of the 

basic requirements for establishing the occurrence of an autophagic process. In addition, drugs 

that potentially modulate autophagy are increasingly being used in clinical trials, and screens are 

being carried out for new drugs that can modulate autophagy for therapeutic purposes. Clearly it 

is important to determine whether these drugs are truly affecting autophagy, and which step(s) of 

the process are affected, based on a set of accepted criteria. Accordingly, we describe here a 

basic set of contemporary guidelines that can be used by researchers to plan and interpret their 

experiments, by clinicians to evaluate the literature with regard to autophagy-modulating 

therapies, and by both authors and reviewers to justify or criticize an experimental approach. 

Several fundamental points must be kept in mind as we establish guidelines for the 

selection of appropriate methods to monitor autophagy.
2
 Importantly, there are no absolute 

criteria for determining autophagic status that are applicable in every biological or experimental 

context. This is because some assays are inappropriate, problematic or may not work at all in 

particular cells, tissues or organisms.
3-6

 In addition, these guidelines are likely to evolve as new 

methodologies are developed and current assays are superseded. Nonetheless, it is useful to 

establish guidelines for acceptable assays that can reliably monitor autophagy in many 

experimental systems. It is important to note that in this set of guidelines the term “autophagy” 

generally refers to macroautophagy; other autophagy-related processes are specifically 

designated when appropriate. 

For the purposes of this review, the autophagic compartments (Fig. 1) are referred to as 

the sequestering (pre-autophagosomal) phagophore (PG; previously called the isolation or 

sequestration membrane
4,5

),
6
 the autophagosome (AP),

7
 the amphisome (AM; generated by the 

fusion of autophagosomes with endosomes),
8
 the lysosome, the autolysosome (AL; generated by 
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fusion of autophagosomes or amphisomes with a lysosome), and the autophagic body (AB; 

generated by fusion and release of the internal autophagosomal compartment into the vacuole in 

fungi and (presumably) plants. Except for cases of highly stimulated autophagic sequestration 

(Fig. 2), autophagic bodies are not seen in animal cells, because lysosomes/autolysosomes are 

typically smaller than autophagosomes).
5,7,9

 One critical point is that autophagy is a highly 

dynamic, multi-step process. Like other cellular pathways, it can be modulated at several steps, 

both positively and negatively. An accumulation of autophagosomes (measured by transmission 

electron microscopy [TEM] image analysis,
10

 as green fluorescent protein [GFP]-MAP1LC3 

[GFP-LC3] dots, or as changes in the amount of lipidated LC3 [LC3-II] on a western blot), 

could, for example, reflect a reduction in autophagosome turnover,
11-13

 or the inability of 

turnover to keep pace with increased autophagosome formation (Fig. 1B).
14

 For example, 

inefficient fusion with endosomes and/or lysosomes, or perturbation of the transport 

machinery,
15

 would inhibit autophagosome maturation to amphisomes or autolysosomes (Fig. 

1C), whereas decreased flux could also be due to inefficient degradation of the cargo once fusion 

has occurred.
16

 Moreover, GFP-LC3 dots and LC3 lipidation can reflect the induction of a 

different/modified pathway such as LC3-associated phagocytosis (LAP),
17

 and the noncanonical 

destruction pathway of the paternal mitochondria after fertilization.
18,19

 

Accordingly, the use of autophagy markers such as LC3-II must be complemented by 

assays to estimate overall autophagic flux, or flow, to permit a correct interpretation of the 

results. That is, autophagic activity includes not just the increased synthesis or lipidation of 

Atg8/LC3 (LC3 is the mammalian homolog of yeast Atg8), or an increase in the formation of 

autophagosomes, but, most importantly, flux through the entire system, including lysosomes or 

the vacuole, and the subsequent release of the breakdown products. Therefore, autophagic 
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substrates need to be monitored dynamically over time to verify that they have reached the 

lysosome/vacuole, and, in most cases, are degraded. By responding to perturbations in the 

extracellular environment, cells tune the autophagic flux to meet intracellular metabolic 

demands. The impact of autophagic flux on cell death and human pathologies therefore demands 

accurate tools to measure not only the current flux of the system, but also its capacity,
20

 and its 

response time, when exposed to a defined stress.
21

  

One approach to evaluate autophagic flux is to measure the rate of general protein 

breakdown by autophagy.
5,22

 It is possible to arrest the autophagic flux at a given point, and then 

record the time-dependent accumulation of an organelle, an organelle marker, a cargo marker, or 

the entire cargo at the point of blockage; however, this approach, sometimes incorrectly referred 

to as autophagic flux, does not assess complete autophagy because the experimental block is 

usually induced (at least in part) by inhibiting lysosomal proteolysis, which precludes the 

evaluation of lysosomal functions. In addition, the latter assumes there is no feedback of the 

accumulating structure on its own rate of formation.
23

 In an alternative approach, one can follow 

the time-dependent decrease of an autophagy-degradable marker (with the caveat that the 

potential contribution of other proteolytic systems and of new protein synthesis need to be 

experimentally addressed). In theory, these nonautophagic processes can be assessed by blocking 

autophagic sequestration at specific steps of the pathway (e.g., blocking further induction or 

nucleation of new phagophores) and by measuring the decrease of markers distal to the block 

point.
11,13,24

 The key issue is to differentiate between the often transient accumulation of 

autophagosomes due to increased induction, and their accumulation due to inefficient clearance 

of sequestered cargos by both measuring the levels of autophagosomes at static time points and 

by measuring changes in the rates of autophagic degradation of cellular components.
16

 Both 
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processes have been used to estimate “autophagy,” but unless the experiments can relate changes 

in autophagosome quantity to a direct or indirect measurement for autophagic flux, the results 

may be difficult to interpret.
25

 A general caution regarding the use of the term “steady state” is 

warranted at this point. It should not be assumed that an autophagic system is at steady state in 

the strict biochemical meaning of this term, as this implies that the level of autophagosomes does 

not change with time, and the flux through the system is constant. In these guidelines, we use 

steady state to refer to the baseline range of autophagic flux in a system that is not subjected to 

specific perturbations that increase or decrease that flux.  

Autophagic flux refers to the entire process of autophagy, which encompasses the 

inclusion (or exclusion) of cargo within the autophagosome, the delivery of cargo to lysosomes 

(via fusion of the latter with autophagosomes or amphisomes) and its subsequent breakdown and 

release of the resulting macromolecules back into the cytosol (this may be referred to as 

productive or complete autophagy). Thus, increases in the level of phosphatidylethanolamine 

(PE)-modified Atg8/LC3 (Atg8–PE/LC3-II), or even the appearance of autophagosomes, are not 

measures of autophagic flux per se, but can reflect the induction of autophagic sequestration 

and/or inhibition of autophagosome or amphisome clearance. Also, it is important to realize that 

while formation of Atg8–PE/LC3-II appears to correlate with the induction of autophagy, we do 

not know, at present, the actual mechanistic relationship between Atg8–PE/LC3-II formation and 

the rest of the autophagic process; indeed, it may be possible to execute “self-eating” in the 

absence of LC3-II.
26

  

As a final note, we also recommend that researchers refrain from the use of the 

expression “percent autophagy” when describing experimental results, as in “The cells displayed 

a 25% increase in autophagy.” Instead, it is appropriate to indicate that the average number of 



 36 

GFP-Atg8/LC3 puncta per cell is increased or a certain percentage of cells displayed punctate 

GFP-Atg8/LC3 that exceeds a particular threshold (and this threshold should be clearly defined 

in the Methods section), or that there is a particular increase or decrease in the rate of cargo 

sequestration or the degradation of long-lived proteins, when these are the actual measurements 

being quantified. 

In a previous version of these guidelines,
2
 the methods were separated into 2 main 

sections—steady state and flux. In some instances, a lack of clear distinction between the actual 

methodologies and their potential uses made such a separation somewhat artificial. For example, 

fluorescence microscopy was initially listed as a steady-state method, although this approach can 

clearly be used to monitor flux as described in this article, especially when considering the 

increasing availability of new technologies such as microfluidic chambers. Furthermore, the use 

of multiple time points and/or lysosomal fusion/degradation inhibitors can turn even a typically 

static method such as TEM into one that monitors flux. Therefore, although we maintain the 

importance of monitoring autophagic flux and not just induction, this revised set of guidelines 

does not separate the methods based on this criterion. Readers should be aware that this article is 

not meant to present protocols, but rather guidelines, including information that is typically not 

presented in protocol papers. For detailed information on experimental procedures we refer 

readers to various protocols that have been published elsewhere.
27-42,43

 

Collectively, we propose the following guidelines for measuring various aspects of 

selective and nonselective autophagy in eukaryotes. 

 

A. Methods for Monitoring Autophagy  
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1. Transmission electron microscopy. Autophagy was first detected by TEM in the 1950s 

(reviewed in ref. 
5
). It was originally observed as focal degradation of cytoplasmic areas 

performed by lysosomes, which remains the hallmark of this process. Later analysis revealed that 

it starts with the sequestration of portions of the cytoplasm by a special double membrane 

structure (now termed the phagophore), which matures into the autophagosome, still bordered by 

a double membrane. Subsequent fusion events transport the cargo to the lysosome (or the 

vacuole in fungi or plants) for enzymatic breakdown.  

 The importance of TEM in autophagy research lies in several qualities. It is the only tool 

that reveals the morphology of autophagic structures at a resolution in the nm range; shows them 

structures in their natural environment and position among all other cellular components; allows 

their exact identification; and, in addition, it can support quantitative studies if the rules of proper 

sampling are followed.
10

 

 Autophagy can be both selective and nonselective, and TEM can be used to monitor both. 

In the case of selective autophagy, the cargo is the specific substrate being targeted for 

sequestration—bulk cytoplasm is essentially excluded. In contrast, during nonselective 

autophagy, the various cytoplasmic constituents are sequestered randomly, resulting in 

autophagosomes in the size range of normal mitochondria. Sequestration of larger structures 

(such as big lipid droplets, extremely elongated or branching mitochondria or the entire Golgi 

complex) is rare, indicating an apparent upper size limit for individual autophagosomes. 

However, it has been observed that under special circumstances the potential exists for the 

formation of huge autophagosomes, which can even engulf a complete nucleus.
24

 Cellular 

components that form large confluent areas excluding bulk cytoplasm, such as glycogen or 

organized, functional myofibrillar structures, do not seem to be sequestered by macroautophagy.  
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 After sequestration, the content of the autophagosome and its bordering double 

membrane remain morphologically unchanged, and clearly recognizable for a considerable time, 

which can be measured for at least many minutes. During this period, the membranes of the 

sequestered organelles (for example the ER or mitochondria) remain intact, and the density of 

ribosomes is conserved at normal levels. Degradation and the sequestered material and the 

corresponding deterioration of ultrastructure commences and runs to completion within the 

amphisome and the autolysosome after fusion with a late endosome and lysosome (the vacuole in 

fungi and plants), respectively (Fig. 1).
44

 The sequential morphological changes during the 

autophagic process can be followed by TEM. The maturation from the phagophore through the 

autolysosome is a dynamic and continuous process,
45

 and, thus, the classification of 

compartments into discrete morphological subsets can be problematic; therefore, some basic 

guidelines are offered below.  

In the preceeding sections the “autophagosome”, the “amphisome” and the 

“autolysosome” were terms used to describe or indicate 3 basic stages and compartments of 

autophagy. It is important to make it clear that for instances (which may be many) when we 

cannot or do not want to differentiate among the autophagosomal, amphisomal and 

autolysosomal stage we use the general term “autophagic vacuole”. In the yeast autophagy field 

the term “autophagic vesicle” is used to avoid confusion with the primary vacuole, and by now 

the 2 terms are used in parallel and can be considered synonyms. It is strongly recommended, 

however, to use only the term “autophagic vacuole” when referring to macroautophagy in higher 

eukaryotic cells. Autophagosomes, also referred to as initial autophagic vacuoles (AVi), typically 

have a double membrane. This structure is usually distinctly visible by EM as 2 parallel 

membrane layers (bilayers) separated by a relatively narrower or wider electron-translucent cleft, 



 39 

even when applying the simplest routine EM fixation procedure (Fig. 3A).
46,47

 In the case of 

nonselective autophagy, autophagosomes contain cytosol and/or organelles appearing 

morphologically intact as also described above.
44,48

 Amphisomes
49

 can sometimes be identified 

by the presence of small internal vesicles within the autophagosome/autophagic vacuole (AV).
50

 

These internal vesicles are delivered into the lumen by fusion of the autophagosome/AV limiting 

membrane with multivesicular endosomes, and care should therefore be taken in the 

identification of the organelles, especially in cells that produce large numbers of multivesicular 

body (MVB)-derived exosomes (such as tumor or stem cells).
51

 Late/degradative autophagic 

vacuoles/autolysosomes (AVd or AVl) typically have only one limiting membrane; frequently 

they contain electron dense cytoplasmic material and/or organelles at various stages of 

degradation (Fig. 3A and B);
44,48

 although late in the digestion process, they may contain only a 

few membrane fragments and be difficult to distinguish from lysosomes, endosomes, or tubular 

smooth ER cut in cross-section. Unequivocal identification of these structures and of lysosomes 

devoid of visible content requires immuno-EM detection of a cathepsin or other lysosomal 

hydrolase (e.g., ACP2 [acid phosphatase 2, lysosomal]
52

) that is detected on the limiting 

membrane of the lysosome.
53

 Smaller, often electron dense, lysosomes may predominate in some 

cells  and  exhibit hydrolase immunoreactivity within the lumen and on the limiting membrane.
54

 

The presence of lytic enzymes in autolysosomes is an important criterion for 

identification, although, by itself, insufficient to distinguish them from late endosomes/MVBs, 

amphisomes, lysosomes and lysosomal-related residual bodies (e.g., lipofuscin), which also 

contain these enzyes. Traditional methods of detection involve demonstrating the activity of 

ACP2/acid phosphatase by enzyme cytochemistry
55

 or showing the presence of the hydrolase by 

immunocytochemistry.
56

 In addition, structural proteins of the lysosome/late endosome, such as 
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LAMP1 and LAMP2 or SCARB2/LIMP-2, can be used for confirmation. No single protein 

marker, however, has been effective in discriminating autolysosomes from the compartments 

mentioned above, in part due to the dynamic fusion and “kiss-and-run” events that promote 

interchange of  components that can occur between these organelle subtypes. Rigorous further 

discrimination of  these compartments from each other and other vesicles ultimately requires 

demonstrating the colocalization of a second marker indicating the presence of an autophagic 

substrate (e.g., LC3-CTSD colocalization)  or the acidification of the compartment (e.g., 

mRFP/mCherry-GFP-LC3 probes (see Tandem mRFP/mCherry-GFP fluorescence microscopy), 

or  Bodipy-pepstatin A detection of CTSD in an activated form within an acidic compartment), 

and, when appropriate, by excluding markers of other vesicular components.
52,57,58

 

The sequential deterioration of cytoplasmic structures being digested can be used for 

identifying autolysosomes by TEM. Even when the partially digested and destroyed structure 

cannot be recognized in itself, it can be traced back to earlier forms by identifying preceeding 

stages of sequential morphological deterioration. Degradation usually leads first to increased 

density of still recognizable organelles, then to vacuoles with heterogenous density, which 

become more homogenous and amorphous, mostly electron dense, but sometimes light (i.e., 

electron translucent). It should be noted that, in pathological states, it is not uncommon that 

active autophagy of autolysosomes and damaged lysosomes (“lysosophagy”) may yield 

populations of double-memebrane limited autophagosomes containing partially digested 

amorphous substrate in the lumen either free or within smaller electron-dense vesicles. These 

structures, which are enriched in hydrolases, are frequently seen in swollen dystrophic neurites in 

some neurodegenerative diseases.
54
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It must be emphasized that in addition to the autophagic input, other processes (e.g., 

endosomal, phagosomal, chaperone-mediated) also carry cargo to the lysosomes,
59,60

 in some 

cases through the intermediate step of direct endosome fusion with an autophagosome to form an 

amphisome. This process is exceptionally common in the axons of neurons.
61

 Therefore, strictly 

speaking, we can only have a lytic compartment containing cargos arriving from several possible 

sources; however, we still may use the term “autolysosome” if the content appears to be 

overwhelmingly autophagic. Note that the engulfment of apoptotic cells via phagocytosis also 

produces lysosomes that contain cytoplasmic structures, but in this case it originates from the 

dying cell; hence the possibility of an extracellular origin for such content must be considered 

when monitoring autophagy in settings where apoptotic cell death may be reasonably expected 

or anticipated.  

For many biological and pathological situations, examination of both early and late 

autophagic vacuoles yields valuable data regarding the overall autophagy status in the cells.
14

 

Along these lines, it is possible to use immunocytochemistry to follow particular cytosolic 

proteins such as SOD1/CuZn superoxide dismutase and CA/carbonic anhydrase to determine the 

stage of autophagy; the former is much more resistant to lysosomal degradation.
62

 In some 

autophagy-inducing conditions it is possible to observe multi-lamellar membrane structures in 

addition to the conventional double-membrane autophagosomes, although the nature of these 

structures is not fully understood. These multi-lamellar structures may indeed be multiple double 

layers of phagophores
63

 and positive for LC3,
64

 they could be autolysosomes,
65

 or they may form 

artifactually during fixation.  

Special features of the autophagic process may be clarified by immuno-TEM with gold-

labeling,
66,67

 using antibodies, for example, to cargo proteins of cytoplasmic origin and to LC3 to 
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verify the autophagic nature of the compartment. LC3 immunogold labeling also makes it 

possible to detect novel degradative organelles within autophagy compartments. This is the case 

with the autophagoproteasome where costaining for LC3 and ubiquitin-proteasome system 

(UPS) antigens occurs. The autophagoproteasome consists of single-, double-, or multiple-

membrane LC3-positive autophagosomes costaining for specific components of the UPS. It may 

be that a rich multi-enzymatic (both autophagic and UPS) activity takes place within these 

organelles instead of being segregated within different cell domains. 

Although labeling of LC3 can be difficult, an increasing number of commercial 

antibodies are becoming available, among them good ones to visualize the GFP moiety of GFP-

LC3 reporter constructs.
68

 It is important to keep in mind that LC3 can be associated with 

nonautophagic structures (see Xenophagy, and Noncanonical use of autophagy-related proteins). 

LC3 is involved in specialized forms of endocytosis like LC3-associated phagocytosis. In 

addition, LC3 can decorate vesicles dedicated to exocytosis in nonconventional secretion 

systems (reviewed in ref. 
69

). Antibodies against an abundant cytosolic protein will result in high 

labeling all over the cytoplasm; however, organelle markers work well. Because there are very 

few characterized proteins that remain associated with the completed autophagosome, the 

choices for confirmation of its autophagic nature are limited. Furthermore, autophagosome-

associated proteins may be cell type-specific. At any rate, the success of this methodology 

depends on the quality of the antibodies and also on the TEM preparation and fixation 

procedures utilized. With immuno-TEM, authors should provide controls showing that labeling 

is specific. This may require a quantitative comparisons of labeling over different cellular 

compartments not expected to contain antigen and those containing the antigen of interest. 



 43 

In clinical situations it is difficult to demonstrate autophagy clearly in tissues of formalin-

fixed and paraffin-embedded biopsy samples retrospectively, because (1) tissues fixed in 

formalin have low or no LC3 detectable by routine immunostaining, because phospholipids melt 

together with paraffin during the sample preparation, and (2) immunogold electron microscopy 

of many tissues not optimally fixed for this purpose (e.g., using rapid fixation) produces low-

quality images. Combining antigen retrieval with the avidin-biotin peroxidase complex (ABC) 

method may be quite useful for these situations. For example, immunohistochemistry can be 

performed using an antigen retrieval method, then tissues are stained by the ABC technique 

using a labeled anti-human LC3 antibody. After imaging by light microscopy, the same prepared 

slides can be remade into sections for TEM examination, which can reveal peroxidase reaction 

deposits in vacuoles within the region that is LC3-immunopositive by light microscopy.
70

 

In addition, statistical information should be provided due to the necessity of showing 

only a selective number of sections. Again, we note that for quantitative data it is necessary to 

use proper volumetric analysis rather than just counting numbers of sectioned objects. On the 

one hand, it must be kept in mind that even volumetric morphometry/stereology only shows 

either steady state levels, or a snapshot in a changing dynamic process. Such data by themselves 

are not informative regarding autophagic flux, unless carried out over multiple time points. 

Alternatively, investigation in the presence and absence of flux inhibitors can reveal the dynamic 

changes in various stages of the autophagic process.
11,20,71,72,41

 On the one hand, if the turnover of 

autolysosomes is very rapid, a low number/volume will not necessarily be an accurate reflection 

of low autophagic activity. However, quantitative analyses indicate that autophagosome volume 

in many cases does correlate with the rates of protein degradation.
73-75

 One potential compromise 

is to perform whole cell quantification of autophagosomes using fluorescence methods, with 
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qualitative verification by TEM,
76

 to show that the changes in fluorescent puncta reflect 

corresponding changes in autophagic structures. 

One additional caveat with TEM, and to some extent with confocal fluorescence 

microscopy, is that the analysis of a single plane within a cell can be misleading and may make 

the identification of autophagic structures difficult. Confocal microscopy and fluorescence 

microscopy with deconvolution software (or with much more work, 3-dimensional TEM) can be 

used to generate multiple/serial sections of the same cell to reduce this concern; however, in 

many cases where there is sufficient structural resolution, analysis of a single plane in a 

relatively large cell population can suffice given practical limitations. Newer EM technologies, 

including focused ion beam dual-beam EM, should make it much easier to apply three-

dimensional analyses. An additional methodology to assess autophagosome accumulation is 

correlative light and electron microscopy (CLEM), which is helpful in confirming that 

fluorescent structures are autophagosomes.
77-79

 Along these lines, it is important to note that even 

though GFP fluorescence will be quenched in the acidic environment of the autolysosome, some 

of the GFP puncta detected by light microscopy may correspond to early autolysosomes prior to 

GFP quenching. The mini Singlet Oxygen Generator (miniSOG) fluorescent flavoprotein, which 

is less than half the size of GFP, provides an additional means to genetically tag proteins for 

CLEM analysis under conditions that are particularly suited to subsequent TEM analysis.
80

 

Combinatorial assays using tandem monomeric red fluorescent protein (mRFP)-GFP-LC3 (see 

Tandem mRFP/mCherry-GFP fluorescence microscopy) along with static TEM images should 

help in the analysis of flux and the visualization of cargo structures.
81

  

Another technique that has proven quite useful for analyzing the complex membrane 

structures that participate in autophagy is three-dimensional electron tomography,
82,83

 and 
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cryoelectron microscopy (Fig. 4). More sophisticated, cryo-soft X-ray tomography (cryo-SXT) is 

an emerging imaging technique used to visualize autophagosomes.
84

 Cryo-SXT extracts 

ultrastructural information from whole, unstained mammalian cells as close to the “near- native” 

fully-hydrated (living) state as possible. Correlative studies combining cryo-fluorescence and 

cryo-SXT workflow (cryo-CLXM) have been applied to capture early autophagosomes. 

Finally, although only as an indirect measurement, the comparison of the ratio of 

autophagosomes to autolysosomes by TEM can support alterations in autophagy identified by 

other procedures.
85

 In this case it is important to always compare samples to the control of the 

same cell type and in the same growth phase, as the autophagosome/autolysosome ratio varies in 

a cell context-dependent fashion, depending on their clearance activity. It may also be necessary 

to distinguish autolysosomes from telolysosomes/late secondary lysosomes (the former are 

actively engaged in degradation, whereas the latter have reached an end point in the breakdown 

of lumenal contents) because lysosome numbers generally increase when autophagy is induced. 

An additional category of lysosomal compartments, especially common in disesase states and 

aged postmitotic cells such as neurons is the residual body. This category includes ceroid and 

lipofuscin, lobulated vesicular compartments of varying size composed of highly indigestible 

complexes of protein and lipid and abundant, mostly inactive, acid hydrolases. Reflecting end-

stage unsuccessful incomplete autolysosomal digestion, lipofuscin is fairly easily distinguished 

from AVs and lysosomes by TEM but can be easily confused with autolysosomes in 

immunocytochemistry studies at the light microscopy level.
52

 

TEM observations of platinum-carbon replicas obtained by the freeze fracture technique 

can also supply useful ultrastructural information on the autophagic process. In quickly frozen 

and fractured cells the fracture runs preferentially along the hydrophobic plane of the 
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membranes, allowing characterization of the limiting membranes of the different types of 

autophagic vacuoles and visualization of their limited protein intramembrane particles (IMPs, or 

integral membrane proteins). Several studies have been carried out using this technique on 

yeast,
86

 as well as on mammalian cells or tissue; first on mouse exocrine pancreas,
87

 then on 

mouse and rat liver,
88,89

 mouse seminal vesicle epithelium,
24,63

 rat tumor and heart,
90

 or cancer 

cell lines (e.g., breast cancer MDA-MB-231)
91

 to investigate the various phases of 

autophagosome maturation, and to reveal useful details about the origin and evolution of their 

limiting membranes.
5,92-95

 

The phagophore and the limiting membranes of autophagosomes contain few, or no 

detectable, IMPs (Fig. 5A,B), when compared to other cellular membranes and to the membranes 

of lysosomes. In subsequent stages of the autophagic process the fusion of the autophagosome 

with an endosome and a lysosome results in increased density of IMPs in the membrane of the 

formed autophagic compartments (amphisomes, autolysosomes; Fig. 5C).
5,24,86-89,96,97

 

Autolysosomes are delimited by a single membrane because, in addition to the engulfed material, 

the inner membrane is also degraded by the lytic enzymes. Similarly, the limiting membrane of 

autophagic bodies in yeast (and presumably plants) is also quickly broken down under normal 

conditions. Autophagic bodies can be stabilized, however, by the addition of 

phenylmethylsulphonylfluoride (PMSF) or genetically by the deletion of the yeast PEP4 gene 

(see The Cvt pathway, mitophagy, pexophagy, piecemeal microautophagy of the nucleus and late 

nucleophagy in yeast and filamentous fungi.). Thus, another method to consider for monitoring 

autophagy in yeast (and potentially in plants) is to count autophagic bodies by TEM using at least 

2 time points. The advantage of this approach is that it can provide accurate information on flux 



 47 

even when the autophagosomes are abnormally small.
98,99

 Thus, although a high frequency of 

“abnormal” structures presents a challenge, TEM is still very helpful in analyzing autophagy. 

Cautionary notes: Despite the introduction of many new methods TEM maintains its 

special role in autophagy research. There are, however, difficulties in utilizing TEM. It is 

relatively time consuming, and needs technical expertise to ensure proper handling of samples in 

all stages of preparation from fixation to sectioning and staining (contrasting). After all these 

criteria are met, we face the most important problem of proper identification of autophagic 

structures. This is crucial for both qualitative and quantitative characterization, and needs 

considerable experience, even in the case of one cell type. The difficulty lies in the fact that 

many subcellular components may be mistaken for autophagic structures. For example, some 

authors (or reviewers of manuscripts) assume that almost all cytoplasmic structures that, in the 

section plane, are surrounded by 2 (more or less) parallel membranes are autophagosomes. 

Structures appearing to be limited by a double membrane, however, may include swollen 

mitochondria, plastids in plant cells, cellular interdigitations, endocytosed apoptotic bodies, 

circular structures of lamellar smooth endoplasmic reticulum (ER), and even areas surrounded by 

rough ER. Endosomes, phagosomes and secretory vacuoles may have heterogenous content that 

makes it possible to confuse them with autolysosomes. Additional identification problems may 

arise from damage caused by improper sample taking or fixation artifacts.
46,47,100,101

  

Whereas fixation of in vitro samples is relatively straightforward, fixation of excised 

tissues requires care to avoid sampling a nonrepresentative, uninformative, or damaged part of 

the tissue. For instance, if 95% of a tumor is necrotic, TEM analysis of the necrotic core may not 

be informative, and if the sampling is from the viable rim, this needs to be specified when 

reported. Clearly this introduces the potential for subjectivity because reviewers of a paper 
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cannot request multiple images with a careful statistical analysis with these types of samples. In 

addition, ex vivo samples are not typically randomized during processing, further complicating 

the possibility of valid statistical analyses. Ex vivo tissue should be fixed immediately and 

systematically across samples to avoid changes in autophagy that may occur simply due to the 

elapsed time ex vivo. It is recommended that for tissue samples, perfusion fixation should be 

used when possible. For yeast, rapid freezing techniques such as high pressure freezing followed 

by freeze substitution (i.e., dehydration at low temperature) may be particularly useful. 

Quantification of autophagy by TEM morphometry has been rather controversial, and 

unreliable procedures still continue to be used. For the principles of reliable quantification and to 

avoid misleading results, excellent reviews are available.
10,102-104

 In line with the basic principles 

of morphometry we find it necessary to emphasize here some common problems with regard to 

quantification. Counting autophagic vacuole profiles in sections of cells gives totally unreliable 

results, partly because both cell areas and profile areas are variable and also because the 

frequency of section profiles depends on the size of the vacuoles. There are morphometric 

procedures to measure or estimate the size range and the number of spherical objects by profiles 

in sections;
103

 however, such methods have been used in autophagy research only a few 

times.
31,99,105,106

  

Proper morphometry described in the cited reviews will give us data expressed in µm
3
 

autophagic vacuole/µm
3 
cytoplasm for relative volume (also called volume fraction or volume 

density), or µm
2
 autophagic vacuole surface/µm

3
 cytoplasm for relative surface (surface density). 

Examples of actual morphometric measurements for the characterization of autophagic processes 

can be found in several articles.
20,100,103,107,108

 It is appropriate to note here that a change in the 

volume fraction of the autophagic compartment may come from 2 sources; from the real growth 



 49 

of its size in a given cytoplasmic volume, or from the decrease of the cytoplasmic volume itself. 

To avoid this so-called “reference trap,” the reference space volume can be determined by 

different methods.
104,109

 If different magnifications are used for measuring the autophagic 

vacuoles and the cytoplasm (which may be practical when autophagy is less intense) correction 

factors should always be used.  

In some cases, it may be prudent to employ tomographic reconstructions of the TEM 

images to confirm that the autophagic compartments are spherical and are not being confused 

with interdigitations observed between neighboring cells, endomembrane cisternae or damaged 

mitochondria with similar appearance in thin-sections (e.g., see ref. 
110

), but this is obviously a 

time-consuming approach requiring sophisticated equipment. In addition, interpretation of 

tomographic images can be problematic. For example, starvation-induced autophagosomes 

should contain cytoplasm (i.e., cytosol and possibly organelles), but autophagosome-related 

structures involved in specific types of autophagy should show the selective cytoplasmic target, 

but may be relatively devoid of bulk cytoplasm. Such processes include selective peroxisome or 

mitochondria degradation (pexophagy or mitophagy, respectively),
111,112

 targeted degradation of 

pathogenic microbes (xenophagy),
113-118

 a combination of xenophagy and stress-induced 

mitophagy,
119

 as well as the yeast biosynthetic cytoplasm-to-vacuole targeting (Cvt) pathway.
120

 

Furthermore, some pathogenic microbes express membrane-disrupting factors during infection 

(e.g., phospholipases) that disrupt the normal double-membrane architecture of 

autophagosomes.
121

 It is not even clear if the sequestering compartments used for specific 

organelle degradation or xenophagy should be termed autophagosomes or if alternate terms such 

as pexophagosome,
122

 mitophagosome and xenophagosome should be used, even though the 

membrane and mechanisms involved in their formation may be identical to those for starvation-
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induced autophagosomes; for example, the double-membrane vesicle of the Cvt pathway is 

referred to as a Cvt vesicle.
123

  

The confusion of heterophagic structures with autophagic ones is a major source of 

misinterpretation. A prominent example of this is related to apoptosis. Apoptotic bodies from 

neighboring cells are readily phagocytosed by surviving cells of the same tissue.
124,125

 

Immediately after phagocytic uptake of apoptotic bodies, phagosomes may have double limiting 

membranes. The inner one is the plasma membrane of the apoptotic body and the outer one is 

that of the phagocytizing cell. The early heterophagic vacuole formed in this way may appear 

similar to an autophagosome or, in a later stage, an early autolysosome in that it contains 

recognizable or identifiable cytoplasmic material. A major difference, however, is that the 

surrounding membranes are the thicker plasma membrane type, rather than the thinner 

sequestration membrane type (9-10 nm, versus 7-8 nm, respectively).
101

 A good feature to 

distinguish between autophagosomes and double plasma membrane-bound structures is the lack 

of the distended empty space (characteristic for the sequestration membranes of 

autophagosomes) between the 2 membranes of the phagocytic vacuoles. In addition, engulfed 

apoptotic bodies usually have a larger average size than autophagosomes.
126,127

 The problem of 

heterophagic elements interfering with the identification of autophagic ones is most prominent in 

cell types with particularly intense heterophagic activity (such as macrophages, and amoeboid or 

ciliate protists). Special attention has to be paid to this problem in cell cultures or in vivo 

treatments (e.g., with toxic or chemotherapeutic agents) causing extensive apoptosis. 

The most common organelles confused with autophagic vacuoles are mitochondria, ER, 

endosomes, and also (depending on their structure) plastids in plants. Due to the cisternal 

structure of the ER, double membrane-like structures surrounding mitochondria or other 
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organelles are often observed after sectioning,
128

 but these can also correspond to cisternae of the 

ER coming into and out of the section plane.
46

 If there are ribosomes associated with these 

membranes they can help in distinguishing them from the ribosome-free double-membrane of the 

phagophore and autophagosome. Observation of a mixture of early and late autophagic vacuoles 

that is modulated by the time point of collection and/or brief pulses of bafilomycin A1 (a 

vacuolar-type H
+
-ATPase [V-ATPase] inhibitor) to trap the cargo in a recognizable early state

41
 

increases the confidence that an autophagic process is being observed. In these cases, however, 

the possibility that feedback activation of sequestration gets involved in the autophagic process 

has to be carefully considered. To minimize the impact of errors, exact categorization of 

autophagic elements should be applied. Efforts should be made to clarify the nature of 

questionable structures by extensive preliminary comparison in many test areas. Elements that 

still remain questionable should be categorized into special groups and measured separately. 

Should their later identification become possible, they can be added to the proper category or, if 

not, kept separate. 

For nonspecialists it can be particularly difficult to distinguish among amphisomes, 

autolysosomes and lysosomes, which are all single-membrane compartments containing more or 

less degraded material. Therefore, we suggest in general to measure autophagosomes as a 

separate category for a start, and to compile another category of degradative compartments 

(including amphisomes, autolysosomes and lysosomes). All of these compartments increase in 

quantity upon true autophagy induction; however, in pathological states, it may be informative to 

discriminate among these different forms of degradative compartments, which may be 

differentially affected by disease factors.  
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In yeast, it is convenient to identify autophagic bodies that reside within the vacuole 

lumen, and to quantify them as an alternative to the direct examination of autophagosomes. 

However, it is important to keep in mind that it may not be possible to distinguish between 

autophagic bodies that are derived from the fusion of autophagosomes with the vacuole, and the 

single-membrane vesicles that are generated during microautophagy-like processes such as 

micropexophagy and micromitophagy. 

Conclusion: EM is an extremely informative and powerful method for monitoring 

autophagy and remains the only technique that shows autophagy in its complex cellular 

environment with subcellular resolution. The cornerstone of successfully using TEM is the 

proper identification of autophagic structures, which is also the prerequisite to get reliable 

quantitative results by EM morphometry. EM is best used in combination with other methods to 

ensure the complex and holistic approach that is becoming increasingly necessary for further 

progress in autophagy research. 

 

2. Atg8/LC3 detection and quantification. Atg8/LC3 is the most widely monitored 

autophagy-related protein. In this section we describe multiple assays that utilize this protein, 

separating the descriptions into several subsections for ease of discussion. 

a. Western blotting and ubiquitin-like protein conjugation systems. The Atg8/LC3 protein is a 

ubiquitin-like protein that can be conjugated to PE (and possibly to phosphatidylserine
129

). In 

yeast and several other organisms, the conjugated form is referred to as Atg8–PE. The 

mammalian homologs of Atg8 constitute a family of proteins subdivided in 2 major subfamilies: 

MAP1LC3/LC3 and GABARAP. The former consists of LC3A, B, B2 and C, whereas the latter 

family includes GABARAP, GABARAPL1, and GABARAPL2/GATE-16.
130

 After cleavage of 
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the precursor protein mostly by the cysteine protease ATG4B,
131,132

 the nonlipidated and 

lipidated forms are usually referred to respectively as LC3-I and LC3-II, or GABARAP and 

GABARAP–PE, etc. The PE-conjugated form of Atg8/LC3, although larger in mass, shows 

elevated electrophoretic mobility in SDS-PAGE gels, probably as a consequence of increased 

hydrophobicity. The positions of both Atg8/LC3-I (approximately 16-18 kDa) and Atg8–

PE/LC3-II (approximately 14-16 kDa) should be indicated on western blots whenever both are 

detectable. The differences among the LC3 proteins with regard to function and tissue-specific 

expression are not known. Therefore, it is important to indicate the isoform being analyzed just 

as it is for the GABARAP subfamily. 

The mammalian Atg8 homologs share from 29% to 94% sequence identity with the yeast 

protein and have all, apart from GABARAPL3, been demonstrated to be involved in 

autophagosome biogenesis.
133

 The LC3 proteins are involved in phagophore formation, with 

participation of GABARAP subfamily members in later stages of autophagosome formation, in 

particular phagophore elongation and closure.
134

 Due to unique features in their molecular 

surface charge distribution,
135

 emerging evidence indicates that LC3 and GABARAP proteins 

may be involved in recognizing distinct sets of cargoes for selective autophagy.
136-138

 

Nevertheless, in most published studies, LC3 has been the primary Atg8 homolog examined in 

mammalian cells and the one that is typically characterized as an autophagosome marker per se. 

Note that although this protein is referred to as “Atg8” in many other systems, we primarily refer 

to it here as LC3 to distinguish it from the yeast protein and from the GABARAP subfamily. 

LC3, like the other Atg8 homologs, is initially synthesized in an unprocessed form, proLC3, 

which is converted into a proteolytically processed form lacking amino acids from the C 

terminus, LC3-I, and is finally modified into the PE-conjugated form, LC3-II (Fig. 6). Atg8–
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PE/LC3-II is the only protein marker that is reliably associated with completed autophagosomes, 

but is also localized to phagophores. In yeast, Atg8 amounts increase at least 10-fold when 

autophagy is induced.
139

 In mammalian cells, however, the total levels of LC3 do not necessarily 

change in a predictable manner, as there may be increases in the conversion of LC3-I to LC3-II, 

or a decrease in LC3-II relative to LC3-I if degradation of LC3-II via lysosomal turnover is 

particularly rapid (this can also be a concern in yeast with regard to vacuolar turnover of Atg8–

PE). Both of these events can be seen sequentially in several cell types as a response to total 

nutrient and serum starvation. In cells of neuronal origin a high ratio of LC3-I to LC3-II is a 

common finding.
140

 For instance, SH-SY5Y neuroblastoma cell lines display only a slight 

increase of LC3-II after nutrient deprivation, whereas LC3-I is clearly reduced. This is likely 

related to a high basal autophagic flux, as suggested by the higher increase in LC3-II when cells 

are treated with NH4Cl,
141,142

 although cell-specific differences in transcriptional regulation of 

LC3 may also play a role (along these lines, it should be noted that SH-SY5Y cells are not of 

neuronal origin, but rather originate from an osteosarcoma that migrated to the brain and 

acquired neuronal properties). In fact stimuli or stress that inhibit transcription or translation of 

LC3 might actually be misinterpreted as inhibition of autophagy. Importantly, in brain tissue, 

LC3-I is much more abundant than LC3-II and the latter form is most easily discernable in 

enriched fractions of autophagosomes, autolysosomes and ER, and may be more difficult to 

detect in crude homogenate or cytosol.
143

 Indeed, when brain crude homogenate is run in parallel 

to a crude liver fraction, both LC3-I and LC3-II are observed in the liver, but only LC3-I may be 

discernible in brain homogenate (L. Toker and G. Agam, personal communication), depending 

on the LC3 antibody used.
144

 In studies of the brain. immunoblot analysis of the membrane and 
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cytosol fraction from a cell lysate, upon appropriate loading of samples to achieve quantifiable 

and comparative signals, can be useful to measure LC3 isoforms. 

The pattern of LC3-I to LC3-II conversion seems not only to be cell specific, but also 

related to the kind of stress to which cells are subjected. For example, SH-SY5Y cells display a 

strong increase of LC3-II when treated with the mitochondrial uncoupler CCCP, a well-known 

inducer of mitophagy. Thus, neither assessment of LC3-I consumption nor the evaluation of 

LC3-II levels would necessarily reveal a slight induction of autophagy (e.g., by rapamycin). 

Also, there is not always a clear precursor/product relationship between LC3-I and LC3-II, 

because the conversion of the former to the latter is cell type-specific and dependent on the 

treatment used to induce autophagy. Accumulation of LC3-II can be obtained by interrupting the 

autophagosome-lysosome fusion step (e.g., by depolymerizing acetylated microtubules with 

vinblastine, by inhibiting the ATP2A/SERCA Ca
2+

 pump, by specifically inhibiting the V-

ATPase with with bafilomycin A1
145-147

 or by raising the lysosomal pH by the addition of 

chloroquine,
148,149

 although some of these treatments may increase autophagosome numbers by 

disrupting the lysosome-dependent activation of MTOR (mechanistic target of rapamycin 

[serine/threonine kinase]) complex 1 (MTORC1), a major suppressor of autophagy 

induction),
150,151

 or by inhibiting lysosome-mediated proteolysis (e.g., with a cysteine protease 

inhibitor such as E-64d, the aspartic protease inhibitor pepstatin A, the cysteine, serine and 

threonine protease inhibitor leupeptin or treatment with bafilomycin A1, NH4Cl or 

chloroquine
148,152,153

). Western blotting can be used to monitor changes in LC3 amounts (Fig. 

6);
25,154

 however, even if the total amount of LC3 does increase, the magnitude of the response is 

generally less than that documented in yeast. It is worth noting that since the conjugated forms of 

the GABARAP subfamily members are usually undetectable without induction of autophagy in 
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mammalian and other vertebrate cells,
155,156

 these proteins might be more suitable than LC3 to 

study and quantify subtle changes in autophagy induction.  

In most organisms, Atg8/LC3 is initially synthesized with a C-terminal extension that is 

removed by the Atg4 protease. Accordingly, it is possible to use this processing event to monitor 

Atg4 activity. For example, when GFP is fused at the C terminus of Atg8 (Atg8-GFP), the GFP 

moiety is removed in the cytosol to generate free Atg8 and GFP. This processing can be easily 

monitored by western blot.
157

 It is also possible to use assays with an artificial fluorogenic 

substrate, or a fusion of LC3B to phospholipase A2 that allows the release of the active 

phospholipase for a subsequent fluorogenic assay,
158

 and there is a fluorescence resonance 

energy transfer (FRET)-based assay utilizing CFP and YFP tagged versions of LC3B and 

GABARAPL2/GATE-16 that can be used for high-throughput screening.
159

 Another method to 

monitor ATG4 activity in vivo uses the release of Gaussia luciferase from the C terminus of LC3 

that is tethered to actin.
160

 Note that there are 4 Atg4 homologs in mammals, and they have 

different activities with regard to the Atg8 subfamilies of proteins.
161

 ATG4A is able to cleave 

the GABARAP subfamily, but has very limited activity toward the LC3 subfamily, whereas 

ATG4B is apparently active against most or all of these proteins.
131,132

 The ATG4C and ATG4D 

isoforms have minimal activity for any of the Atg8 homologs. In particular because a C-terminal 

fusion will be cleaved immediately by Atg4, researchers should be careful to specify whether 

they are using GFP-Atg8/LC3 (an N-terminal fusion, which can be used to monitor various steps 

of autophagy) or Atg8/LC3-GFP (a C-terminal fusion, which can only be used to monitor Atg4 

activity).
162

 

Cautionary notes: There are several important caveats to using Atg8/LC3-II or 

GABARAP-II to visualize fluctuations in autophagy. First, changes in LC3-II amounts are 
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tissue- and cell context-dependent.
144,163

 Indeed, in some cases, autophagosome accumulation 

detected by TEM does not correlate well with the amount of LC3-II (Tallóczy Z, de Vries RLA, 

and Sulzer D, unpublished results; Eskelinen E-L, unpublished results). This is particularly 

evident in those cells that show low levels of LC3-II (based on western blotting) because of an 

intense autophagy flux that consumes this protein,
164

 or in cell lines having high levels of LC3-II 

that are tumor-derived, such as MDA-MB-231.
163

 Conversely, without careful quantification the 

detectable formation of LC3-II is not sufficient evidence for autophagy. For example, 

homozygous deletion of Becn1 does not prevent the formation of LC3-II in embryonic stem cells 

even though autophagy is substantially reduced, whereas deletion of Atg5 results in the complete 

absence of LC3-II (see Fig. 5A and supplemental data in ref. 
165

). The same is true for the 

generation of Atg8–PE in yeast in the absence of VPS30/ATG6 (see Fig. 7 in ref. 
166

). Thus, it is 

important to remember that not all of the autophagy-related proteins are required for Atg8/LC3 

processing, including lipidation.
166

 Vagaries in the detection and amounts of LC3-I versus LC3-

II present technical problems. For example, LC3-I is very abundant in brain tissue, and the 

intensity of the LC3-I band may obscure detection of LC3-II, unless the polyacrylamide 

crosslinking density is optimized, or the membrane fraction of LC3 is first separated from the 

cytosolic fraction.
43

 Conversely, certain cell lines have much less visible LC3-I compared to 

LC3-II. In addition, tissues may have asynchronous and heterogeneous cell populations, and this 

variability may present challenges when analyzing LC3 by western blotting.  

Second, LC3-II also associates with the membranes of nonautophagic structures. For 

example, some members of the -protocadherin family undergo clustering to form intracellular 

tubules that emanate from lysosomes.
167

 LC3-II is recruited to these tubules, where it appears to 

promote or stabilize membrane expansion. Furthermore, LC3 can be recruited directly to 
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apoptotic cell-containing phagosome membranes,
168,169

 macropinosomes,
168

 the parasitophorous 

vacuole of Toxoplasma gondii,
170

 and single-membrane entotic vacuoles,
168

 as well as to 

bacteria-containing phagosome membranes under certain immune activating conditions, for 

example, toll-like receptor (TLR)-mediated stimulation in LC3-associated phagocytosis.
171,172

 

Importantly, LC3 is involved in secretory trafficking as it has been associated with secretory 

granules in mast cells
173

 and PC12 hormone-secreting cells.
174

 LC3 is also detected on secretory 

lysosomes in osteoblasts
175

 and in amphisome-like structures  involved in mucin secretion by 

goblet cells.
176

 Therefore, in studies of infection of mammalian cells by bacterial pathogens, the 

identity of the LC3-II labelled compartment as an autophagosome should be confirmed by a 

second method, such as TEM. It is also worth noting that autophagy induced in response to 

bacterial infection is not directed solely against the bacteria but can also be a response to 

remnants of the phagocytic membrane.
177

 Similar cautions apply with regard to viral infection. 

For example, coronaviruses induce autophagosomes during infection through the expression of 

nsp6; however, coronaviruses also induce the formation of double-membrane vesicles that are 

coated with LC3-I, a nonlipidated form of LC3 that plays an autophagy-independent role in viral 

replication.
178,179

 Similarly, nonlipidated LC3 marks replication complexes in flavivirus 

(Japanese encephalitis virus)-infected cells and is essential for virus replication.
180

 Along these 

lines, during herpes simplex virus virus type 1 (HSV-1) infection, an LC3
+
 autophagosome-like 

organelle that is derived from nuclear membranes and that contains viral proteins is observed,
181

 

whereas influenza A virus directs LC3 to the plasma membrane via a LC3-interacting region 

(LIR) motif in its M2 protein.
182

 Moreover, in vivo studies have shown that coxsackievirus (an 

enterovirus) induces formation of autophagy-like vesicles in pancreatic acinar cells, together 

with extremely large autophagy-related compartments that have been termed 
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megaphagosomes;
183

 the absence of ATG5 disrupts viral replication and prevents the formation 

of these structures.
184

 

Third, caution must be exercised in general when evaluating LC3 by western blotting, 

and appropriate standardization controls are necessary. For example, LC3-I may be less sensitive 

to detection by certain anti-LC3 antibodies. Moreover, LC3-I is more labile than LC3-II, being 

more sensitive to freezing-thawing and to degradation in SDS sample buffer. Therefore, fresh 

samples should be boiled and assessed as soon as possible and should not be subjected to 

repeated freeze-thaw cycles. A general point to consider when examining transfected cells 

concerns the efficiency of transfection. A western blot will detect LC3 in the entire cell 

population, including those that are not transfected. Thus, if transfection efficiency is too low, it 

may be necessary to use methods, such as fluorescence microscopy, that allow autophagy to be 

monitored in single cells. The critical point is that the analysis of the gel shift of transfected LC3 

or GFP-LC3 can be employed to follow LC3 lipidation only in highly transfectable cells.
185

  

When dealing with animal tissues, western blotting of LC3 should be performed on 

frozen biopsy samples homogenized in the presence of general protease inhibitors (C. Isidoro, 

personal communication; see also Human).
186

 Caveats regarding detection of LC3 by western 

blotting have been covered in a review.
25

 For example, PVDF membranes may result in a 

stronger LC3-II retention than nitrocellulose membranes, possibly due to a higher affinity for 

hydrophobic proteins (Fig. 6B; J. Kovsan and A. Rudich, personal communication), and Triton 

X-100 may not efficiently solubilize LC3-II in some systems.
187

 Heating in the presence of 1% 

SDS, or analysis of membrane fractions,
43

 may assist in the detection of the lipidated form of this 

protein. This observation is particularly relevant for cells with a high nucleocytoplasmic ratio, 

such as lymphocytes. Under these constraints, direct lysis in Laemmli loading buffer, containing 
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SDS, just before heating, greatly improves LC3 detection on PVDF membranes, especially when 

working with a small number of cells (F. Gros, unpublished observations).
188

 Analysis of a 

membrane fraction is particularly useful for brain where levels of soluble LC3-I greatly exceed 

the level of LC3-II. 

One of the most important issues is the quantification of changes in LC3-II, because this 

assay is one of the most widely used in the field and is often prone to misinterpretation. Levels of 

LC3-II should be compared to actin (e.g., ACTB), but not to LC3-I (see the caveat in the next 

paragraph), and, ideally, to more than one “housekeeping” protein (HKP). Actin and other HKPs 

are usually abundant and can easily be overloaded on the gel
189

 such that they are not detected 

within a linear range. Moreover, actin levels may decrease when autophagy is induced in many 

organisms from yeast to mammals. For any proteins used as “loading controls” (including actin, 

tubulin and GAPDH) multiple exposures of the western blot are generally necessary to ensure 

that the signals are detected in the linear range. An alternative approach is to stain for total 

cellular proteins with Coomassie Brilliant Blue and Ponceau Red.
190

 but these methods are 

generally less sensitive and may not reveal small differences in protein loading. Stain-Free gels, 

which also stain for total cellular proteins, have been shown to be an excellent alternative to 

HKPs.
191

 

It is important to realize that ignoring the level of LC3-I in favor of LC3-II normalized to 

HKPs may not provide the full picture of the cellular autophagic response. Quantification of both 

isoforms is therefore informative, but requires adequate conditions of electrophoretic separation. 

This is particularly important for samples where the amount of LC3-I is high relative to LC3-II 

(as in brain tissues, where the LC3-I signal can be overwhelming). Under such a scenario, it may 

be helpful to use gradient gels to increase the separation of LC3-I from LC3-II and/or cut away 
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the part of the blot with LC3-I prior to the detection of LC3-II. Furthermore, since the dynamic 

range of LC3 immunoblots are generally quite limited, it is imperative that other assays be used 

in parallel in order to draw valid conclusions about changes in autophagy activity. 

Fourth, in mammalian cells LC3 is expressed as multiple isoforms (LC3A, LC3B, 

LC3B2 and LC3C
192,193

), which exhibit different tissue distributions and whose functions are still 

poorly understood. A point of caution along these lines is that the increase in LC3A-II versus 

LC3B-II levels may not display equivalent changes in all organisms under autophagy-inducing 

conditions, and it should not be assumed that LC3B is the optimal protein to monitor.
194

 A key 

technical consideration is that the isoforms may exhibit different specificities for antisera or 

antibodies. Thus, it is highly recommended that investigators report exactly the source and 

catalog number of the antibodies used to detect LC3 as this might help avoid discrepancies 

between studies. The commercialized anti-LC3B antibodies also recognize LC3A, but do not 

recognize LC3C, which shares less sequence homology. It is important to note that LC3C 

possesses in its primary amino acid sequence the DYKD motif that is recognized with a high 

affinity by anti-FLAG antibodies. Thus, the standard anti-FLAG M2 antibody can detect and 

immunoprecipitate overexpressed LC3C, and caution has to be taken in experiments using 

FLAG-tagged proteins (M. Biard-Piechaczyk and L. Espert, personal communication). Note that 

according to Ensembl there is no LC3C in mouse or rat. 

In addition, it is important to keep in mind the other subfamily of Atg8 proteins, the 

GABARAP subfamily (see above).
133,195

 Certain types of mitophagy induced by BNIP3L/NIX 

are highly dependent on GABARAP and less dependent on LC3 proteins.
196,197

 Furthermore, 

commercial antibodies for GABARAPL1 also recognize GABARAP,
130

 which might lead to 

misinterpretation of experiments, in particular those using immunohistochemical techniques. 
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Sometimes the problem with cross-reactivity of the anti-GABARAPL1 antibody can be 

overcome when analyzing these proteins by western blot because the isoforms can be resolved 

during SDS-PAGE using high concentration (15%) gels, as GABARAP migrates faster than 

GABARAPL1 (M. Boyer-Guittaut, personal communication). Because GABARAP and 

GABARAPL1 can both be proteolytically processed and lipidated, generating GABARAP-I or 

GABARAPL1-I and GABARAP-II or GABARAPL1-II, respectively, this may lead to a 

misassignment of the different bands. As soon as highly specific antibodies that are able to 

discriminate between GABARAP and GABARAPL1 become available, we strongly advise their 

use; until then, we advise caution in interpreting results based on the detection of these proteins 

by western blot. Antibody specificity can be assessed after complete inhibition of GABARAP (or 

any other Atg8 family protein) expression by RNA interference.
156

 In general, we advise caution 

in choosing antibodies for western blotting and immunofluorescence experiments and in 

interpreting results based on stated affinities of antibodies unless these have been clearly 

determined. As with any western blot, proper methods of quantification must be used, which are, 

unfortunately, often not well disseminated; readers are referred to an excellent paper on this 

subject (see ref. 
198

). Unlike the other members of the GABARAP family, almost no information 

is available on GABARAPL3, perhaps because it is not yet possible to differentiate between 

GABARAPL1 and GABARAPL3 proteins, which have 94% identity. As stated by the laboratory 

that described the cloning of the human GABARAPL1 and GABARAPL3 genes,
195

 their 

expression patterns are apparently identical. It is worth noting that GABARAPL3 is the only gene 

of the GABARAP subfamily that seems to lack an ortholog in mice.
195

 GABARAPL3 might 

therefore be considered as a pseudogene without an intron that is derived from GABARAPL1. 
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Hence, until new data are published, GABARAPL3 should not be considered as the fourth 

member of the GABARAP family. 

Fifth, in non-mammalian species, the discrimination of Atg8–PE from the nonlipidated 

form can be complicated by their nearly identical SDS-PAGE mobilities and the presence of 

multiple isoforms (e.g., there are 9 in Arabidopsis). In yeast, it is possible to resolve Atg8 (the 

nonlipidated form) from Atg8–PE by including 6 M urea in the SDS-PAGE separating gel,
199

 or 

by using a 15% resolving gel without urea (F. Reggiori, personal communication). Similarly, 

urea combined with prior treatment of the samples with (or without) phospholipase D (that will 

remove the PE moiety) can often resolve the ATG8 species in plants.
200,201

 It is also possible to 

label cells with radioactive ethanolamine, followed by autoradiography to identify Atg8–PE, and 

a C-terminal peptide can be analyzed by mass spectrometry to identify the lipid modification at 

the terminal glycine residue. Special treatments are not needed for the separation of mammalian 

LC3-I from LC3-II. 

Sixth, it is important to keep in mind that ATG8, and to a lesser extent LC3, undergoes 

substantial transcriptional and posttranscriptional regulation. Accordingly, to obtain an accurate 

interpretation of Atg8/LC3 protein levels it is also necessary to monitor the mRNA levels. 

Without analyzing the corresponding mRNA it is not possible to discriminate between changes 

that are strictly reflected in altered amounts of protein versus those that are due to changes in 

transcription (e.g., the rate of transcription, or the stability of the message). For example, in cells 

treated with the calcium ionophore A23187 or the ER calcium pump blocker thapsigargin, an 

obvious correlation is found between the time-dependent increases in LC3B-I and LC3B-II 

protein levels, as well as with the observed increase in LC3B mRNA levels.
202
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Seventh, LC3-I can be fully degraded by the 20S proteasome or, more problematically, 

processed to a form appearing equal in size to LC3-II on a western blot (LC3-T); LC3-T was 

identified in HeLa cells and is devoid of the ubiquitin conjugation domain, thus lacking its 

adaptor function for autophagy.
203

 

Eighth, a general issue when working with cell lines is that we recommend that validation 

be performed to verify the cell line(s) being used, and to verify the presence of genetic 

alterations as appropriate. Depending on the goal (e.g., to indicate general applicability of a 

particular treatment) it may be important to use more than one cell line to confirm the results. It 

is also critical to test for mycoplasma because the presence of this contaminant can significantly 

alter the results with regard to any autophagic response. For these reasons, we also recommend 

the use of low passage numbers for nonprimary cells or cell lines (no more than 40 passages or 6 

months after thawing). 

Finally, we would like to point out that one general issue with regard to any assay is that 

experimental manipulation could introduce some type of stress—for example, mechanical stress 

due to lysis, temperature stress due to heating or cooling a sample, or oxidative stress on a 

microscope slide, which could lead to potential artifacts including the induction of autophagy.
204

 

Special care should be taken with cells in suspension, as the stress resulting from centrifugation 

can induce autophagy. This point is not intended to limit the use of any specific methodology, 

but rather to note that there are no perfect assays. Therefore, it is important to verify that the 

positive (e.g., treatment with rapamycin, torin1 or other inducers) and negative (e.g., inhibitor 

treatment) controls behave as expected in any assays being utilized. Similarly, plasmid 

transfection or nucleofection can result in the potent induction of autophagy (based on increases 

in LC3-II or SQSTM1/p62 degradation). In some cell types, the amount of autophagy induced by 
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transfection of a control empty vector may be so high that it is virtually impossible to examine 

the effect of enforced gene expression on autophagy (B. Levine, personal communication). It is 

thus advisable to perform time course experiments to determine when the transfection effect 

returns to acceptably low levels and to use appropriate time-matched transfection controls (see 

also the discussion in GFP-Atg8/LC3 fluorescence microscopy). This effect is generally not 

observed with siRNA transfection; however, it is an issue for plasmid expression constructs 

including those for shRNA and for viral delivery systems. The use of endotoxin-free DNA 

reduces, but does not eliminate, this problem. In many cells the cationic polymers used for DNA 

transfection, such as liposomes and polyplex, induce large tubulovesicular autophagosomes 

(TVAs) in the absence of DNA.
205

 These structures accumulate SQSTM1 and fuse slowly with 

lysosomes. Interestingly, these TVAs appear to reduce gene delivery, which increases 8-10 fold 

in cells that are unable to make TVAs due to the absence of ATG5. Finally, the precise 

composition of media components and the density of cells in culture can have profound effects 

on basal autophagy levels and may need to be modified empirically depending on the cell lines 

being used. Along these lines various types of media, in particular those with different serum 

levels (ranging from 0-15%), may have profound effects with regard to how cells (or organs) 

perceive a fed versus starved state. For example, normal serum contains significant levels of 

cytokines and hormones that likely regulate the basal levels of autophagy and or its modulation 

by additional stress or stimuli; thus, the use of dialyzed serum might be an alternative for these 

studies. In addition, the amino acid composition of the medium/assay buffer may have profound 

effects on initiation or progression of autophagy. For example, in the protozoan parasite 

Trypanosoma brucei starvation-induced autophagy can be prevented by addition of histidine to 

the incubation buffer.
206

 For these reasons, the cell culture conditions should be fully described. 



 66 

It is also important to specify duration of autophagy stimulation, as long-term autophagy can 

modify signal transduction pathways of importance in cell survival.
207

 

Conclusion: Atg8/LC3 is often an excellent marker for autophagic structures; however, it 

must be kept in mind that there are multiple LC3 isoforms, there is a second family of 

mammalian Atg8-like proteins (GABARAPs), and antibody affinity (for LC3-I versus LC3-II) 

and specificity (for example, for LC3A versus LC3B) must be considered and/or determined. 

Moreover, LC3 levels on their own do not address issues of autophagic flux. Finally, even when 

flux assays are carried out, there is a problem with the limited dynamic range of LC3 

immunoblots; accordingly, this method should not be used by itself to analyze changes in 

autophagy. 

 

b. Turnover of LC3-II/Atg8–PE. Autophagic flux is often inferred on the basis of LC3-II 

turnover, measured by western blot (Fig. 6C)
163

 in the presence and absence of lysosomal, or 

vacuolar degradation. However, it should be cautioned that such LC3 assays are merely 

indicative of autophagic “carrier flux”, not of actual autophagic cargo/substrate flux. It has, in 

fact, been observed that in rat hepatocytes, an autophagic-lysosomal flux of LC3-II can take 

place in the absence of an accompanying flux of cytosolic bulk cargo (N Engedal and PO Seglen, 

unpublished observations). The relevant parameter in LC3 assays is the difference in the amount 

of LC3-II in the presence and absence of saturating levels of inhibitors, which can be used to 

examine the transit of LC3-II through the autophagic pathway; if flux is occurring, the amount of 

LC3-II will be higher in the presence of the inhibitor.
163

 Lysosomal degradation can be prevented 

through the use of protease inhibitors (e.g., pepstatin A, leupeptin and E-64d), compounds that 

neutralize the lysosomal pH such as bafilomycin A1, chloroquine or NH4Cl,
15,140,148,153,208,209

 or 
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by treatment with agents that block the fusion of autophagosomes with lysosomes (note that 

bafilomycin A1 will ultimately cause a fusion block as well as neutralize the pH,
146

 but the 

inhibition of fusion may be due to a block in ATP2A/SERCA activity
210

).
145-147,211

 Alternatively, 

knocking down or knocking out LAMP2 (lysosomal-associated membrane protein 2) represents 

a genetic approach to block the fusion of autophagosomes and lysosomes (for example, 

inhibiting LAMP2 in myeloid leukemic cells results in a marked increase of GFP-LC3 dots and 

endogenous LC3-II protein compared to control cells upon autophagy induction during myeloid 

differentiation [M.P. Tschan, unpublished data]).
212

 This approach, however, is only valid when 

the knockdown of LAMP2 is directed against the mRNA region specific for the LAMP2B spliced 

variant, as targeting the region common to the 3 variants would also inhibit chaperone-mediated 

autophagy, which may result in the compensatory upregulation of macroautophagy.
85,

 
213,214

  

Increased levels of LC3-II in the presence of lysosomal inhibition or interfering with 

autophagosome-lysosome fusion alone (e.g., with bafilomycin A1), may be indicative of 

autophagic carrier flux (to the stage of cargo reaching the lysosome), but to assess whether a 

particular treatment alters complete autophagic flux through substrate digestion, the treatment 

plus bafilomycin A1 must be compared with results obtained with treatment alone as well as with 

bafilomycin A1 alone. An additive or supra-additive effect in LC3-II levels may indicate that the 

treatment enhances autophagic flux (Fig. 6C). Moreover, higher LC3-II levels with treatment 

plus bafilomycin A1 compared to bafilomycin A1 alone may indicate that the treatment increases 

the synthesis of autophagy-related membranes. If the treatment by itself increases LC3-II levels, 

but the treatment plus bafilomycin A1 does not increase LC3-II levels compared to bafilomycin 

A1 alone, this may indicate that the treatment induced a partial block in autophagic flux. Thus, a 

treatment condition increasing LC3-II on its own that has no difference in LC3-II in the presence 
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of bafilomycin A1 compared to treatment alone may suggest a complete block in autophagy at 

the terminal stages.
215

 This procedure has been validated with several autophagy modulators.
216

 

With each of these techniques, it is essential to avoid assay saturation. The duration of the 

bafilomycin A1 treatment (or any other inhibitor of autophagy flux such as chloroquine) needs to 

be relatively short (1-4 h)
217

 to allow comparisons of the amount of LC3 that is lysosomally 

degraded over a given time frame under one treatment condition to another treatment condition. 

A dose-curve and time-course standardization for the use of autophagy flux inhibitors is required 

for the initial optimization of the conditions to detect LC3-II accumulation and avoid nonspecific 

or secondary effects. By using a rapid screening approach, such as a colorimetric based-platform 

method,
218

 it is possible to monitor a long time frame for autolysosome accumulation, which 

closely associates with autophagy efficieny.
219

 Positive control experiments using treatment with 

known autophagy inducers, along with bafilomycin A1 versus vehicle, are important to 

demonstrate the utility of this approach in each experimental context. The same type of assay 

monitoring the turnover of Atg8–PE can be used to monitor flux in yeast, by comparing the 

amount of Atg8 present in a wild-type versus a pep4∆ strain following autophagy induction;
220

 

however, it is important to be aware that the PEP4 knockout can influence yeast cell physiology. 

PMSF, which inhibits the activity of Prb1, can also be used to block Atg8–PE turnover. 

An additional methodology for monitoring autophagy relies on the observation that in 

some cell types a subpopulation of LC3-II exists in a cytosolic form (LC3-IIs).
221-223

 The amount 

of cytosolic LC3-IIs and the ratio between LC3-I and LC3-IIs appears to correlate with changes 

in autophagy and may provide a more accurate measure of autophagic flux than ratios based on 

the total level of LC3-II.
223

 The validity of this method has been demonstrated by comparing 

autophagic proteolytic flux in rat hepatocytes, hepatoma cells and myoblasts. One advantage of 
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this approach is that it does not require the presence of autophagic or lysosomal inhibitors to 

block the degradation of LC3-II.  

 Due to the advances in time-lapse fluorescence microscopy and the development 

of photoswitchable fluorescent proteins, autophagic flux can also be monitored by 

assessing the half-life of the LC3 protein
224

 post-photoactivation or by quantitatively 

measuring the autophagosomal pool size and its transition time.
225

 These approaches 

deliver invaluable information on the kinetics of the system and the time required to clear 

a complete autophagosomal pool. Nonetheless, care must be taken for this type of 

analysis as changes in translational/transcriptional regulation of LC3 might also affect the 

readout. 

Finally, autophagic flux can be monitored based on the turnover of LC3-II, by utilizing a 

fluorescence-based assay. For example, a reporter assay based on the degradation of Renilla 

reniformis luciferase (Rluc)-LC3 fusion proteins is well suited for screening compounds 

affecting autophagic flux.
226

 In this assay, Rluc is fused N-terminally to either wild-type LC3 

(LC3
WT

) or a lipidation-deficient mutant of LC3 (G120A). Since Rluc-LC3
WT

, in contrast to 

Rluc-LC3
G120A

, specifically associates with the autophagosomal membranes, Rluc-LC3
WT

 is 

more sensitive to autophagic degradation. A change in autophagy-dependent LC3 turnover can 

thus be estimated by monitoring the change in the ratio of luciferase activities between the 2 cell 

populations expressing either Rluc-LC3
WT

 or Rluc-LC3
G120A

. In its simplest form, the Rluc-LC3-

assay can be used to estimate autophagic flux at a single time point by defining the luciferase 

activities in cell extracts. Moreover, the use of a live cell luciferase substrate makes it possible to 

monitor changes in autophagic activity in live cells in real time. This method has been 
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successfully used to identify positive and negative regulators of autophagy from cells treated 

with microRNA, siRNA and small molecule libraries.
226-229,230

  

Cautionary notes: The main caveat regarding the measurement of LC3-IIs/LC3-I is that 

this method has only been tested in isolated rat hepatocytes and H4-II-E cells. Thus, it is not yet 

known whether it is generally applicable to other cell types. Indeed, a soluble form of LC3-II 

(i.e., LC3-IIs) is not observed in many standard cell types including HeLa, HEK 293 and PC12. 

In addition, the same concerns apply regarding detection of LC3-I by western blotting. It should 

be noted that the LC3-IIs/LC3-I ratio must be analyzed using the cytosolic fractions rather than 

the total homogenates. Furthermore, the same caveats mentioned above regarding the use of LC3 

for qualitatively monitoring autophagy also apply to the use of this marker for evaluating flux.  

The use of a radioactive pulse-chase analysis, which assesses complete autophagic flux, 

provides an alternative to lysosomal protease inhibitors,
139

 although such inhibitors should still 

be used to verify that degradation is lysosome-dependent. In addition, drugs must be used at 

concentrations and for time spans that are effective in inhibiting fusion or degradation, but that 

do not provoke cell death. Thus, these techniques may not be practical in all cell types or in 

tissues from whole organisms where the use of protease inhibitors is problematic, and where 

pulse labeling requires artificial short-term culture conditions that may induce autophagy. 

Another concern when monitoring flux via LC3-II turnover may be seen in the case of a partial 

autophagy block; in this situation, agents that disrupt autophagy (e.g., bafilomycin A1) will still 

result in an increase in LC3-II. Thus, care is needed in interpretation. For characterizing new 

autophagy modulators, it is ideal to test autophagic flux at early (e.g., 4 h) and late (e.g., 24 h) 

time-points, since in certain instances, such as with calcium phosphate precipitates, a compound 

may increase or decrease flux at these 2 time-points, respectively.
217

 Moreover, it is important to 
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consider assaying autophagy modulators in a long-term response in order to further understand 

their effects. Finally, many of the chemicals used to inhibit autophagy, such as bafilomycin A1, 

NH4Cl (see Autophagy inhibitors and inducers) or chloroquine, also directly inhibit the 

endocytosis/uncoating of viruses (D.R. Smith, personal communication), and other endocytic 

events requiring low pH, as well as exit from the Golgi (S. Tooze, personal communication), As 

such, agents that neutralize endosomal compartments should be used only with extreme caution 

in studies investigating autophagy-virus interactions. 

One additional consideration is that it may not be absolutely necessary to follow LC3-II 

turnover if other substrates are being monitored simultaneously. For example, an increase in 

LC3-II levels in combination with the lysosomal (or ideally autophagy-specific) removal of an 

autophagic substrate (such as an organelle
231,232

) that is not a good proteasomal substrate 

provides an independent assessment of autophagic flux. However, it is probably prudent to 

monitor both turnover of LC3-II and an autophagosome substrate in parallel, due to the fact that 

LC3 might be coupled to endosomal membranes and not just autophagosomes, and the levels of 

well-characterized autophagosome substrates such as SQSTM1 can also be affected by 

proteasome inhibitors.
233

 

Another issue relates to the use of protease inhibitors (see Autophagy inhibitors and 

inducers). When using lysosomal protease inhibitors, it is of fundamental importance to assess 

proper conditions of inhibitor concentration and time of pre-incubation to ensure full inhibition 

of lysosomal cathepsins. In this respect, 1 h of pre-incubation with 10 µg/ml E-64d is sufficient 

in most cases, since this inhibitor is membrane permeable and rapidly accumulates within 

lysosomes, but another frequently used inhibitor, leupeptin, requires at least 6 h pre-incubation.
53

 

Moreover, pepstatin A is membrane impermeable (ethanol or preferably DMSO must be 
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employed as a vehicle) and requires a prolonged incubation (> 8 h) and a relatively high 

concentration (>50 µg/ml) to fully inhibit lysosomal CTSD/cathepsin D (Fig. 7). An incubation 

of this duration, however, can be problematic due to indirect effects (see GFP-Atg8/LC3 

lysosomal delivery and proteolysis). At least in neurons, pepstatin alone is a less effective 

lysosomal proteolytic block, and combining a cysteine protease inhibitor with it is most 

effective.
53

 Also, note that the relative amount of lysosomal CTSB and CTSD is cell-specific and 

changes with culture conditions. A possible alternative to pepstatin A is the pepstatin A, 

BODIPY® FL conjugate,
234,235

 which is transported to lysosomes via endocytosis. In contrast to 

the protease inhibitors, chloroquine (10-40 µM) or bafilomycin A1 (1-100 nM) can be added to 

cells immediately prior to autophagy induction. Because cysteine protease inhibitors upregulate 

CTSD and have potential inhibitory activity toward calpains and other cysteine proteases, 

whereas bafilomycin A1 can have potential significant cytotoxicity, especially in cultured 

neurons and pathological states, the use of both methods may be important in some experiments 

to exclude off-target effects of a single method. 

Conclusion: It is important to be aware of the difference between monitoring the steady-

state level of Atg8/LC3 and autophagic flux. The latter may be assessed by following Atg8/LC3 

in the absence and presence of autophagy inhibitors, and by examining the autophagy-dependent 

degradation of appropriate substrates. In particular, if there is any evidence of an increase in 

LC3-II (or autophagosomes), it is essential to determine whether this represents increased flux, 

or a block in fusion or degradation through the use of inhibitors such as chloroquine or 

bafilomycin A1. In the case of a suspected impaired degradation, assessment of lysosomal 

function is then required to validate the conclusion and to establish the basis. 
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c. GFP-Atg8/LC3 lysosomal delivery and partial proteolysis. GFP-LC3B (hereafter 

referred to as GFP-LC3) has also been used to follow flux. It should be cautioned that, as 

with endogenous LC3, an assessment of autophagic GFP-LC3 flux is a carrier flux that 

cannot be equated with, and is not necessarily representative of, an autophagic cargo flux. 

When GFP-Atg8 or GFP-LC3 is delivered to a lysosome/vacuole, the Atg8/LC3 part of 

the chimera is sensitive to degradation, whereas the GFP protein is relatively resistant to 

hydrolysis (note, however, that GFP fluorescence is quenched by low pH; see GFP-

Atg8/LC3 fluorescence microscopy and Tandem mRFP/mCherry-GFP fluorescence 

microscopy). Therefore, the appearance of free GFP on western blots can be used to 

monitor lysis of the inner autophagosome membrane and breakdown of the cargo in 

metazoans (Fig. 8A),
220,236,237

 or the delivery of autophagosomes to, and the breakdown 

of autophagic bodies within, the fungal and plant vacuole.
200,201,220,238

 Reports on 

Dictyostelium and mammalian cells highlight the importance of lysosomal pH as a 

critical factor in the detection of free GFP that results from the degradation of fused 

proteins. In these cell types, free GFP fragments are only detectable in the presence of 

nonsaturating levels of lysosomotropic compounds (NH4Cl or choroquine) or under 

conditions that attenuate lysosomal acidity; otherwise, the autophagic/degradative 

machinery appears to be too efficient to allow the accumulation of the proteolytic 

fragment (Fig. 8B,C).
36,239

 Hence, a reduction in the intensity of the free GFP band may 

indicate reduced flux, but it may also be due to efficient turnover. Using a range of 

concentrations and treatment times of compounds that inhibit autophagy can be useful in 

distinguishing between these possibilities.
240

 Since the pH in the yeast vacuole is higher 

than that in mammalian or Dictyostelium lysosomes, the levels of free GFP fragments are 
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detectable in yeast even in the absence of lysosomotropic compounds.
29

 Additionally, in 

yeast the diffuse fluorescent haze from the released GFP moiety within the vacuole 

lumen can be observed by fluorescence microscopy. 

The dynamic movement to lysosomes of GFP-LC3, or of its associated cargo, also can be 

monitored by time-lapse fluorescence microscopy, although, as mentioned above, the GFP 

fluorescent signal is more sensitive to acidic pH than other fluorophores (see GFP-Atg8/LC3 

fluorescence microscopy). A time-course evaluation of the cell population showing GFP-LC3 

puncta can serve to monitor the autophagy flux, since a constant increase in the number of cells 

accumulating GFP-LC3 puncta is suggestive of defective fusion of autophagosomes with 

lysosomes. Conversely, a decline implies that GFP-LC3 is delivered to properly acidified 

lysosomes and may, in addition, reflect proteolytic elimination within them, although the latter 

needs to be independently established. In either case, it can be problematic to use GFP 

fluorescence to follow flux, as new GFP-LC3 is continuously being synthesized. A potential 

solution to this problem is to follow the fluorescence of a photoactivatable version of the 

fluorescent protein,
241

 which allows this assay to be performed essentially as a pulse/chase 

analysis. Another alternative to follow flux is to monitor GFP-LC3 fluorescence by adding 

lysosomal protease or fusion inhibitors to cells expressing GFP-LC3 and monitoring changes in 

the number of puncta. In this case, the presence of lysosomal inhibitors should increase the 

number of GFP-LC3-positive structures, and the absence of an effect on the total number of 

GFP-LC3 puncta or on the percentage of cells displaying numerous puncta is indicative of a 

defect(s) in autophagic flux.
242

 The combination of protease inhibitors (to prevent the 

degradation of GFP) or compounds that modify lysosomal pH such as NH4Cl or chloroquine, or 

compounds that block fusion of autophagosomes with lysosomes such as bafilomycin A1 or 
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others (e.g., vinblastine) may be most effective in preventing lysosome-dependent decreases in 

GFP-LC3 puncta. However, because the stability of GFP is affected by lysosomal pH, 

researchers may also consider the use of protease inhibitors whether or not lysosomotropic 

compounds or fusion inhibitors are included.  

Cautionary notes: The GFP-Atg8 processing assay is used routinely to monitor autophagy 

in yeast. One caveat, however, is that this assay is not always carried out in a quantitative 

manner. For example, western blot exposures need to be in the linear range. Accordingly, an 

enzymatic assay such as the Pho8∆60 assay may be preferred (see Autophagic protein 

degradation),
243,244

 especially when the differences in autophagic activity need to be determined 

precisely (note that an equivalent assay has not been developed for higher eukaryotic cells); 

however, as with any enzyme assay, appropriate caution must be used regarding, for example, 

substrate concentrations and linearity. The Pho8∆60 also requires a control to verify equal 

Pho8∆60 expression in the different genetic backgrounds or conditions to be tested;
243

 

differences in Pho8∆60 expression potentially affect its activity and may thus cause 

misinterpretation of results. Another issue to keep in mind is that GFP-Atg8 processing 

correlates with the surface area of the inner sphere of the autophagosome, and thus provides a 

smaller signal than assays that measure the volume of the autophagosome. Therefore, Pgk1-GFP 

processing,
29

 or the Pho8∆60 assay are generally more sensitive assays. 

The main limitation of the GFP-LC3 processing assay in mammalian cells is that it seems 

to depend on cell type and culture conditions (N. Hosokawa and N. Mizushima, unpublished 

data). Apparently, GFP is more sensitive to mammalian lysosomal hydrolases than to the 

degradative milieu of the yeast vacuole or the lysosomes in Drosophila. Alternatively, the lower 

pH of mammalian lysosomes relative to that of the yeast vacuole may contribute to differences in 
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detecting free GFP. Under certain conditions (such as Earle’s balanced salt solution [EBSS]-

induced starvation) in some cell lines, when the lysosomal pH becomes particularly low, free 

GFP is undetectable because both the LC3-II and free GFP fragments are quickly degraded.
239

 

Therefore, if this method is used it should be accompanied by immunoblotting and include 

controls to address the stability of nonlysosomal GFP such as GFP-LC3-I. It should also be noted 

that free GFP can be detected when cells are treated with nonsaturating doses of inhibitors such 

as chloroquine, E-64d and bafilomycin A1. The saturating concentrations of these lysosomal 

inhibitors vary in different cell lines, and it would be better to use a saturating concentration of 

lysosomal inhibitors when performing an autophagic flux assay.
239

 Therefore, caution must be 

exercised in interpreting the data using this assay; it would be helpful to combine an analysis of 

GFP-LC3 processing with other assays, such as the monitoring of endogenous LC3-II by western 

blot.  

Along these lines, a caution concerning the use of the EGFP fluorescent protein for 

microscopy is that this fluorophore has a relatively neutral pH optimum for fluorescence,
245

 and 

its signal diminishes quickly during live cell imaging due to the acidic environment of the 

lysosome. It is possible to circumvent this latter problem by imaging paraformaldehyde-fixed 

cultures that are maintained in a neutral pH buffer, which retains EGFP fluorescence (M. 

Kleinman and J.J. Reiners, personal communication). Alternatively, it may be preferable to use a 

different fluorophore such as mRFP or mCherry, which retain fluorescence even at acidic pH.
246

 

On the one hand, a putative advantage of mCherry over mRFP is its enhanced photostability and 

intensity, which are an order of magnitude higher (and comparable to GFP), enabling acquisition 

of images at similar exposure settings as are used for GFP, thus minimizing potential bias in 

interpretation.
247

 On the other hand, caution is required when evaluating the localization of 
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mCherry fusion proteins during autophagy due to the persistence of the mCherry signal in acidic 

environments; all tagged proteins are prone to show enrichment in lysosomes during 

nonselective autophagy of the cytoplasm, especially at higher expression levels. In addition, red 

fluorescent proteins (even the monomeric forms) can be toxic due to oligomer formation.
248

 

Dendra2 is an improved version of the green-to-red photoswitchable fluorescent protein Dendra, 

which is derived from the octocoral Dendronephthya sp.
249

 Dendra2 is capable of irreversible 

photoconversion from a green to a red fluorescent form, but can be used also as normal GFP or 

RFP vector. This modified version of the fluorophore has certain properties including a 

monomeric state, low phototoxic activation and efficient chromophore maturation, which make it 

suitable for real-time tracking of LC3 and SQSTM1 (Fig. 9; K. Kaarniranta, personal 

communication). Another alternative to mRFP or mCherry is to use the Venus variant of YFP, 

which is brighter than mRFP and less sensitive to pH than GFP.
250

  

The pH optimum of EGFP is important to consider when using GFP-LC3 constructs, as 

the original GFP-LC3 marker
251

 uses the EGFP variant, which may result in a reduced signal 

upon the formation of amphisomes or autolysosomes. An additional caveat when using the 

photoactivatable construct PA-GFP
245

 is that the process of activation by photons may induce 

DNA damage, which could, in turn, induce autophagy. Also, GFP is relatively resistant to 

denaturation, and boiling for 5 min may be needed to prevent the folded protein from being 

trapped in the stacking gel during SDS-PAGE.  

As noted above (see Western blotting and ubiquitin-like protein conjugation systems), 

Atg4/ATG4 cleaves the residue(s) that follow the C-terminal glycine of Atg8/LC3 that will be 

conjugated to PE. Accordingly, it is critical that any chimeras be constructed with the fluorescent 

tag at the amino terminus of Atg8/LC3 (unless the goal is to monitor Atg4/ATG4 activity). 
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Finally, lysosomal inhibition needs to be carefully controlled. Prolonged inhibition of 

lysosomal hydrolases (>6 h) is likely to induce a secondary autophagic response triggered by the 

accumulated undigested autophagy cargo. This secondary autophagic response can complicate 

the analysis of the autophagy flux, making it appear more vigorous than it would in the absence 

of the lysosomal inhibitors. 

Conclusion: The GFP-Atg8/LC3 processing assay, which monitors free GFP generated 

within the vacuole/lysosome, is a convenient way to follow autophagy, but it does not work in all 

cell types, and is not as easy to quantify as enzyme-based assays. Furthermore, the assay 

measures the flux of an autophagic carrier, which may not necessarily be equivalent to 

autophagic cargo flux. 

 

d. GFP-Atg8/LC3 fluorescence microscopy. LC3B, or the protein tagged at its N terminus with 

a fluorescent protein such as GFP (GFP-LC3), has been used to monitor autophagy through 

indirect immunofluorescence or direct fluorescence microscopy (Fig. 10), measured as an 

increase in punctate LC3 or GFP-LC3.
251,252

 The detection of GFP-LC3/Atg8 is also useful for in 

vivo studies using transgenic organisms such as Caenorhabditis elegans,
253

 Dictyostelium 

discoideum,
254

 filamentous ascomycetes,
255-259

 Ciona intestinalis,
260

 Drosophila 

melanogaster,
261-263

 Arabidopsis thaliana,
264

 Zea mays,
265

 Trypanosoma brucei,
206,266,267 

Leishmania major
268-271

 and mice.
144

 It is also possible to use anti-LC3/Atg8 antibodies for 

immunocytochemistry or immunohistochemistry (IHC),
186,272-277

 procedures that have the 

advantages of detecting the endogenous protein, obviating the need for transfection and/or the 

generation of a transgenic organism, as well as avoiding potential artifacts resulting from 

overexpression. For example, high levels of overexpressed GFP-LC3 can result in its nuclear 
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localization, although the protein can still relocate to the cytosol upon starvation. The use of 

imaging cytometry allows rapid and quantitative measures of the number of LC3 puncta and 

their relative number in individual or mixed cell types, using computerized assessment, 

enumeration, and data display (e.g., see refs. 
43,278

). In this respect, the alternative use of an 

automated counting system may be helpful for obtaining an objective number of puncta per cell. 

For this purpose, the WatershedCounting3D plug-in for ImageJ may be useful.
279,280

 Changes in 

the number of GFP-Atg8 puncta can also be monitored using flow cytometry (see Autophagic 

flux determination using flow and multispectral imaging cytometry).
206

  

Monitoring the endogenous Atg8/LC3 protein obviously depends on the ability to detect 

it in the system of interest, which is not always possible. If the endogenous amount is below the 

level of detection, the use of an exogenous construct is warranted. In this case, it is important to 

consider the use of stable transformants versus transient transfections. On the one hand, stable 

transformants may have reduced background resulting from the lower gene expression, and 

artifacts resulting from recent exposure to transfection reagents (see below) are eliminated. 

Furthermore, with stable transformants more cells can be easily analyzed because nearly 100% 

of the population will express tagged LC3. On the other hand, a disadvantage of stable 

transfectants is that the integration sites cannot always be predicted, and expression levels may 

not be optimal. Therefore, it is worth considering the use of stable episomal plasmids that avoid 

the problem of unsuitable integration.
246

 An important advantage of transient transfection is that 

this approach is better for examining the immediate effects of the transfected protein on 

autophagy; however, the transient transfection approach restricts the length of time that the 

analysis can be performed, and consideration must be given to the induction of autophagy 

resulting from exposure to the transfection reagents (see below). One word of caution is that 
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optimizing the time of transient expression of GFP-LC3 is necessary, as some cell types (e.g., 

HeLa cells) may require 1 day for achieving optimal expression to visualize GFP-LC3 puncta, 

whereas neuronal cell lines such as SH-SY5Y cells typically need at least 48 h of expression 

prior to performing GFP-LC3 puncta analyses. In addition, a double transfection can be used 

(e.g., with GFP-LC3 and the protein of interest) to visually tag the cells that express the protein 

being examined.  

A disadvantage of transfecting GFP-LC3 with liposomes is that frequently it leads to an 

unstable efficiency of transfection, causing a reduction in the number of cells effectively 

expressing GFP-LC3, and degradation of the plasmid, thus decreasing the numbers of GFP-LC3 

puncta. Stable cells lines expressing GFP-LC3 can be generated using lentiviral systems and 

efficiently selected through antibiotic resistance leading to uniform and prolonged expression 

levels. These stable cell lines are sensitive to autophagy inducers as measured by the LC3-

II/LC3-I ratio by western blot, and also show increased numbers of cytoplasmic GFP-LC3 

puncta upon autophagic stimuli (unpublished results R. Muñoz-Moreno, R. I. Galindo, L. 

Barrado-Gil and C. Alonso). 

In conclusion, there is no simple rule for the use of stable versus transient transfections. 

When stable transfections are utilized through a nonlentiviral system it is worthwhile screening 

for stable clones that give the best signal to noise ratio; when transient transfections are used, it is 

worthwhile optimizing the GFP-LC3 DNA concentration to give the best signal to noise ratio. In 

clones, the uniformity of expression of GFP-LC3 facilitates “thresholding” when scoring puncta-

positive cells (see below). However, there is also a need to be aware that a single cell clone may 

not be representative of the overall pool. Using a pool of multiple selected clones may reduce 

artifacts that can arise from the selection and propagation of individual clones from a single 
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transfected cell (although the use of a pool is also problematic as its composition will change 

over time). Another possibility is using fluorescence-activated cell sorter (FACS) sorting to 

select a mixed stable population with uniform GFP-LC3 expression levels.
281

 Optimization, 

together with including the appropriate controls (e.g., transfecting GFP-LC3
G120A 

as a negative 

control), will help overcome the effects of the inherent variability in these analyses. For accurate 

interpretations, it is also important to assess the level of overexpression of the GFP-LC3 

constructs relative to endogenous LC3 by western blot. 

An additional use of GFP-LC3 is to monitor colocalization with a target during 

autophagy-related processes such as organelle degradation or the sequestration of pathogenic 

microbes.
282-284

 Preincubation of cells stably expressing GFP-LC3 with leupeptin can help 

stabilize the GFP-LC3 signal during fluorescence microscopy, especially under conditions of 

induced autophagic flux. Leupeptin is an inhibitor of lysosomal cysteine and serine proteases and 

will therefore inhibit degradation of membrane-conjugated GFP-LC3 that is present within 

autolysosomes.  

Cautionary notes: Quantification of autophagy by measuring GFP-LC3 puncta (or LC3 

by immunofluorescence) can, depending on the method used, be more tedious than monitoring 

LC3-II by western blot; however, the former may be more sensitive and quantitative. Ideally, it is 

preferable to include both assays and to compare the 2 sets of results. In addition, if GFP-LC3 is 

being quantified, it is better to determine the number of puncta corresponding to GFP-LC3 on a 

per cell basis (or per cell area basis) rather than simply the total number (or percentage) of cells 

displaying puncta. This latter point is critical because, even in nutrient-rich conditions, cells 

display some basal level of GFP-LC3 puncta. There are, however, practical issues with counting 

puncta manually and reliably, especially if there are large numbers per cell. Nevertheless, manual 
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scoring may be more accurate than relying on a software program, in which case it is important 

to ensure that only appropriate dots are being counted (applicable programs include ImageJ, 

Imaris, and the open-source software CellProfiler
285

). Moreover, when autophagosome-lysosome 

fusion is blocked, larger autophagosomes are detected, possibly due to autophagosome-

autophagosome fusion, or to an inability to resolve individual autophagosomes when they are 

present in large numbers. Although it is possible to detect changes in the size of GFP-Atg8/LC3 

puncta by fluorescence microscopy, it is not possible to correlate size with autophagy activity 

without additional assay methods. Size determinations can be problematic by fluorescence 

microscopy unless careful standardization is carried out,
286

 and size estimation on its own 

without considering puncta number per cell is not recommended as a method for monitoring 

autophagy; however, it is possible to quantify the fluorescence intensity of GFP-Atg8/LC3 at 

specific puncta, which does provide a valid measure of protein recruitment.
287

  

 In addition to autophagosome size, the number of puncta visible to the eye will also be 

influenced by both the level of expression of GFP-LC3 in a given cell (an issue that can be 

avoided by analyzing endogenous LC3 by immunofluorescence) and by the exposure time of the 

microscope, if using widefield microscopy. Another way to account for differential GFP-LC3 

expression levels and/or exposure is to normalize the intensity of GFP-LC3 present in the puncta 

to the total GFP-LC3 intensity in the cell. This can be done either on the population level
288

 or 

individual cell level.
281

 In many cell types it may be possible to establish a threshold value for 

the number of puncta per cell in conditions of “low” and “high” autophagy.
289

 This can be tested 

empirically by exposing cells to autophagy-inducing and -blocking agents. Thus, cell populations 

showing significantly greater proportions of cells with autophagosome numbers higher than the 

threshold in perturbation conditions compared to the control cells could provide quantitative 



 83 

evidence of altered autophagy. It is then possible to score the population as the percentage of 

cells displaying numerous autophagosomes. This approach will only be feasible if the 

background number of puncta is relatively low. For this method, it is particularly important to 

count a large number of cells and multiple representative sections of the sample. Typically, it is 

appropriate to score on the order of 50 or more cells, preferably in at least 3 different trials, 

depending on the particular system and experiment, but the critical point is that this 

determination should be based on statistical power analysis. Accordingly, high-content imaging 

analysis methods enable quantification of GFP-LC3 puncta (or overall fluorescence intensity) in 

thousands of cells per sample (e.g. see refs. 
227,240,290

). When using automated analysis methods, 

care must be taken to manually evaluate parameters used to establish background threshold 

values for different treatment conditions and cell types, particularly as many systems image at 

lower magnifications that may be insufficient to resolve individual puncta. Another note of 

caution is that treatments affecting cell morphology, leading to the “rounding-up” of cells for 

example, can result in apparent changes in the number of GFP-LC3 puncta per cell. To avoid 

misinterpretation of results due to such potential artifacts, manual review of cell images is highly 

recommended. If cells are rounding up due to apoptosis or mitosis, it is easy to automatically 

remove them from analysis based on nuclear morphology (using DAPI or Hoechst staining) or 

cell roundness. If levels of autophagy in the rounded up cells are of particular interest, images 

can be acquired as z-stacks and either analyzed as a z-series or processed to generate maximum 

projection or extended depth-of-field images and than analyzed.
291

 

To allow comparisons by other researchers attempting to repeat these experiments, it is 

critical that the authors also specify the baseline number of puncta that are used to define 

“normal” or “low” autophagy. Furthermore, the cells should be counted using unbiased 
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procedures (e.g., using a random start point followed by inclusion of all cells at regular 

intervals), and statistical information should be provided for both baseline and altered conditions, 

as these assays can be highly variable. One possible method to obtain unbiased counting of GFP-

LC3 puncta in a large number of cells is to perform multispectral imaging flow cytometry (see 

Autophagic flux determination using flow and multispectral imaging cytometry).
292

 Multispectral 

imaging flow cytometry allows characterization of single cells within a population by assessing a 

combination of morphology and immunofluorescence patterns, thereby providing statistically 

meaningful data.
293

 This method can also be used for endogenous LC3, and, therefore, is useful 

for nontransfected primary cells.
294

 For adherent cell cultures, one caution for flow cytometry is 

that the techniques necessary to produce single cell suspensions can cause significant injury to 

the cells, leading to secondary changes in autophagy. Therefore, staining for plasma membrane 

permeabilization (e.g., cell death) before versus after isolation is an important control, and 

allowing a period of recovery between harvesting the culture and staining is also advisable.
295

  

An important caveat in the use of GFP-LC3 is that this chimera can associate with 

aggregates, especially when expressed at high levels in the presence of aggregate-prone proteins, 

which can lead to a misinterpretation of the results.
296

 Of note, GFP-LC3 can associate with 

ubiquitinated protein aggregates;
297

 however, this does not occur if the GFP-LC3 is expressed at 

low levels (D.C. Rubinsztein, unpublished observations). These aggregates have been described 

in many systems and are also referred to as aggresome-like induced structures (ALIS),
297-299

 

dendritic cell ALIS,
300

 SQSTM1/p62 bodies/sequestosomes
301

 and inclusions. Indeed, many 

pathogen-associated molecular patterns (PAMPs) described to induce the formation of 

autophagosomes in fact trigger massive formation of SQSTM1 bodies (LH Travassos, 

unpublished observations). Inhibition of autophagy in vitro and in vivo leads to the accumulation 
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of these aggregates, suggesting a role for autophagy in mediating their clearance.
297,298,302-304

 One 

way to control for background levels of puncta is to determine fluorescence from untagged GFP.  

The receptor protein SQSTM1 is required for the formation of ubiquitinated protein 

aggregates in vitro (see SQSTM1 and related LC3 binding protein turnover assays).
301

 In this 

case, the interaction of SQSTM1with both ubiquitinated proteins and LC3 is thought to mediate 

delivery of these aggregates to the autophagy system.
305,306

 Many cellular stresses can induce the 

formation of aggregates, including transfection reagents,
297

 or foreign DNA (especially if the 

DNA is not extracted endotoxin free). SQSTM1-positive aggregates are also formed by 

proteasome inhibition or puromycin treatment and can be found in cells exposed to rapamycin 

for extended periods where the rates of autophagy are elevated.
307

 Calcium phosphate 

transfection of COS7 cells or lipofectamine transfection of MEFs (R. Pinkas-Kramarski, 

personal communication), primary neurons (A.R. La Spada, personal communication) or 

neuronal cells (C.T. Chu, personal communication) transiently increases basal levels of GFP-

LC3 puncta and/or the amount of LC3-II. One solution to this artifact is to examine GFP-LC3 

puncta in cells stably expressing GFP-LC3; however, as transfection-induced increases in GFP-

LC3 puncta and LC3-II are often transient, another approach is to use cells transfected with GFP, 

with cells subjected to a mock time-matched transfection as the background (negative) control. A 

lipidation-defective LC3 mutant where glycine 120 is mutated to alanine is targeted to these 

aggregates independently of autophagy (likely via its interaction with SQSTM1, see above); as a 

result, this mutant can serve as another specificity control.
297

 When carrying out transfections it 

may be necessary to alter the protocol depending on the level of background fluorescence. For 

example, changing the medium and waiting 24 to 48 h after the transfection can help to reduce 

the background level of GFP-LC3 puncta that is due to the transfection reagent (M. I. Colombo, 
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personal communication). Similarly, when using an mCherry-GFP-SQSTM1 double tag (see 

Tandem mRFP/mCherry-GFP fluorescence microscopy) in transient transfections it is best to 

wait 48 h after transfection to reduce the level of aggregate formation and potential inhibition of 

autophagy (T. Johansen, personal communication). An additional consideration is that, in 

addition to transfection, viral infection can activate stress pathways in some cells and possibly 

induce autophagy, again emphasizing the importance of appropriate controls, such as control 

viruses expressing GFP.
308

 

Ubiquitinated protein aggregate formation and clearance appear to represent a cellular 

recycling process. Aggregate formation can occur when autophagy is either inhibited or when its 

capacity for degradation is exceeded by the formation of proteins delivered to the aggregates. In 

principle, formation of GFP-LC3-positive aggregates represents a component of the autophagy 

process. However, the formation of GFP-LC3-positive ubiquitinated protein aggregates does not 

directly reflect either the induction of autophagy (or autophagosome formation) or flux through 

the system. Indeed, formation of ubiquitinated protein aggregates that are GFP-LC3 positive can 

occur in autophagy-deficient cells.
297

 Therefore, it should be remembered that GFP-LC3 puncta 

likely represent a mix of ubiquitinated protein aggregates in the cytosol, ubiquitinated protein 

aggregates within autophagosomes and/or more “conventional” phagophores and 

autophagosomes bearing other cytoplasmic cargo (this is one example where CLEM could help 

in resolving this question
77

). In Dictyostelium, inhibition of autophagy leads to huge 

ubiquitinated protein aggregates containing SQSTM1 and GFP-Atg8, when the latter is co-

expressed; the large size of the aggregates makes them easily distinguishable from 

autophagosomes. Saponin treatment has been used to reduce background fluorescence under 

conditions where no aggregation of GFP-LC3 is detected in hepatocytes, GFP-LC3 stably-
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transfected HEK 293
308

 and human osteosarcoma cells, and in nontransfected cells;
309

 however, 

because treatment with saponin and other detergents can provoke artifactual GFP-LC3 puncta 

formation,
310

 specificity controls need to be included in such experiments. In general, it is 

preferable to include additional assays that measure autophagy rather than relying solely on 

monitoring GFP-LC3. In addition, we recommend that researchers validate their assays by 

demonstrating the absence or reversal of GFP-LC3 puncta formation in cells treated with 

pharmacological or RNA interference-based autophagy inhibitors (Table 1). For example, 3-MA 

is commonly used to inhibit starvation- or rapamycin-induced autophagy,
311

 but it has no effect 

on BECN1-independent forms of autophagy,
76,142

 and some data indicate that this compound can 

also have stimulatory effects on autophagy (see Autophagy inhibitors and inducers).
312

 

Another general limitation of the GFP-LC3 assay is that it requires a system amenable to 

the introduction of an exogenous gene. Accordingly, the use of GFP-LC3 in primary non-

transgenic cells is more challenging. Here again, controls need to be included to verify that the 

transfection protocol itself does not artifactually induce GFP-LC3 puncta or cause LC3 

aggregation. Furthermore, transfection should be performed with low levels of constructs, and 

the transfected cells should be followed to determine 1) when sufficient expression for detection 

is achieved, and 2) that, during the time frame of the assay, basal GFP-LC3 puncta remain 

appropriately low. In addition, the demonstration of a reduction in the number of induced GFP-

LC3 puncta under conditions of autophagy inhibition is helpful. For some primary cells, 

delivering GFP-LC3 to precursor cells by infection with recombinant lentivirus, retrovirus or 

adenovirus,
313

 and subsequent differentiation into the cell type of interest, is a powerful 

alternative to transfection of the already differentiated cell type.
68

  



 88 

To implement the scoring of autophagy via fluorescence microscopy, one option is to 

measure pixel intensity. Since the expression of GFP-LC3 may not be the same in all cells—as 

discussed above—it is possible to use specific imaging software to calculate the standard 

deviation (SD) of pixel intensity within the fluorescence image and divide this by the mean 

intensity of the pixels within the area of analysis. This will provide a ratio useful for establishing 

differences in the degree of autophagy between cells. Cells with increased levels of autophagic 

activity, and hence a greater number of autophagosomes in their cytosol, are associated with a 

greater variability in pixel intensity (i.e., a high SD). Conversely, in cells where autophagy is not 

occurring, GFP-LC3 is uniformly distributed throughout the cytosol and a variation in pixel 

intensity is not observed (i.e., a low SD; M. Campanella, personal communication). 

Although LC3-II is primarily membrane-associated, it is not necessarily associated with 

autophagosomes as is often assumed; the protein is also found on phagophores, the precursors to 

autophagosomes, as well as on amphisomes and phagosomes (see Western blotting and 

ubiquitin-like protein conjugation systems).
172,314,315

 Along these lines, yeast Atg8 can associate 

with the vacuole membrane independent of lipidation, so that a punctate pattern does not 

necessarily correspond to autophagic compartments.
316

 Thus, the use of additional markers is 

necessary to specify the identity of an LC3-positive structure; for example, ATG12–ATG5-

ATG16L1 would be present on a phagophore, but not an autophagosome, and thus colocalization 

of LC3 with any of these proteins would indicate the former structure. In addition, the site(s) of 

LC3 conjugation to PE is not definitively known, and levels of Atg8–PE/LC3-II can increase 

even in autophagy mutants that cannot form autophagosomes.
317

 One method that can be used to 

examine LC3-II membrane association is differential extraction in Triton X-114, which can be 

used with mammalian cells,
313

 or western blot analysis of total membrane fractions following 
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solubilization with Triton X-100, which is helpful in plants.
200,201

 Importantly, we stress again 

that numbers of GFP-LC3 puncta, similar to steady state LC3-II levels, reflect only a snapshot of 

the numbers of autophagy-related structures (e.g., autophagosomes) in a cell at one time, not 

autophagic flux.  

Finally, we offer a general note of caution with regard to using GFP. First, the GFP tag is 

large, in particular relative to the size of LC3; therefore, it is possible that a chimera may behave 

differently from the native protein in some respects. Second, GFP is not native to most systems, 

and as such it may be recognized as an aberrant protein and targeted for degradation, which has 

obvious implications when studying autophagy. Third, some forms of GFP tend to oligomerize, 

which may interfere with protein function and/or localization. Fourth, EGFP inhibits 

polyubiquitination
318

 and may cause defects in other cellular processes. Fifth, not all LC3 puncta 

represent LC3-II and correspond to autophagosomes.
179,180,319,320

 Accordingly it would be 

prudent to complement any assays that rely on GFP fusions (to Atg8/LC3 or any protein) with 

additional methods that avoid the use of this fluorophore. Similarly, with the emergence of 

“super-resolution” microscopy methods such as photoactivated localization microscopy 

(PALM), new tags are being used (e.g., the EosFP green to red photoconvertible fluorescent 

protein, or the Dronpa GFP-like protein) that will need to be tested and validated.
321

 

Conclusion: GFP-LC3 provides a marker that is relatively easy to use for monitoring 

autophagy induction (based on the appearance of puncta), or colocalization with cargo; however, 

monitoring this chimera does not determine flux unless utilized in conjunction with inhibitors of 

lysosomal fusion and/or degradation. In addition, it is recommended that results obtained by 

GFP-LC3 fluorescence microscopy be verified by additional assays. 
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e. Tandem mRFP/mCherry-GFP fluorescence microscopy. A fluorescence assay that is 

designed to monitor flux relies on the use of a tandem monomeric RFP-GFP-tagged LC3 (tfLC3; 

Fig. 11).
246

 The GFP signal is sensitive to the acidic and/or proteolytic conditions of the 

lysosome lumen, whereas mRFP is more stable. Therefore, colocalization of both GFP and 

mRFP fluorescence indicates a compartment that has not fused with a lysosome, such as the 

phagophore or an autophagosome. In contrast, a mRFP signal without GFP corresponds to an 

amphisome or autolysosome. Other fluorophores such as mCherry are also suitable instead of 

mRFP,
301

 and an image-recognition algorithm has been developed to quantify flux of the reporter 

to acidified compartments.
322-324

 One of the major advantages of the tandem mRFP/mCherry-

GFP reporter method is that it enables simultaneous estimation of both the induction of 

autophagy and flux through autophagic compartments without requiring the use of any lysosomal 

inhibitors. The competence of lysosomal digestion of the substrate requires additional analysis 

using methods described above. The use of more than one time point allows visualization of 

increased early autophagosomes followed by increases in late autophagosomes as an additional 

assurance that flux has been maintained.
325

 In addition, this method can be used to monitor 

autophagy in high-throughput drug screening studies.
323

 The quantification of “yellow only” 

(where the yellow signal results from merging the red and green channels) and “red only” dots in 

a stable tandem-fluorescent LC3-reporter cell line can be automated by a Cellomics microscope 

that can be used to assess a huge population of cells (1,000 or more) over a large number of 

random fields of view.
217,326

 Notably, organelle-specific variations of the tandem 

mRFP/mCherry-GFP reporter system have successfully been used to analyze selective types of 

autophagy, such as pexophagy
327

 and mitophagy
328,329

 in mammalian cells. 
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An alternative dual fluorescence assay involves the Rosella pH biosensor. This assay 

monitors the uptake of material to the lysosome/vacuole and complements the use of the tandem 

mRFP/mCherry-GFP reporter. The assay is based upon the genetically encoded dual color-

emission biosensor Rosella, a fusion between a relatively pH-stable fast-maturing RFP variant, 

and a pH-sensitive GFP variant. When targeted to specific cellular compartments or fused to an 

individual protein, the Rosella biosensor provides information about the identity of the cellular 

component being delivered to the lysosome/vacuole for degradation. Importantly, the pH-

sensitive dual color fluorescence emission provides information about the environment of the 

biosensor during autophagy of various cellular components. In yeast, Rosella has been 

successfully used to monitor autophagy of cytosol, mitochondria (mitophagy) and the nucleus 

(nucleophagy).
330-332

 Furthermore, the Rosella biosensor can be used as a reporter under various 

conditions including nitrogen depletion-dependent induction of autophagy.
330,331

 The Rosella 

biosensor can also be expressed in mammalian cells to follow either nonselective autophagy 

(cytoplasmic turnover), or mitophagy.
331

  

Cautionary notes: The use of tandem mRFP/mCherry-GFP-LC3/Atg8 reporters in live 

imaging experiments can be complicated by the motion of LC3/Atg8 puncta. As a consequence, 

conventional confocal microscopy may not allow visualization of colocalized mRFP/mCherry-

GFP puncta. In this case, GFP colocalized puncta represent newly formed autophagic structures 

whereas mRFP/mCherry-only puncta are ambiguous. Spinning disk confocal microscopy or 

rapid acquisition times may be required for imaging tandem mRFP/mCherry-GFP proteins, 

although these techniques require a brighter fluorescent signal associated with what may be 

undesirably higher levels of transgene expression. One solution is to use the mTagRFP-

mWasabi-LC3 chimera,
333

 as mTagRFP is brighter than mRFP1 and mCherry, and mWasabi is 
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brighter than EGFP.
334

 Another possibility is to use fixed cells; however, this presents an 

additional concern: The use of tandem mRFP/mCherry-GFP relies on the quenching of the GFP 

signal in the acidic autolysosome; however, fixation solutions are often neutral or weak bases, 

which will increase the pH of the entire cell. Accordingly, the GFP signal may be restored after 

fixation (Fig. 12), which would cause an underestimation of the amount of signal that 

corresponds only to RFP (i.e., in the autolysosome). Thus, the tissue or cell samples must be 

properly processed to avoid losing the acidic environment of the autolysosomes. In addition, 

there may be weak fluorescence of EGFP even in an acidic environment (pH between 4 and 

5).
245,313

 Therefore, it may be desirable to choose a monomeric green fluorescent protein that is 

more acid sensitive than EGFP for assaying autophagic flux.  

 Another caution in the interpretation of the tandem fluorescent marker is that 

colocalization of GFP and mRFP/mCherry might also be seen in the case of impaired proteolytic 

degradation within autolysosomes or altered lysosomal pH. Finally, expression of tandem 

mRFP-GFP-LC3 is toxic to some cancer cell lines relative to GFP-LC3 or RFP-LC3 (K.S. Choi, 

personal communication). The cytotoxicity of DsRed and its variants such as mRFP1 is 

associated with downregulation of BCL2L1/Bcl-xL.
335

 In contrast to mRFP-GFP-LC3, 

overexpression of mTagRFP-mWasabi-LC3 does not appear to be toxic to HeLa cells (J. Lin, 

personal communication). 

The Rosella assay has not been tested in a wide range of mammalian cell types. 

Accordingly, the sensitivity and the specificity of the assay must be verified independently until 

this method has been tested more extensively and used more widely. 

Finally, it may be desirable to capture the dynamic behavior of autophagy in real time, to 

generate data revealing the rate of formation and clearance of autophagosomes over time, rather 
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than single data points. For example, by acquiring signals from 2 fluorescent constructs in real 

time, the rate of change in colocalization signal as a measure of the fusion rate and recycling rate 

between autophagosomes and lysosomes can be assessed.
336

 Importantly, due to the integral 

dynamic relationship of autophagic flux with the onset of apoptosis and necrosis, it is 

advantageous to monitor cell death and autophagic flux parameters concomitantly over time, 

which FRET-based reporter constructs make possible.
337

 

In addition, as the metabolic control of autophagy is becoming increasingly clear, 

highlighting a tight network between the autophagy machinery, energy sensing pathways and the 

cell’s metabolic circuits,
338,339

 mitochondrial parameters such as fission and fusion rate as well as 

the cell’s ATP demand should be monitored and correlated with autophagic flux data. This will 

provide a better understanding on the variability of autophagy and cell death susceptibility. 

Tandem fluorescent markers show real-time changes in autophagosome fusion with 

lysosomes, due to entry into an acidic environment; however, fusion is not definitive evidence of 

substrate or carrier degradation. Lysosomes may be able to fuse, but be unable to degrade newly 

delivered cargo, as occurs in some lysosomal storage diseases. Best practice would be to perform 

an autophagic flux assay in parallel with quantification of tandem fluorescent markers to confirm 

completion of carrier flux. 

Conclusion: The use of tandem fluorescent constructs, which display different emission 

signals depending on the environment (in particular, GFP fluorescence is sensitive to an acidic 

pH), provides a convenient way to monitor autophagy flux in many cell types. 

 

f. Autophagic flux determination using flow and multispectral imaging cytometry. Whereas 

fluorescence microscopy, in combination with novel autophagy probes, has permitted single-cell 
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analysis of autophagic flux, automation for allowing medium- to high-throughput analysis has 

been challenging. A number of methods have been developed that allow the determination of 

autophagic flux using flow cytometry,
209,293,309,340-342

 and commercial kits are now available for 

monitoring autophagy by flow cytometry. These approaches make it possible to capture data or, 

in specialized instruments, high-content, multiparametric images of cells in flow (at rates of up to 

1,000 cells/sec for imaging, and higher in nonimaging flow cytometers), and are particularly 

useful for cells that grow in suspension. Optimization of image analysis permits the study of cells 

with heterogeneous LC3 puncta, thus making it possible to quantify autophagic flux accurately in 

situations that might perturb normal processes (e.g., microbial infection).
342,343

 Since EGFP-LC3 

is a substrate for autophagic degradation, total fluorescence intensity of EGFP-LC3 can be used 

to indicate levels of autophagy in living mammalian cells.
340

 When autophagy is induced, the 

decrease in total cellular fluorescence can be precisely quantified in large numbers of cells to 

obtain robust data. In another approach, soluble EGFP-LC3-I can be depleted from the cell by a 

brief saponin extraction so that the total fluorescence of EGFP-LC3 then represents that of 

EGFP-LC3-II alone (Fig. 13A).
308,309

 Since EGFP-LC3 transfection typically results in high 

relative levels of EGFP-LC3-I, this treatment significantly reduces the background fluorescence 

due to nonautophagosome-associated reporter protein. By comparing treatments in the presence 

or absence of lysosomal degradation inhibitors, subtle changes in the flux rate of the GFP-LC3 

reporter construct can be detected. If it is not desirable to treat cells with lysosomal inhibitors to 

determine rates of autophagic flux, a tandem mRFP/mCherry-EGFP-LC3 (or similar) construct 

can also be used for autophagic flux measurements in flow cytometry experiments (see Tandem 

mRFP/mCherry-GFP fluorescence microscopy).
341
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 These methods, however, require the cells of interest to be transfected with reporter 

constructs. Since the saponin extraction method can also be combined with intracellular staining 

for endogenous LC3 protein, subtle changes in autophagic flux can be measured without the 

need for reporter transfections (Fig. 13B).  

Cautionary notes: Care must be taken when applying flow cytometry measurements to 

adherent cells, particularly neurons and other cells with interdigitated processes, as the 

preparation of single cell suspensions entails significant levels of plasma membrane disruption 

and injury that can secondarily induce autophagy.  

Users of the saponin extraction method should carefully titrate saponin concentrations 

and times of treatment to ensure specific extraction of LC3-I in their systems. Also, it has been 

observed in some cell types that saponin treatment can lead to nonautophagic aggregation of 

LC3,
310

 which should be controlled for in these assays (see GFP-Atg8/LC3 fluorescence 

microscopy). 

Cell membrane permeabilization with digitonin and extraction of the nonmembrane-

bound form of LC3 allows combined staining of membrane-associated LC3-II protein and any 

markers for detection of autophagy in relation to other cellular events/processes. Based on this 

approach, a method for monitoring autophagy in different stages of the cell cycle was 

developed.
344

 Thus, the presence of basal or starvation-induced autophagy is detected in G1, S, 

and G2/M phases of the cell cycle in MEFs with doxycycline-regulated ATG5 expression. In 

these experiments cells were gated based on their DNA content and the relative intensity of GFP-

LC3-II and LC3-II expression. This approach might also be used for the detection of autophagic 

flux in different stages of the cell cycle or subG1 apoptotic cell population by measuring 

accumulation of LC3-II in the presence or absence of lysosomal inhibitors. 
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Although GFP-LC3 can be used as a reporter for flow cytometry, it is more stable (which 

is not necessarily ideal for flux measurements) than GFP-SQSTM1 or GFP-NBR1 (NBR1 is a 

selective autophagic substrate with structural similarity to SQSTM1
345

). GFP-SQSTM1 displays 

the largest magnitude change following the induction of autophagy by amino acid deprivation or 

rapamycin treatment, and may thus be a better marker for following autophagic flux by this 

method (confirmed in SH-SY5Y neuronal cell lines stably expressing GFP-SQSTM1; E.M. 

Valente, personal communication).
346

  

 Conclusion: Medium- to high-throughput analysis of autophagy is possible using flow 

and multispectral imaging cytometry (Fig. 14). The advantage of this approach is that larger 

numbers of cells can be analyzed with regard to GFP-LC3 puncta, cell morphology and/or 

autophagic flux, and concomitant detection of surface markers can be included, potentially 

providing more robust data than is achieved with other methods. A major disadvantage, however, 

is that flow cytometry only measures changes in total GFP-LC3 levels, which can be subject to 

modification by changes in transcription or translation, or by pH, and this approach cannot 

accurately evaluate localization (e.g., to autophagosomes) or lipidation (generation of LC3-II) 

without further permeabilization of the cell. 

 

g. Immunohistochemistry. Immunodetection of ATG proteins (particularly LC3 and BECN1) 

has been reported as a prognostic factor in various human carcinomas, including 

lymphoma,
186,347

 breast carcinoma,
348

 endometrial adenocarcinoma,
349,350

 head and neck 

squamous cell carcinoma,
351-353

 hepatocellular carcinoma,
354,355

 gliomas,
356

 non-small cell lung 

carcinomas,
357

 pancreatic
358

 and colon adenocarcinomas,
359-361

 as well as in cutaneous and uveal 

melanomas.
362,363

 Unfortunately, the reported changes often reflect overall diffuse staining 
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intensity rather than appropriately compartmentalized puncta. Therefore, the observation of 

increased levels of diffuse LC3 staining (which may reflect a decrease in autophagy) should not 

be used to draw conclusions that autophagy is increased in cancer or other tissue samples. 

Importantly, this kind of assay should be performed as recommended by the Reporting 

Recommendations for Tumor Marker Prognostic Studies (REMARK).
364

 As we identify new 

drugs for modulating autophagy in clinical applications, this type of information may prove 

useful in the identification of subgroups of patients for targeted therapy.
365-367

 

 In mouse and rat tissues, endogenous LC3, ATG4B, and ATG9A have been detected by 

immnohistochemical analyses using both paraffin sections and cryosections.
276,368-370

 When 

autophagosomes are absent, the localization pattern of LC3 in the cells of various tissues is 

diffuse and cytosolic. Moreover, intense fibrillary staining of LC3 is detectable along dendrites 

of intact neurons, whereas granular staining for LC3 appears mainly in the perikarya of neurons 

in CTSD- or CTSB- and CTSL-deficient mouse brains.
276

 LC3 puncta are also observed in mice 

in the peripheral nerves, specifically in Schwann cells after neurodegeneration,
371 

and Paneth 

cells of the small intestine from human Crohn disease patients and mouse models of intestinal 

inflammation driven by ER-stress exhibit strong LC3 puncta staining.
372,373

 In various 

neurodegenerative states, LC3 puncta may be numerous in neurites, especially within dystrophic 

swellings and, in many cases, these vacuoles are amphisomes or autolysosomes, reflecting the 

delayed or inhibited degradation of LC3 despite the presence of abundant hydrolase activity.
52,61

  

In developing inner ear and retinal tissue in chicken, BECN1 is detected by 

immunofluorescence; in chick retina AMBRA1 is also detected.
374-376

 Finally, in non-

mammalian vertebrates, BECN1 was detected during follicular atresia in the ovary of 3 fish 

species using paraffin sections; a punctate immunostaining for BECN1 is scattered throughout 
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the cytoplasm of the follicular cells when they are in intense phagocytic activity for yolk 

removal.
377

  

Cautionary notes: One problem with LC3 IHC is that in some tissues this protein can be 

localized in structures other than autophagosomes. For example, in murine hepatocytes and 

cardiomyocytes under starved conditions, endogenous LC3 is detected not only in 

autophagosomes but also on lipid droplets.
378

 In neurons in ATG7-deficient mice, LC3 

accumulates in ubiquitin- and SQSTM1-positive aggregates.
379

 In neurons in aging or 

neurodegenerative disease states, LC3 is commonly present in autolysosomes and may be 

abundant in lipofuscin and other lysosomal residual bodies.
52

 Thus, immunodetection of LC3 in 

cytoplasmic granules is not sufficient to monitor autophagy in vivo. To evaluate autophagy by 

the methods of immunohistochemistry, it is necessary to identify the autophagosomes directly 

using the ABC technique for TEM observation (see Transmission electron microscopy).
70

 

 Conclusion: It has not been clearly demonstrated that IHC of ATG proteins in tissues 

corresponds to autophagy activity, and this area of research needs to be further explored before 

we can make specific recommendations. 

 

3. SQSTM1 and related LC3 binding protein turnover assays. In addition to LC3, 

SQSTM1/p62 or other receptors such as NBR1, can also be used as protein markers, at least in 

certain settings.
25,380

 For example, SQSTM1 can be detected as puncta by IHC in cancer cells, 

similar to LC3.
353

 The SQSTM1 protein serves as a link between LC3 and ubiquitinated 

substrates.
77

 SQSTM1 and SQSTM1-bound polyubiquitinated proteins become incorporated into 

the completed autophagosome and are degraded in autolysosomes, thus serving as an index of 

autophagic degradation (Fig. 15). Inhibition of autophagy correlates with increased levels of 
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SQSTM1 in mammals and Drosophila, suggesting that steady state levels of this protein reflect 

the autophagic status.
57,370,381-385

 Similarly, decreased SQSTM1 levels are associated with 

autophagy activation. The phosphorylation of SQSTM1 at Ser403 appears to regulate its role in 

the autophagic clearance of ubiquitinated proteins, and anti-phospho-SQSTM1 antibodies can be 

used to detect the modified form of the protein.
306

 

Cautionary notes: SQSTM1 changes can be cell type and context specific. In some cell 

types, there is no change in the overall amount of SQSTM1 despite strong levels of autophagy 

induction, verified by the tandem mRFP/mCherry-GFP-LC3 reporter as well as ATG7- and 

lysosome-dependent turnover of cargo proteins (C.T. Chu, personal observation). In other 

contexts, a robust loss of SQSTM1 does not correlate with increased autophagic flux as assessed 

by a luciferase-based measure of flux;
229

 a decrease of SQSTM1 can even relate to a blockage of 

autophagy due to cleavage of the protein, together with other autophagy proteins, by caspases or 

calpains.
386

 SQSTM1 may be transcriptionally upregulated under certain conditions,
299,387-390

 

further complicating the interpretation of results. For example, SQSTM1 upregulation, and at 

least transient increases in the amount of SQSTM1, is seen in some situations where there is an 

increase in autophagic flux.
391-393

 One such case is seen during retinoic acid-induced 

differentiation of AML cells where SQSTM1 is upregulated
388

 with concomitant increased 

autophagy flux.
394

 Activation of a signaling pathway, e.g. RAF1/Raf-MAP2K/MEK-

MAPK/ERK, can also upregulate SQSTM1 transcription.
395

 SQSTM1 mRNA is also upregulated 

following prolonged starvation, which can restore the SQSTM1 protein level to that before 

starvation.
396,397

 In the same way, physical exercise, especially when performed during 

starvation, increases the SQSTM1 mRNA level in skeletal muscle, and can lead to an incorrect 

interpretation of autophagic flux if only the protein level is measured.
398,399

 Another instance 



 100 

when both mRNA and protein levels of SQSTM1 are elevated even though autophagy flux is not 

impaired is observed in aneuploid human and murine cells that are generated by introduction of 1 

or 2 extra chromosomes.
400,401

 Thus, appropriate positive and negative controls are needed prior 

to the use of SQSTM1 as a flux indicator in a particular cellular context, and we recommend 

monitoring the SQSTM1 mRNA level as part of a complete analysis, or determining the 

SQSTM1 protein level in the presence of actinomycin D. 

Of interest, SQSTM1 hyperexpression at both gene and protein levels can be observed in 

muscle atrophy induced by cancer, though not by glucocorticoids, suggesting that the stimulus 

inducing autophagy may also be relevant to the differential regulation of autophagy-related 

proteins (F. Penna and P. Costelli, unpublished observations). One solution to problems relating 

to variations in SQSTM1 expression levels is to use a HaloTag
®

-p62 (SQSTM1) chimera.
402

 The 

chimeric protein can be covalently labeled with HaloTag
®
 ligands, and the loss of signal can then 

be monitored without interference by subsequent changes in protein synthesis. Similarly, a stable 

cell line expressing EGFP-tagged SQSTM1 under the control of an inducible promoter can be 

used to assess the rates of SQSTM1 degradation, taking into account the limitations outlined 

above (see Autophagic flux determination using flow and multispectral imaging cytometry).
346

 A 

similar system exists in Drosophila in which a GFP-tagged SQSTM1 can be expressed using the 

UAS-GAL4 system.
403

 It is worth noting that tetracycline can reduce autophagy levels; therefore, 

the appropriate control of only tetracycline addition has to be included if using an inducible 

promoter that responds to this drug.
404

 Yet another solution is to employ a radioactive pulse-

chase assay to measure the rates of SQSTM1 degradation.
405

  

SQSTM1 contains a LIR as well as a ubiquitin binding domain, and appears to act by 

linking ubiquitinated substrates with the autophagic machinery. Nonetheless, it would be prudent 
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to keep in mind that SQSTM1 contains domains that interact with several signaling molecules,
406

 

and SQSTM1 may be part of MTORC1.
407

 Thus, it may have additional functions that need to be 

considered with regard to its role in autophagy. In the context of autophagy as a stress response, 

the complexity of using SQSTM1 as an autophagy marker protein is underscored by its capacity 

to modulate the NFE2L2/NRF2 anti-oxidant response pathway through a KEAP1 binding 

domain.
408,409

 In fact, SQSTM1 may, itself, be transcriptionally induced by NFE2L2.
410

 

Furthermore, it is preferable to examine endogenous SQSTM1 because overexpression of this 

protein leads to the formation of protein inclusions. In fact, even endogenous SQSTM1 becomes 

Triton X-100-insoluble in the presence of protein aggregates and when autophagic degradation is 

inhibited; thus, results with this protein are often context-dependent. Indeed, there is a reciprocal 

crosstalk between the UPS and autophagy, with SQSTM1 being a key link between them.
411

 

First, SQSTM1 participates in proteasomal degradation, and its level may also increase when the 

proteasome is inhibited.
412

 Accordingly, the SQSTM1 degradation rate should be analyzed in the 

presence of an inhibitor such as epoxomicin or lactacystin to determine the contribution from the 

proteasome (see Autophagy inhibitors and inducers for potential problems with MG132).
413

 

Second, the accumulation of SQSTM1 due to autophagy inhibition can impair UPS function by 

competitively binding ubiquitinated proteins, preventing their delivery to, and degradation by, 

the proteasome.
414

 Accordingly, it may be advisable to measure the UPS flux by using Ub
G76V

-

GFP, a ubiquitin-proteasome activity reporter, when SQSTM1 accumulation is observed. Thus, it 

is very important to determine whether autophagy alone or in conjunction with the UPS accounts 

for substrate degradation induced by a particular biological change. A number of stressors that 

impair the UPS induce the aggregation/dimerization of SQSTM1, and this can be seen by the 

detection of a high molecular mass (~150 kDa) protein complex by western blot, which is 
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recognized by SQSTM1 antibodies (R. Franco, personal communication).
415,416

 Although the 

accumulation of this protein complex can be related to the accumulation of ubiquitinated 

SQSTM1-bound proteins, or the dimerization/inactivation of SQSTM1 (R. Franco, personal 

communication),
417

 evaluation of the ratio between SQSTM1 (aggregates/dimers) and SQSTM1 

monomers is likely a better measurement of changes in SQSTM1 dynamics linked to autophagy 

or the UPS. 

SQSTM1 is also a substrate for CASP6/caspase 6 and CASP8 (as well as CAPN1/calpain 

1), which may confound its use in examining cell death and autophagy.
418

 This is one reason why 

SQSTM1 degradation should also be analyzed in the presence of a pan-caspase inhibitor such as 

Q-VD-OPh before concluding that autophagy is activated based on a decrease of this protein.
386

 

Another issue is that some phosphatidylinositol 3-kinase (PtdIns3K) inhibitors such as 

LY294002, and to a lesser extent wortmannin (but apparently not 3-MA),
311

 can inhibit protein 

synthesis;
419

 this might in turn affect the turnover of SQSTM1 and LC3, which could influence 

conclusions that are drawn from the status of these proteins regarding autophagy flux or ALIS 

formation. Accordingly, it may be advisable to measure protein synthesis and proteasome 

activity along with autophagy under inhibitory or activating conditions. With regard to protein 

synthesis, it is worth noting that this can be monitored through a nonradioactive method.
420

  

Western blot analysis of cell lysates prepared using NP40- or Triton X-100-containing 

lysis buffers in autophagic conditions typically shows a reduction in SQSTM1 levels. However, 

this does not necessarily indicate that SQSTM1 is degraded, because SQSTM1 aggregates are 

insoluble in these detergent lysis conditions.
299,421

 Moreover, in some instances SQSTM1 levels 

do not change in the soluble fractions despite autophagic degradation, a finding that might be 

explained by simultaneous transcriptional induction of the gene encoding SQSTM1, since the 
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soluble fraction accounts only for the diffuse or free form of SQSTM1. Accumulation of 

SQSTM1 in the Triton X-100-insoluble fraction can be observed when autophagy-mediated 

degradation is inhibited. Under conditions of higher autophagic flux, accumulation of SQSTM1 

in Triton X-100-insoluble fractions may not be observed and SQSTM1 levels may be reduced or 

maintained. The simplest approach to circumvent many of these problems is using lysis buffer 

that allows identification of the entire cellular pool of SQSTM1 (e.g., containing 1% SDS); 

however, additional assessment of both Triton X-100-soluble and -insoluble fractions will 

provide further information regarding the extent of SQSTM1 oligomerization.
379

 Note, when 

performing a western blot using an SQSTM1 antibody, it is always a good idea to include a 

positive control in which SQSTM1 accumulates, such as an atg8a mutant (e.g., see Fig. S3 in ref. 

422
). 

 To conclusively establish SQSTM1 degradation by autophagy, SQSTM1 levels in both 

Triton X-100-soluble and -insoluble fractions need to be determined upon treatment with 

autophagy inducers in combination with autophagy inhibitors, such as those that inhibit the 

autolysosomal degradation steps (e.g., protease inhibitors, chloroquine or bafilomycin A1). 

Additionally, an alteration in the level of SQSTM1 may not be immediately evident with 

changes observed in autophagic flux upon certain chemical perturbations (S. Sarkar, personal 

communication). Whereas LC3 changes may be rapid, clearance of autophagy substrates may 

require a longer time. Therefore, if LC3 changes are assessed at 6 h or 24 h after a drug 

treatment, SQSTM1 levels can be tested not only at the same time points, but also at later time 

points (24 h or 48 h) to determine the maximal impact on substrate clearance. An alternative 

method is immunostaining, with and without autophagy inhibitors, for SQSTM1, which will 

appear as either a diffuse or punctate pattern. Experiments with autophagy inducers and 
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inhibitors, in combination with western blot and immunostaining analyses, best establish 

autophagic degradation based on SQSTM1 turnover. A final point, however, is that empirical 

evidence suggests that the species-specificity of antibodies for detecting SQSTM1 must be taken 

into account. For example, some commercial antibodies recognize both human and mouse 

SQSTM1, whereas others detect the human, but not the mouse protein.
423

 Another issue with 

detecting SQSTM1 in the context of human diseases is that it can be mutated (e.g., in Paget 

disease of bone).
424

 Thus, care should be taken to ensure that potential mutations are not 

affecting the epitopes that are recognized by anti-SQSTM1 antibodies when using western 

blotting to detect this protein. 

As an alternative, the SQSTM1:BECN1 protein level ratio can be used as a readout of 

autophagy.
425

 Since both decreased SQSTM1 levels and increased BECN1 levels correlate with 

enhanced autophagy (as noted in the present review), a decreased SQSTM1:BECN1 protein level 

ratio (when derived from the same protein extract) may, cautiously, be interpreted as augmented 

autophagy, keeping in mind that SQSTM1 gene expression varies significantly under different 

conditions and may obscure the meaning of a change in the amount of SQSTM1 protein. As a 

general note, using ratios of the levels of proteins changing in opposite directions, rather than the 

protein levels themselves, could be beneficial since it overcomes the loading normalization issue. 

The often-used alternative approach of housekeeping proteins to normalize for loading biases 

among samples is sometimes problematic as levels of the HKPs change under various 

physiological, pathological and pharmacological conditions.
426-430

  

Finally, a novel protein family of autophagy receptors, named CUET (from Cue5/Tollip), 

was identified, which in contrast to SQSTM1 and NBR1 has members that are present in all 

eukaryotes.
431

 The CUET proteins also possess a ubiquitin-binding CUE-domain and an Atg8-
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family interacting motif (AIM)/LIR sequence that interacts with Atg8/LC3. In their absence, 

cells are more vulnerable to the toxicity resulting from aggregation-prone proteins showing that 

CUET proteins, and more generally autophagy, play a critical evolutionarily conserved role in 

the clearance of cytotoxic protein aggregates.
431

 Experiments in yeast have shown that Cue5 and 

the cytoplasmic proteins that require this autophagy receptor for rapid degradation under 

starvation conditions could be potentially good marker proteins for measuring autophagic flux. 

Special caution must be taken when evaluating SQSTM1 levels in models of protein 

aggregation. Small protoaggregates often stain positively for SQSTM1 and may be similar in 

size to autophagic puncta. Similarly, GFP-u/GFP-degron reporters (designed as an unstable 

variant that undergoes proteasome-dependent degradation) will mark SQSTM1-positive protein 

inclusions. Last, some types of aggregates and inclusions will release soluble SQSTM1 or GFP-

u/GFP-degron under cell lysis or denaturing conditions, which can skew the interpretation of 

soluble SQSTM1 and/or proteasomal function, accordingly. 

Conclusion: There is not always a clear correlation between increases in LC3-II and 

decreases in SQSTM1. Thus, although analysis of SQSTM1 can assist in assessing the 

impairment of autophagy or autophagy flux, we recommend using SQSTM1 only in combination 

with other methods detailed in these guidelines to monitor flux. See also the discussion in 

Autophagic flux determination using flow and multispectral imaging cytometry. 

 

4. TOR/MTOR, AMPK and Atg1/ULK1. Atg1/ULK1 are central components in autophagy 

that likely act at more than one stage of the process. There are multiple ULK isoforms in 

mammalian cells including ULK1, ULK2, ULK3, ULK4 and STK36.
432

 ULK3 is a positive 

regulator of the Hedgehog signaling pathway,
433

 and its overexpression induces both autophagy 
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and senescence.
434

 Along these lines, ectopic ULK3 displays a punctate pattern upon starvation-

induced autophagy induction.
434

 ULK3, ULK4 and STK36, however, lack the domains present 

on ULK1 and ULK2 that bind ATG13 and RB1CC1/FIP200.
435

 Thus, ULK3 may play a role that 

is restricted to senescence and that is independent of the core autophagy machinery. ULK2 has a 

higher degree of identity with ULK1 than any of the other homologs, and they may have similar 

functions that are tissue specific. However, ULK1 may be the predominant isoform involved in 

autophagy, as knockdown of ULK2 does not affect movement of ATG9.
436

 Similarly, 

pharmacological inhibition of ULK1 and ULK2, with the compound MRT68921, blocks 

macroautophagy and expression of a drug-resistant ULK1 mutant is sufficient to rescue this 

block.
437

 The stability and activation of ULK1, but not ULK2, is dependent on its interaction 

with the HSP90-CDC37 chaperone complex. Pharmacological or genetic inhibition of the 

chaperone complex increases proteasome-mediated turnover of ULK1, impairing its kinase 

activity and ability to promote both starvation-induced autophagy and mitophagy.
438

 

AMPK (AMP-activated protein kinase) is a multimeric serine/threonine protein kinase 

comprised of PRKAA1/AMPK1 or PRKAA2/AMPK2 (α, catalytic), the PRKAB1/AMPK1 

or PRKAB2/AMPK2 (β, scaffold), and the PRKAG1/AMPK1, PRKAG2/AMPK2 or 

PRKAG3/AMPK3 (γ, regulatory) subunits. The enzyme activity of AMPK is dependent on 

phosphorylation of the α-subunit on Thr172,
439,440

 and, therefore, can be conveniently monitored 

by western blotting with a phosphospecific antibody against this site. In some cells, Thr172 is 

phosphorylated by CAMKK2/CaMKK, whereas in others it is a substrate of the STK11/LKB1 

kinase. Regulation of AMPK activity is mediated primarily by Thr172-dephosphorylating 

protein phosphatases such as PPP1/PP1 (protein phosphatase 1) and PPP2/PP2A (protein 

phosphatase 2).
441

 Thr172 dephosphorylation is modulated by adenine nucleotides that bind 
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competitively to regulatory sites in the PRKAG/-subunit. AMP and ADP inhibit 

dephosphorylation and promote AMPK activity, whereas Mg
2+

-ATP has the opposite effect.
440

 

Thus, AMPK acts as a fine-tuned sensor of the overall cellular energy charge that regulates 

cellular metabolism to maintain energy homeostasis. Overexpression of a dominant negative 

mutant (R531G) of PRKAG2, the subunit isoform 2 of AMPK that is unable to bind AMP, 

makes it possible to analyze the relationship between AMP modulation (or alteration of energetic 

metabolism) and AMPK activity.
442,443

 Activation of AMPK is also associated with the 

phosphorylation of downstream enzymes involved in ATP-consuming processes, such as fatty 

acid (ACAC [acetyl-CoA carboxylase]) and cholesterol (HMGCR [3-hydroxy-3-methylglutaryl-

CoA reductase]) biosynthesis.  

The role of AMPK in autophagy is complex and highly dependent on both cell type and 

metabolic conditions. Furthermore, as noted above, there are 2 isoforms of the catalytic subunit, 

PRKAA1/AMPK1 and PRKAA2/AMPK2, and these may have distinct effects with regard to 

autophagy (C. Koumenis, personal communication). In liver cells, AMPK suppresses autophagy 

at the level of cargo sequestration, as indicated by the rapid sequestration-inhibitory effects of a 

variety of AMPK activators, whereas it appears to stimulate autophagy in many other cell types, 

including fibroblasts, colon carcinoma cells and skeletal muscle.
444-453

 Autophagy-promoting 

effects of AMPK are most evident in cells cultured in a complete medium with serum and amino 

acids, where cargo sequestration is otherwise largely suppressed.
450

 Presumably, AMPK 

antagonizes the autophagy-inhibitory effect of amino acids (at the level of phagophore assembly) 

by phosphorylating proteins involved in MTORC1 signaling, such as TSC2
454

 and RPTOR
455

 as 

well the MTORC1 target ULK1 (see below).
456-458
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Compound C is an effective and widely used inhibitor of activated (phosphorylated) 

AMPK.
459,460

 However, being a nonspecific inhibitor of oxidative phosphorylation,
461,462

 this 

drug has been observed to inhibit autophagy under conditions where AMPK is already inactive 

or knocked out,
463

 and it has even been shown to stimulate autophagy by an AMP-independent 

mechanism.
462,464 

Compound C thus cannot be used as a stand-alone indicator of AMPK 

involvement, but can be used along with shRNA-mediated inhibition of AMPK. 

TORC1 is an autophagy-suppressive regulator that integrates growth factor, nutrient and 

energy signals. In most systems, inhibition of MTOR leads to induction of autophagy, and 

AMPK activity is generally antagonistic toward MTOR function. MTORC1 mediates the 

autophagy-inhibitory effect of amino acids, which stimulate the MTOR protein kinase through a 

RRAG GTPase dimer. INS/insulin and growth factors activate MTORC1 through upstream 

kinases including AKT/protein kinase B and MAPK1/ERK2-MAPK3/ERK1 when the energy 

supply is sufficient, whereas energy depletion may induce AMPK-mediated MTORC1 inhibition 

and autophagy stimulation, for example, during glucose starvation. In contrast, amino acid 

starvation can strongly induce autophagy even in cells completely lacking AMPK catalytic 

activity.
465

  

AMPK and MTORC1 regulate autophagy through coordinated phosphorylation of ULK1. 

Under glucose starvation, AMPK promotes autophagy by directly activating ULK1 through 

phosphorylation, although the exact AMPK-mediated ULK1 phosphorylation site(s) remains 

unclear (Table 2).
453,456-458

 Under conditions of nutrient sufficiency, high MTORC1 activity 

prevents ULK1 activation by phosphorylating alternate ULK1 residues and disrupting the 

interaction between ULK1 and AMPK. There are commercially available phospho-specific 

antibodies that recognize different forms of ULK1. For example, phosphorylation at Ser555, an 
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AMPK site, is indicative of increased autophagy in response to nutrient stress, whereas Ser757 is 

targeted by MTOR to inhibit autophagy. Even the autophagy-suppressive effects of AMPK 

could, conceivably, be mediated through ULK1 phosphorylation, for example, at the inhibitory 

site Ser638.
466

 AMPK inhibits MTOR by phosphorylating and activating TSC2.
467

 Therefore, 

AMPK is involved in processes that synergize to activate autophagy, by directly activating 

ULK1, and indirectly impairing MTOR-dependent inhibition of ULK1. The identification of 

ULK1 as a direct target of MTORC1 and AMPK represents a significant step toward the 

definition of new tools to monitor the induction of autophagy. However, further studies directed 

at identifying physiological substrates of ULK1 will be essential to understand how ULK1 

activation results in initiation of the autophagy program. Along these lines, ULK1 

phosphorylates AMBRA1,
468

 and the MLCK-like protein Sqa,
469

 as well as ATG13, ATG9 and 

RB1CC1/FIP200.
403,470-473

 Furthermore, following amino acid starvation or MTOR inhibition, 

the activated ULK1 phosphorylates BECN1 on Ser14, enhancing the activity of the complexes 

containing ATG14 and PIK3C3/VPS34. This BECN1 phosphorylation by ULK1 is required for 

full autophagic induction.
474

 In addition, ULK1 binds to, and phosphorylates, RPTOR, leading to 

inhibition of MTORC1.
475

 Furthermore, ULK1 itself appears to be able to mediate inhibitory 

AMPK phosphorylation to generate a negative feedback loop.
476

 Note that caution should be 

taken to use appropriate inhibitors of phosphatases (e.g, sodium fluoride, and beta-

glycerophosphate) in cell lysis buffer before analyzing the phosphorylation of AMPK and ULK1 

at serine and threonine sites.  

TORC1 activity can be monitored by following the phosphorylation of its substrates, 

such as EIF4EBP1/4E-BP1/PHAS-I and RPS6KB/p70S6 kinase or the latter’s downstream 

target, RPS6/S6, for which good commercial antibodies are available.
477-479

 In mammalian cells, 
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the analysis should focus on the phosphorylation of S6K1 at Thr389, and EIF4EBP1 at Thr37 

and Thr46, which are directly phosphorylated by MTORC1.
480

 The MTORC1-dependent 

phosphorylation of EIF4EBP1 can be detected as a molecular mass shift by western blot.
479

 

Examining the phosphorylation status of RPS6KB and EIF4EBP1 may be a better method for 

monitoring MTORC1 activity than following the phosphorylation of proteins such as RPS6, 

because the latter is not a direct substrate of MTORC1 (although RPS6 phosphorylation is a 

good readout for RPS6KB1/2 activities, which are directly dependent on MTOR), and it can also 

be phosphorylated by other kinases such as RPS6KA/RSK. Furthermore, the mechanisms that 

determine the selectivity as well as the sensitivity of MTORC1 for its substrates seem to be 

dependent on the integrity and configuration of MTORC1. For example, rapamycin strongly 

reduces RPS6KB1 phosphorylation, whereas its effect on EIF4EBP1 is more variable. In the 

case of rapamycin treatment, EIF4EBP1 can be phosphorylated by MTORC1 until rapamycin 

disrupts MTORC1 dimerization and its integrity, whereas RPS6KB1 phosphorylation is quickly 

reduced when rapamycin simply interacts with MTOR in MTORC1 (see Autophagy inhibitors 

and inducers for information on catalytic MTOR inhibitors such as torin1).
480

 Since it is likely 

that other inhibitors, stress, and stimuli may also affect the integrity of MTORC1, a decrease or 

increase in the phosphorylation status of one MTORC1 substrate does not necessarily correlate 

with changes in others, including ULK1. Therefore, reliable anti-phospho-ULK1 antibodies 

should be used to directly examine the phosphorylation state of ULK1, along with additional 

experimental approaches to analyze the role of the MTOR complex in regulating autophagy. The 

MTORC1-mediated phosphorylation of AMBRA1 on Ser52 has also been described as relevant 

to ULK1 regulation and autophagy induction.
468,481

 In line with what is described for ULK1, the 
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anti-phospho-AMBRA1 antibody, which is commercially available, could be used to indirectly 

measure MTORC1 activity.
481

 

Activation/assembly of the Atg1 complex in yeast (composed of at least Atg1-Atg13-

Atg17-Atg31-Atg29) or the ULK1 complex in mammals (ULK1-RB1CC1/FIP200-ATG13-

ATG101) is one of the first steps of autophagy induction. Therefore, activation of this complex 

can be assessed to monitor autophagy induction. In yeast, dephosphorylation of Atg13 is 

associated with activation/assembly of the core complex that reflects the reduction of TORC1 

and PKA activities. Therefore, assessing the phosphorylation levels of this protein by 

immunoprecipitation or western blotting
482-485

 can be used not only to follow the early steps  of 

autophagy but also to monitor the activity of some of the upstream nutrient-sensing kinases. 

Because this protein is not easily detected when cells are lysed using conventional procedures, a 

detailed protocol has been described.
486

 In addition, the autophosphorylation of Atg1 at Thr226 

is required for its kinase activity and for autophagy induction; this can be detected using 

phospho-specific antibodies, by immunoprecipitation or western blotting (Fig. 16).
487,488

 In 

Drosophila, TORC1-dependent phosphorylation of Atg1 and Atg1-dependent phosphorylation of 

Atg13 can be indirectly determined by monitoring phosphorylation-induced electromobility 

retardation (gel shift) of protein bands in immunoblot images.
403,489,490

 Nutritional starvation 

suppresses TORC1-mediated Atg1 phosphorylation,
403,489

 while stimulating Atg1-mediated 

Atg13 phosphorylation.
403,489,490

 In mammalian cells, the phosphorylation status of ULK1 at the 

activating sites (Ser317, 777, 467, 555, 637, or Thr574) or dephosphorylation at inactivating sites 

(Ser638, 757) can be determined by western blot using phospho-specific antibodies.
457,458,460,491

 

In general, the core complex is stable in mammalian cells, although, as noted above, upstream 
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inhibitors (MTOR) or activators (AMPK) may interact dynamically with it, thereby determining 

the status of autophagy. 

One additional topic that bears on ULK1 concerns the process of LC3-associated 

phagocytosis (see Noncanonical use of autophagy-related proteins). LAP is a type of 

phagocytosis in macrophages that involves the conjugation of LC3 to single-membrane 

pathogen-containing phagosomes, a process that promotes phagosome acidification and fusion 

with lysosomes.
171

 Although ULK1 is not required for LAP, in this context it is important to note 

that UNC-51 (the Atg1 homolog in C. elegans) is required for apoptotic cell corpse clearance (a 

process corresponding to LAP) during embryonic development in worms,
492

 whereas this process 

is mediated by LAP in mammals,
169

 and does not require UNC-51 in C. elegans Q cell 

neuroblasts.
493

 In human macrophages infected with Mycobacterium tuberculosis, it has been 

shown that MORN2 is recruited at the phagosome membrane containing M. tuberculosis to 

induce the recruitment of LC3, and subsequent maturation into phagolysosomes. In addition, 

MORN2 drives trafficking of M. tuberculosis to a single-membrane compartment. Thus, in 

certain conditions MORN2 can be used to help to make the distinction between autophagy and 

LAP.
494

  

Cautionary notes: A decrease in TORC1 activity is a good measure for autophagy 

induction; however, TORC1 activity does not necessarily preclude autophagy induction because 

there are TOR-independent mechanisms that induce autophagy both in mammals and yeast.
495-499

 

Along these lines, whereas in most systems inhibition of MTOR leads to the induction of 

autophagy, there are instances in commonly used cancer cell lines in which MTOR appears to be 

a positive effector.
500

 Also, MTOR suppression does not always induce autophagy, such as when 

BECN1 undergoes inhibitory phosphorylation by the growth factor signaling molecules EGFR 
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and AKT.
501,502

 Note that the effect of everolimus in EGFR-transgenic mice is not mainly 

attributable to autophagy although it suppresses MTOR and induces autophagy in EGFR-driven 

lung cancer cell lines.
503

 In adult skeletal muscle, active MTORC1 phosphorylates ULK1 at 

Ser757 to inhibit the induction of autophagosome formation. Thus, induction of autophagy 

requires inhibition of MTORC1 and not of MTORC2.
504,505

 There is also evidence that inhibition 

of MTORC1 is not sufficient to maintain autophagy flux, but requires additional activation of 

FOXO transcription factors for the upregulation of autophagy gene expression.
448

 In addition, 

MTORC1 is downstream of AKT; however, oxidative stress inhibits MTOR, thus allowing 

autophagy induction, despite the concomitant activation of AKT.
141

 Also, persistent MTORC1 

inhibition can cause downregulation of negative feedback loops on IRS-MTORC2-AKT that 

results in the reactivation of MTORC2 under conditions of ongoing starvation.
207,396,506

 Along 

these lines, both TORC1 and autophagy can be active in specific cell subpopulations of yeast 

colonies.
499

 Thus, it is necessary to be cautious in deciding how to monitor the TOR/MTOR 

pathway, and to verify that the pathway being analyzed displays TOR/MTOR-dependent 

inhibition.  

In addition, the regulation of autophagy by MTOR can be ULK1-independent. During 

mycobacterial infection of macrophages, MTOR induces the expression of MIR155 and MIR31 

to sustain the activation of the WNT5A and SHH/sonic hedgehog pathways. Together, these 

pathways contribute to the expression of lipoxygenases and downregulation of IFNG-induced 

autophagy.
507

 Signaling pathways can be monitored by western blotting, and TaqMan miRNA 

assays are available to detect these miRNAs. 

One problem in monitoring assembly of the ULK1 complex is the low abundance of 

endogenous ULK1 in many systems, which makes it difficult to detect phospho-ULK1 by 
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western blot analysis. In addition, Atg1/ULK1 is phosphorylated by multiple kinases, and the 

amount of phosphorylation at different sites can increase or decrease during autophagy 

induction. Thus, although there is an increase in phosphorylation at the activating sites upon 

induction, the overall phosphorylation states of ULK1 and ATG13 are decreased under 

conditions that lead to induction of autophagy; therefore, monitoring changes in phosphorylation 

by following molecular mass shifts upon SDS-PAGE may not be informative. In addition, such 

phosphorylation/dephosphorylation events are expected to occur relatively early (1-2 h) in the 

signaling cascade of autophagy. Therefore, it is necessary to optimize treatment time conditions. 

Finally, in Arabidopsis and possibly other eukaryotes, the ATG1 and ATG13 proteins are targets 

of autophagy, which means that their levels may drop substantially under conditions that induce 

autophagic turnover.
238

 

At present, the use of Atg1/ULK1 kinase activity as a tool to monitor autophagy is 

limited because only a few physiological substrates have been identified, and the importance of 

the Atg1/ULK1-dependent phosphorylation has not always been determined. Nonetheless, 

Atg1/ULK1 kinase activity appears to increase when autophagy is induced, irrespective of the 

pathway leading to induction. As additional physiological substrates of Atg1/ULK1 are 

identified, it will be possible to follow their phosphorylation in vivo as is done with analyses for 

MTOR. Nonetheless, it must be kept in mind that monitoring changes in the activity of 

Atg1/ULK1 is not a direct assay for autophagy, although such changes may correlate with 

autophagy activity. Furthermore, in some cells ULK1 has functions in addition to autophagy, 

such as in axonal transport and outgrowth, and its activity state may thus reflect its role in these 

processes.
508-513

 Accordingly, other methods as described throughout these guidelines should also 

be used to follow autophagy directly.  
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Finally, there is not a complete consensus on the specific residues of ULK1 that are 

targeted by AMPK or MTOR. Similarly, apparently contradictory data have been published 

regarding the association of AMPK and MTOR with the ULK1 kinase complex under different 

conditions. Therefore, caution should be used in monitoring ULK1 phosphorylation or the status 

of ULK1 association with AMPK until these issues are resolved.  

Conclusion: Assays for Atg1/ULK1 can provide detailed insight into the induction of 

autophagy, but they are not a direct measurement of the process. Similarly, since MTOR 

substrates such as RPS6KB1 and EIF4EBP1 are not recommended readouts for autophagy, their 

analysis needs to be combined with other assays that directly monitor autophagy activity. 

 

5. Additional autophagy-related protein markers. Although Atg8/LC3 has been the most 

extensively used protein for monitoring autophagy, other proteins can also be used for this 

purpose. Here, we discuss some of the more commonly used or better-characterized possibilities. 

 a. Atg9. Atg9 is the only integral membrane Atg protein that is essential for 

autophagosome formation in all eukaryotes. Mammalian ATG9 displays partial colocalization 

with GFP-LC3.
514

 Perhaps the most unique feature of Atg9, however, is that it localizes to 

multiple discrete puncta, whereas most Atg proteins are detected primarily in a single punctum 

or diffusely within the cytosol. Yeast Atg9 may cycle between the phagophore assembly site 

(PAS) and peripheral reservoirs;
515

 the latter correspond to tubulovesicular clusters that are 

precursors to the phagophore.
516

 Anterograde movement to the PAS is dependent on Atg11, 

Atg23, Atg27 and actin. Retrograde movement requires Atg1-Atg13, Atg2-Atg18 and the 

PtdIns3K complex I.
517

 Mutants such as atg1∆ accumulate Atg9 primarily at the PAS, and this 

phenotype forms the basis of the “transport of Atg9 after knocking out ATG1” (TAKA) assay.
98
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In brief, this is an epistasis analysis in which a double-mutant strain is constructed (one of the 

mutations being atg1∆) that expresses Atg9-GFP. If the second mutated gene encodes a protein 

that is needed for Atg9 anterograde transport, the double mutant will display multiple Atg9-GFP 

puncta. In contrast, if the protein acts along with or after Atg1, all of the Atg9-GFP will be 

confined to the PAS. Monitoring the localization of ATG9 has not been used extensively in 

higher eukaryotes, but this protein displays the same type of dependence on Atg1/ULK1 and 

PtdIns3P for cycling as seen in yeast,
514,517

 suggesting that it is possible to follow this ATG9 as 

an indication of ULK1 and ATG13 function.
472

 

 b. Atg12–Atg5. ATG5, ATG12 and ATG16L1 associate with the phagophore and have 

been detected by fluorescence or immunofluorescence (Fig. 17).
518,519

 The endogenous proteins 

form puncta that can be followed to monitor autophagy upregulation. Under physiological 

conditions, these proteins are predominantly diffusely distributed throughout the cytoplasm. 

Upon induction of autophagy, for example during starvation, there is a marked increase in the 

proportion of cells with punctate ATG5, ATG12 and ATG16L1. Furthermore, upstream 

inhibitors of autophagosome formation result in a block in this starvation-induced puncta 

formation, and this assay is very robust in some mammalian cells. Conversely, downstream 

inhibition of autophagy at the level of autophagosome elongation, such as with inhibition of 

LC3/GABARAP expression, results in an accumulation of the phagophore-associated ATG5, 

ATG12 and ATG16L1 immunofluorescent puncta.
520

 

ATG12–ATG5 conjugation has been used in some studies to measure autophagy. In 

Arabidopsis and some mammalian cells it appears that essentially all of the ATG5 and ATG12 

proteins exist in the conjugated form and the expression levels do not change, at least during 

short-term starvation.
200,518,519,521

 Therefore, monitoring ATG12–ATG5 conjugation per se may 
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not be a useful method for following the induction of autophagy. It is worth noting, however, 

that in some cell lines free ATG5 can be detected,
522

 suggesting that the amount of free ATG5 

may be cell line-dependent; free ATG5 levels also vary in response to stress such as DNA 

damage.
523

 One final parameter that may be considered is that the total amount of the ATG12–

ATG5 conjugate may increase following prolonged starvation as has been observed in 

hepatocytes and both mouse and human fibroblasts (A.M. Cuervo, personal communication; S. 

Sarkar, personal communication). 

 c. ATG14. Yeast Atg14 is the autophagy-specific subunit of the Vps34 complex I,
524

 and 

a human homolog, named ATG14/ATG14L/BARKOR, has been identified.
525-528

 ATG14 

localizes primarily to phagophores. The C-terminal fragment of the protein, named the BATS 

domain, is able to direct GFP and BECN1 to autophagosomes in the context of a chimeric 

protein.
529

 ATG14-GFP or BATS-GFP detected by fluorescence microscopy or TEM can be 

used as a phagophore marker protein; however, ATG14 is not localized exclusively to 

phagophores, as it can also be detected on mature autophagosomes as well as the ER.
529,530

 

Accordingly, detection of ATG14 should be carried out in combination with other phagophore 

and autophagosome markers. A good antibody that can be used to detect endogenous ATG14 is 

now available commercially. 

 d. ATG16L1. ATG16L1 has been used to monitor the movement of plasma membrane as 

a donor for autophagy, and thus an early step in the process. Indeed, ATG16L1 is located on 

phagophores, but not on completed autophagosomes.
326,531

 ATG16L1 can be detected by 

immuno-TEM, by immunostaining of Flag epitope-tagged ATG16L1, and/or by the use of GFP-

tagged ATG16L1. 
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 e. Atg18/WIPI family. Yeast Atg18
532,533

 and Atg21
317

 (or the mammalian WIPI 

homologs
534

) are required for both macroautophagy (i.e., nonselective sequestration of 

cytoplasm) and autophagy-related processes (e.g., the Cvt pathway,
535,536

 specific organelle 

degradation,
111

 and autophagic elimination of invasive microbes
114,115,117,118,537

).
532

 These 

proteins bind phosphatidylinositol 3-phosphate (PtdIns3P) that is present at the phagophore and 

autophagosome
538,539

 and also PtdIns(3,5)P2. Human WIPI1 and WIPI2 function downstream of 

the class III phosphatidylinositol 3-kinase complex I (PIK3C3/VPS34, BECN1, PIK3R4/VPS15, 

ATG14) and upstream of both the ATG12 and LC3 ubiquitin-like conjugation systems.
538,540,541

 

Upon the initiation of the autophagic pathway, WIPI1 and WIPI2 bind PtdIns3P and accumulate 

at limiting membranes, such as those of the ER, where they participate in the formation of 

omegasomes and/or autophagosomes. On the basis of quantitative fluorescence microscopy, this 

specific WIPI protein localization has been used as an assay to monitor autophagy in human 

cells.
539

 Using either endogenous WIPI1 or WIPI2, detected by indirect fluorescence microscopy 

or EM, or transiently or stably expressed tagged fusions of GFP to WIPI1 or WIPI2, basal 

autophagy can be detected in cells that display WIPI puncta at autophagosomal membranes. In 

circumstances of increased autophagic activity, such as nutrient starvation or rapamycin 

administration, the induction of autophagy is reflected by the elevated number of cells that 

display WIPI puncta when compared to the control setting. Also, in circumstances of reduced 

autophagic activity such as wortmannin treatment, the reduced number of WIPI puncta-positive 

cells reflects the inhibition of autophagy. Basal, induced and inhibited formation of WIPI puncta 

closely correlates with both the protein level of LC3-II and the formation of GFP-LC3 

puncta.
539,541

 Accordingly, WIPI puncta can be assessed as an alternative to LC3. Automated 

imaging and analysis of fluorescent WIPI1 (Fig. 18) or WIPI2 puncta represent an efficient and 
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reliable opportunity to combine the detection of WIPI proteins with other parameters. It should 

be noted that there are 2 isoforms of WIPI2 (2B and 2D),
541

 and in C. elegans WIPI4 (EPG-6) 

has been identified as the WIPI homolog required for autophagy.
542

 Thus, these proteins, along 

with the currently uncharacterized WDR45B/WIPI3, provide additional possibilities for 

monitoring phagophore and autophagosome formation. 

Cautionary notes: With regard to detection of the WIPI proteins, endogenous WIPI1 

puncta cannot be detected in many cell types,
538

 and the level of transiently expressed GFP-

WIPI1 puncta is cell context-dependent
538,539

 However, this approach has been used in human 

and mouse cell systems
450,539

 and mCherry-Atg18 also works well for monitoring autophagy in 

transgenic Drosophila,
127

 although one caution with regard to the latter is that GFP-Atg18 

expression enhances Atg8 lipidation in the fat body of fed larvae. GFP-WIPI1 and GFP-WIPI2 

have been detected on the completed (mature) autophagosome by freeze-fracture analysis,
95

 but 

endogenous WIPI2 has not been detected on mRFP-LC3- or LAMP2-positive autophagosomes 

or autolysosomes using immunolabeling.
538

 Accordingly, it may be possible to follow the 

formation and subsequent disappearance of WIPI puncta to monitor autophagy induction and 

flux using specific techniques. As with GFP-LC3, overexpression of WIPI1 or WIPI2 can lead to 

the formation of aggregates, which are stable in the presence of PtdIns3K inhibitors. 

 f. BECN1/Vps30/Atg6. BECN1 (yeast Vps30/Atg6) and PIK3C3/VPS34 are essential 

partners in the autophagy interactome that signals the onset of autophagy,
524,543,544

 and many 

researchers use this protein as a way to monitor autophagy. BECN1 is inhibited by its binding to 

the anti-apoptotic protein BCL2.
545

 Autophagy is induced by the release of BECN1 from BCL2 

by pro-apoptotic BH3 proteins, phosphorylation of BECN1 by DAPK1 (at Thr119, located in the 

BH3 domain),
546

 or phosphorylation of BCL2 by MAPK8/JNK1 (at Thr69, Ser70 and 
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Ser87).
547,548

 The relationship between BECN1 and BCL2 is more complex in developing 

cerebellar neurons, as it appears that the cellular levels of BCL2 are, in turn, post-translationally 

regulated by an autophagic mechanism linked to a switch from immaturity to maturity.
549,550

 It is 

important to be aware, however, that certain forms of macroautophagy are induced in a BECN1-

independent manner and are not blocked by PtdIns3K inhibitors.
76,551

 Interestingly, caspase-

mediated cleavage of BECN1 inactivates BECN1-induced autophagy and enhances apoptosis in 

several cell types,
552

 emphasizing that the crosstalk between apoptosis and autophagy is 

complex. 

Although a population of BECN1 may localize in proximity to the trans-Golgi 

network,
553

 it is also present at the ER and mitochondria.
545

 In keeping with these observations, 

in cerebellar organotypic cultures BECN1 co-immunoprecipitates with BCL2 that is primarily 

localized at the mitochondria and ER; and in a mouse model of neurodegeneration, autophagic 

vacuoles in Purkinje neurons contain partially digested organelles that are immunoreactive for 

BCL2.
550,554

 In addition, BECN1 and PIK3C3/VPS34 can be present in multiple complexes, so 

caution must be exercised when monitoring localization. On induction of autophagy by various 

stimuli the presence of BECN1- and PIK3C3/VPS34-positive macroaggregates can be detected 

in the region of the Golgi complex by immunofluorescence.
141,555

 Thus, BECN1-GFP puncta 

detected by fluorescence microscopy or TEM may serve as an additional marker for autophagy 

induction;
556

 however, it should be noted that caspase cleavage of BECN1 can be detected in 

normal culture conditions (S Luo, personal communication), and cleaved BECN1 is translocated 

into the nucleus,
557

 thus care needs to be taken with these assays under stress conditions in which 

more pronounced BECN1 cleavage occurs. In addition, as with any GFP chimeras there is a 

concern that the GFP moiety interferes with correct localization of BECN1. To demonstrate that 
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BECN1 or PtdIns3K macroaggregates are an indirect indication of ongoing autophagy, it is 

mandatory to show their specific association with the process by including appropriate controls 

with inhibitors (e.g., 3-MA) or autophagy gene silencing. When a BECN1-independent 

autophagy pathway is induced, such aggregates are not formed regardless of the fact that the cell 

expresses BECN1 (e.g., as assessed by western blotting; C. Isidoro, personal communication). 

As BECN1-associated PtdIns3K activity is crucial in autophagosome formation in BECN1-

dependent autophagy, the measurement of PtdInsk3K in vitro lipid kinase activity in BECN1 

immunoprecipitates can be a useful technique to monitor the functional activity of this complex 

during autophagy modulation.
501,502,558

 

 g. DRAM1. DRAM1 is a gene induced by activated TP53 in response to different types 

of cellular stress, including DNA damage.
559,560

 DRAM1 is a small hydrophobic protein with 6 

transmembrane domains. It is detected as a subpopulation in the Golgi and cis-Golgi, 

colocalizing with GOLGB1/giantin and GOLGA2/GM130, and also in early and late endosomes 

and lysosomes, colocalizing with EEA1 and LAMP2.
560

 The elimination of DRAM1 by siRNA 

blocks autophagy,
560,561

 as effectively as elimination of BECN1, indicating it is an essential 

component for this process, although its mechanism of action is not known. The time course of 

autophagy as a consequence of DRAM1 activation can be monitored by immunoblot by 

following the disappearance of the VRK1 protein, a direct target of this process.
560

 Detection of 

DRAM1 RNA is very easy by quantitative real-time reverse transcription polymerase chain 

reaction (qRT-PCR) during autophagy; 
559,560

 however, detection of the DRAM1 protein is very 

difficult because of its small size and hydrophobicity, features that complicate the generation of 

specific antibodies, which in general have very low sensitivity. 
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 h. ZFYVE1/DFCP1. ZFYVE1 binds PtdIns3P that localizes to the ER and Golgi. 

Starvation induces the translocation of ZFYVE1 to punctate structures on the ER; the ER 

population of ZFYVE1 marks the site of omegasome formation.
562

 ZFYVE1 partially colocalizes 

with WIPI1 upon nutrient starvation
541

 and also with WIPI2.
538

  

 i. STX17. STX17 is a SNARE protein that is recruited to completely sealed 

autophagosomes, but not to phagophores.
563,564

 As little STX17 is present on autolysosomes, 

STX17 is enriched on completed autophagosomes among autophagy-related structures. 

However, STX17 as a competence factor may be recruited just prior to fusion of 

autophagosomes with lysosomes, and not all autophagosomes are positive for this protein. 

Moreover, it is also present in the ER and mitochondria. 

 j. TECPR1. TECPR1 binds ATG5 through an AFIM (ATG5 [five] interacting motif). 

TECPR1 competes with ATG16L1 for binding to ATG5, suggesting that there is a transition 

from the ATG5-ATG16L1 complex that is involved in phagophore expansion to an ATG5-

TECPR1 complex that plays a role in autophagosome-lysosome fusion. TECPR1 thus marks 

lysosomes and autolysosomes.
565

 

Conclusion: Proteins other than Atg8/LC3 can be monitored to follow autophagy, and 

these can be important tools to define specific steps of the process. For example, WIPI puncta 

formation can be used to monitor autophagy, but, similar to Atg8/LC3, should be examined in 

the presence and absence of lysosomal inhibitors. Analysis of WIPI puncta should be combined 

with other assays because individual members of the WIPI family might also participate in 

additional, uncharacterized functions apart from their role in autophagy. At present, we caution 

against the use of changes in BECN1 localization as a marker of autophagy induction. It is also 

worth considering the use of different markers depending on the specific autophagic stimuli. 
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6. Sphingolipids. Sphingolipids are ubiquitous membrane lipids that participate in the 

formation of different membrane structures and subcellular organelles, including mitochondria 

and the ER, but they are also involved in the intermixing of cell membranes.
566

 Along these 

lines, gangliosides, a class of sphingolipids, can be involved in autolysosome morphogenesis.
567

 

To analyze the role of gangliosides in autophagy, 2 main technical approaches can be used: co-

immunoprecipitation and fluorescence resonance energy transfer. For the first, lysates from 

untreated or autophagy-induced cells have to be immunoprecipitated with an anti-LC3 

polyclonal antibody (a rabbit IgG isotypic control should be used as a negative control). The 

obtained immunoprecipitates are subjected to ganglioside extraction, and the extracts run on an 

HPTLC aluminum-backed silica gel and analyzed for the presence of specific gangliosides by 

using monoclonal antibodies. Alternatively, the use of FRET by flow cytometry appears to be 

extremely sensitive to small changes in distance between 2 molecules and is thus suitable to 

study molecular interactions, for example, between a ganglioside and LC3. Of note, 

immunoprecipitation requires ~10 times as much biological material as FRET. 

 In addition, recent data illustrate that direct association between ceramide, a tumor 

suppressor sphingolipid (generated by CERS1 [ceramide synthase 1]) and LC3-II targets 

damaged mitochondria for autophagosomal sequestration in response to ceramide stress, leading 

to tumor suppression.
568-570

 Ceramide-LC3-II binding can be detected using anti-ceramide and 

anti-LC3 antibodies by immunofluorescence and confocal microscopy, co-immunoprecipitation 

using anti-LC3 antibody followed by liquid chromatography-mass spectrometry (lipidomics), or 

labeling cells with biotin-sphingosine to generate biotin-ceramide, and immunoprecipitation 

using avidin-columns followed by western blotting to detect LC3-II. It should be noted that 
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inhibitors of ceramide generation, mutants of LC3 with altered ceramide binding (F52A or 

I35A), and/or that are conjugation defective (e.g., G120A), should be used as negative controls.  

 Conclusion: Sphingolipids are bioactive molecules that play key roles in the regulation 

of autophagy at various stages, including autolysosome morphogenesis, and/or targeting 

phagophores to mitochondria for degradation mainly via sphingolipid-LC3 association. There are 

also studies that implicate a role for sphingolipids in the control of upstream signal transduction 

pathways to regulate autophagy via transcriptional and/or translational mechanisms.
569

 

 

7. Transcriptional, translational and posttranslational regulation. The induction of 

autophagy in certain scenarios is accompanied by an increase in the mRNA levels of certain 

autophagy genes, such as ATG7,
571,572

 ATG8/Lc3,
573,574

 ATG9,
575

 Atg12,
576

 and Atg14,
577

 and an 

autophagy-dedicated microarray was developed as a high-throughput tool to simultaneously 

monitor the transcriptional regulation of all genes involved in, and related to, autophagy.
578

 The 

mammalian gene that shows the greatest transcriptional regulation in the liver (in response to 

starvation and circadian signals) is Ulk1, but others also show more limited changes in mRNA 

levels including Gabarapl1, Bnip3 and, to a minor extent, Lc3b (JD Lin, personal 

communication). In several mouse and human cancer cell lines, ER stress and hypoxia increase 

the transcription of Lc3/LC3, Atg5/ATG5 and Atg12/ATG12 by a mechanism involving the 

unfolded protein response (UPR). Similarly, a stimulus-dependent increase in LC3B expression 

is detected in neural stem cells undergoing autophagy induction.
579

 Increased expression of Atg5 

in vivo after optic nerve axotomy in mice
580

 and increased expression of Atg7, Becn1 and Lc3a 

during neurogenesis at different embryonic stages in the mouse olfactory bulb are also seen.
581

 

LC3 and ATG5 are not required for the initiation of autophagy, but mediate phagophore 
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expansion and autophagosome formation. In this regard, the transcriptional induction of LC3 

may be necessary to replenish the LC3 protein that is turned over during extensive ER stress- and 

hypoxia-induced autophagy.
576,582

 Thus, assessing the mRNA levels of LC3 and other 

autophagy-related genes by northern blot or qRT-PCR may provide correlative data relating to 

the induction of autophagy. Downregulation of autophagy-related mRNAs has been observed in 

human islets under conditions of lipotoxicity
390

 that impair autophagic flux.
583

 It is not clear if 

these changes are sufficient to regulate autophagy, however, and therefore these are not direct 

measurements.  

Several transcription factors of the nuclear receptor superfamily modulate gene 

expression of autophagy genes. For instance, NR1D1/Rev-erbα represses Ulk1, Bnip3, Atg5, 

Park2/parkin and Becn1 gene expression in mouse skeletal muscle by directly binding to 

regulatory regions in their DNA sequences. Consistently, nr1d1
-/-

 mice display an increased 

LC3-II/LC3-I ratio, as well as PARK2 and BNIP3 protein levels, elevated autophagy flux as 

measured upon different inhibitor (3-MA, NH4Cl, bafilomycin A1 and chloroquine) treatment 

and autophagosomes detected by EM of skeletal muscle sections.
584

 The nuclear receptors 

PPARA (peroxisome proliferator-activated receptor alpha) and NR1H4/FXR (nuclear receptor 

subfamily 1, group H, member 4) also regulate hepatic autophagy in mice. Indeed, PPARA and 

NR1H4 compete for the control of lipophagy in response to fasting and feeding nutritional cues, 

respectively.
585

 NR1H4 may also inhibit autophagy via inhibition of CREB-CRTC2 complex 

assembly.
586

 

Of note, large changes in Atg gene transcription just prior to Drosophila salivary gland 

cell death (that is accompanied by an increase in autophagy) are detected for Atg2, Atg4, Atg5 

and Atg7, whereas there is no significant change in Atg8a or Atg8b mRNA.
587,588

 Autophagy is 
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critical for Drosophila midgut cell death, which is accompanied by transcriptional upregulation 

of all of the Atg genes tested, including Atg8a (Fig. 19).
263,589

 Similarly, in the silkworm 

(Bombyx mori) larval midgut
590

 and fat body,
591

 the occurrence of autophagy is accompanied by 

an upregulation of the mRNA levels of several Atg genes. Transcriptional upregulation of 

Drosophila Atg8a and Atg8b is also observed in the fat body following induction of autophagy at 

the end of larval development,
592

 and these genes as well as Atg2, Atg9 and Atg18 show a more 

than 10-fold induction during starvation.
593

 Atg5, Atg6, Atg8a and Atg18 are upregulated in the 

ovary of starved flies,
594

 and an increase in Drosophila Atg8b is observed in cultured Drosophila 

l(2)mbn cells following starvation (S. Gorski, personal communication). An upregulation of plant 

ATG8 may be needed during the adaptation to reproductive growth; a T-DNA inserted mutation 

of rice ATG8b blocked the change from vegetative growth to reproductive growth in both 

homozygous and heterozygous plant lines (M.-Y. Zhang, unpublished results). 

Similarly, the upregulation of autophagy-related genes (Lc3, Gabarapl1, Bnip3, Atg4b, 

Atg12l) has been documented at the transcriptional and translational level in several other species 

(e.g., mouse, rat, trout, Arabidopsis and maize) under conditions of ER stress,
576

 and diverse 

types of prolonged (several days) catabolic situations including cancer cachexia, diabetes 

mellitus, uremia and fasting.
201,448,595-597

 Along these lines, ATG9 and ATG16L1 are 

transcriptionally upregulated upon influenza virus infection (H. Khalil, personal 

communication), and in C. elegans, the FOXA transcription factor PHA-4 and the TFEB 

ortholog (see Methods and challenges of specialized topics/model systems. C. elegans) HLH-30 

regulate the expression of several autophagy-related genes.
598,599

 Such prolonged induction of the 

expression of ATG genes has been thought to allow the replenishment of critical proteins (e.g., 

LC3 and GABARAP) that are destroyed during autophagosome fusion with the lysosome.
600

 The 
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polyamine spermidine increases life span and induces autophagy in cultured yeast and 

mammalian cells, as well as in nematodes and flies. In aging yeast, spermidine treatment triggers 

epigenetic deacetylation of histone H3 through inhibition of histone acetyltransferases, leading to 

significant upregulation of various autophagy-related transcripts.
601

 

In addition to the ATG genes, transcriptional upregulation of VMP1 (a protein that is 

involved in autophagy regulation and that remains associated with the completed 

autophagosome) can be detected in mammalian cells subjected to rapamycin treatment or 

starvation, and in tissues undergoing disease-induced autophagy such as cancer.
602

 VMP1 is an 

essential autophagy gene that is conserved from Dictyostelium to mammals,
304,603

 and the VMP1 

protein regulates early steps of the autophagic pathway.
540

 VMP1 is poorly expressed in 

mammalian cells under nutrient-normal conditions, but is highly upregulated in cells undergoing 

autophagy, and the expression of VMP1 induces autophagosome formation. The GLI3 

transcription factor is an effector of KRAS that regulates the expression and promoter activity of 

VMP1, using the histone acetyltransferase EP300/p300 as a co-activator.
604

 

A gene regulatory network, named CLEAR (coordinated lysosomal expression and 

regulation) that controls both lysosome and autophagosome biogenesis was identified using a 

systems-biology approach.
605-607

 The basic helix-loop-helix transcription factor TFEB acts as a 

master gene of the CLEAR network and positively regulates the expression of both lysosomal 

and autophagy genes, thus linking the biogenesis of 2 distinct types of cellular compartments that 

cooperate in the autophagic pathway. TFEB activity is regulated by starvation and is controlled 

by both MAPK1/ERK2- and MTOR-mediated phosphorylation at specific serine 

residues;
605,608,609

 thus, it can serve as a new tool for monitoring transcriptional regulation 

connected with autophagy. TFEB is phosphorylated by MTORC1 on the lysosomal surface, 
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preventing its nuclear translocation. A lysosome-to-nucleus signaling mechanism 

transcriptionally regulates autophagy and lysosomal biogenesis via MTOR and TFEB.
609

 A very 

useful readout of endogenous TFEB activity is the evaluation of TFEB subcellular localization, 

as activation of TFEB correlates with its translocation from the cytoplasm to the nucleus. This 

shift can be monitored by immunofluorescence using antibodies against TFEB. TFEB 

localization may also be studied to monitor MTOR activity, as in most cases TFEB nuclear 

localization correlates with inhibition of MTOR. However, due to the low expression levels of 

TFEB in most cells and tissues, it may be difficult to visualize the endogenous protein. Thus a 

TFEB nuclear translocation assay was developed in a HeLa cell line stably transfected with 

TFEB-GFP. This fluorescence assay can be used to identify the conditions and factors that 

promote TFEB activation.
609

 TFE3 and MITF, 2 other members of the MiT/TFE family of 

transcription factors, in some cases can compensate for TFEB and are regulated in a similar 

manner.
610,611

 

Similar to TFEB, the erythroid transcription factor GATA1 and its coregulator 

ZFPM1/FOG1 induce the transcription of multiple genes encoding autophagy components. This 

developmentally regulated transcriptional response is coupled to increases in autophagosome 

number as well as the percent of cells that contain autophagosomes.
612

 FOXO transcription 

factors, especially FOXO1 and FOXO3, also play critical roles in the regulation of autophagy 

gene expression,
448,577,613

 and are negatively regulated by AKT. Finally, CEBPB/C/EBP is a 

transcription factor that regulates autophagy in response to the circadian cycle.
614

 

Although less work has been done on post-transcriptional regulation, several studies 

implicate microRNAs in controlling the expression of proteins associated with autophagy.
227,615-

617
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Cautionary notes: Most of the ATG genes do not show significant changes in mRNA 

levels when autophagy is induced. Even increases in LC3 mRNA can be quite modest and are 

cell type- and organism-dependent.
618

 In addition, it is generally better to follow protein levels, 

which, ultimately, are the significant parameter with regard to the initiation and completion of 

autophagy. However, ATG protein amounts do not always change significantly and the extent of 

increase is again cell type- and tissue-dependent. In some cases (e.g., yeast ATG14), increased 

transcription is not accompanied by increased protein levels, apparently due to changes in 

translation efficiency under starvation conditions (H. Abeliovich, unpublished data). Finally, 

changes in autophagy protein levels are not sufficient evidence of autophagy induction and must 

be accompanied by additional assays as described herein. Thus, monitoring changes in mRNA 

levels for either ATG genes or autophagy regulators may provide some evidence supporting 

upregulation of the potential to undergo autophagy, but should be used along with other methods. 

Another general caution pertains to the fact that in any cell culture system mixed 

populations of cells (for example, those undergoing autophagy or not) exist simultaneously. 

Therefore, only an average level of protein or mRNA expression can be evaluated with most 

methods. This means that the results regarding specific changes in autophagic cells could be 

hidden due to the background of the average data. Along these lines, experiments using single-

cell real-time PCR to examine gene expression in individual cardiomyocytes with and without 

signs of autophagy revealed that the transcription of MTOR markedly and significantly increases 

in autophagic cells in intact cultures (spontaneously undergoing autophagy) as well as in cultures 

treated with proteasome inhibitors to induce autophagy (V. Dosenko, personal communication). 

Finally, researchers need to realize that mammalian cell lines may have mutations that alter 

autophagy signaling or execution; this problem can be avoided by using primary cells. 
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Conclusion: Although there are changes in ATG gene expression that coincide with, and 

may be needed for, autophagy, this has not been carefully studied experimentally. Therefore, at 

the present time we do not recommend the monitoring of ATG gene transcription as a general 

readout for autophagy unless there is clear documentation that the change(s) correlates with 

autophagy activity. 

 

8. Posttranslational modification of ATG proteins. Autophagy is controlled by 

posttranslational modification (PTM) of ATG proteins such as phosphorylation, ubiquitination, 

acetylation, oxidation and cleavage, which can be monitored to analyze the status of the 

process.
325,418,498,502,619-622

 The global deacetylation of proteins, which often accompanies 

autophagy, can be conveniently measured by quantitative immunofluorescence with antibodies 

specifically recognizing acetylated lysine residues.
623

 Indeed, depletion of the nutrient supply 

causes autophagy in yeast or mammalian cells by reducing the nucleo-cytosolic pool of acetyl-

coenzyme A, which provides acetyl groups to acetyltransferases, thus reducing the acetylation 

level of hundreds of cytoplasmic and nuclear proteins.
624

 A global deacetylation of cellular 

proteins is also observed in response to so-called “caloric restriction mimetics”, that is, a class of 

pharmacological agents that deplete the nucleo-cytosolic pool of acetyl-coenzyme A, inhibit 

acetyltransferases (such as EP300) or activate deacetylases (such as SIRT1). All these agents 

reduce protein acetylation levels in cells as they induce autophagy.
625

 One prominent ATG 

protein that is subjected to pro-autophagic deacetylation is LC3.
626,627

 

 

9. Autophagic protein degradation. Protein degradation assays represent a well-established 

methodology for measuring autophagic flux, and they allow good quantification. The general 
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strategy is first to label cellular proteins by incorporation of a radioactive amino acid (e.g., [
14

C]- 

or [
3
H]-leucine, [

14
C]-valine or [

35
S]-methionine; although valine may be preferred over leucine 

due to the strong inhibitory effects of the latter on autophagy), preferably for a period sufficient 

to achieve labeling of the long-lived proteins that best represent autophagic substrates, and then 

to follow this with a long cold-chase so that the assay starts well after labeled short-lived proteins 

are degraded (which occurs predominantly via the proteasome). Next, the time-dependent release 

of acid-soluble radioactivity from the labeled protein in intact cells or perfused organs is 

measured.
3,628,629

 Note that the inclusion of the appropriate unlabeled amino acid (i.e., valine, 

leucine or methionine) in the starvation medium at a concentration equivalent to that of other 

amino acids in the chase medium is necessary; otherwise, the released [
14

C]-amino acid is 

effectively re-incorporated into cellular proteins, which results in a significant underestimation of 

protein degradation. A newer method of quantifying autophagic protein degradation is based on 

L-azidohomoalanine (AHA) labeling.
630

 When added to cultured cells, L-azidohomoalanine is 

incorporated into proteins during active protein synthesis. After a click reaction between an azide 

and an alkyne, the azide-containing proteins can be detected with an alkyne-tagged fluorescent 

dye, coupled with flow cytometry. The turnover of specific proteins can also be measured in a 

pulse-chase regimen using the Tet-ON/OFF or GeneSwitch systems and subsequent western blot 

analysis.
631-633

 

In this type of assay a considerable fraction of the measured degradation will be 

nonautophagic, and thus it is important to also measure, in parallel, cell samples treated with 

autophagy-suppressive concentrations of 3-MA or amino acids, or obtained from mutants 

missing central ATG components (however, it is important to note that these controls are only 

appropriate assuming that nonautophagic proteolytic activity remains unchanged, which is 
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unlikely); these values are then subtracted from the total readouts. The complementary approach 

of using compounds that block other degradative pathways, such as proteasome inhibitors, may 

cause unexpected results and should be interpreted with caution due to crosstalk among the 

degradative systems. For example, blocking proteasome function may activate autophagy.
634-637

 

Thus, when using inhibitors it is critical to know whether the inhibitors being used alter 

autophagy in the particular cell type and context being examined. In addition, because 3-MA 

could have some autophagy-independent effects in particular settings it is advisable to verify that 

the 3-MA-sensitive degradation is also sensitive to general lysosomal inhibitors (such as NH4Cl 

or leupeptin).  

The use of stable isotopes, such as 
13

C and 
15

N, in quantitative mass spectrometry-based 

proteomics allows the recording of degradation rates of thousands of proteins simultaneously. 

These assays may be applied to autophagy-related questions enabling researchers to investigate 

differential effects in global protein or even organelle degradation studies.
638,639

 Stable isotope 

labeling with amino acids in cell culture (SILAC) can also provide comparative information 

between different treatment conditions, or between a wild type and mutant. 

Another assay that could be considered relies on the limited proteolysis of a BHMT 

(betaine--homocysteine S-methyltransferase) fusion protein. The 44-kDa full-length BHMT 

protein is cleaved in hepatocyte amphisomes in the presence of leupeptin to generate 32-kDa and 

10-kDa fragments.
640-643

 Accumulation of these fragments is time dependent and is blocked by 

treatment with autophagy inhibitors. A modified version of this marker, GST-BHMT, can be 

expressed in other cell lines where it behaves similar to the wild-type protein.
644

 Additional 

substrates may be considered for similar types of assays. For example, the neomycin 

phosphotransferase II-GFP (NeoR-GFP)
 
fusion protein is a target of autophagy.

645
 Transfection 
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of lymphoblastoid cells with a plasmid encoding NeoR-GFP followed by incubation in the 

presence of 3-MA leads to an accumulation of the NeoR-GFP protein as measured by flow 

cytometry.
646

 

A similar western blot assay is based on the degradation of a cytosolic protein fused to 

GFP. This method has been used in yeast and Dictyostelium cells using GFP-Pgk1 and GFP-Tkt-

1 (phosphoglycerate kinase and transketolase, respectively). In this case the relative amount of 

the free GFP and the complete fusion protein is the relevant parameter for quantification; 

although it may not be possible to detect clear changes in the amount of the full-length chimera, 

especially under conditions of limited flux.
29,36

 As described above for the marker GFP-

Atg8/LC3, nonsaturating levels of lysosomal inhibitors are also needed in Dictyostelium cells to 

slow down the autophagic degradation, allowing the accumulation and detection of free GFP. It 

should be noted that this method monitors bulk autophagy since it relies on the passive transit of 

a cytoplasmic marker to the lysosome. Consequently, it is important to determine that the marker 

is distributed homogeneously in the cytoplasm. 

One of the most useful methods for monitoring autophagy in Saccharomyces cerevisiae is 

the Pho8∆60 assay. PHO8 encodes the vacuolar alkaline phosphatase, which is synthesized as a 

zymogen before finally being transported to and activated in the vacuole.
647

 A molecular genetic 

modification that eliminates the first 60 amino acids prevents the mutant (Pho8∆60) from 

entering the ER, leaving the zymogen in the cytosol. When autophagy is induced, the mutant 

zymogen is delivered to the vacuole nonselectively inside autophagosomes along with other 

cytoplasmic material. The resulting activation of the zymogen can be easily measured by 

enzymatic assays for alkaline phosphatase.
243

 To minimize background activity, it is preferable 
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to have the gene encoding cytosolic alkaline phosphatase (PHO13) additionally deleted 

(although this is not necessary when assaying certain substrates). 

Cautionary notes: Measuring the degradation of long-lived proteins requires prior 

radiolabeling of the cells, and subsequent separation of acid-soluble from acid-insoluble 

radioactivity. The labeling can be done with relative ease both in cultured cells and in live 

animals.
3
 In cells, it is also possible to measure the release of an unlabeled amino acid by 

chromatographic methods, thereby obviating the need for prelabeling;
648

 however, it is important 

to keep in mind that amino acid release is also regulated by protein synthesis, which in turn is 

modulated by many different factors. In either case, one potential problem is that the released 

amino acid may be further metabolized. For example, branched chain amino acids are good 

indicators of proteolysis in hepatocytes, but not in muscle cells where they are further oxidized 

(A.J. Meijer, personal communication). In addition, the amino acid can be reincorporated into 

protein; for this reason, such experiments can be carried out in the presence of cycloheximide, 

but this raises additional concerns (see Turnover of autophagic compartments). In the case of 

labeled amino acids, a nonlabeled chase is added where the tracer amino acid is present in excess 

(being cautious to avoid using an amino acid that inhibits autophagy), or by use of single pass 

perfused organs or superfused cells.
649,650

 The perfused organ system also allows for testing the 

reversibility of effects on proteolysis and the use of autophagy-specific inhibitors in the same 

experimental preparation, which are crucial controls for proper assessment.  

If the autophagic protein degradation is low (as it will be in cells in replete medium), it 

may be difficult to measure it reliably above the relatively high background of nonautophagic 

degradation. It should also be noted that the usual practice of incubating the cells under 

“degradation conditions,” that is, in a saline buffer, indicates the potential autophagic capacity 
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(maximal attainable activity) of the cells rather than the autophagic activity that prevails in vivo 

or under rich culture conditions. Finally, inhibition of a particular degradative pathway is 

typically accompanied by an increase in a separate pathway as the cell attempts to compensate 

for the loss of degradative capacity.
213,636,651

 This compensation might interfere with control 

measurements under conditions that attempt to inhibit macroautophagy; however, as the latter is 

the major degradative pathway, the contributions of other types of degradation over the course of 

this type of experiment are most often negligible. Another issue of concern, however, is that 

most pharmacological protease inhibitors have “off target” effects that complicate the 

interpretation of the data. 

The Pho8∆60 assay requires standard positive and negative controls (such as an atg1∆ 

strain), and care must be taken to ensure the efficiency of cell lysis. Glass beads lysis works well 

in general, provided that the agitation speed of the instrument is adequate. Instruments designed 

for liquid mixing with lower speeds should be avoided. We also recommend against holding 

individual sample tubes on a vortex, as it is difficult to maintain reproducibility; devices or 

attachments are available to allow multiple tubes to be agitated simultaneously. Finally, it is also 

important to realize that the deletion of PHO8 can affect yeast cell physiology, especially 

depending on the growth conditions, and this may in turn have consequences for the cell wall; 

cells under starvation stress generate thicker cell walls that can be difficult to degrade 

enzymatically. 

Conclusion: Measuring the turnover of long-lived proteins is a standard method for 

determining autophagic flux. Newer proteomic techniques that compare protein levels in 

autophagy-deficient animals relative to wild-type animals are promising,
652

 but the current 
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ratiometric methods are affected by both protein synthesis and degradation, and thus analyze 

protein turnover, rather than degradation. 

 

10. Selective types of autophagy. Although autophagy can be nonselective, in particular 

during starvation, there are many examples of selective types of autophagy. 

 a. The Cvt pathway, mitophagy, pexophagy, piecemeal microautophagy of the nucleus 

and late nucleophagy in yeast and filamentous fungi. The precursor form of aminopeptidase I 

(prApe1) is the major cargo of the Cvt pathway in yeast, a biosynthetic autophagy-related 

pathway.
120

 The propeptide of prApe1 is proteolytically cleaved upon vacuolar delivery, and the 

resulting shift in molecular mass can be monitored by western blot. Under starvation conditions, 

prApe1 can enter the vacuole through nonselective autophagy, and thus has been used as a 

marker for both the Cvt pathway and autophagy. The yeast Cvt pathway is unique in that it is a 

biosynthetic route that utilizes the autophagy-related protein machinery, whereas other types of 

selective autophagy are degradative. The latter include pexophagy, mitophagy, reticulophagy, 

ribophagy and xenophagy, and each process has its own marker proteins, although these are 

typically variations of other assays used to monitor the Cvt pathway or autophagy. One common 

type of assay involves the processing of a GFP chimera similar to the GFP-Atg8/LC3 processing 

assay (see GFP-Atg8/LC3 lysosomal delivery and proteolysis). For example, yeast pexophagy 

utilizes the processing of Pex14-GFP and Pot1/Fox3/thiolase-GFP,
653,654

 whereas mitophagy can 

be monitored by the generation of free GFP from Om45-GFP, Idh1-GFP, Idp1-GFP or mito-

DHFR-GFP. 
655,656-659

 Localization of these mitochondrially-targeted proteins (or specific 

MitoTracker dyes) or similar organelle markers such as those for the peroxisome (e.g., GFP-SKL 

with Ser-Lys-Leu at the C terminus that acts as a peroxisomal targeting signal, acyl-CoA oxidase 
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3 [Aox3-EYFP] that allows simultaneous observation of peroxisome-vacuole dynamics with the 

single FITC filter set, or GFP-catalase) can also be followed by fluorescence 

microscopy.
532,654,660-662

 In addition, yeast mitophagy requires both the Slt2 and Hog1 signaling 

pathways; the activation and phosphorylation of Slt2 and Hog1 can be monitored with 

commercially available phospho-specific antibodies (Fig. 20).
488

 It is also possible to monitor 

pexophagy in yeasts by the disappearance of activities of specific peroxisome markers such as 

catalase, alcohol oxidase or amine oxidase in cell-free extracts,
663

 or permeabilized cell 

suspensions. Catalase activity, however, is a useful marker only when peroxisomal catalases are 

the only such enzymes present or when activities of different catalases can be distinguished. In S. 

cerevisiae there are 2 genes, CTT1 and CTA1, encoding catalase activity, and only one of these 

gene products, Cta1, is localized in peroxisomes. Activities of both catalases can be 

distinguished using an in-gel activity assay after PAGE under nondenaturing conditions by 

staining with diaminobenzidine.
664,665

 Plate assays for monitoring the activity of peroxisomal 

oxidases in yeast colonies are also available.
660,666

 The decrease in the level of endogenous 

proteins such as alcohol oxidase, Pex14 or Pot1 can be followed by western blotting,
532,667-670

 

TEM,
671

 fluorescence microscopy 
532,672,673

 or laser confocal scanning microscopy of GFP-

labeled peroxisomes.
674,675

  

 Bimolecular fluorescence complementation (BiFC) may be useful to study protein-

protein interactions in the autophagic pathway.
676-678

 In this assay, a protein of interest is cloned 

into a vector containing one half of a fluorescent reporter (e.g., YFP), while a second protein is 

cloned into a different vector containing the other half of the reporter. Constructs are 

cotransfected into cells. If the 2 proteins of interest interact, the 2 halves of the reporter are 

brought into close proximity and a fluorescent signal is reconstituted, which can be monitored by 
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confocal microscopy. This assay can be used to determine protein interactions without prior 

knowledge of the location or structural nature of the interaction interface. Moreover, it is 

applicable to living cells, and relatively low concentrations of recombinant protein are required 

to generate a detectable signal. 

In yeast, nonselective autophagy can be induced by nitrogen starvation conditions, 

whereas degradative types of selective autophagy generally require a carbon source change or 

ER stress for efficient induction. For example, in S. cerevisiae, to induce a substantial level of 

mitophagy, cells need to be precultured in a nonfermentable carbon source such as lactate or 

glycerol to stimulate the proliferation of mitochondria (although this is not the case in Pichia 

pastoris). After sufficient mitochondria proliferation, shifting the cells back to a fermentable 

carbon source such as glucose will cause the autophagic degradation of superfluous 

mitochondria.
656

 It should be noted that in addition to carbon source change, simultaneous 

nitrogen starvation is also required for efficient mitophagy induction. This is possibly because 

excessive mitochondria can be segregated into daughter cells by cell division if growth 

continues.
656

 A similar carbon source change from oleic acid or methanol to ethanol or glucose 

(with or without nitrogen starvation) can be used to assay for pexophagy.
679

 Mitophagy can also 

be induced by treatment with ROS, to induce mitochondria damage.
680

 In addition, mitophagy 

can be induced by culturing the cells in a nonfermentable carbon source to post-log phase. In this 

case, mitophagy may be induced because the energy demand is lower at post-log phase and the 

mitochondrial mass exceeds the cell’s needs.
112,681,682

 It has been suggested by several workers in 

the field that this type of mitophagy, also known as “stationary phase mitophagy,” reflects a 

quality-control function that culls defective mitochondria that accumulate in nondividing, 

respiring cells.
683

 The recently developed tool PMI that pharmacologically induces mitophagy 



 139 

without disrupting mitochondrial respiration
684

 should provide further insight as it circumvents 

the acute, chemically induced, blockade of mitochondrial respiration hitherto adopted to dissect 

the process. Similarly, pexophagy can be induced by culturing the cells in a peroxisome 

proliferation medium to post-log phase (J.-C. Farré, unpublished results). Along these lines, it 

should also be realized that selective types of autophagy continuously occur at a low level under 

noninducing conditions. Thus, organelles such as peroxisomes have a finite life span and are 

turned over at a slow rate by autophagy-related pathways.
685

 

Piecemeal microautophagy of the nucleus (PMN, also micronucleophagy) is another 

selective autophagic subtype, which targets portions of the nucleus for degradation.
686-688

 In S. 

cerevisiae, the nuclear outer membrane, which is continuous with the nuclear ER, forms contact 

sites with the vacuolar membrane. These nucleus-vacuole junctions (NVJs) are generated by 

interaction of the outer nuclear membrane protein Nvj1 with the vacuolar protein Vac8.
689

 Nvj1 

further recruits the ER-membrane protein Tsc13, which is involved in the synthesis of very-long-

chain fatty acids (VLCFAs) and Swh1/Osh1, a member of a family of oxysterol-binding 

proteins. Upon starvation the NVJs bulge into the vacuole and subsequently a PMN-vesicle 

pinches off into the vacuole. PMN vesicles thus contain nuclear material and are limited by 3 

membranes with the outermost derived from the vacuole, and the 2 inner ones from the nuclear 

ER. It is not clear which nuclear components are removed by PMN, but since PMN is not a cell 

death mechanism per se, most likely superfluous material is recycled. During PMN the NVJs are 

selectively incorporated into the PMN vesicles and degraded. Accordingly, PMN can be 

monitored using the proteins that are associated with the NVJs as markers. To quantitatively 

follow PMN, an assay analogous to the above-described GFP-Atg8/LC3 processing assay has 

been established using either GFP-Swh1/Osh1 or Nvj1-GFP. These GFP chimeras are, together 
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with the PMN-vesicles, degraded in the vacuole. Thus, the formation of the relatively 

proteolysis-resistant GFP detected in western blots correlates with the PMN rate. In fluorescence 

microscopy, PMN can be visualized with the same constructs, and a chimera of mCherry fused 

to a nuclear localization signal (NLS-mCherry) can also be used. To assure that the measured 

PMN rate is indeed due to selective micronucleophagy, appropriate controls such as cells lacking 

Nvj1 or Vac8 should be included. Detailed protocols for the described assays are provided in ref. 

690
.  

Late nucleophagy (LN) is another type of selective degradation of the nucleus, which 

specifically targets bulk nucleoplasm for degradation after prolonged periods (20-24 h) of 

nitrogen starvation.
691

 LN induction occurs in the absence of the essential PMN proteins Nvj1 

and Vac8 and, therefore, the formation of NVJs. Although, some components of the core Atg 

machinery are required for LN, Atg11 and the Vps34-containing PtdIns3K complex I are not 

needed. LN can be monitored by employing a nuclear-targeted version of the Rosella biosensor 

(n-Rosella) and following either its accumulation (by confocal microscopy), or degradation (by 

immunoblotting), within the vacuole.
691

 Dual labeling of cells with Nvj1-EYFP, a nuclear 

membrane reporter of PMN, and the nucleoplasm-targeted NAB35-DsRed.T3 (NAB35 is a 

target sequence for the Nab2 RNA-binding protein, and DsRed.T3 is the pH-stable, red 

fluorescent component of n-Rosella) allows detection of PMN soon after the commencement of 

nitrogen starvation, whereas delivery to the vacuole of the nucleoplasm reporter, indicative of 

LN, is observed only after prolonged periods of nitrogen starvation. Few cells show 

simultaneous accumulation of both reporters in the vacuole indicating PMN and LN are 

temporally and spatially separated.
691
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In contrast to unicellular yeasts, filamentous fungi form an interconnected mycelium of 

multinucleate hyphae containing up to 100 nuclei in a single hyphal compartment. A mycelial 

colony grows by tip extension with actively growing hyphae at the colony margin surrounded by 

an older, inner hyphal network that recycles nutrients to fuel the hyphal tips. By labeling 

organelle markers with GFP it is possible to show in Aspergillus oryzae that macroautophagy 

mediates degradation of basal hyphal organelles such as peroxisomes, mitochondria and entire 

nuclei.
692

 In contrast to yeast, PMN has not been observed in filamentous ascomycetes.
693

 In 

Magnaporthe oryzae germination of the condiospore and formation of the appressorium is 

accompanied by nuclear degeneration in the spore.
257

 The degradation of nuclei in spores 

requires the nonselective autophagy machinery, whereas conserved components of the PMN 

pathway such as Vac8 and Tsc13 are dispensable for nuclear breakdown during plant 

infection.
694

 Nuclei are proposed to function in storage of growth-limiting nutrients such as 

phosphate and nitrogen.
695,696

 Similar to nuclei, mitochondria and peroxisomes are also 

preferentially degraded in the basal hyphae of filamentous ascomycetes.
257,692,694-697

 

Cautionary notes: The Cvt pathway has been demonstrated to occur only in yeast. In 

addition, the sequestration of prApe1 is specific, even under starvation conditions, as it involves 

the recognition of the propeptide by a receptor, Atg19, which in turn interacts with the scaffold 

protein Atg11.
698,699

 Thus, unless the propeptide is removed, prApe1 is recognized as a selective 

substrate. Overexpression of prApe1 saturates import by the Cvt pathway, and the precursor 

form accumulates, but is rapidly matured upon autophagy induction.
287

 In addition, mutants such 

as vac8∆ and tlg2∆ accumulate prApe1 under rich conditions, but not during autophagy.
485,700

 

Accordingly, it is possible to monitor the processing of prApe1 when overexpressed, or in certain 

mutant strains to follow autophagy induction. However, under the latter conditions it must be 
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kept in mind that the sequestering vesicles are substantially smaller than typical autophagosomes 

generated during nonselective autophagy; the Cvt complex (prApe1 bound to Atg19) is smaller 

than typical peroxisomes or mitochondrial fragments that are subject to autophagic degradation. 

Accordingly, particular mutants may display complete maturation of prApe1 under autophagy-

inducing conditions, but may still have a defect in other types of selective autophagy, as well as 

being unable to induce a normal level of nonselective autophagy.
98

 For this reason, it is good 

practice to evaluate autophagosome size and number by TEM. Actually, it is much simpler to 

monitor autophagic bodies (rather than autophagosomes) in yeast. First, the vacuole is easily 

identified, making the identification of autophagic bodies much simpler. Second, autophagic 

bodies can be accumulated within the vacuole, allowing for an increased sample size. It is best to 

use a strain background that is pep4∆ vps4∆ to prevent the breakdown of the autophagic bodies, 

and to eliminate confounding vesicles from the multivesicular body pathway. One caveat to the 

detection of autophagic bodies, however, is that they may coalesce in the vacuole lumen, making 

it difficult to obtain an accurate quantification. Finally, it is important to account for biases in 

sample sectioning to obtain an accurate estimate of autophagic body number or size.
701

 

In general, when working with yeast it is preferable to use strains that have the marker 

proteins integrated into the chromosome rather than relying on plasmid-based expression, 

because plasmid numbers can vary from cell to cell. The GFP-Atg8, or similar, processing assay 

is easy to perform and is suitable for analysis by microscopy as well as western blotting; 

however, particular care is needed to obtain quantitative data for GFP-Atg8, Pex14-GFP or 

Om45-GFP, etc. processing assays (see cautionary notes for GFP-Atg8/LC3 lysosomal delivery 

and proteolysis). An alternative is an organelle-targeted Pho8∆60 assay. For example, 

mitoPho8∆60 can be used to quantitatively measure mitophagy.
657

 In addition, for the GFP-Atg8 
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processing assay, 2 h of starvation is generally sufficient to detect a significant level of free (i.e., 

vacuolar) GFP by western blotting as a measure of nonselective autophagy. For selective types 

of autophagy, the length of induction needed for a clearly detectable free GFP band will vary 

depending on the rate of cargo delivery/degradation. Usually 6 h of mitophagy induction is 

needed to be able to detect free GFP (e.g., from Om45-GFP) by western blot under starvation 

conditions, whereas stationary phase mitophagy typically requires 3 days before a free GFP band 

is observed. However, as with animal systems (see Animal mitophagy and pexophagy), it would 

be prudent to follow more than one GFP-tagged protein, as the kinetics, and even the occurrence 

of mitophagic trafficking, seems to be protein species-dependent, even within the mitochondrial 

matrix.
702

 

Care should be taken when choosing antibodies to assess the degree of mitochondrial 

protein removal by autophagy; the quality and clarity of the result may vary depending on the 

specifics of the antibody. In testing the efficiency of mitophagy clearer results may be obtained 

by using antibodies against mtDNA-encoded proteins. This experimental precaution may prove 

critical to uncover subtle differences that could be missed when evaluating the process with 

antibodies against nuclear encoded, mitochondrially imported proteins (M. Campanella personal 

communication).  

b. Aggrephagy. Aggrephagy is the selective removal of aggregates by 

macroautophagy.
703

 This process can be followed in vitro (in cell culture) and in vivo (in mice) 

by monitoring the levels of an aggregate-prone protein such as an expanded polyglutamine 

(polyQ)-containing protein or mutant SNCA/-synuclein (synuclein, alpha [non A4 component 

of amyloid precursor]). Levels are quantified by immunofluorescence, immunogold labeling or 

traditional immunoblot. In yeast, degradation of SNCA aggregates can be followed by promoter 
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shut-off assays. Espression of the inducible GAL1 promoter of GFP-

glucose repression. The removal of aggregates is thus monitored with fluorescence microscopy. 

The contribution of autophagy to SNCA aggregate clearance can be studied by the use of 

different autophagy mutants or by pharmacological treatment with the proteinase B inhibitor 

PMSF.
704,705

 Similarly, fluorescently tagged aggregated proteins such as polyQ80-CFP can be 

monitored via immunoblot and immunofluorescence. In addition to fluorescence methods, 

aggregates formed by a splice variant of CCND2 (cyclin D2) can also be monitored in electron-

dense lysosomes and autophagosomes by immunogold labeling and TEM techniques.
706

 A 

polyQ80-luciferase reporter, which forms aggregates, can also be used to follow aggrephagy.
707

 

A nonaggregating polyQ19-luciferase or untagged full-length luciferase serves as a control. The 

ratio of luciferase activity from these 2 constructs can be calculated to determine autophagic 

flux.  

Autophagic degradation of endogenous aggregates such as lipofuscin can be monitored in 

some cell types by fluorescence microscopy, utilizing the autofluorescence of lipofuscin 

particles. Although under normal conditions almost 99% of the lipofuscin particles are located in 

the autophagosomes/lysosomes, an impairment of macroautophagy leads to free lipofuscin in the 

cytosol.
708,709

 The amount of lipofuscin in primary human adipocytes can be reduced by 

activation of macroautophagy, and the amount of lipofuscin is dramatically reduced in 

adipocytes from patients with type 2 diabetes and chronically enhanced macroautophagy.
277

 

Cautionary notes: Caution must be used when performing immunoblots of aggregated 

proteins, as many protein aggregates fail to enter the resolving gel and are retained in the 

stacking gel. In addition, the polyQ80-luciferase in the aggregated state lacks luciferase activity 

whereas soluble polyQ80-luciferase retains activity. Therefore, caution must be used when 
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interpreting results with these vectors, as treatments that increase aggrephagy or enhance protein 

aggregation can lead to a decrease in luciferase activity.
710

 Finally, soluble polyQ reporters can 

be degraded by the proteasome; thus, changes in the ratio of polyQ19-luciferase:polyQ80-

luciferase may also reflect proteasomal effects and not just changes in autophagic flux. 

 c. Allophagy. In C. elegans, mitochondria, and hence mitochondrial DNA, are eliminated 

from sperm by an autophagic process. This process of allogeneic (nonself) organelle autophagy 

is termed “allophagy.”
711,712

 During allophagy in C. elegans, both paternal mitochondria and 

membranous organelles (a sperm-specific membrane compartment) are eliminated by the 16-cell 

stage (100-120 min post-fertilization).
713,714

 The degradation process can be monitored in living 

embryos with GFP::ubiquitin, which appears in the vicinity of the sperm chromatin (labeled for 

example with mCherry-histone H2B) on the membranous organelles within 3 min after 

fertilization. GFP fusions and antibodies specific for LGG-1 and LGG-2 (Atg8/LC3 homologs), 

which appear next to the sperm DNA, membranous organelles and mitochondria (labeled with 

CMXRos or mitochondria-targeted GFP) within 15 to 30 min post-fertilization, can be used to 

verify the autophagic nature of the degradation. TEM can also be utilized to demonstrate the 

presence of mitochondria within autophagosomes in the early embryo. 

Conclusion: There are many assays that can be used to monitor selective types of 

autophagy, but caution must be used in choosing an appropriate marker(s). The potential role of 

other degradative pathways for any individual organelle or cargo marker should be considered, 

and it is advisable to use more than one marker or technique. 

 d. Animal mitophagy and pexophagy. There is no consensus at the present time with 

regard to the best method for monitoring mitophagy in animals. As with any organelle-specific 

form of autophagy, it is necessary to demonstrate: i) increased levels of autophagosomes 
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containing mitochondria, ii) maturation of these autophagosomes that culminates with 

mitochondrial degradation, which can be blocked by specific inhibitors of autophagy or of 

lysosomal degradation, and iii) whether the changes are due to selective mitophagy or increased 

mitochondrial degradation during nonselective autophagy. Techniques to address each of these 

points have been reviewed.
41,715

   

 Antibodies against phosphorylated ubiquitin (p-S65-Ub) have very recently been 

described as novel tools to detect the activation of PINK1-PARK2-mediated mitophagy.716
 p-

S65-Ub is formed by the kinase PINK1 specifically upon mitochondrial stress, and is amplified 

in the presence of the E3 Ub ligase PARK2 (reviewed in ref. 
717

).
718

 p-S65-Ub antibodies have 

been used to demonstrate stress-induced activation of PINK1 in various cells including primary 

human fibroblasts (Fig. 21). Phosphorylated poly-ubiquitin chains specifically accumulate on 

damaged mitochondria, and staining with p-S65-Ub antibodies can be used, in addition to 

translocation of PARK2, to monitor the intitiation of mitophagy. Given the complete 

conservation of the epitopes across species, mitochondrial p-S65-Ub could also be dectected in 

mouse primary neurons upon mitochondrial depolarization. Furthermore, the p-S65-Ub signal 

partially colocalizes with mitochondrial, lysosomal, and total ubiquitin markers in cytoplasmic 

granules that appear to increase with age and disease in human postmortem brain samples.
716

 

Along with the excellent performance of p-S65-Ub antibodies in a range of applications, these 

findings highlight the potential for future biomarker development. 

Ultrastructural analysis at early time points can be used to establish selective mitophagy, 

although a maturation inhibitor may be needed to trap early autophagosomes with recognizable 

cargo (Fig. 22). Depending on the use of specific imaging techniques, dyes for living cells or 

antibodies for fixed cells have to be chosen. In any case, transfection of the phagophore and 
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autophagosome marker GFP-LC3 to monitor the initiation of mitophagy, or RFP-LC3 to assess 

mitophagy progression, and visualization of mitochondria (independent of their mitochondrial 

membrane potential) makes it possible to determine the association of these 2 cellular 

components. Qualitatively, this may appear as fluorescence colocalization or as rings of GFP-

LC3 surrounding mitochondria in higher resolution images.
719,720

 For live cell imaging 

microscopy, mitochondria should be labeled by a matrix-targeted fluorescent protein transfection 

or by mitochondria-specific dies. When using matrix-targeted fluorophores for certain cell lines 

(e.g., SH-SY5Y), it is important to allow at least 48 h of transient expression for sufficient 

targeting/import of mitochondrial GFP/RFP prior to analyzing mitophagy. Among the 

MitoTracker probes are lipophilic cations that include a chloromethyl group and a fluorescent 

moiety. They concentrate in mitochondria due to their negative charge and react with the reduced 

thiols present in mitochondrial matrix proteins.
721-723

 After this reaction the probe can be fixed 

and remains in the mitochondria independent of altered mitochondrial function or mitochondrial 

membrane potential.
723-725

 This method can thus be used when cells remain healthy as the dye 

will remain in the mitochondria and is retained after fixation, although, as stated above, 

accumulation is dependent on the membrane potential. In addition, some of MitoTracker probes, 

including MitoTracker Green FM and MitoTracker Red FM, are not well retained after fixation. 

Antibodies that specifically recognize mitochondrial proteins such as VDAC, TOMM20 or 

COX4I1 (cytochrome c oxidase subunit IV isoform I) may be used to visualize mitochondria in 

immunohistochemical experimental procedures.
726,727

 In neuronal cells, stabilized PINK1 on the 

mitochondrial outer membrane that accumulates in response to certain forms of acute 

mitochondrial damage is also a useful marker because it differentiates between healthy 

mitochondria and those that have lost their membrane potential. Redistribution of cardiolipin to 
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the outer mitochondrial membrane acts as an elimination signal for mitophagy in mammalian 

cells, including primary neurons, and an ANXA5 (annexin A5) binding assay for externalized 

cardiolipin can also be considered a good marker for damaged mitochondria and early 

mitophagy.
136

 Colocalization analyses of mitochondria and autophagosomes provide an 

indication of the degree of autophagic sequestration. TEM can be used to demonstrate the 

presence of mitochondria within autophagosomes (referred to as mitophagosomes during 

mitophagy), and this can be coupled with bafilomycin A1 treatment to prevent fusion with the 

lysosome.
41

 To quantify early mitophagy, the percentage of LC3 puncta (endogenous, RFP- or 

GFP-LC3 puncta) that colocalize with mitochondria and the number of colocalizing LC3 puncta 

per cell—as assessed by confocal microscopy—in response to mitophagic stimuli can be 

employed as well. In addition, the percentage of lysosomes that colocalize with mitochondria can 

be used to quantify macroautophagy-mediated delivery of mitochondria. Overall, it is important 

to quantify mitophagy at various stages (initiation, progression, and late mitophagy) to identify 

stimuli that elicit this process.
728,729

 

The fusion process of mitophagosomes with hydrolase-containing lysosomes represents 

the next step in the degradation process. To monitor the amount of fused organelles via live cell 

imaging microscopy, MitoTracker® Green FM and LysoTracker® Red DND-99 may be used to 

visualize the fusion process (Fig. 23). Independent of the cell-type specific concentration used 

for both dyes, we recommend exchanging MitoTracker® Green FM with normal medium 

(preferably phenol-free and CO2 independent to reduce unwanted autofluorescence) after 

incubation with the dye, whereas it is best to maintain the LysoTracker® Red stain in the 

incubation medium during the acquisition of images. Given that these fluorescent dyes are 

extremely sensitive to photobleaching, it is critical to perform live cell mitophagy experiments 
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via confocal microscopy, preferably by using a spinning disc confocal microscope for long-term 

imaging experiments. For immuncytochemical experiments, antibodies specific for 

mitochondrial proteins and an antibody against LAMP1 (lysosomal-associated membrane protein 

1) can be used. Overlapping signals appear as a merged color and can be used as indicators for 

successful fusion of autophagosomes that contain mitochondria with lysosomal structures.
730

 To 

measure the correlation between 2 variables by imaging techniques, such as the colocalization of 

2 different stainings, we recommend some form of correlation analysis to assess the value 

correlating with the strength of the association. This may use, for example, ImageJ software or 

other colocalization scores that can be derived from consideration not only of pixel 

colocalization, but also from a determination that the structures have the appropriate shape. 

During live-cell imaging, the 2 structures (autophagosomes and mitochondria) should move 

together in more than one frame. Mitophagy can also be quantitatively monitored using a 

mitochondria-targeted version of the pH-dependent Keima protein.
731

 The peak of the excitation 

spectrum of the protein shifts from 440 nm to 586 nm when mitochondria are delivered to acidic 

lysosomes, which allows easy quantification of mitophagy (Fig. 24). However, it should be 

noted that long exposure time of the specimen to intense laser light lead to a similar spectral 

change. Finally, a mitochondrially-targeted version of the tandem mCherry-GFP fluorescent 

reporter (see Tandem mRFP/mCherry-GFP fluorescence microscopy) using a targeting sequence 

from the mitochondrial membrane protein FIS1
328,329

 can be used to monitor mitophagy flux.
329

  

The third and last step of the degradation process is the monitoring of the amount of 

remaining mitochondria by analyzing the mitochondrial mass. This final step provides the 

opportunity to determine the efficiency of degradation of dysfunctional, aged or impaired 

mitochondria. Mitochondrial mass can either be measured by a flow cytometry technique using 
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MitoTracker® Green FM or MitoTracker Deep Red FM,
723

 on a single cell basis, by either live 

cell imaging or immuncytochemistry (using antibodies specifically raised against different 

mitochondrial proteins). Alternatively, mitochondrial content in response to mitophagic stimuli 

(in the presence and absence of autophagy inhibitors to assess the contribution of mitophagy) in 

live or fixed cells can be quantified at the single-cell level as the percentage of cytosol occupied 

by mitochondrial-specific fluorescent pixels using NIH ImageJ.
729

 Immunoblot analysis of the 

levels of mitochondrial proteins from different mitochondrial subcompartments is valuable for 

validating the data from flow cytometry or microscopy studies, and it should be noted that outer 

mitochondrial membrane proteins in particular can be degraded by the proteasome, especially in 

the context of mitochondrial depolarization.
732,733

 EM can also be used to verify loss of entire 

mitochondria, and PCR (or fluorescence microscopy) to quantify mitochondrial DNA (mtDNA). 

A reliable estimation of mtDNA can be performed by real-time PCR of the MT-ND2 

(mitochondrially encoded NADH dehydrogenase 2) gene expressed as a ratio of mtDNA:nuclear 

DNA by normalizing to that of TERT (telomerase reverse transcriptase) genomic DNA.
734

 The 

spectrophotometric measurement of the activity of CS (citrate synthase), a mitochondrial matrix 

enzyme of the TCA cycle, which remains highly constant in these organelles and is considered a 

reliable marker of their intracellular content, can also be used to estimate the mitochondrial 

mass.
734

  

In addition to monitoring the steady state levels of different steps of mitophagy—whether 

by single-cell analyses of LC3 mitochondrial colocalization or by immunoblotting for 

mitochondrial markers—investigation of the mitophagic flux is needed to determine whether 

mitophagy is impaired or activated in response to stimuli, and at which steps. Therefore, 

appropriate treatment (pharmacological inhibition and/or siRNA-mediated knockdown of ATG 
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genes) may be applied to prevent mitochondrial degradation at distinct steps of the process. A 

recent method using flow cytometry in combination with autophagy and mitophagy inhibitors 

has been developed to determine mitophagy flux using MitoTracker probes. 
723

 

 Certain cellular models require stress conditions to measure the mitochondrial 

degradation capacity, as basal levels are too low to reliably assess organelle clearance. However, 

one exception has been identified in Drosophila where large numbers of mitochondria are 

cleared by mitophagy during developmentally-triggered autophagy.
735

 Hence, in many cases, it 

may be useful to pretreat the cells with uncoupling agents, such as CCCP, that stimulate 

mitochondrial degradation and allow measurements of mitophagic activity; however, it should be 

kept in mind that, although helpful to stimulate mitochondrial degradation, this treatment is not 

physiological and promotes the rapid degradation of outer membrane-localized mitochondrial 

proteins. In part for this reason a milder mitophagy stimulus has been developed that relies on a 

combination of antimycin A and oligomycin, inhibitors of the electron transport chain and ATP 

synthase, respectively;
736

 this treatment is less toxic, and the resulting damage is time dependent. 

Another method to induce mitophagy is by expressing and activating a mitochondrially-localized 

fluorescent protein photosensitizer such as Killer Red.
737

 The excitation of Killer Red results in 

an acute increase of superoxide, due to phototoxicity, that causes mitochondrial damage resulting 

in mitophagy.
738

 The advantage of using a genetically encoded photosensitizer is that it allows 

for both spatial and temporal control in inducing mitophagy. Finally, the forced targeting of 

AMBRA1 to the external mitochondrial membrane is sufficient to induce massive mitophagy.
739

 

 A new classification suggests that mitophagy can be divided into 3 types.
740

 Type 1 

mitophagy, involves the formation of a phagophore, and typically also requires mitochondrial 

fission; the PtdIns3K containing BECN1 mediates this process. In contrast, type 2 mitophagy is 
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independent of BECN1 and takes place when mitochondria have been damaged, resulting in 

depolarization; sequestration involves the coalescence of GFP-LC3 membranes around the 

mitochondria rather than through fission and engulfment within a phagophore. In type 3 

mitophagy, mitochondrial fragments or vesicles from damaged organelles are sequestered 

through a microautophagy-like process that is independent of ATG5 and LC3, but requires 

PINK1 and PARK2. 

 Although the process of pexophagy is prominent and well described in yeast cells,
667,741

 

relatively little work has been done in the area of selective mammalian peroxisome degradation 

by autophagy (for a review see ref. 
742

). Typically, peroxisomes are induced by treatment with 

hypolipidemic drugs such as clofibrate or dioctyl phthalate, which bind to a subfamily of nuclear 

receptors, referred to as peroxisome proliferator-activated receptors.
743

 Degradation of excess 

organelles is induced by drug withdrawal, although starvation without prior proliferation can also 

be used. EPAS1 activation in liver-specific vhl
-/-

 and vhl
-/-

 hif1a
-/-

 mice reduces peroxisome 

abundance by pexophagy, whereas ER and mitochondrial protein levels are not affected.
744

 

Pexophagy can also be induced by the expression of a nondegradable active EPAS1 variant.
744

 

Loss of peroxisomes can be followed enzymatically or by immunoblot, monitoring enzymes 

such as ACOX/fatty acyl-CoA oxidase (note that this enzyme is sometimes abbreviated “AOX,” 

but should not be confused with the enzyme alcohol oxidase that is frequently used in assays for 

yeast pexophagy) or CAT/catalase, and also by EM, cytochemistry or immunocytochemistry.
745-

748
 Finally, a HaloTag

®
-PTS1 marker that is targeted to peroxisomes has been used to 

fluorescently label the organelle.
749

 An alternative approach uses a peroxisome-specific tandem 

fluorochrome assay (RFP-EGFP localizing to peroxisomes by the C-terminal addition of the 
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tripeptide SKL), which has been used to demonstrate the involvement of ACBD5/ATG37 in 

mammalian pexophagy.
327

 

Cautionary notes: There are many assays that can be used to monitor specific types of 

autophagy, but caution must be used in choosing an appropriate marker(s). To follow mitophagy 

it is best to monitor more than one protein and to include an inner membrane or matrix 

component in the analysis. In particular, it is not sufficient to follow a single mitochondrial outer 

membrane protein because these can be degraded independently of mitophagy. Although the 

localization of PARK2 to mitochondria as monitored by fluorescence microscopy is associated 

with the early stages of protonophore uncoupler (CCCP)-driven mitochondria degradation,
232

 

this by itself cannot be used as a marker for mitophagy, as these events can be dissociated.
750

 

Moreover, mitophagy elicited in a number of disease models does not involve mitochondrial 

PARK2 translocation.
136,329,751

 Along these lines, recent studies implicate an essential role for 

TRAF2, an E3 ubiquitin ligase, as a mitophagy effector in concert with PARK2 in cardiac 

myocytes; whereby mitochondrial proteins accumulate differentially with deficiency of either, 

indicating nonredundant roles for these E3 ubiquitin ligases in mitophagy.
752

 This finding 

necessitates an integrated approach to assess mitophagy based on a broad evaluation of multiple 

mitochondrial effectors and proteins. 

PARK2 translocates to damaged mitochondria and ubiquitinates a wide range of outer 

membrane proteins including VDAC1, MFN1/2 and TOMM20/TOM20.
727,732,733,753

 This results 

in the preferential degradation of mitochondrial outer membrane proteins by the proteasome, 

while inner membrane proteins and mitochondrial DNA
754

 remain intact. Monitoring loss of a 

single protein such as TOMM20 by western blot or fluorescence microscopy to follow 

mitophagy may thus be misleading, as noted above.
753

 MitoTracker dyes are widely used to stain 
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mitochondria and, when colocalized with GFP-LC3, they can function as a marker for 

mitophagy. However, staining with MitoTracker dyes depends on mitochondrial membrane 

potential (although MitoTracker Green FM is less sensitive to loss of membrane potential), so 

that damaged, or sequestered nonfunctional mitochondria may not be stained. In vitro this can be 

avoided by labeling the cells with MitoTracker before the induction by the mitophagic stimuli.
723

 

One additional point is that MitoTracker dyes might influence mitochondrial protein import (D. 

Ebrahimi-Fakhari, personal communication). 

Although it is widely assumed that macroautophagy is the major mechanism for 

degradation of entire organelles, there are multiple mechanisms that may account for the 

disappearance of mitochondrial markers. These include proteasomal degradation of outer 

membrane proteins and/or proteins that fail to correctly translocate into the mitochondria, 

degradation due to proteases within the mitochondria, and reduced biosynthesis or import of 

mitochondrial proteins. PINK1 and PARK2 also participate in an ATG gene-independent 

pathway for lysosomal degradation of small mitochondria-derived vesicles.
755

 Furthermore, the 

PINK1-PARK2 mitophagy pathway is also transcriptionally upregulated in response to 

starvation-triggered generalized autophagy, and is intertwined with the lipogenesis pathway.
756-

759
 In addition to mitophagy, mitochondria can be eliminated by extrusion from the cell 

(mitoptosis).
 760 756 743

 Transcellular degradation of mitochondria, or transmitophagy, also occurs 

in the nervous system when astrocytes degrade axon-derived mitochondria.
761

 Thus, it is 

advisable to use a variety of complementary methods to monitor mitochondria loss including 

TEM, single cell analysis of LC3 fluorescent puncta that colocalize with mitochondria, and 

western blot, in conjunction with flux inhibitors and specific inhibitors of autophagy induction 

compared with inhibitors of the other major degradation systems (see cautions in Autophagy 
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inhibitors and inducers). To monitor and/or rule out changes in cellular capacity to undergo 

mitochondrial biogenesis, a process that is tightly coordinated with mitophagy and can dictate 

the outcome following mitophagy-inducing insults especially in primary neurons and other 

mitochondria-dependent cells, colocalization analysis after double staining for the mitochondrial 

marker TOMM20 and BrdU (for visualization of newly synthesized mtDNA) can be performed 

(Fig. 25). 

Likewise, although the mechanism(s) of peroxisomal protein degradation in mammals 

awaits further elucidation, it can occur by both autophagic and proteasome-dependent 

mechanisms.
762

 Thus, controls are needed to determine the extent of degradation that is due to 

the proteasome. Moreover, 2 additional degradation mechanisms have been suggested: the action 

of the peroxisome-specific LONP2/Lon (lon peptidase 2, peroxisomal) protease and the 

membrane disruption effect of 15-lipoxygenase.
763

 

 e. Chlorophagy. Besides functioning as the primary energy suppliers for plants, 

chloroplasts represent a major source of fixed carbon and nitrogen to be remobilized from 

senescing leaves to storage organs and newly developing tissues. As such, the turnover of these 

organelles has long been considered to occur via an autophagy-type mechanism. However, while 

the detection of chloroplasts within autophagic body-like vesicles or within vacuole-like 

compartments has been observed for decades, only recently has a direct connection between 

chloroplast turnover and autophagy been made through the analysis of atg mutants combined 

with the use of fluorescent ATG8 reporters.
764,765

  In fact, it is now clear that chlorophagy, the 

selective degradation of chloroplasts by macroautophagy, can occur via several routes, including 

the encapsulation of whole chloroplasts, or the budding of chloroplast material into small distinct 

autophagic vesicles called Rubisco-containing bodies (RCBs) and ATI1 plastid-associated 
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bodies (ATI-PS), which then transport chloroplast cargo to the vacuole.
764,766

  Chloroplasts 

produce long tubes called stromules that project out from the organelle outer membrane. Recent 

studies suggest that stromules are part of the chlorophagy process, by which the stromule tips 

presumably containing unwanted or damaged chloroplast material are engulfed by autophagic 

membranes using ESCRTII endocytic machinery that depends on ATG8.
767

  The appearance of 

RCBs is tightly linked with leaf carbon status, indicating that chlorophagy through RBCs 

represents an important route for recycling plant nutrients provided in plastid stores. 

 f. Chromatophagy. Autophagy has been known for its pro-survival role in cells under 

metabolic stress and other conditions. However, excessively induced autophagy may be 

cytotoxic and may lead to cell death. Chromatophagy (chromatin-specific autophagy) comes into 

view as one of the autophagic responses that can contribute to cell death.
768

 Chromatophagy can 

be seen in cells during nutrient depletion, such as arginine starvation, and its phenotype consists 

of giant-autophagosome formation, nucleus membrane rupture and histone-associated-

chromatin/DNA leakage that is captured by autophagosomes.
768

 Arginine starvation can be 

achieved by adding PADI (peptidyl arginine deiminase) to remove arginine from the culture 

medium, or by using arginine-dropout medium. The degradation of leaked nuclear 

DNA/chromatin can be observed by fluorescence microscopy; with GFP-LC3 or anti-LC3 

antibody, and LysoTracker Red or anti-LAMP1, multiple giant autophagosomes or 

autolysosomes containing leaked nuclear DNA can be detected. In addition, the chromatophagy-

related autophagosomes also contain parts of the nuclear outer-membrane, including NUP98 

(nucleoporin 98kDa), indicating that the process involves a fusion event.
768

   

 g. Ferritinophagy. Ferritinophagy is a selective form of autophagy that functions in 

intracellular iron processing.
769

 Iron is recruited to ferritin for storage and to prevent the 
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generation of free radical iron.
770,771

 To release iron from ferritin, the iron-bound form is 

sequestered within an autophagosome.
772

 Fusion with a lysosome leads to breakdown of ferritin 

and release of iron.  Furthermore, iron can be acidified in the lysosome, converting it from an 

inactive state of Fe
3+

 to Fe
2+

.
773,774

 Iron can be detected in the autolysosome via TEM.
773

 

Colocalization of iron with autolysosomes may also be determined utilizing calcein AM to tag 

iron.
773,775

 NCOA4 is a cargo receptor that recruits ferritin to the autophagosome.
769

    

 h. Intraplastidial autophagy. Intraplastidial autophagy is a process whereby plastids of 

some cell types adopt autophagic functions, engulfing and digesting portions of the cytoplasm. 

These plastids are characterized by formation of invaginations in their double-membrane 

envelopes that eventually generate a cytoplasmic compartment within the plastidial stroma, 

isolated from the outer cytoplasm. W. Nagl coined the term plastolysome to define this special 

plastid type.
776

 Initially, the engulfed cytoplasm is identical to the outer cytoplasm, containing 

ribosomes, vesicles and even larger organelles. Lytic activity was demonstrated in these plastids, 

in both the cytoplasmic compartment and the stroma. Therefore, it was suggested that 

plastolysomes digest themselves together with their cytoplasmic cargo, and transform into lytic 

vacuoles. Intraplastidial autophagy has been reported in plastids of suspensor cells of Phaseolus 

coccineus
776

 and Phaseolus vulgaris,
777

 where plastids transformed into autophagic vacuoles 

during the senescence of the suspensor. This process was also demonstrated in petal cells of 

Dendrobium
778

 and in Brassica napus microspores experimentally induced towards 

embryogenesis.
779

 All these reports established a clear link between these plastid transformations 

and their engagement in autophagy. At present, descriptions of this process are limited to a few, 

specialized plant cell types. However, pictures of cytoplasm-containing plastids in other plant 

cell types have been occasionally published, although the authors did not make any mention of 
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this special plastid type. For example, this has been seen in pictures of fertile and Ogu-INRA 

male sterile tetrads of Brassica napus,
780

 and Phaseolus vulgaris root cells.
781

 Possibly, this 

process is not as rare as initially thought, but authors have only paid attention to it in those cell 

types where it is particularly frequent. 

 i. Lipophagy. The specific macroautophagic degradation of lipid droplets represents 

another type of selective autophagy.
782

 Lipophagy requires the core autophagic machinery and 

can be monitored by following triglyceride content, or total lipid levels using BODIPY 493/503 

or HCS LipidTOX neutral lipid stains with fluorescence microscopy, cell staining with Oil Red 

O, the cholesterol dye filipin III,
783

 or ideally label-free techniques such as CARS or SRS 

microscopy. BODIPY 493/503 should be used with caution, however, when performing costains 

(especially in the green and red spectra) because this commonly used fluorescent marker of 

neutral lipids is highly susceptible to bleed-through into the other fluorescence channels (hence 

often yielding false positives), unlike the LipidTOX stain that has a narrow emission 

spectrum.
784

 TEM can also be used to monitor lipid droplet size and number, as well as lipid 

droplet-associated double-membrane structures, which correspond to autophagosomes.
782,785,786

 

The transcription factor TFEB positively regulates lipophagy and promotes fatty acid -

oxidation, thus providing a regulatory link between different lipid degradation pathways. 

Accordingly, TFEB overexpression rescues fat accumulation and metabolic syndrome in a diet-

induced model of obesity.
787,788

 The regulation of expression of lipid droplet regulators (such as 

the PLIN/perilipin family) and of autophagy adaptors (such as the TBC1D1 family) during 

starvation and disease is one of several areas in this topic that deserves further exploration.
789-791
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 Cautionary notes: With regard to changes in the cellular neutral lipid content, the 

presence and potential activation of cytoplasmic lipases that are unrelated to lysosomal 

degradation must be considered. 

 j. Lysophagy. Lysophagy is a selective macroautophagy process that participates in 

cellular quality control through lysosome turnover. By eliminating ruptured lysosomes, 

lysophagy prevents the subsequent activation of the inflammasome complex and innate 

response.
792,793

  

 k. Oxiapoptophagy.There are now several lines of evidence indicating that autophagy is 

an essential process in vascular functions. Autophagy can be considered as atheroprotective in 

the early stages of atherosclerosis and detrimental in advanced atherosclerotic plaques.
794

 

Currently, little is known about the molecules that promote autophagy on the cells of the vascular 

wall. As increased levels of cholesterol oxidation products (also named oxysterols) are found in 

atherosclerotic lesions,
795

 the part taken by these molecules has been investigated, and several 

studies support the idea that some of them could contribute to the induction of autophagy.
796,797

 It 

is now suggested that oxysterols, especially 7-ketocholesterol, which can be increased under 

various stress conditions in numerous age-related diseases not only including vascular diseases 

but also neurodegenerative diseases,
798

 could trigger a particular type of autophagy  termed 

oxiapoptophagy (OXIdation + APOPTOsis + autoPHAGY)
799

 characterized by the simultaneous 

induction of oxidative stress associated with apoptosis and autophagic criteria in different cell 

types from different species.
800,801

 As oxiapoptophagy has also been observed with 7β-

hydroxycholesterol and 24S-hydroxycholesterol, which are potent inducers of cell death, it is 

suggested that oxiapoptophagy could characterize the effect of cytotoxic oxysterols.
800
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 l. Reticulophagy. Starvation in yeast induces a type of selective macroautophagy of the 

ER, which depends on the autophagy receptors Atg39 and Atg40.
802

 ER stress also triggers an 

autophagic response,
803

 which includes the formation of multi-lamellar ER whorls and their 

degradation by a microautophagic mechanism.
804

 ER-selective autophagy has been termed ER-

phagy or reticulophagy.
805,806

 Selective autophagy of the ER has also been observed in 

mammalian cells,
807

 and FAM134B has been identified as ER-specific macroautophagy receptor 

that appears to be functionally homologous to Atg40.
808

 Since reticulophagy is selective, it 

should be able to act in ER quality control,
809

 sequester parts of the ER that are damaged, and 

eliminate protein aggregates that cannot be removed in other ways. It may also serve to limit 

stress-induced ER expansion,
804

 for example by reducing the ER to a normal level after a 

particular stress condition has ended.   

 m. Ribophagy. Autophagy is also used for the selective removal of ribosomes, 

particularly upon nitrogen starvation.
810

 This process can be monitored by western blot, 

following the generation of free GFP from Rpl25-GFP or Rpl5-GFP,
811

 or the disappearance of 

ribosomal subunits such as Rps3. Vacuolar localization of Rpl25-GFP or Rpl5-GFP can also be 

seen by fluorescence microscopy. The Rkr1/Ltn1 ubiquitin ligase acts as an inhibitor of 60S 

ribosomal subunit ribophagy via, at least, Rpl25 as a target, and is antagonized by the 

deubiquitinase Ubp3-Bre5 complex.
810,811

 Rkr1/Ltn1 and Ubp3-Bre5 likely contribute to adapt 

ribophagy activity to both nutrient supply and protein translation. 

 n. RNA-silencing components. Several components of the RNA-silencing machinery are 

selectively degraded by autophagy in different organisms. This was first shown for the plant 

AGO1/ARGONAUTE1 protein, a key component of the Arabidopsis RNA-induced silencing 

complex (RISC) that, after ubiquitination by a virus encoded F-box protein, is targeted to the 
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vacuole.
812

 AGO1 colocalizes with Arabidopsis ATG8a-positive bodies and its degradation is 

impaired by various drugs such as 3-MA and E64d, or in Arabidopsis mutants in which 

autophagy is compromised such as the TOR-overexpressing mutant line G548 or the atg7-2 

mutant allele (P. Genschik, unpublished data). Moreover, this pathway also degrades AGO1 in a 

nonviral context, especially when the production of miRNAs is impaired. In mammalian cells, 

not only the main miRNA effector AGO2, but also the miRNA-processing enzyme DICER1, is 

degraded as a miRNA-free entity by selective autophagy.
813

 Chemical inhibitors of autophagy 

(bafilomycin A1 and chloroquine) and, in HeLa cells, depletion of key autophagy components 

ATG5, ATG6 or ATG7 using short interfering RNAs, blocks the degradation of both proteins. 

Electron microscopy shows that DICER1 is associated with membrane-bound structures having 

the hallmarks of autophagosomes. Moreover, the selectivity of DICER1 and AGO2 degradation 

might depend on the autophagy receptor CALCOCO2/NDP52, at least in these cell types. 

Finally, in C. elegans, AIN-1, a homolog of mammalian TNRC6A/GW182 that interacts with 

AGO and mediates silencing, is also degraded by autophagy.
814

 AIN-1 colocalizes with SQST-1 

that acts as a receptor for autophagic degradation of ubiquitinated protein aggregates and also 

directly interacts with Atg8/LC3 contributing to cargo specificity. 

 o. Vacuole import and degradation pathway. In yeast, gluconeogenic enzymes such as 

fructose-1,6-bisphosphatase (Fbp1/FBPase), malate dehydrogenase (Mdh2), isocitrate lyase 

(Icl1) and phosphoenolpyruvate carboxykinase (Pck1) constitute the cargo of the vacuole import 

and degradation (Vid) pathway.
815

 These enzymes are induced when yeast cells are glucose 

starved (grown in a medium containing 0.5% glucose and potassium acetate). Upon replenishing 

these cells with fresh glucose (a medium containing 2% glucose), these enzymes are degraded in 

either the proteasome
816-818

 or the vacuole
815,819

 depending on the duration of starvation. 
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Following glucose replenishment after 3 days glucose starvation, the gluconeogenic enzymes are 

delivered to the vacuole for degradation.
820

 These enzymes are sequestered in specialized 30- to 

50-nm Vid vesicles.
821

 Vid vesicles can be purified by fractionation and gradient centrifugation; 

western blotting analysis using antibodies against organelle markers and Fbp1, and the 

subsequent verification of fractions by EM facilitate their identification.
821

 Furthermore, the 

amount of marker proteins in the cytosol compared to the Vid vesicles can be examined by 

differential centrifugation. In this case, yeast cells are lysed and subjected to differential 

centrifugation. The Vid vesicle-enriched pellet fraction and the cytosolic supernatant fraction are 

examined with antibodies against Vid24, Vid30, Sec28 and Fbp1.
822-824

  

The distribution of Vid vesicles containing cargo destined for endosomes, and finally for 

the vacuole, can be examined using FM 4-64, a lipophilic dye that primarily stains endocytic 

compartments and the vacuole limiting membrane.
825

 In these experiments, starved yeast cells 

are replenished with fresh glucose and FM 4-64, and cells are collected at appropriate time points 

for examination by fluorescence microscopy.
823

 The site of degradation of the cargo in the 

vacuole can be determined by studying the distribution of Fbp1-GFP, or other Vid cargo markers 

in wild-type and pep4∆ cells.
826

 Cells can also be examined for the distribution of Fbp1 at the 

ultrastructural level by immuno-TEM.
827

 

As actin patch polymerization is required for the delivery of cargo to the vacuole in the 

Vid pathway, distribution of Vid vesicles containing cargo and actin patches can be examined by 

actin staining (with phalloidin conjugated to rhodamine) using fluorescence microscopy.
827

 The 

distribution of GFP tagged protein and actin is examined by fluorescence microscopy. GFP-

Vid24, Vid30-GFP and Sec28-GFP colocalize with actin during prolonged glucose starvation 
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and for up to 30 min following glucose replenishment in wild-type cells; however, colocalization 

is less obvious by the 60-min time point.
822,827

 

 p. Xenophagy. The macroautophagy pathway has emerged as an important cellular factor 

in both innate and adaptive immunity. Many in vitro and in vivo studies have demonstrated that 

genes encoding macroautophagy components are required for host defense against infection by 

bacteria, parasites and viruses. Xenophagy is often used as a term to describe autophagy of 

microbial pathogens, mediating their capture and delivery to lysosomes for degradation. Since 

xenophagy presents an immune defense, it is not surprising that microbial pathogens have 

evolved strategies to overcome it. The interactions of such pathogens with the autophagy system 

of host cells are complex and have been the subject of several excellent reviews.
113-118,828-834

 Here 

we will make note of a few key considerations when studying interactions of microbial 

pathogens with the autophagy system. Importantly, autophagy should no longer be considered as 

strictly antibacterial, and several studies have described the fact that autophagy may serve to 

either restrict or promote bacterial replication both in vivo
835

 and in vitro (reviewed in refs. 

836,837
). 

LC3 is commonly used as a marker of macroautophagy. However, studies have 

established that LC3 can promote phagosome maturation independently of macroautophagy 

through LC3-associated phagocytosis (see cautionary notes in Atg8/LC3 detection and 

quantification, and Noncanonical use of autophagy-related proteins). Other studies show that 

macroautophagy of Salmonella enterica serovar Typhimurium (S. typhimurium) is dependent on 

ATG9, an essential macroautophagy protein, whereas LC3 recruitment to bacteria does not 

require ATG9.
838

 In contrast, macroautophagy of these bacteria requires either glycan-dependent 

binding of LGALS8/galectin-8 (lectin, galactoside-binding, soluble, 8) to damaged membranes 
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and subsequent recruitment of the cargo receptor CALCOCO2/NDP52
839

 or ubiquitination of 

target proteins (not yet identified) and recruitment of 4 different ubiquitin-binding receptor 

proteins, SQSTM1,
840

 CALCOCO2/NDP52,
841

 TAX1BP1/CALCOCO3{[Tumbarello, 2015 

#3760} and OPTN.
842

 Therefore, the currently available criteria to differentiate LAP from 

macroautophagy include: i) LAP involves LC3 recruitment to bacteria in a manner that requires 

reactive oxygen species (ROS) production by an NADPH oxidase. It should be noted that most 

cells express at least one member of the NADPH oxidase family. Targeting expression of the 

common CYBA/p22
phox

 subunit is an effective way to disrupt the NADPH oxidases. Scavenging 

of ROS by antioxidants such as resveratrol and alpha-tocopherol is also an effective way to 

inhibit LAP. In contrast, N-acetylcysteine, which raises cellular glutathione levels, does not 

inhibit LAP.
843

 ii) Macroautophagy of bacteria requires ATG9, whereas LAP apparently does 

not.
838

 iii) LAP involves single-membrane structures. For LAP, CLEM (with LC3 as a marker) is 

expected to show single-membrane structures that are LC3
+
 with LAP.

171
 In contrast, 

macroautophagy is expected to generate double-membrane structures surrounding cargo (which 

may include single membrane phagosomes, giving rise to triple-membrane structures
838

). It is 

anticipated that more specific markers of LAP will be identified as these phagosomes are further 

characterized. 

Nonmotile Listeria monocytogenes can be targeted to double-membrane autophagosomes 

upon antibiotic treatment,
844

 which indicates that macroautophagy serves as a cellular defense to 

microbes in the cytosol. However, subsequent studies have revealed that macroautophagy can 

also target pathogens within phagosomes, damaged phagosomes or the cytosol. Therefore, when 

studying microbial interactions by EM, many structures can be visualized, with any number of 

membranes encompassing microbes, all of which may be LC3
+
.
845,846

 As discussed above, 
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single-membrane structures that are LC3
+
 may arise through LAP, and we cannot rule out the 

possibility that both LAP and macroautophagy may operate at the same time to target the same 

phagosome. Indeed macroautophagy may facilitate phagocytosis and subsequent bacterial 

clearance (X. Li and M. Wu, submitted). Macroautophagy is not only induced by intracellular 

bacteria, but also can be activated by extracellular bacteria such as Pseudomonas aeruginosa and 

Klebsiella pneumoniae, which may involve complex mechanisms.
847-849

 

Viruses can also be targeted by autophagy, and in turn can act to inhibit autophagy. For 

example, infection of a cell by influenza and dengue viruses
850

 or enforced expression of the 

hepatitis B virus C protein
851

 have profound consequences for autophagy, as viral proteins such 

as NS4A stimulate autophagy and protect the infected cell against apoptosis, thus extending the 

time in which the virus can replicate. Conversely, the HSV-1 ICP34.5 protein inhibits autophagy 

by targeting BECN1.
852

 While the impact of ICP34.5’s targeting of BECN1 on viral replication 

in cultured permissive cells is minimal, it has a significant impact upon pathogenesis in vivo, 

most likely through interfering with activation of CD4
+
 T cells,

853,854
 and through cell-intrinsic 

antiviral effects in neurons.
855

 Also, viral BCL2 proteins, encoded by large DNA viruses, are 

able to inhibit autophagy by interacting with BECN1
545

 through their BH3 homology domain. 

An example of these include -herpesvirus 68,
856

 Kaposi sarcoma-associated herpesvirus and 

African swine fever virus (ASFV) vBCL2 homologs.
857

 ASFV encodes a protein homologous to 

HSV-1 ICP34.5, which, similar to its herpes virus counterpart, inhibits the ER stress response 

activating PPP1/protein phosphatase1; however, in contrast to HSV-1 ICP34.5 it does not 

interact with BECN1. ASFV vBCL2 strongly inhibits both autophagy (reviewed in ref. 
858

) and 

apoptosis.
859
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HIV-1 utilizes the initial, nondegradative stages of autophagy to promote its replication 

in macrophages. In addition, the HIV-1 protein Nef acts as an anti-autophagic maturation factor 

protecting the virus from degradation by physically blocking BECN1.
860-862

 Autophagy 

contributes to limiting viral pathogenesis in HIV-1 nonprogressor-infected patients by targeting 

viral components for degradation.
863

 

Care must be taken in determining the role of autophagy in virus replication, as some 

viruses such as vaccinia virus use double-membrane structures that form independently of the 

autophagy machinery.
864

 Similarly, dengue virus replication, which appears to involve a double-

membrane compartment, requires the ER rather than autophagosomes,
865

 whereas coronaviruses 

and Japanese encephalitis virus use a nonlipidated version of LC3 (see Atg8/LC3 detection and 

quantification).
179,180

 Yet another type of variation is seen with hepatitis C virus, which requires 

BECN1, ATG4B, ATG5 and ATG12 for initiating replication, but does not require these proteins 

once an infection is established.
866

 

Finally, it is important to realize that there may be other macroautophagy-like pathways 

that have yet to be characterized. For example, in response to cytotoxic stress (treatment with 

etoposide), autophagosomes are formed in an ATG5- and ATG7-independent manner (see 

Noncanonical use of autophagy-related proteins).
26

 While this does not rule out involvement of 

other macroautophagy regulators/components in the formation of these autophagosomes, it does 

establish that the canonical macroautophagy pathway involving LC3 conjugation is not involved. 

In contrast, RAB9 is required for this alternative pathway, potentially providing a useful marker 

for analysis of these structures. Returning to xenophagy, M. tuberculosis can be targeted to 

autophagosomes in an ATG5-independent manner.
867

 Furthermore, up to 25% of intracellular S. 

typhimurium are observed in multi-lamellar membrane structures resembling autophagosomes in 
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atg5
-/-

 MEFs.
840

 These findings indicate that an alternate macroautophagy pathway is relevant to 

host-pathogen interactions. Moreover, differences are observed that depend on the cell type 

being studied. Yersinia pseudotuberculosis is targeted to autophagosomes where they can 

replicate in bone marrow-derived macrophages,
868

 whereas in RAW264.7 and J774 cells, 

bacteria are targeted both to autophagosomes, and LC3-negative, single-membrane vacuoles (F. 

Lafont, personal communication). 

One key consideration has recently emerged in studying xenophagy. Whereas the basal 

autophagy flux in most cells is essential for their survival, infecting pathogens can selectively 

modulate antibacterial autophagy (i.e., xenophagy) without influencing basal autophagy. This 

may help pathogens ensure prolonged cellular (i.e., host) survival. Thus, in the case of 

xenophagy it would be prudent to monitor substrate (pathogen)-specific autophagy flux to 

understand the true nature of the perturbation of infecting pathogens on autophagy (D. Kumar, 

personal communication). Furthermore, this consideration particularly limits the sensitivity of 

LC3 western blots for use in monitoring autophagy regulation. 

 q. Zymophagy. Zymophagy refers to a specific mechanism that eliminates pancreatitis-

activated zymogen granules in the pancreatic acinar cells and, thus, prevents deleterious effects 

of prematurely activated and intracellularly released proteolytic enzymes, when impairment of 

secretory function occurs.
869

 Therefore, zymophagy is considered to be a protective mechanism 

implemented to sustain secretory homeostasis and to mitigate pancreatitis. Note that one of the 

major functions of Paneth cells is to prevent translocation of intestinal bacteria by secreting 

hydrolytic enzymes and antibacterial peptides to the crypt lumens. The similarity in mechanisms 

of degradation of secretory granules in these 2 different types of secretory cells sustains the 
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concept of the protective role of autophagy when “self-inflicted” damage may occur due to 

overreaction and/or secretory malfunction in specialized cells.   

 Zymophagy can be monitored by TEM, identifying autophagosomes containing secretory 

granules, by following SQSTM1 degradation by western blot, and by examining the subcellular 

localization of VMP1-EGFP, which relocates to granular areas of the cell upon zymophagy 

induction. Colocalization of PRSS1/trypsinogen (which is packaged within zymogen granules) 

and LC3, or of GFP-ubiquitin (which is recruited to the activated granules) with RFP-LC3 can 

also be observed by indirect or direct immunofluorescence microscopy, respectively. Active 

trypsin is also detectable in zymophagosomes and participates in the early onset of acute 

pancreatitis (F. Fortunato et al., unpublished data). 

 

11. Autophagic sequestration assays. Although it is useful to employ autophagic markers such 

as LC3 in studies of autophagy, LC3-II levels or LC3 dots cannot quantify actual autophagic 

activity, since LC3-II is not involved in all cargo sequestration events, and LC3-II can be found 

on phagophores and nonautophagosomal membranes in addition to autophagosomes. Thus, 

quantification of autophagic markers such as LC3 does not tell how much cargo material has 

actually been sequestered inside autophagosomes. Moreover, LC3 and several other autophagic 

markers cannot be used to monitor noncanonical autophagy. Autophagic sequestration assays 

constitute marker-independent methods to measure the sequestration of autophagic cargo into 

autophagosomal compartments, and are among the few functional autophagy assays described to 

date. Macroautophagic cargo sequestration activity can be monitored using either an 

(electro)injected, inert cytosolic marker such as [
3
H]-raffinose

870
 or an endogenous cytosolic 

protein such as LDH/lactate dehydrogenase,
871

 in the latter case along with treatment with a 
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protease inhibitor (e.g., leupeptin) or other inhibitors of lysosomal activity (e.g., bafilomycin 

A1)
202

 to prevent intralysosomal degradation of the protein marker. The assay simply measures 

the transfer of cargo from the soluble (cytosol) to the insoluble (sedimentable) cell fraction 

(which includes autophagic compartments), with no need for a sophisticated subcellular 

fractionation. Electrodisruption of the plasma membrane followed by centrifugation through a 

density cushion was originally used to separate cytosol from sedimentable cell fractions in 

primary hepatocytes.
872

 This method has also been used in various human cancer cell lines and 

mouse embryonic fibroblasts, where the LDH sequestration assay has been validated with 

pharmacological agents as well as genetic silencing or knockout of key factors of the autophagic 

machinery (N. Engedal, unpublished results).
202

 Homogenization and sonication techniques have 

also been successfully used for the LDH sequestration assay.
628,873

 The endogenous LDH cargo 

marker can be quantified by an enzymatic assay, or by western blotting. In principle, any 

intracellular component can be used as a cargo marker, but cytosolic enzymes having low 

sedimentable backgrounds are preferable. Membrane-associated markers are less suitable, and 

proteins such as LC3, which are part of the sequestering system itself, will have a much more 

complex relationship to the autophagic flux than a pure cargo marker such as LDH.  

In yeast, sequestration assays are typically done by monitoring protease protection of an 

autophagosome marker or a cargo protein. For example, prApe1, and GFP-Atg8 have been used 

to follow completion of the autophagosome.
874

 The relative resistance or sensitivity to an 

exogenous protease in the absence of detergent is an indication of whether the autophagosome 

(or other sequestering vesicle) is complete or incomplete, respectively. Thus, this method also 

distinguishes between a block in autophagosome formation versus fusion with the vacuole. The 

critical issues to keep in mind involve the use of appropriate control strains and/or proteins, and 
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deciding on the correct reporter protein. In addition to protease protection assays, sequestration 

can be monitored by fluorescence microscopy during pexophagy of methanol-induced 

peroxisomes, using GFP-Atg8 as a pexophagosome marker and BFP-SKL to label the 

peroxisomes. The vacuolar sequestration process during micropexophagy can also be monitored 

by formation of the vacuolar sequestering membrane stained with FM 4-64.
660,668

 

Sequestration assays can be designed to measure flux through individual steps of the 

autophagy pathway. For example, intralysosomally degraded sequestration probes such as [
14

C]-

lactate or LDH will mark prelysosomal compartments in the absence of degradation inhibitors. 

Hence, their accumulation in such compartments can be observed when fusion with lysosomes is 

suppressed, for example, by a microtubule inhibitor such as vinblastine.
875

 Furthermore, lactate 

hydrolysis can be used to monitor the overall autophagic pathway (autophagic lactolysis).
876

 One 

caveat, however, is that inhibitors may affect sequestration indirectly, for example, by modifying 

the uptake and metabolism (including protein synthesis) of autophagy-suppressive amino acids 

(see Autophagy inhibitors and inducers). Under some conditions, such as amino acid starvation, 

sequestered LDH en route through the autophagosome-lysosome pathway can also be detected in 

the absence of inhibitors.
202

 

A variation of this approach applicable to mammalian cells includes live cell imaging. 

Autophagy induction is monitored as the movement of cargo, such as mitochondria, to GFP-

LC3-colocalizing compartments, and then fusion/flux is measured by delivery of cargo to 

lysosomal compartments.
313,877

 In addition, sequestration of fluorescently tagged cytosolic 

proteins into membranous compartments can be measured, as fluorescent puncta become 

resistant to the detergent digitonin.
878

 Use of multiple time points and monitoring colocalization 
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of a particular cargo with GFP-LC3 and lysosomes can also be used to assess sequestration of 

cargo with autophagosomes as well as delivery to lysosomes.
729

 

In the Drosophila fat body, the localization of free cytosolic mCherry changes from a 

diffuse to a punctate pattern in an Atg gene-dependent manner, and these mCherry dots 

colocalize with the lysosomal marker Lamp1-GFP during starvation (G. Juhasz, unpublished 

data). Thus, the redistribution of free cytosolic mCherry may be used to follow bulk, 

nonselective autophagy due to its stability and accumulation in autolysosomes. 

Cautionary notes: The electro-injection of radiolabeled probes is technically demanding, 

but the use of an endogenous cytosolic protein probe is very simple and requires no pretreatment 

of the cells other than with a protease inhibitor. Another concern with electro-injection is that it 

can affect cellular physiology, so it is necessary to verify that the cells behave properly under 

control situations such as amino acid deprivation. An alternate approach for incorporating 

exogenous proteins into mammalian cell cytosol is to use “scrape-loading,” a method that works 

for cells that are adherent to tissue culture plates.
879

 Finally, these assays work well with 

hepatocytes but may be problematic with other cell types, and it can be difficult to load the cell 

while retaining the integrity of the compartments in the post-nuclear supernatant (S. Tooze, 

unpublished results). General points of caution to be addressed with regard to live cell imaging 

relate to photobleaching of the fluorophore, cell injury due to repetitive imaging, 

autofluorescence in tissues containing lipofuscin, and the pH sensitivity of the fluorophore. 

There are several issues to keep in mind when monitoring sequestration by the protease 

protection assay in yeast.
874

 First, as discussed in Selective types of autophagy, prApe1 is not an 

accurate marker for nonselective autophagy; import of prApe1 utilizes a receptor (Atg19) and a 

scaffold (Atg11) that make the process specific. In addition, vesicles that are substantially 
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smaller than autophagosomes can effectively sequester the Cvt complex. Another problem is that 

prApe1 cannot be used as an autophagy reporter for mutants that are not defective in the Cvt 

pathway, although this can be bypassed by using a vac8∆ background.
880

 At present, the prApe1 

assay cannot be used in any system other than yeast. The GFP-Atg8 protease protection assay 

avoids these problems, but the signal-to-noise ratio is typically substantially lower. In theory, it 

should be possible to use this assay in other cell types, and protease protection of GFP-LC3 and 

GFP-SQSTM1 has been analyzed in HeLa cells.
881

 Finally, tendencies of GFP-LC3 and 

particularly GFP-SQSTM1 to aggregate may make LC3 and SQSTM1 inaccesible to proteases. 

Conclusion: Sequestration assays represent the most direct method for monitoring 

autophagy, and in particular for discriminating between conditions where the autophagosome is 

complete (but not fused with the lysosome/vacuole) or open (i.e., a phagophore). These assays 

can also be modified to measure autophagic flux. 

 

12. Turnover of autophagic compartments. Inhibitors of autophagic sequestration (e.g., amino 

acids, 3-MA or wortmannin) can be used to monitor the disappearance of autophagic elements 

(phagophores, autophagosomes, autolysosomes) to estimate their half-life by TEM 

morphometry/stereology. The turnover of the autophagosome or the autolysosome will be 

differentially affected if fusion or intralysosomal degradation is inhibited.
11,13,24,882

 The duration 

of such experiments is usually only a few hours; therefore, long-term side effects or declining 

effectiveness of the inhibitors can be avoided. It should be noted that fluorescence microscopy 

has also been used to monitor the half-life of autophagosomes, monitoring GFP-LC3 in the 

presence and absence of bafilomycin A1 or following GFP-LC3 after starvation and recovery in 

amino acid-rich medium (see Atg8/LC3 detection and quantification).
15,883
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Cautionary notes: The inhibitory effect must be strong and the efficiency of the inhibitor 

needs to be tested under the experimental conditions to be employed. Cycloheximide is 

sometimes used as an autophagy inhibitor, but its use in long-term experiments is problematic 

because of the many potential indirect effects. Cycloheximide inhibits translational elongation, 

and therefore protein synthesis. In addition, it decreases the efficiency of protein degradation in 

several cell types (A.M. Cuervo, personal communication) including hematopoietic cells (A. 

Edinger, personal communication). Treatment with cycloheximide causes a potent increase in 

MTORC1 activity, which can decrease autophagy in part as a result of the increase in the amino 

acid pool resulting from suppressed protein synthesis (H.-M. Shen, personal communication; I. 

Topisirovic, personal communication).
884,885

 In addition, at high concentrations (in the millimolar 

range) cycloheximide inhibits complex I of the mitochondrial respiratory chain,
886,887

 but this is 

not a problem, at least in hepatocytes, at low concentrations (10 -20 µM) that are sufficient to 

prevent protein synthesis (A.J. Meijer, personal communication). 

Conclusion: The turnover of autophagic compartments is a valid method for monitoring 

autophagic-lysosomal flux, but cycloheximide must be used with caution in long-term 

experiments. 

 

13. Autophagosome-lysosome colocalization and dequenching assay. Another method to 

demonstrate the convergence of the autophagic pathway with a functional degradative 

compartment is to incubate cells with the bovine serum albumin derivative dequenched (DQ)-

BSA that has been labeled with the red-fluorescent BODIPY TR-X dye; this conjugate will 

accumulate in lysosomes. The labeling of DQ-BSA is so extensive that the fluorophore is self-

quenched. Proteolysis of this compound results in dequenching and the release of brightly 
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fluorescent fragments. Thus, DQ-BSA is useful for detecting intracellular proteolytic activity as 

a measure of a functional lysosome.
888

  

Furthermore, DQ-BSA labeling can be combined with GFP-LC3 to monitor 

colocalization, and thus visualize the convergence, of amphisomes with a functional degradative 

compartment (DQ-BSA is internalized by endocytosis). This method can also be used to 

visualize fusion events in real-time experiments by confocal microscopy (live cell imaging). 

Along similar lines, other approaches for monitoring convergence are to follow the 

colocalization of RFP-LC3 and LysoSensor Green (M. Bains and K.A. Heidenreich, personal 

communication), mCherry-LC3 and LysoSensor Blue,
314

 or tagged versions of LC3 and LAMP1 

(K. Macleod, personal communication) or CD63
313

 as a measure of the fusion of 

autophagosomes with lysosomes. It is also possible to trace autophagic events by visualizing the 

pH-dependent excitation changes of the coral protein Keima.
731

 This quantitative technique is 

capable of monitoring the fusion of autophagosomes with lysosomes, that is, the formation of an 

autolysosome, and the assay does not depend on the analysis of LC3. 

Cautionary notes: Some experiments require the use of inhibitors (e.g., 3-MA or 

wortmannin) or overexpression of proteins (e.g., RAB7 dominant negative mutants) that may 

also affect the endocytic pathway or the delivery of DQ-BSA to lysosomes (e.g., wortmannin 

causes the swelling of late endosomes
889

). In this case, the lysosomal compartment can be 

labeled with DQ-BSA overnight before treating the cells with the drugs, or prior to the 

transfection. 

Conclusion: DQ-BSA provides a relatively convenient means for monitoring lysosomal 

protease function and can also be used to follow the fusion of amphisomes with the lysosome. 



 175 

Colocalization of autophagosomes (fluorescently tagged LC3) with lysosomal proteins or dyes 

can also be monitored. 

 

14. Tissue fractionation. The study of autophagy in the organs of larger animals, in large 

numbers of organisms with very similar characteristics, or in tissue culture cells provides an 

opportunity to use tissue fractionation techniques as has been possible with autophagy in rat 

liver.
34,49,890-895

 Because of their sizes (smaller than nuclei but larger than membrane fragments 

[microsomes]), differential centrifugation can be used to obtain a subcellular fraction enriched in 

mitochondria and organelles of the autophagy-lysosomal system, which can then be subjected to 

density gradient centrifugation to enrich autophagosomes, amphisomes, autolysosomes and 

lysosomes.
34,49,895-899

 Any part of such a fraction can be considered to be a representative sample 

of tissue constituents and used in quantitative biochemical, centrifugational and morphological 

studies of autophagic particle populations.  

The simplest studies of the autophagic process take advantage of sequestered marker 

enzymes, changes in location of these enzymes, differences in particle/compartment size and 

differential sensitivity of particles of different sizes to mechanical and osmotic stress (e.g., acid 

hydrolases are found primarily in membrane-bound compartments and their latent activities 

cannot be measured unless these membranes are lysed). Such a change in enzyme accessibility 

can be used to follow the time course of an exogenously induced, or naturally occurring, 

autophagic process.
890,892,894

 

Quantitative localization of enzymatic activity (or any other marker) to specific 

cytoplasmic particle populations and changes in the location of such markers during autophagy 

can be assessed by using rate sedimentation ultracentrifugation.
896

 Similar results can be 
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obtained with isopycnic centrifugation where particles enter a density gradient (sometimes made 

with sucrose but iso-osmotic media such as iodixanol, metrizamide and Nycodenz may be 

preferred as discussed below under Cautionary notes) and are centrifuged until they reach 

locations in the gradient where their densities are equal to those of the gradient.
896

 

The fractionation of organelles can also be evaluated by protein-correlation-profiling, a 

quantitative mass spectrometry-based proteomics approach. Similar to the biochemical assays 

described above, gradient profiles of marker proteins can be recorded and compared to proteins 

of interest.
343

 Compared to classical biochemical approaches, protein-correlation-profiling allows 

the proteome-wide recording of protein gradient profiles. 

Particle populations in subcellular fractions evaluated with quantitative biochemical and 

centrifugational approaches can also be studied with quantitative morphological methods. 

Detailed morphological study of the particle populations involved in the autophagic process 

usually requires the use of EM. The thin sections required for such studies pose major sampling 

problems in both intact cells
900

 and subcellular fractions.
896

 With the latter, 2,000,000 sections 

can be obtained from each 0.1 ml of pellet volume, so any practical sample size is an 

infinitesimally small subsample of the total sample.
896

 However, through homogenization and 

resuspension, complex and heterogeneous components of subcellular fractions become randomly 

distributed throughout the fraction volume. Therefore, any aliquot of that volume can be 

considered a random sample of the whole volume. What is necessary is to conserve this property 

of subcellular fractions in the generation of a specimen that can be examined with the electron 

microscope. This can be done with the use of a pressure filtration procedure.
901,896

 Because of the 

thinness of the sections, multiple sections of individual particles are possible so 

morphometric/stereological methods
900

 must be used to determine the volume occupied by a 
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given class of particles, as well as the size distribution and average size of the particle class. 

From this information the number of particles in a specific particle class can be calculated.
902

 

Examination of individual profiles gives information on the contents of different types of 

particles and their degree of degradation, as well as their enclosing membranes.
890,892

 

Cautionary notes: When isolating organelles from tissues and cells in culture it is 

essential to use disruption methods that do not alter the membrane of lysosomes and 

autophagosomes, compartments that are particularly sensitive to some of those procedures. For 

example teflon/glass motor homogenization is suitable for tissues with abundant connective 

tissue, such as liver, but for circulating cells or cells in culture, disruption by nitrogen cavitation 

is a good method to preserve lysosomal membrane stability;
903

 however, this method is not 

suitable for small samples and may not be readily available. Other methods, including “Balch” or 

“Dounce” homogenizers also work well.
904,905

 During the isolation procedure it is essential to 

always use iso-osmotic solutions to avoid hypotonic or hypertonic disruption of the organelles. 

In that respect, because lysosomes are able to take up sucrose if it is present at high 

concentrations, the use of sucrose gradients for the isolation of intact lysosome-related organelles 

is strongly discouraged. It should also be noted that several commercially available kits for 

subcellular fractionation contain reducing compounds such as dithiothreitol, which may affect 

the redox status of any prepared fractions. Since numerous proteins involved in autophagy are 

redox sensitive (an area requiring much additional experimentation), there exists the potential for 

redox-active compounds in kits to interfere with results. As such, it is suggested to make 

solutions for fractionation within the laboratory, whenever possible. 

As with the isolation of any other intracellular organelle, it is essential to assess the purity 

of each preparation, as there is often considerable variability from experiment to experiment due 
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to the many steps involved in the process. Correction for purity can be done through calculation 

of recovery (percentage of the total activity present in the homogenate) and enrichment (dividing 

by the specific activity in the homogenate) of enzymes or protein markers for those 

compartments (e.g., HEX/-hexosaminidase is routinely used to assess lysosomal purity, but 

enzymes such as CTSB may also be used and may provide more accurate readouts).
903

 Because 

of the time-consuming nature of quantitative morphological studies, such studies should not be 

carried out until simpler biochemical procedures have established the circumstances most likely 

to give meaningful morphometric/stereological results. 

Finally, it is worthwhile noting that not all lysosomes are alike. For example, there are 

differences among primary lysosomes, autolysosomes and telolysosomes. Furthermore, what we 

refer to as “lysosomes” are actually a very heterogeneous pool of organelles that simply fulfill 5 

classical criteria, having a pH <5.6, mature cathepsins, the presence of LAMP proteins, a single 

membrane, and the absence of endosomal and recycling compartment markers (e.g., 

M6PR/mannose-6-phosphate receptor or RAB5). But even applying those criteria we can 

separate lysosomes with clear differences in their proteome and other properties, and these 

distinct populations of lysosomes are likely to participate in different functions in the cell (see 

Chaperone-mediated autophagy).
906

 

Conclusion: Considering the limited methods available for in vivo analysis of autophagy, 

tissue fractionation is a valid, although relatively laborious, method for monitoring autophagy. 

Care must be taken to ensure that sample analysis is representative. 

 

15. Analyses in vivo. Monitoring autophagic flux in vivo or in organs is one of the least 

developed areas at present, and ideal methods relative to the techniques possible with cell culture 



 179 

may not exist. Importantly, the level of basal autophagy, time course of autophagic induction, 

and the bioavailability of autophagy-stimulating and -inhibiting drugs is likely tissue specific. 

Moreover, basal autophagy or sensitivity to autophagic induction may vary with animal age, sex 

or strain background. Therefore methods may need to be optimized for the tissue of interest. One 

method for in vivo studies is the analysis of GFP-LC3/Atg8 (see GFP-Atg8/LC3 fluorescence 

microscopy). Autophagy can be monitored in tissue (e.g., skeletal muscle, liver, brain and retina) 

in vivo in transgenic mice systemically expressing GFP-LC3,
144,580,907,908

 or in other models by 

transfection with GFP-LC3 plasmids or in transgenic strains that possess either mCherry- or 

GFP-LC3/Atg8 under control of either inducible or LC3/Atg8 promoter sequences.
263,448,735

 It 

should be noted that tissues such as white adipose tissue, ovary, and testes and some brain 

regions such as the hypothalamus do not appear to express the Actb promoter-driven GFP-Lc3 

transgene strongly enough to allow detection of the fluorescent protein.
144

 In addition, tissue-

specific GFP-LC3 mice have been generated for monitoring cardiac myocytes.
909,910

 In these 

settings, GFP fluorescent puncta are indicative of autophagic structures; however, the use of a 

lysosomal fusion or protease inhibitor would be needed to assess flux. Cleavage of GFP-LC3 to 

generate free GFP can be evaluated as one method to monitor the completion of autophagy. This 

has been successfully performed in mouse liver,
239,719

 suggesting the GFP-LC3 cleavage assay 

may also be applied to in vivo studies. Note that the accumulation of free GFP in the mouse 

brain is minimal after autophagy is induced with rapamycin (autophagy induction based on GFP-

LC3 imaging and SQSTM1 IHC; M. Lipinski, personal communication), but significant when 

autophagy flux is partially blocked after traumatic brain injury.
908

 Thus, caution needs to be 

taken when interpreting results of these assays in different tissues. We also recommend including 

a control under conditions known to induce autophagy flux such as starvation. A simple 
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methodology to measure autophagy flux in the brain was described.
911

 This strategy combines 

the generation of adeno-associated virus and the use of the dynamic fluorescent reporter 

mCherry-GFP-LC3, that allows an extended transduction and stable expression of mCherry-

GFP-LC3 after intracerebroventricular injection in newborn animals. With this approach, a 

widespread transduction level is achieved along neurons at the central nervous system when 

newborn pups are injected, including pyramidal cortical and hippocampal neurons, Purkinje 

cells, and motor neurons in the spinal cord and also, to a lesser extent, in oligodendrocytes.
911

 

The use of different serotypes of adeno-associated virus could be used to transduce other cell 

types at the CNS.
912

 This methodology allows a reproducible and sensitive mCherry-GFP-LC3 

detection, and a strong LC3 flux when animals are treated with autophagy inducers including 

rapamycin and trehalose.
913

 Therefore, using these combined strategies can be applied to follow 

autophagy activity in mice and can be particulary useful to evaluate it in animals models of 

diseases affecting the nervous system.
912

 Alternatively, confocal laser scanning microscopy, 

which makes it possible to obtain numerous sections and substantial data about spatial 

localization features, can be a suitable system for studying autophagic structures (especially for 

whole mount embryo in vivo analysis).
914

 In addition, this method can be used to obtain 

quantitative data through densitometric analysis of fluorescent signals.
915

 

Another possibility is immunohistochemical staining, an important procedure that may be 

applicable to human studies as well considering the role of autophagy in neurodegeneration, 

myopathies and cardiac disease where samples may be limited to biopsy/autopsy tissue. 

Immunodetection of LC3 as definite puncta is possible in paraffin-embedded tissue sections and 

fresh frozen tissue, by either IHC or immunofluorescence;
186,916-922

 however, this methodology 

has not received extensive evaluation, and does not lend itself well to dynamic assays. Other 
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autophagic substrates can be evaluated via IHC and include SQSTM1, NBR1, ubiquitinated 

inclusions and protein aggregates. Similarly, autophagy can be evaluated by measuring levels of 

these autophagic substrates via traditional immunoblot; however, their presence or absence needs 

to be cautiously interpreted as some of these substrates can accumulate with either an increase or 

a decrease in autophagic flux (see SQSTM1 and related LC3 binding protein turnover assays). 

Bone marrow transfer has been used to document in vivo the role of autophagy in the reverse 

cholesterol transport pathway from peripheral tissues or cells (e.g., macrophages) to the liver for 

secretion in bile and for excretion,
923

 and a study shows that TGM2 (transglutaminase 2) protein 

levels decrease in mouse liver in vivo upon starvation in an autophagy-dependent manner (and in 

human cell lines in vitro in response to various stimuli; M. Piacentini, personal communication), 

presenting additional possible methods for following autophagy activity. In that respect, it is 

noteworthy to mention that TGM2 can negatively affect autophagy by modifying ITPR1 (inositol 

1,4,5-trisphosphate receptor, type 1) and suppressing its Ca
2+

-release activity.
924

 

It is also possible to analyze tissues ex vivo, and these studies can be particularly helpful 

in assessing autophagic flux as they avoid the risks of toxicity and bioavailabilty of compounds 

such as bafilomycin A1 or other autophagy inhibitors. Along these lines, autophagic flux can be 

determined by western blot in retinas placed in culture for 4 h with protease inhibitors.
925,926

 This 

method could be used in tissues that can remain “alive” for several hours in culture such as the 

retina,
925,926

 brain slices,
908,927

 and spinal cord slices.
928

 

Several studies have demonstrated the feasibility of monitoring autophagic flux in vivo in 

skeletal muscle. Starvation is one of the easiest and most rapid methods for stimulating the 

autophagic machinery in skeletal muscles. 12 h of fasting in mice may be sufficient to trigger 

autophagy in muscle,
929,930

 but the appropriate time should be determined empirically. Although 
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food deprivation does not induce detectable autophagy in the brain it induces autophagy in the 

retina, and by the use of in vivo injection of leupeptin autophagic flux can be evaluated with LC3 

lipidation by western blot.
926

 Data about the autophagic flux can be obtained by treating mice 

with, for example, chloroquine,
930

 leupeptin
926,931

 or colchicine
208

 and then monitoring the 

change in accumulation of LC3 (see cautionary notes). This type of analysis can also be done 

with liver, by comparing the LC3-II level in untreated liver (obtained by a partial hepatectomy) 

to that following subsequent exposure to chloroquine (V. Skop, Z. Papackova and M. Cahová, 

personal communication). Additional reporter assays to monitor autophagy flux in vivo need to 

be developed, including tandem fluorescent-LC3 transgenic mice, or viral vectors to express this 

construct in vivo in localized areas. One of the challenges of studying autophagic flux in intact 

animals is the demonstration of cargo clearance, but studies of fly intestines that combine 

sophisticated mosaic mutant cell genetics with imaging of mitochondrial clearance reveal that 

such analyses are possible.
735

 

Another organ particularly amenable to ex vivo analysis is the heart, with rodent hearts 

easily subjected to perfusion by the methods of Langendorff established in 1895 (for review see 

ref. 
932

). Autophagy has been monitored in perfused hearts,
933

 where it is thought to be an 

important process in several modes of cardioprotection against ischemic injury.
934

 It should be 

noted that baseline autophagy levels (as indicated by LC3-II) appear relatively high in the 

perfused heart, although this may be due to perceived starvation by the ex vivo organ, 

highlighting the need to ensure adequate delivery of metabolic substrates in perfusion media, 

which may include the addition of INS/insulin. Another concern is that the high partial pressure 

of oxygen of the perfusate (e.g., buffer perfused with 95%/5% [O2/CO2] used in the Langendorff 

method makes this preparation problematic for the study of autophagy because of the high levels 
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of oxidation (redox disturbances) resulting from the preparation. Therefore, great caution should 

be exercised in interpretation of these results. 

Human placenta also represents an organ suitable for ex vivo studies, such as to 

investigate pregnancy outcome abnormalities. Autophagy has been evaluated in placentas from 

normal pregnancies
935-937

 identifying a baseline autophagy level (as indicated by LC3-II) in 

uneventful gestation. In cases with abnormal pregnancy outcome, LC3-II is increased in 

placentas complicated by intrauterine growth restriction in cases both from singleton 

pregnancies
938

 and from monochorionic twins pregnancies.
939

 Moreover, placentas from 

pregnancies complicated by preeclampsia show a higher level of LC3-II than normal 

pregnancies.
940

 Finally, placentas from acidotic newborns developing neonatal encephalopathy 

exhibit a higher IHC LC3 expression than placentas from newborn without neonatal 

encephalopathy.
941

 For this reported association, further investigations are needed to assess if 

autophagy protein expression in placentas with severe neonatal acidosis could be a potential 

marker for poor neurological outcome. 

The retina is a very suitable organ for ex vivo as well as in vivo autophagy determination. 

The retina is a part of the central nervous system, is readily accessible and can be maintained in 

organotypic cultures for some time allowing treatment with protease and autophagy inhibitors. 

This allows determination of autophagy flux ex vivo in adult and embryonic retinas by western 

blot
375,925

 as well as by flow cytometry and microscopy analysis.
926

 Moreover, only 4 h of 

leupeptin injection in fasted mice allows for autophagy flux assessment in the retina
926

 indicating 

2 things: first, food deprivation induces autophagy in selected areas of the central nervous 

system; and second, leupeptin can cross the blood-retinal barrier.  
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In vivo analysis of the autophagic flux in the brain tissue of neonatal rats can also be 

performed. These studies use the intraperitoneal administration of the acidotropic dye 

monodansylcadaverine (MDC) to pup rats 1 h before sacrifice, followed by the analysis of tissue 

labeling through fluorescence or confocal laser scanning microscopy (365/525-nm 

excitation/emission filter). This method was adapted to study autophagy in the central nervous 

system after its validation in cardiac tissue.
942

 MDC labels acidic endosomes, lysosomes, and 

late-stage autophagosomes, and its labeling is upregulated under conditions that increase 

autophagy.
943

 In a neonatal model of hypoxic-ischemic brain injury, where autophagy activation 

is a direct consequence of the insult,
944

 MDC labeling is detectable only in the ischemic tissue, 

and colocalizes with LC3-II.
945

 The number of MDC- and LC3-II-positive structures changes 

when autophagy is pharmacologically up- or downregulated.
945,946

 Whether this method can also 

be used in adult animals needs to be determined. Furthermore, it should be kept in mind that 

staining with MDC is not, by itself, a sufficient method for monitoring autophagy (see 

Acidotropic dyes). 

 Another approach that can be used in vivo in brain tissue is to stain for lysosomal 

enzymes. In situations where an increase in autophagosomes has been shown (e.g., by 

immunostaining for LC3 and immunoblotting for LC3-II), it is important to show 

whether this is due to a shutdown of the lysosomal system, causing an accumulation of 

autophagosomes, or whether this is due to a true increase in autophagic flux. The 

standard methods described above for in vitro research, such as the study of clearance of 

a substrate, are difficult to use in vivo, but if it can be demonstrated that the increase in 

autophagosomes is accompanied by an increase in lysosomes, this makes it very likely 

that there has been a true increase in autophagic flux. Lysosomal enzymes can be 
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detected by IHC (e.g., for LAMP1 or CTSD) or by classical histochemistry to reveal their 

activity (e.g., ACP/acid phosphatase or HEX/β-hexosaminidase).
947-949

 

Some biochemical assays may be used to at least provide indirect correlative data relating 

to autophagy, in particular when examining the role of autophagy in cell death. For example, 

cellular viability is related to high CTSB activity and low CTSD activities.
950

 Therefore, the 

appearance of the opposite levels of activities may be one indication of the initiation of 

autophagy (lysosome)-dependent cell death. The question of “high” versus “low” activities can 

be determined by comparison to the same tissue under control conditions, or to a different tissue 

in the same organism, depending on the specific question.  

Cautionary notes: The major hurdle with in vivo analyses is the identification of 

autophagy-specific substrates and the ability to “block” autophagosome degradation with a 

compound such as bafilomycin A1. Regardless, it is still essential to adapt the same rigors for 

measuring autophagic flux in vitro to measurements made with in vivo systems. Moreover, as 

with cell culture, to substantiate a change in autophagic flux it is not adequate to rely solely on 

the analysis of static levels or changes in LC3-II protein levels on western blot using tissue 

samples. To truly measure in vivo autophagic flux using LC3-II as a biomarker, it is necessary to 

block lysosomal degradation of the protein. Several studies have successfully done this in select 

tissues in vivo. Certain general principles need to be kept in mind: (a) Any autophagic blocker, 

whether leupeptin, bafilomycin A1, chloroquine or microtubule depolarizing agents such as 

colchicine or vinblastine, must significantly increase basal LC3-II levels. The turnover of LC3-II 

or rate of basal autophagic flux is not known for tissues in vivo, and therefore short treatments 

(e.g., 4 h) may not be as effective as blocking for longer times (e.g., 12 to 24 h). (b) The toxicity 

of the blocking agent needs to be considered (e.g., treating animals with bafilomycin A1 for 2 h 
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can be quite toxic), and food intake must be monitored. If long-term treatment is needed to see a 

change in LC3-II levels, then confirmation that the animals have not lost weight may be needed. 

Mice may lose a substantial portion of their body weight when deprived of food for 24 h, and 

starvation is a potent stimulus for the activation of autophagy. (c) The bioavailability of the agent 

needs to be considered. For example, many inhibitors such as bafilomycin A1 or chloroquine 

have relatively poor bioavailability to the central nervous system. To overcome this problem, 

intracerebroventricular injection can be performed. 

A dramatic increase of intracellular free poly-unsaturated fatty acid levels can be 

observed by proton nuclear magnetic resonance spectroscopy in living pancreatic cancer cells 

within 4 h of autophagy inhibition by omeprazole, which interacts with the V-ATPase and 

probably inhibits autophagosome-lysosome fusion. Omeprazole is one of the most frequently 

prescribed drugs worldwide and shows only minor side effects even in higher doses. Proton 

nuclear magnetic resonance spectroscopy is a noninvasive method that can be also applied as 

localized spectroscopy in magnetic resonance tomography and therefore opens the possibility of 

a noninvasive, clinically applicable autophagy monitoring method, although technical issues still 

have to be solved.
951

 

When analyzing autophagic flux in vivo, one major limitation is the variability between 

animals. Different animals do not always activate autophagy at the same time. To improve the 

statistical relevance and avoid unclear results, these experiments should be repeated more than 

once, with each experiment including several animals. Induction of autophagy in a time-

dependent manner by fasting mice for different times requires appropriate caution. Mice are 

nocturnal animals, so they preferentially move and eat during the night, while they mostly rest 

during daylight. Therefore, in such experiments it is better to start food deprivation early in the 
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morning, to avoid the possibility that the animals have already been fasting for several hours. 

The use of chloroquine is technically easier, since it only needs one intraperitoneal injection per 

day, but the main concern is that chloroquine has some toxicity. Chloroquine suppresses the 

immunological response in a manner that is not due to its pH-dependent lysosomotropic 

accumulation (chloroquine interferes with lipopolysaccharide-induced Tnf/Tnf-gene expression 

by a nonlysosmotropic mechanism),
952

 as well as through its pH-dependent inhibition of antigen 

presentation.
953

 Therefore, chloroquine treatment should be used for short times and at doses that 

do not induce severe collateral effects, which may invalidate the measurement of the autophagic 

flux, and care must be exercised in using chloroquine for studies on autophagy that involve 

immunological aspects. It is also important to have time-matched controls for in vivo analyses. 

That is, having only a zero hour time point control is not sufficient because there may be 

substantial diurnal changes in basal autophagy.
614

 For example, variations in basal flux in the 

liver associated with circadian rhythm may be several fold,
954

 which can equal or exceed the 

changes due to starvation. Along these lines, to allow comparisons of a single time-point it is 

important to specify what time of day the measurement is taken and the lighting conditions under 

which the animals are housed. It is also important that the replicate experiments are conducted at 

the same time of day. Controlling for circadian effects can greatly reduce the mouse-to-mouse 

variability in autophagy markers and flux (J.A. Haspel and A.M.K. Choi, personal 

communication).  

When analyzing the basal autophagic level in vivo using GFP-LC3 transgenic mice,
144

 

one pitfall is that GFP-LC3 expression is driven by the Cmv/cytomegalovirus enhancer and 

Actb/-actin (CAG) promoter, so that the intensity of the GFP signal may not always represent 

the actual autophagic activity, but rather the CAG promoter activity in individual cells. For 
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example, GFP-LC3 transgenic mice exhibit prominent fluorescence in podocytes, but rarely in 

tubular epithelial cells in the kidney,
144

 but a similar GFP pattern is observed in transgenic mice 

carrying CAG promoter-driven non-tagged GFP.
955

 Furthermore, proximal tubule-specific 

ATG5-deficient mice
956

 display a degeneration phenotype earlier than podocyte-specific ATG5-

deficient mice,
957

 suggesting that autophagy, and hence LC3 levels, might actually be more 

prominent in the former. 

One caution in using approaches that monitor ubiquitinated aggregates is that the 

accumulation of ubiquitin may indicate a block in autophagy or inhibition of proteasomal 

degradation, or it may correspond to structural changes in the substrate proteins that hinder their 

degradation. In addition, only cytosolic and not nuclear ubiquitin is subject to autophagic 

degradation. It is helpful to analyze aggregate degradation in an autophagy-deficient control 

strain, such as an autophagy mutant mouse, whenever possible to determine whether an 

aggregate is being degraded by an autophagic mechanism. This type of control will be 

impractical for some tissues such as those of the central nervous system because the absence of 

autophagy leads to rapid degeneration. Accordingly, the use of Atg16l1 hypomorphs or Becn1 

heterozygotes may help circumvent this problem. 

Conclusion: Although the techniques for analyzing autophagy in vivo are not as 

advanced as those for cell culture, it is still possible to follow this process (including flux) by 

monitoring, for example, GFP-LC3 by fluorescence microscopy, and SQSTM1 and NBR1 by 

IHC and/or western blotting. 

 

16. Clinical setting. Altered autophagy is clearly relevant in neurodegenerative disease, as 

demonstrated by the accumulation of protein aggregates, for example in Alzheimer disease,
958,959
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Parkinson disease,
960

 polyglutamine diseases,
961

 muscle diseases,
962

 and amyotrophic lateral 

sclerosis.
963

 Further evidence comes from the observations that the crucial mitophagy regulators 

PINK1 and PARK2 show loss-of-function mutations in autosomal recessive juvenile 

parkinsonism,
964

 and that the putative ribophagy regulator VCP/p97 (an ortholog of yeast Cdc48) 

as well as the autophagy receptor OPTN are mutated in motor neuron disease.
965,966

 In addition to 

neurodegenerative diseases, alterations in autophagy have also been implicated in other 

neurological diseases including some epilepsies, neurometabolic and neurodevelopmental 

disorders.
927,967-969

 A very useful nonspecific indicator of deficient aggrephagy in autopsy brain 

or biopsy tissue is SQSTM1 IHC.
970,971

 For clinical attempts to monitor autophagy alterations in 

peripheral tissues such as blood, it is important to know that eating behavior may be altered as a 

consequence of the disease,
972

 resulting in a need to control feeding-fasting conditions during the 

analyses. Recently, altered autophagy was also implicated in schizophrenia, with BECN1 

transcript levels decreasing in the postmortem hippocampus in comparison to appropriate 

controls.
973

 In the same hippocampal postmortem samples, the correlation between the RNA 

transcript content for ADNP (activity-dependent neuroprotective homeobox) and its sister 

protein ADNP2 is deregulated,
974

 and ADNP as well as ADNP2 RNA levels increase in 

peripheral lymphocytes from schizophrenia patients compared to matched healthy controls, 

suggesting a potential biomarker.
973

 

 Similarly, autophagy inhibition plays a key role in the pathogenesis of inherited 

autophagic vacuolar myopathies (including Danon disease, X-linked myopathy with excessive 

autophagy, and infantile autophagic vacuolar myopathy), all of which are characterized by 

lysosomal defects and an accumulation of autophagic vacuoles.
975

 Autophagic vacuolar 

myopathies and cardiomyopathies can also be secondary to treatment with autophagy-inhibiting 
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drugs (chloroquine, hydroxychloroquine and colchicine), which are used experimentally to 

interrogate autophagic flux and clinically to treat malaria, rheumatological diseases, and gout.
922

 

Autophagy impairment has also been implicated in the pathogenesis of inclusion body myositis, 

an age-associated inflammatory myopathy that is currently refractory to any form of 

treatment,
976-978

 along with other muscular dystrophies such as tibial muscular dystrophy.
979

 In 

all these striated muscle disorders, definitive tissue diagnosis used to require ultrastructural 

demonstration of accumulated autophagic vacuoles; more recently, it has been shown that IHC 

for LC3 and/or SQSTM1 can be used instead.
920-922,980

 

 In addition, altered basal autophagy levels are seen in rheumatoid arthritis.
981,982

 Other 

aspects of the immune response associated with dysfunctional autophagy are seen in neutrophils 

from patients with familial Mediterranean fever
983

 and in monocytes from patients with TNF 

receptor-associated periodic syndrome,
984

 2 autoinflammatory disorders. Moreover, autophagy 

regulates an important neutrophil function, the generation of neutrophil extracellular traps 

(NETs).
978,985

 The important role of autophagy in the induction of NET formation has been 

studied in several neutrophil-associated disorders such as gout,
986

 sepsis,
987

 and lung fibrosis.
988

 

Furthermore, there is an intersection between autophagy and the secretory pathway in 

mammalian macrophages for the release of IL1B,
989

 demonstrating a possible alternative role of 

autophagy for protein trafficking. This role has also been implied in neutrophils through 

exposure of protein epitopes on NETs by acidified LC3-positive vacuoles in sepsis
987

 and anti-

neutrophil cytoplasmic antibody associated vasculitis.
990

 Patients with chronic kidney disease 

also have impaired autophagy activation in leukocytes, which is closely related to their cardiac 

abnormalities. There is also evidence for altered autophagy in pancreatic beta cells of type 2 

diabetic patients.
991,992

 However, autophagy was also shown to play an important role in the 
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development in vitro of giant phagocytes, a long-lived neutrophil subpopulation, derived from 

neutrophils of healthy individuals.
993,994

  

 Photodynamic therapy (PDT), an FDA-approved anticancer therapy, has high selectivity 

for tumor cell elimination by eliciting efficient apoptosis and autophagy induction and fulfills the 

need to merge a direct cytotoxic action on tumor cells with potent immunostimulatory effects 

(i.e., immunogenic cell death, ICD).
995

 A few photosensitizers, such as Photofrin, Hypericin, 

Foscan, 5-ALA and Rose Bengal acetate, are associated with danger/damage-associated 

molecular pattern (DAMP) exposure and/or release that is a requisite to elicit ICD. Rose Bengal 

acetate PDT is the first treatment to induce autophagic HeLa cells to express and release 

DAMPS, thus suggesting a possible role of the autophagic cells in ICD induction.
996

 

 A crucial role for therapy-induced autophagy in cancer cells has recently emerged, in 

modulating the interface of cancer cells and the immune system;
997

 primarily, by affecting the 

nature of danger signaling (i.e., the signaling cascade that facilitates the exposure and/or release 

of danger signals) associated with ICD.
995,997-1000

 This is an important point considering the 

recent clinical surge in the success of cancer immunotherapy in patients, and the emerging 

clinical relevance of ICD for positive patient prognosis. Several notorious autophagy-inducing 

anticancer therapies induce ICD including mitoxantrone, doxorubicin, oxaliplatin, radiotherapy, 

certain oncolytic viruses and hypericin-based photodynamic therapy (Hyp-PDT).
1000-1003

 In fact, 

in the setting of Hyp-PDT, ER stress-induced autophagy in human cancer cells suppresses CALR 

(calreticulin) surface exposure (a danger signal crucial for ICD) thereby leading to suppression 

of human dendritic cell maturation and human CD4
+
 and CD8

+
 T cell stimulation.

1002
 

Conversely, chemotherapy (mitoxantrone or oxaliplatin)-induced autophagy facilitates ATP 

secretion (another crucial ICD-associated danger signal) thereby facilitating ICD and anti-tumor 
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immunity in the murine system, the first documented instance of autophagy-based ICD 

modulation.
1004

 The role of ATP as a DAMP becomes clear when the extracellular concentration 

of ATP becomes high and elicits activation of the purinergic receptor P2RX7. P2RX7 is 

involved in several pathways, including the sterile immune response, and its activation induces 

cancer cell death through PI3K, AKT and MTOR.
1005,1006

 In addition, cells lacking the essential 

chaperone-mediated autophagy (CMA) gene LAMP2A fail to expose surface CALR after 

treatment with both Hyp-PDT and mitoxantrone.
1007

 These observations have highlighted the 

important, context-dependent role of therapy-induced autophagy, in modulating the cancer cell-

immune cell interface by regulating the emission of ICD-associated danger signals.
1008

 Recent 

studies also have implicated insufficient autophagy in the pathogenesis of nonresolving vital 

organ failure and muscle weakness during critical illness, 2 leading causes of death in prolonged 

critically ill patients.
1009,1010

 Finally, a block of autophagy with consequent accumulation of 

autophagy substrates is detected in liver fibrosis,
1011,1012

 and lysosomal storage diseases.
1013

 

 Finally, it is important to note that disease-associated autophagy defects are not restricted 

to macroautophagy but also concern other forms of autophagy. CMA impairment, for instance, is 

associated with several disease conditions, including neurodegenerative disorders,
213,1014

 

lysosomal storage diseases,
1015,1016

, nephropathies
1017

 and diabetes.
1018

 

 A set of recommendations regarding the design of clinical trials modulating autophagy 

can be found in ref. 
1019

.  

 Cautionary notes: To establish a role for autophagy in modulating the interface with the 

immune system, specific tests need to be performed where genes encoding autophagy-relevant 

components (e.g., ATG5, ATG7 or BECN1) have been knocked down through RNA silencing or 

other protein- or gene-specific targeting technologies.
1002,1004,1007

 Usage of chemical inhibitors 
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such as bafilomycin A1, 3-MA or chloroquine can create problems owing to their off-target 

effects, especially on immune cells, and thus their use should be subjected to due caution, and 

relevant controls are critical to account for any off-target effects. In the context of ICD, 

consideration should be given to the observations that autophagy can play a context-dependent 

role in modulating danger signaling;
1002,1004,1007

 and thus, all the relevant danger signals (e.g., 

surface exposed CALR or secreted ATP) should be (re-)tested for new agents/therapies in the 

presence of targeted ablation of autophagy-relevant proteins/genes, accompanied by relevant 

immunological assays (e.g., in vivo rodent vaccination/anti-tumor immunity studies or ex vivo 

immune cell stimulation assays), in order to imply a role for autophagy in regulating ICD or 

general immune responses. 

 

17. Cell death. In several cases, autophagy has been established as the cause of cell 

death;
76,263,336,735,1020-1028

 although opposite results have been reported using analogous 

experimental settings.
1029

 Furthermore, many of the papers claiming a causative role of 

autophagy in cell death fail to provide adequate evidence.
1030

 Other papers suffer from 

ambiguous use of the term “autophagic cell death,” which was coined in the 1970s
1031

 in a purely 

morphological context to refer to cell death with autophagic features (especially the presence of 

numerous secondary lysosomes); this was sometimes taken to suggest a role of autophagy in the 

cell death mechanism, but death-mediation was not part of the definition.
1032

 Unfortunately, the 

term “autophagic cell death” is now used in at least 3 different ways: (a) Autophagy-associated 

cell death (the original meaning). (b) Autophagy-mediated cell death (which could involve a 

standard mechanism of cell death such as apoptosis, but triggered by autophagy). (c) A distinct 

mechanism of cell death, independent of apoptosis or necrosis. Clearly claim (b) is stronger than 
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claim (a), and needs to be justified by proof that inhibiting autophagy, through either genetic or 

chemical means, prevents cell death.
1033

 Claim (c) is still stronger, because, even if the cell death 

is blocked by autophagy inhibition, proof needs to be provided that the cell death mechanism is 

not apoptosis or necrosis.
1034

 In view of the current confusion it may be preferable to replace the 

term “autophagic cell death” by other terms such as “autophagy-associated cell death” or 

“autophagy-mediated cell death,” unless the criteria in claim (c) above have been satisfied. 

Along these lines, it is preferable to use the term “autophagy-dependent cell death” instead of 

“autophagy-mediated cell death” when it is proven that autophagy is a pre-requisite for the 

occurrence of cell death, but it is not proven that autophagy mechanistically mediates the switch 

to cell death. It is important to note that a stress/stimulus can in many circumstances induce 

different cell death pathways at the same time, which might lead to a “type” of cell death with 

mixed phenotypes.
1035,1036

 Furthermore, inhibition of one cell death pathway (e.g., apoptosis) can 

either induce the compensatory activation of a secondary mechanism (e.g., necrosis),
1037,1038

 or 

attenuate a primary mechanism (e.g., liponecrosis).
1035

 

 The role of autophagy in the death of plant cells is less ambiguous, because plants are 

devoid of the apoptotic machinery and use lytic vacuoles to disassemble dying cells from 

inside.
1039

 This mode of cell death governs many plant developmental processes and was named 

“vacuolar cell death”.
1040

 Recent studies have revealed a key role of autophagy in the execution 

of vacuolar cell death, where autophagy sustains the growth of lytic vacuoles.
1041,1042

 Besides 

being an executioner of vacuolar cell death, autophagy can also play an upstream, initiator role in 

immunity-associated cell death related to the pathogen-triggered hypersensitive response.
1039,1043

  

 Upon induction by starvation of multicellular development in the protist Dictyostelium, 

autophagy (or at least Atg1) is required to protect against starvation-induced cell death, allowing 
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vacuolar developmental cell death to take place instead.
1044,1045

 Autophagy may be involved not 

only in allowing this death to occur, but also, as during vacuolar cell death in plants, in the 

vacuolization process itself.
1046

  

 Recently, a novel form of autophagy-dependent cell death has been described, autosis, 

which not only meets the criteria in claim (c) (i.e., blocked by autophagy inhibition, independent 

of apoptosis or necrosis), but also demonstrates unique morphological features and a unique 

ability to be suppressed by pharmacological or genetic inhibition of the Na
+
,K

+
-ATPase.

1027
 In 

addition, the demonstration that autophagy is required for cell death during Drosophila 

development where caspases and necrosis do not appear to be involved may be the best known 

physiologically relevant model of cell death that involves autophagy.
263,735

 

Cautionary notes: In brief, rigorous criteria must be met in order to establish a death-

mediating role of autophagy, as this process typically promotes cell survival. These include a 

clear demonstration of autophagic flux as described in this article, as well as verification that 

inhibition of autophagy prevents cell death (claim [b] above; if using a knockdown approach, at 

least 2 ATG genes should be targeted), and that other mechanisms of cell death are not 

responsible (claim [c] above). As part of this analysis, it is necessary to examine the effect of the 

specific treatment, conditions or mutation on cell viability using several methods.
1037

 In the case 

of postmitotic cells such as neurons or retinal cells, cell death—and cell rescue by autophagy 

inhibition—can usually be established in vivo by morphological analysis,
1047

 and in culture by 

cell counts and/or measurement of the release of an enzyme such as LDH into the medium at 

early and late time points; however, a substantial amount of neuronal cell death occurs during 

neurogenesis, making it problematic to carry out a correct analysis in vivo or ex vivo.
1048,1049

 In 

populations of rapidly dividing cells, the problems may be greater. A commonly used method is 
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the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay or a related assay 

using a similar, or a water-soluble, tetrazolium salt. The main concern with the MTT assay is that 

it measures mitochondrial activity, but does not allow a precise determination of cellular viability 

or cell death, whereas methods that show cell death directly (e.g., trypan blue exclusion, or LDH 

release assay) fail to establish the viability of the remaining cell population.
1050

 Accordingly, a 

preferred alternative is to accurately quantify cell death by appropriate cytofluorometric or 

microscopy assays.
1037

 Moreover, long-term clonogenic assays should be employed when 

possible to measure the effective functional survival of cells.  

Conclusion: In most systems, ascribing death to autophagy based solely on 

morphological criteria is insufficient; autophagic cell death can only be demonstrated as death 

that is suppressed by the inhibition of autophagy, through either genetic or chemical means.
1033

 

In addition, more than one assay should be used to measure cell death. In this regard, it is 

important to mention that neither changes in mitochondrial activity/potential, nor caspase 

activation or externalization of phosphatidylserine can be accurately used to determine cell death 

as all these phenomena have been reported to be reversible. Only the determination of cellular 

viability (ratio between dead/live cells) can be used to accurately determine cell death 

progression. 

 

18. Chaperone-mediated autophagy. The primary characteristic that makes CMA different from 

the other autophagic variants described in these guidelines is that it does not require formation of 

intermediate vesicular compartments (autophagosomes or microvesicles) for the import of cargo 

into lysosomes.
1051,1052

 Instead, the CMA substrates are translocated across the lysosomal 

membrane through the action of HSPA8/HSC70 (heat shock 70kDa protein 8) located in the 

http://en.wikipedia.org/wiki/Methyl
http://en.wikipedia.org/wiki/Methyl
http://en.wikipedia.org/wiki/Phenyl
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cytosol and lysosome lumen, and the lysosome membrane protein LAMP2A. To date, CMA has 

only been identified in mammalian cells, and accordingly this section refers only to studies in 

mammals.  

The following section discusses methods commonly utilized to determine if a 

protein is a CMA substrate (see ref. 
1053

 for experimental details):  

a. Analysis of the amino acid sequence of the protein to identify the presence of a 

KFERQ-related motif that is an absolute requirement for all CMA substrates.
1054

  

b. Colocalization studies with lysosomal markers (typically LAMP2A and/or 

LysoTracker) to identify a fraction of the protein associated with lysosomes. The increase 

in association of the putative substrate under conditions that upregulate CMA (such as 

prolonged starvation) or upon blockage of lysosomal proteases (to prevent the 

degradation of the protein) helps support the hypothesis that the protein of interest is a 

CMA substrate. However, association with lysosomes is necessary but not sufficient to 

consider a protein an authentic CMA substrate, because proteins delivered by other 

pathways to lysosomes will also behave in a similar manner. A higher degree of 

confidence can be attained if the association is preferentially with the subset of lysosomes 

active for CMA (i.e., those containing HSPA8 in their lumen), which can be separated 

from other lysosomes following published procedures.
906

  

c. Co-immunoprecipitation of the protein of interest with cytosolic HSPA8. Due 

to the large number of proteins that interact with this chaperone, it is usually better to 

perform affinity isolation with the protein of interest and then analyze the isolated 

proteins for the presence of HSPA8 rather than vice versa.  
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d. Co-immunoprecipitation of the protein of interest with LAMP2A.
1055

 Due to 

the fact that the only antibodies specific for the LAMP2A variant (the only 1 of the 3 

LAMP2 variants involved in CMA
85,1056

) are generated against the cytosolic tail of 

LAMP2A, where the substrate also binds, it is necessary to affinity isolate the protein of 

interest and then analyze for the presence of LAMP2A. Immunoblot for LAMP2A in the 

precipitate can only be done with the antibodies specific for LAMP2A and not just those 

that recognize the lumenal portion of the protein that is identical in the other LAMP2 

variants. If the protein of interest is abundant inside cells, co-immunoprecipitations with 

LAMP2A can be done in total cellular lysates, but for low abundance cellular proteins, 

preparation of a membrane fraction (enriched in lysosomes) by differential centrifugation 

may facilitate the detection of the population of the protein bound to LAMP2A.  

e. Selective upregulation and blockage of CMA to demonstrate that degradation 

of the protein of interest changes with these manipulations. Selective chemical inhibitors 

for CMA are not currently available. Note that general inhibitors of lysosomal proteases 

(e.g., bafilomycin A1, NH4Cl, leupeptin) also block the degradation of proteins delivered 

to lysosomes by other autophagic and endosomal pathways. The most selective way to 

block CMA is by knockdown of LAMP2A, which causes this protein to become a 

limiting factor.
85

 The other components involved in CMA, including HSPA8, 

HSP90AA1, GFAP, and EEF1A/eF1, are all multifunctional cellular proteins, making it 

difficult to interpret the effects of knockdowns. Overexpression of LAMP2A
1055

 is also a 

better approach to upregulate CMA than the use of chemical modulators. The 2 

compounds demonstrated to affect degradation of long-lived proteins in lysosomes,
1057

 6-

aminonicotinamide and geldanamycin, lack selectivity, as they affect many other cellular 
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processes. In addition, in the case of geldanamycin, the effect on CMA can be the 

opposite (inhibition rather than stimulation) depending on the cell type (this is due to the 

fact that the observed stimulation of CMA is actually a compensatory response to the 

blockage of HSP90AA1 in lysosomes, and different cells activate different compensatory 

responses).
1058

  

f. The most conclusive way to prove that a protein is a CMA substrate is by 

reconstituting its direct translocation into lysosomes using a cell-free system.
1053

 This 

method is only possible when the protein of interest can be purified, and it requires the 

isolation of the population of lysosomes active for CMA. Internalization of the protein of 

interest inside lysosomes upon incubation with the isolated organelle can be monitored 

using protease protection assays (in which addition of an exogenous protease removes the 

protein bound to the cytosolic side of lysosomes, whereas it is inaccessible to the protein 

that has reached the lysosomal lumen; note that pre-incubation of lysosomes with 

lysosomal protease inhibitors before adding the substrate is required to prevent the 

degradation of the translocated substrate inside lysosomes).
1059

 The use of exogenous 

protease requires numerous controls (see ref. 
1053

) to guarantee that the amount of 

protease is sufficient to remove all the substrate outside lysosomes, but will not penetrate 

inside the lysosomal lumen upon breaking the lysosomal membrane.  

The difficulties in the adjustment of the amount of protease have led to the 

development of a second method that is more suitable for laboratories that have no 

previous experience with these procedures. In this case, the substrate is incubated with 

lysosomes untreated or previously incubated with inhibitors of lysosomal proteases, and 

then uptake is determined as the difference of protein associated with lysosomes not 
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incubated with inhibitors (in which the only remaining protein will be the one associated 

with the cytosolic side of the lysosomal membrane) and those incubated with the protease 

inhibitors (which contain both the protein bound to the membrane and that translocated 

into the lumen).
1060

  

Confidence that the lysosomal internalization is by CMA increases if the uptake 

of the substrate can be competed with proteins previously identified as substrates for 

CMA (e.g., GAPDH/glyceraldehyde-3-phosphate dehydrogenase or 

RNASE1/ribonuclease A, both commercially available as purified proteins), but is not 

affected by the presence of similar amounts of nonsubstrate proteins (such as 

SERPINB/ovalbumin or PPIA/cyclophilin A). Blockage of uptake by pre-incubation of 

the lysosomes with antibodies against the cytosolic tail of LAMP2A also reinforces the 

hypothesis that the protein is a CMA substrate. It should be noted that several 

commercially available kits for lysosome isolation separate a mixture of lysosomal 

populations and do not enrich in the subgroup of lysosomes active for CMA, which limits 

their use for CMA uptake assays. 

 In other instances, rather than determining if a particular protein is a CMA 

substrate, the interest may be to analyze possible changes in CMA activity under different 

conditions or in response to different modifications. We enumerate here the methods, 

from lower to higher complexity, that can be utilized to measure CMA in cultured cells 

and in tissues (see ref. 
1053

 for detailed experimental procedures).  

 a. Measurement of changes in the intracellular rates of degradation of long-lived 

proteins, when combined with inhibitors of other autophagic pathways, can provide a first 

demonstration in support of changes that are due to CMA. For example, CMA is defined 
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as lysosomal degradation upregulated in response to serum removal but insensitive to 

PtdIns3K inhibitors.  

 b. Measurement of levels of CMA components is insufficient to conclude changes 

in CMA because this does not provide functional information, and changes in CMA 

components can also occur under other conditions. However, analysis of the levels of 

LAMP2A can be used to support changes in CMA detected by other procedures. 

Cytosolic levels of HSPA8 remain constant and are not limiting for CMA, thus providing 

no information about this pathway. Likewise, changes in total cellular levels of LAMP2A 

do not have an impact on this pathway unless they also affect their lysosomal levels (i.e., 

conditions in which LAMP2A is massively overexpressed lead to its targeting to the 

plasma membrane where it cannot function in CMA). It is advisable that changes in the 

levels of these 2 CMA components are confirmed to occur in lysosomes, either by 

colocalization with lysosomal markers when using image-based procedures or by 

performing immunoblot of a lysosomal enriched fraction (purification of this fraction 

does not require the large amounts of cells/tissue necessary for the isolation of the subset 

of lysosomes active for CMA). 

 c. Tracking changes in the subset of lysosomes active for CMA. This group of 

lysosomes is defined as those containing HSPA8 in their lumen (note that LAMP2A is 

present in both lysosomes that are active and inactive for CMA, and it is the presence of 

HSPA8 that confers CMA capability). Immunogold or immunofluorescence against these 

2 proteins (LAMP2A and HSPA8) makes it possible to quantify changes in the levels of 

these lysosomes present at a given time, which correlates well with CMA activity.
906
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 d. Analysis of lysosomal association of fluorescent artificial CMA substrates. 

Two different fluorescent probes have been generated to track changes in CMA activity 

in cultured cells using immunofluorescence or flow cytometry analysis.
906

 These probes 

contain the KFERQ and context sequences in frame with photoswitchable or 

photoactivated fluorescent proteins. Activation of CMA results in the mobilization of a 

fraction of the cytosolic probe to lysosomes and the subsequent change from a diffuse to 

a punctate pattern. CMA activity can be quantified as the number of fluorescent puncta 

per cell or as the decay in fluorescence activity over time because of degradation of the 

artificial substrate. Because the assay does not allow measuring accumulation of the 

substrate (which must unfold for translocation), it is advisable to perform a time-course 

analysis to determine gradual changes in CMA activity. Antibodies against the 

fluorescent protein in combination with inhibitors of lysosomal proteases can be used to 

monitor accumulation of the probe in lysosomes over a period of time, but both the 

photoswitchable and the unmodified probe will be detected by this procedure.
1061

 As for 

any other fluorescence probe based on analysis of intracellular “puncta” it is essential to 

include controls to confirm that the puncta are indeed lysosomes (colocalization with 

LysoTracker or LAMPs and lack of colocalization with markers of cytosolic aggregation 

such as ubiquitin) and do not reach the lysosomes through other autophagic pathways 

(insensitivity to PtdIns3K inhibitors and sensitivity to LAMP2A knockdown are good 

controls in this respect).  

 e. Direct measurement of CMA using in vitro cell free assays. Although the 

introduction of the fluorescent probes should facilitate measurement of CMA in many 

instances, they are not applicable for tissue samples. In addition, because the probes 
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measure binding of substrate to lysosomal membranes it is important to confirm that 

enhanced binding does not result from defective translocation. Last, the in vitro uptake 

assays are also the most efficient way to determine primary changes in CMA 

independently of changes in other proteolytic systems in the cells. These in vitro assays 

are the same ones described in the previous section on the identification of proteins as 

substrates of CMA, but are performed in this case with purified proteins previously 

characterized to be substrates for CMA. In this case the substrate protein is always the 

same, and what changes is the source of lysosomes (from the different tissues or cells that 

are to be compared). As described in the previous section, binding and uptake can be 

analyzed separately using lysosomes previously treated or not with protease inhibitors. 

The analysis of the purity of the lysosomal fractions prior to performing functional 

analysis is essential to conclude that changes in the efficiency to take up the substrates 

results from changes in CMA rather than from different levels of lysosomes in the 

isolated fractions. Control of the integrity of the lysosomal membrane and sufficiency of 

the proteases are also essential to discard the possibility that degradation is occurring 

outside lysosomes because of leakage, or that accumulation of substrates inside 

lysosomes is due to enhanced uptake rather than to decreased degradation.  

Cautionary notes: The discovery of a new selective form of protein degradation in 

mammals named endosomal microautophagy (e-MI)
1062

 has made it necessary to 

reconsider some of the criteria that applied in the past for the definition of a protein as a 

CMA substrate. The KFERQ-like motif, previously considered to be exclusive for CMA, 

is also used to mediate selective targeting of cytosolic proteins to the surface of late 

endosomes. Once there, substrates can be internalized in microvesicles that form from the 
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surface of these organelles in an ESCRT-dependent manner. HSPA8 has been identified 

as the chaperone that binds this subset of substrates and directly interacts with lipids in 

the late endosomal membrane, acting thus as a receptor for cytosolic substrates in this 

compartment. At a practical level, to determine if a KFERQ-containing protein is being 

degraded by CMA or e-MI the following criteria can be applied: (a) Inhibition of 

lysosomal proteolysis (for example with NH4Cl and leupeptin) blocks degradation by 

both pathways. (b) Knockdown of LAMP2A inhibits CMA but not e-MI. (c) Knockdown 

of components of ESCRTI and II (e.g., VPS4 and TSG101) inhibits e-MI but not CMA. 

(d) Interfering with the capability to unfold the substrate protein blocks its degradation by 

CMA, but does not affect e-MI of the protein. In this respect, soluble proteins, oligomers 

and protein aggregates can undergo e-MI, but only soluble proteins can be CMA 

substrates. (e) In vitro uptake of e-MI substrates can be reconstituted using isolated late 

endosomes whereas in vitro uptake of CMA substrates can only be reconstituted using 

lysosomes.  

Another pathway that needs to be considered relative to CMA is chaperone-

assisted selective autophagy.
1063

 Chaperone-assisted selective autophagy is dependent on 

HSPA8 and LAMP2 (although it is not yet known if it is dependent solely on the 

LAMP2A isoform). Thus, a requirement for these 2 proteins is not sufficient to conclude 

that a protein is degraded by CMA. It should also be noted that LAMP1 and LAMP2 

share common function as revealed by the embryonic lethal phenotype of lamp1
-/- 

lamp2
y/-

 double-deficient mice.
1064

 In addition to CMA, LAMP2 is involved in the fusion 

of late endosomes and autophagosomes or phagosomes.
1065,1066

 LAMP1 and LAMP2 

deficiency does not necessarily affect protein degradation under conditions when CMA is 
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active,
1064

 and the expression levels of neuronal CMA substrates does not change upon 

loss of LAMP2.
1067,1068

 

 Conclusion: One of the key issues with the analysis of CMA is verifying that the protein 

of interest is an authentic substrate. Methods for monitoring CMA that utilize fluorescent probes 

are available that eliminate the need for the isolation of CMA-competent lysosomes, one of the 

most difficult aspects of assaying this process. 

 

B. Comments on Additional Methods  

1. Acidotropic dyes. Among the older methods for following autophagy is staining with 

acidotropic dyes such as monodansylcadaverine,
1069

 acridine orange,
1070

 Neutral Red,
914

 

LysoSensor Blue
1071

 and LysoTracker Red.
262,1072

 It should be emphasized that, whereas these 

dyes are useful to identify acidified vesicular compartments, they should not be relied upon to 

compare differences in endosomal or lysosomal pH between cells due to variables that can alter 

the intensity of the signal. For example, excessive incubation time and/or concentrations of 

LysoTracker Red can oversaturate labeling of the cell and mask differences in signal intensity 

that reflect different degrees of acidification within populations of compartments.
1073

 Use of 

these dyes to detect, size, and quantify numbers of acidic compartments must involve careful 

standardization of the conditions of labeling and ideally should be confirmed by ancillary TEM 

and/or immunoblot analysis. Reliable measurements of vesicle pH require ratiometric 

measurements of 2 dyes with different peaks of optimal fluorescence (e.g., LysoSensor Blue and 

LysoSensor Yellow) to exclude variables related to uptake.
58,1073

 

Cautionary notes: Although MDC was first described as a specific marker of autophagic 

vacuoles
1074

 subsequent studies have suggested that this, and other acidotropic dyes, are not 
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specific markers for early autophagosomes,
313

 but rather label later stages in the degradation 

process. For example, autophagosomes are not acidic, and MDC staining can be seen in 

autophagy-defective mutants
519

 and in the absence of autophagy activation.
1075

 MDC may also 

show confounding levels of background labeling unless narrow bandpass filters are used. 

However, in the presence of vinblastine, which blocks fusion with lysosomes, MDC labeling 

increases, suggesting that under these conditions MDC can label late-stage autophagosomes.
943

 

Along these lines, cells that overexpress a dominant negative version of RAB7 (the T22N 

mutant) show colocalization of this protein with MDC; in this case fusion with lysosomes is also 

blocked
1076

 indicating that MDC does not just label lysosomes. Nevertheless, MDC labeling 

could be considered to be an indicator of autophagy when the increased labeling of cellular 

compartments by this dye is prevented by treatment with specific autophagy inhibitors. 

 Overall, staining with MDC or its derivative monodansylamylamine (MDH)
1069

 is not, 

by itself, a sufficient method for monitoring autophagy. Similarly, LysoTracker Red, Neutral 

Red and acridine orange are not ideal markers for autophagy because they primarily detect 

lysosomes and an increase in lysosome size or number could reflect an increase in 

nonprofessional phagocytosis (often seen in embryonic tissues
1077

) rather than autophagy. These 

markers are, however, useful for monitoring selective autophagy when used in conjunction with 

protein markers or other dyes. For example, increased colocalization of mitochondria with both 

GFP-LC3 and LysoTracker Red can be used as evidence of autophagic cargo delivery to 

lysosomes. Moreover, LysoTracker Red has been used to provide correlative data on autophagy 

in D. melanogaster fat body cells (Fig. 26).
261,262

 However, additional assays, such as GFP-

Atg8/LC3 fluorescence and EM, should be used to substantiate results obtained with acidotropic 

dyes whenever possible to rule out the possibility that LAP is involved (see Noncanonical use of 
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autophagy-related proteins). Finally, one important caution when co-imaging with LysoTracker 

Red and a green-fluorescing marker (e.g., GFP-LC3 or MitoTracker Green) is that it is necessary 

to control for rapid red-to-green photoconversion of the LysoTracker, which can otherwise result 

in an incorrect interpretation of colocalization.
1078

 

Some of the confusion regarding the interpretation of results with these dyes stems in part 

from the nomenclature in this field. Indeed, the discussion of acidotropic dyes points out why it 

is advisable to differentiate between the terms “autophagosome” and “autophagic vacuole,” 

although they are occasionally, and incorrectly, used interchangeably. The autophagosome is the 

sequestering compartment generated by the phagophore. The fusion of an autophagosome with 

an endosome or a lysosome generates an amphisome or an autolysosome, respectively.
846

 The 

early autophagosome is not an acidic compartment, whereas amphisomes and autolysosomes are 

acidic. As noted in the section Transmission electron microscopy, earlier names for these 

compartments are “initial autophagic vacuole (AVi),” “intermediate or intermediate/degradative 

autophagic vacuole (AVi/d)” and “degradative autophagic vacuole (AVd),” respectively. Thus, 

acidotropic dyes can stain late autophagic vacuoles (in particular autolysosomes), but not the 

initial autophagic vacuole, the early autophagosome.  

A recently developed dye for monitoring autophagy, Cyto-ID, stains vesicular structures 

shortly after amino acid deprivation, which extensively colocalize with RFP-LC3-positive 

structures, while colocalizing partially with lysosomal probes.
1079

 Moreover, unlike MDC, Cyto-

ID does not show background fluorescence under control conditions and the 2 dyes colocalize 

only marginally. Furthermore, the Cyto-ID signal responds to well-known autophagy 

modulators. Therefore, this amphiphilic dye, which partitions in hydrophobic environments, may 

prove more selective for autophagic vacuoles than the previously discussed lysosomotropic dyes. 
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With the above caveats in mind, the combined use of early and late markers of autophagy 

is highly encouraged, and when quantifying mammalian lysosomes, it is important to keep in 

mind that increases in both lysosome size and number are frequently observed. Finally, to avoid 

confusion with the plant and fungal vacuole, the equivalent organelle to the lysosome, we 

recommend the use of the term “autophagosome” instead of “autophagic vacuole” when 

possible, that is, when the specific nature of the structure is known. 

Conclusion: Given the development of better techniques that are indicators of autophagy, 

the use of acidotropic dyes to study this process is discouraged, and relying entirely on such dyes 

is not acceptable. 

 

2. Autophagy inhibitors and inducers. In many situations it is important to demonstrate an 

effect resulting from inhibition or stimulation of autophagy (see ref. 
1080

 for a partial listing of 

regulatory compounds), and a few words of caution are worthwhile in this regard. Most chemical 

inhibitors of autophagy are not entirely specific, and it is important to consider possible dose- 

and time-dependent effects. Accordingly, it is generally preferable to analyze specific loss-of-

function Atg mutants. However, it must be kept in mind that some apparently specific Atg gene 

products may have autophagy-independent roles (e.g., ATG5 in cell death, and the 

PIK3C3/VPS34-containing complexes—including BECN1—in apoptosis, endosomal function 

and protein trafficking), or may be dispensable for autophagy (see Noncanonical use of 

autophagy-related proteins).
26,522,552,1081-1084

 Therefore, the experimental conditions of inhibitor 

application and their side effects must be carefully considered. In addition, it must be 

emphasized once again that autophagy, as a multistep process, can be inhibited at different 

stages. Sequestration inhibitors, including 3-MA, LY294002 and wortmannin, inhibit class I 
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phosphoinositide 3-kinases (PI3Ks) as well as class III PtdIns3Ks.
132,312,1085

 The class I enzymes 

generate products such as PtdIns(3,4,5)P3 that inhibit autophagic sequestration, whereas the class 

III product (PtdIns3P) generally stimulates autophagic sequestration. The overall effect of these 

inhibitors is typically to block autophagy because the class III enzymes that are required to 

activate autophagy act downstream of the negative regulatory class I enzymes, although cell 

death may ensue in cell types that are dependent upon high levels of AKT for survival. The 

effect of 3-MA (but not that of wortmannin) is further complicated by the fact that it has 

different temporal patterns of inhibition, causing a long-term suppression of the class I PI3K, but 

only a transient inhibition of the class III enzyme. In cells incubated in a complete medium for 

extended periods of time, 3-MA may, therefore (particularly at suboptimal concentrations), 

promote autophagy by inhibition of the class I enzyme.
312

 Thus, wortmannin may be considered 

as an alternative to 3-MA for autophagy inhibition.
312

 However, wortmannin can induce the 

formation of vacuoles that may have the appearance of autophagosomes, although they are 

swollen late endocytic compartments.
889

 Furthermore, studies have demonstrated that inhibition 

of autophagy with 3-MA or wortmannin can have effects on cytokine transcription, processing 

and secretion, particularly of IL1 family members,
1086-1088

 but 3-MA also inhibits the secretion of 

some cytokines (e.g., TNF, IL6) in an autophagy-independent manner (J. Harris, unpublished 

observations). Thus, in studies where the effect of autophagy inhibition on specific cellular 

processes is being investigated, it is important to confirm results using other methods, such as 

RNA silencing. Due to these issues, it is of great interest that inhibitors with specificity for the 

class III PtdIns3Ks, and their consequent effects on autophagy, have been described.
228,1089,1090

  

A mutant mouse line carrying a floxed allele of Pik3c3 has been created.
1091

 This 

provides a useful genetic tool that will help in defining the physiological role of the class III 
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PtdIns3K with bona fide specificity by deleting the class III kinase in a cell type-specific manner 

in a whole animal using the Cre-LoxP strategy. For example, the phenotype resulting from a 

knockout of Pik3c3 specifically in the kidney glomerular podocytes (Pik3c3
pdKO

) indicates that 

there is no compensation by other classes of PtdIns3Ks or related Atg genes, thus highlighting 

the functional specificity and physiological importance of class III PtdIns3K in these cells. 

Cycloheximide, a commonly used protein synthesis inhibitor in mammals, is also an 

inhibitor of sequestration in vivo,
11-13,71,882,1092-1096

 and in various cell types in vitro,
446,1097

 and it 

has been utilized to investigate the dynamic nature of the regression of various autophagic 

elements.
11-13,24,71,1093,1094

 The mechanism of action of cycloheximide in short-term experiments 

is not clear, but it has no direct relation to the inhibition of protein synthesis.
446

 This latter 

activity, however, may complicate certain types of analysis when using this drug. 

A significant challenge for a more detailed analysis of the dynamic role of autophagy in 

physiological and pathophysiological processes, for instance with regard to cancer and cancer 

therapy, is to find more specific inhibitors of autophagy signaling which do not affect other 

signaling cascades. For example, in the context of cellular radiation responses it is well known 

that PI3Ks, in addition to signaling through the PI3K-AKT pathway, have a major role in the 

regulation of DNA-damage repair.
1098

 However, 3-MA, which is a nonspecific inhibitor of these 

lipid kinases, can alter the function of other classes of this enzyme, which are involved in the 

DNA-damage repair response. This is of particular importance for investigations into the role of 

radiation-induced autophagy in cellular radiation sensitivity or resistance.
1099,1100

  

Most other inhibitory drugs act at post-sequestration steps. These types of agents have 

been used in many experiments to both inhibit endogenous protein degradation and to increase 

the number of autophagic compartments. They cause the accumulation of sequestered material in 
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either autophagosomes or autolysosomes, or both, because they allow autophagic sequestration 

to proceed. The main categories of these types of inhibitors include the vinca alkaloids (e.g., 

vinblastine) and other microtubule poisons that inhibit fusion, inhibitors of lysosomal enzymes 

(e.g., leupeptin, pepstatin A and E-64d), and compounds that elevate lysosomal pH (e.g., 

inhibitors of V-ATPases such as bafilomycin A1 and concanamycin A [another V-ATPase 

inhibitor], and weak base amines including methyl- or propylamine, chloroquine, and Neutral 

Red, some of which slow down fusion). Ammonia is a very useful agent for the elevation of 

lysosomal pH in short-term experiments, but it has been reported to cause a stimulation of 

autophagy during long-term incubation of cells in a full medium,
1101

 under which conditions a 

good alternative might be methylamine or propylamine.
1102

 Along these lines, it should be noted 

that the half-life of glutamine in cell culture media is approximately 2 weeks due to chemical 

decomposition, which results in media with lowered glutamine and elevated ammonia 

concentrations that can affect the autophagic flux (either inhibiting or stimulating autophagy, 

depending on the concentration
1103

). Thus, to help reduce experimental variation, the use of 

freshly prepared cell culture media with glutamine is advised. A special note of caution is also 

warranted in regard to chloroquine. Although this chemical is commonly used as an autophagy 

inhibitor, chloroquine may initially stimulate autophagy (F.C. Dorsey, personal communication; 

R. Franco, personal communication). In addition, culture conditions requiring acidic media 

preclude the use of chloroquine because intracellular accumulation of the chemical is 

dramatically reduced by low pH.
1104

 To overcome this issue, it is possible to use acid compounds 

that modulate autophagy, such as betulinic acid and its derivatives.
219,1105-1107

 Betulinic acid 

damages lysosomal function differing from traditional inbibitors (e.g., chloroquine, NH4Cl or 

bafilomycin A1) that raise the lysosomal pH; betulinic acid interacts with pure phospholipid 
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membranes,
219,1108

 and is capable of changing membrane permeability.
219,1109,1110

 The lysosomal 

damage mediated by betulinic acid is capable of compromising autophagy without any 

incremental damage when lysosomal function is altered by lysosomal inhibitors (e.g., 

chloroquine or bafilomycin A1);
219

 however, betulinic acid is not lysosome specific, and will 

affect other organelles such as mitochondria. 

Some data suggest that particular nanomaterials may also be novel inhibitors of 

autophagy, by as yet unidentified mechanisms.
1111

  

It is worth noting that lysosomal proteases fall into 3 general groups, cysteine, aspartic 

acid and serine proteases. Therefore, the fact that leupeptin, a serine and cysteine protease 

inhibitor, has little or no effect does not necessarily indicate that lysosomal degradation is not 

taking place; a combination of leupeptin, pepstatin A and E-64d may be a more effective 

treatment. However, it should also be pointed out that these protease inhibitors can exert 

inhibitory effects not only on lysosomal proteases, but also on cytosolic proteases; that is, 

degradation of proteins might be blocked through inhibition of cytosolic instead of lysosomal 

proteases. Conversely, it should be noted that MG132 (Z-leu-leu-leu-al) and its related peptide 

aldehydes are commonly used as proteasomal inhibitors, but they can also inhibit certain 

lysosomal hydrolases such as cathepsins and calpains.
1112

 Thus, any positive results using 

MG132 do not rule out the possibility of involvement of the autophagy-lysosomal system. 

Therefore, even if MG132 is effective in inhibiting autophagy, it is important to confirm the 

result using more specific proteasomal inhibitors such as lactacystin or epoxomicin. Finally, 

there are significant differences in cell permeability among protease inhibitors. For example, E-

64d is membrane permeable, whereas leupeptin and pepstatin A are not (although there are 

derivatives that display greater permeability such as pepstatin A methyl ester).
1113

 Thus, when 
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analyzing whether a protein is an autophagy substrate, caution should be taken in utilizing these 

protease inhibitors to block autophagy.  

As with the PtdIns3K inhibitors, many autophagy-suppressive compounds are not 

specific. For example, okadaic acid
1114

 is a powerful general inhibitor of both type 1 (PPP1) and 

type 2A (PPP2) protein phosphatases.
1115

 Bafilomycin A1 and other compounds that raise the 

lysosomal pH may have indirect effects on any acidified compartments. Moreover, treatment 

with bafilomycin A1 for extended periods (18 h) can cause significant disruption of the 

mitochondrial network in cultured cells (M.E. Gegg, personal communication), and either 

bafilomycin A1 or concanamycin A cause swelling of the Golgi in plants,
1116

 and increase cell 

death by apoptosis in cancer cells (V.A. Rao, personal communication). Furthermore, 

bafilomycin A1 may have off-target effects on the cell, particularly on MTORC1.
467,506,1117

 

Bafilomycin A1 is often used at a final concentration of 100 nM, but much lower concentrations 

such as 1 nM may be sufficient to inhibit autophagic-lysosomal degradation and are less likely to 

cause indirect effects.
147,209,1118

 For example, in pulmonary A549 epithelial cells bafilomycin A1 

exhibits concentration-dependent effects on cellular morphology and on protein expression; at 

concentrations of 10 and 100 nM the cells become more rounded accompanied by increased 

expression of VIM (vimentin) and a decrease in CDH1/E-cadherin (B. Yeganeh, M. Post and S. 

Ghavami, unpublished observations). Thus, appropriate inhibitory concentrations should be 

empirically determined for each cell type.
215

  

Although these various agents can inhibit different steps of the autophagic pathway, their 

potential side effects must be considered in interpretation of the secondary consequences of 

autophagy inhibition, especially in long-term studies. For example, lysosomotropic compounds 

can increase the rate of autophagosome formation by inhibiting MTORC1, as activation of 
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lysosomally localized MTORC1 depends on an active V-ATPase (as well as RRAG 

GTPases
151

).
467,1119

 Along these lines, chloroquine treatment may cause an apparent increase in 

the formation of autophagosomes possibly by blocking fusion with the lysosome (F.C. Dorsey 

and J.L. Cleveland, personal communication). This conclusion is supported by the finding that 

chloroquine reduces the colocalization of LC3 and LysoTracker despite the presence of 

autophagosomes and lysosomes (A.K. Simon, personal communication). This mechanism might 

be cell-type specific, as other studies report that chloroquine prevents autolysosome clearance 

and degradation of cargo content, but not autophagosome-lysosome fusion.
1120-1123

 

Concanamycin A blocks sorting of vacuolar proteins in plant cells in addition to inhibiting 

vacuolar acidification.
1124

 Furthermore, in addition to causing the accumulation of autophagic 

compartments, many of these drugs seem to stimulate sequestration in many cell types, 

especially in vivo.
72,308,882,1093,1097,1125-1129

 Although it is clear why these drugs cause the 

accumulation of autophagic compartments, it is not known why they stimulate sequestration. 

One possibility, at least for hepatocytes, is that the inhibition of protein degradation reduces the 

intracellular amino acid pool, which in turn upregulates sequestration. A time-course study of the 

changes in both the intra- and extracellular fractions may provide accurate information regarding 

amino acid metabolism. For these various reasons, it is important to include appropriate controls; 

along these lines, MTOR inhibitors such as rapamycin or amino acid deprivation can be utilized 

as positive controls for inducing autophagy. In many cell types, however, the induction of 

autophagy by rapamycin is relatively slow, or transient, allowing more time for indirect effects. 

Several small molecule inhibitors, including torin1, PP242, KU-0063794, PI-103 and 

NVP-BEZ235, have been developed that target the catalytic domain of MTOR in an ATP-

competitive manner.
209,1130-1134

 In comparison to rapamycin, these catalytic MTOR inhibitors are 
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more potent, and hence are stronger autophagy agonists in most cell lines.
323,1132,1135

 The use of 

these second-generation MTOR inhibitors may reveal that some reports of MTOR-independent 

autophagy may actually reflect the use of the relatively weak inhibitor rapamycin. Furthermore, 

the use of these compounds has revealed a role for MTORC1 and MTORC2 as independent 

regulators of autophagy.
1136

 

Neurons, however, seem to be a particular case in regard to their response to MTOR 

inhibitors. Rapamycin may fail to activate autophagy in cultured primary neurons, despite its 

potent stimulation of autophagy in some cancer cell lines,
69,523,1137

 Interestingly, both rapamycin 

and catalytic MTOR inhibitors do not induce a robust autophagy in either cultured primary 

mouse neurons or human neuroblastoma SH-SY5Y cells, which can differentiate into neuron-

like cells, whereas the drugs do elicit a potent autophagic response in cultured astrocytes (J. 

Diaz-Nido and R. Gargini, personal communication). This suggests a differential regulation of 

autophagy in neurons. It has been suggested that control of neuronal autophagy may reflect the 

particular physiological adaptations and metabolic requirements of neurons, which are very 

different from most peripheral cell types.
1138

 For example, acute starvation in transgenic mice 

expressing GFP-LC3 leads to a potent induction of autophagy in the liver, muscle and heart but 

not in the brain.
144

 Along these lines, glucose depletion may be much more efficient at inducing 

autophagy than rapamycin or amino acid starvation in neurons in culture (M. Germain and R. 

Slack, personal communication). Indeed treatment of cultured primary mouse neurons and 

human neuroblastoma SH-SY5Y cells with 2-deoxy-glucose, which hampers glucose 

metabolism and leads to activation of AMPK, results in robust autophagy induction (J. Diaz-

Nido and R. Gargini, personal communication). Interestingly, a number of compounds can also 

be quite efficient autophagy inducers in neurons including the CAPN/calpain inhibitor 
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calpeptin.
1139-1141

 Thus, it has been suggested that autophagy induction in neurons may be 

achieved by molecular mechanisms relying on AMPK or increases in intracellular calcium 

concentration.
1138

 An example where changes in cytosolic calcium levels, due to the incapacity 

of the mitochondria to buffer Ca
2+

 release, result in an increase in autophagy is seen in a cellular 

model of the neurodegenerative disease Friedreich ataxia, based on FXN/frataxin silencing in 

SH-SY5Y human neuroblastoma cells.
1142

 

Finally, a specialized class of compounds with ,-unsaturated ketone structure tends to 

induce autophagic cell death, accompanied by changes in mitochondrial morphology. Since the 

cytotoxic action of these compounds is efficiently blocked by N-acetyl-L-cysteine, the -position 

in the structure may interact with an SH group of the targeted molecules.
1143

 Due to the potential 

pleiotropic effects of various drug treatments, it is incumbent upon the researcher to demonstrate 

that autophagy is indeed inhibited, by using the methodologies described herein. Accordingly, it 

is critical to verify the effect of a particular biochemical treatment with regard to its effects on 

autophagy induction or inhibition when using a cell line that was previously uncharacterized for 

the chemical being used. Similarly, cytotoxicity of the relevant chemical should be assessed. 

The use of gene deletions/inactivations (e.g., in primary or immortalized atg
-/-

 MEFs,
519

 

plant T-DNA or transposon insertion mutants,
264,1144

 or in vivo using transgenic knockout 

models
1145,1146

 including Cre-lox based “conditional” knockouts
302,303

) or functional knockdowns 

(e.g., with RNAi against ATG genes) is the preferred approach when possible because these 

methods allow a more direct assessment of the resulting phenotype; however, different floxed 

genes are deleted with varying efficiency, and the proportion deleted must be carefully 

quantified.
1147

 Studies also suggest that microRNAs may be used for blocking gene 

expression.
227,615,616,1148,230

 In most contexts, it is advisable when using a knockout or knockdown 
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approach to examine multiple autophagy-related genes to exclude the possibility that the 

phenotype observed is due to effects on a nonautophagic function(s) of the corresponding 

protein, especially when examining the possibility of autophagic cell death. This is particularly 

the case in evaluating BECN1, which interacts with anti-apoptotic BCL2 family proteins,
545

 or 

when low levels of a target protein are sufficient for maintaining autophagy as is the case with 

ATG5.
237

 With regard to ATG5, a better approach may be to use a dominant negative (K130R) 

version.
1084,1137,1149

 Also noteworthy is the role of ATG5 in mitotic catastrophe
523

 and several 

other nonautophagic roles of ATG proteins (see Noncanonical use of autophagy-related 

proteins).
69

 Along these lines, and as stated above for the use of inhibitors, when employing a 

knockout or especially a knockdown approach, it is again incumbent upon the researcher to 

demonstrate that autophagy is actually inhibited, by using the methodologies described herein.  

Finally, we note that the long-term secondary consequences of gene knockouts or 

knockdowns are likely much more complex than the immediate effects of the actual autophagy 

inhibition. To overcome this concern, inducible knockout systems might be useful.
237,385

 One 

additional caveat to knockdown experiments is that PAMP recognition pathways can be 

triggered by double-stranded RNAs (dsRNA), like siRNA probes, or the viral vector systems that 

deliver shRNA.
1150

 Some of these, like TLR-mediated RNA recognition,
1151

 can influence 

autophagy by either masking any inhibitory effect or compromising autophagy independent of 

the knockdown probe. Therefore, nontargeting (scrambled) siRNA or shRNA controls should be 

used with the respective transfection or transduction methods in the experiments that employ 

ATG knockdown. Another strategy to specifically interfere with autophagy is to use dominant 

negative inhibitors. Delivery of these agents by transient transfection, adenovirus, or TAT-

mediated protein transduction offers the possibility of their use in cell culture or in vivo.
1149
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However, since autophagy is an essential metabolic process for many cell types and tissues, loss 

of viability due to autophagy inhibition always has to be a concern when analyzing cell death-

unrelated questions. In this respect it is noteworthy that some cell-types of the immune system 

such as dendritic cells
315

 seem to tolerate loss of autophagy fairly well, whereas others such as T 

and B cells are compromised in their development and function after autophagy 

inhibition.
1152,1153

 

In addition to pharmacological inhibition, RNA silencing, gene knockout and dominant 

negative RAB and ATG protein expression, pathogen-derived autophagy inhibitors can also be 

considered to manipulate autophagy. Along these lines ICP34.5, viral BCL2 homologs and viral 

FLIP of herpesviruses block autophagosome formation,
545,852,1154

 whereas M2 of influenza virus 

and HIV-1 Nef block autophagosome degradation.
343,862

 However, as with other tools discussed 

in this section, transfection or transduction of viral autophagy inhibitors should be used in 

parallel with other means of autophagy manipulation, because these proteins are used for the 

regulation of usually more than one cellular pathway by the respective pathogens. 

There are fewer compounds that act as inducers of autophagy, but the initial 

characterization of this process was due in large part to the inducing effects of glucagon, which 

appears to act through indirect inhibition of MTOR via the activation of STK11/LKB1- 

AMPK.
893,894,1155

 Currently, the most commonly used inducer of autophagy is rapamycin, an 

allosteric inhibitor of MTORC1 (although as mentioned above, catalytic inhibitors such as torin1 

are increasingly being used). Nevertheless, one caution is that MTOR is a major regulatory 

protein that is part of several signaling pathways, including for example those that respond to 

INS/insulin, EGF/epidermal growth factor and amino acids, and it thus controls processes other 

than autophagy, so rapamycin will ultimately affect many metabolic pathways.
484,1156-1158

 In 
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particular, the strong effects of MTOR on protein synthesis may be a confounding factor when 

analyzing the effects of rapamycin. MTOR-independent regulation can be achieved through 

lithium, sodium valproate and carbamazepine, compounds that lower the myo-inositol 1,4,5-

triphosphate levels,
1159

 as well as FDA-approved compounds such as verapamil, trifluoperazine 

and clonidine.
1160,1161

 In vivo treatment of embryos with cadmium results in an increase in 

autophagy, probably to counter the stress, allowing cell survival through the 

elimination/recycling of damaged structures.
914

 Autophagy may also be regulated by the release 

of calcium from the ER under stress conditions;
280,1114,1162,1163

 however, additional calcium 

signals from other stores such as the mitochondria and lysosomes could also play an important 

role in autophagy induction. The activation of the lysosomal TPCN/two-pore channel (two pore 

segment channel), by nicotinic acid adenine dinucleotide phosphate (NAADP) induces 

autophagy, which can selectively be inhibited by the TPCN blocker NED-19, or by pre-

incubation with BAPTA, showing that lysosomal calcium also modulates autophagy.
1164

 Cell 

penetrating autophagy-inducing peptides, such as Tat-vFLIP or Tat-Beclin 1 (Tat-BECN1), are 

also potent inducers of autophagy in cultured cells as well as in mice.
1154,1165

 

In contrast to other PtdIns3K inhibitors, caffeine induces autophagy in the food spoilage 

yeast Zygosaccharomyces bailii,
1166

 mouse embryonic fibroblasts,
1167

 and S. cerevisiae (V. 

Eapen and J. Haber, personal communication) at millimolar concentrations. In higher 

eukaroyotes this is accompanied by inhibition of the MTOR pathway. Similarly, in budding 

yeast caffeine is a potent TORC1 inhibitor suggesting that this drug induces autophagy via 

inhibition of the TORC1 signalling pathway; however, as with other PtdIns3K inhibitors caffeine 

targets other proteins, notably Mec1/ATR and Tel1/ATM, and affects the cellular response to 

DNA damage. 
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Another autophagy inducer is the histone deacetylase inhibitor valproic acid.
1168,1169

 The 

mechanism by which valproic acid stimulates autophagy is not entirely clear but may occur due 

to inhibition of the histone deacetylase Rpd3, which negatively regulates the transcription of 

ATG genes (most notably ATG8
1170

) and, via deacetylation of Atg3, controls Atg8 lipidation.
1171

 

It is also possible, depending on the organism or cell system, to modulate autophagy 

through transcriptional control. For example, this can be achieved either through overexpression 

or post-translational activation of the gene encoding TFEB (see Transcriptional and 

translational regulation), a transcriptional regulator of the biogenesis of both lysosomes and 

autophagosomes.
605,606

 Similarly, adenoviral-mediated expression of the transcription factor 

CEBPB induces autophagy in hepatocytes.
614

 Recently, it has been shown that either the genetic 

ablation or the knockdown of the nucleolar transcription factor RRN3/TIF-IA, a crucial regulator 

of the recruitment of POLR1/RNA polymerase I to ribosomal DNA promoters, induces 

autophagy in neurons and in MCF-7 cancer cells, respectively, linking ribosomal DNA 

transcription to autophagy.
1172,1173

 

Relatively little is known about direct regulation via the ATG proteins, but there is some 

indication that tamoxifen acts to induce autophagy by increasing the expression of BECN1 in 

MCF7 cells.
1174

 However, BECN1 does not appear to be upregulated in U87MG cells treated 

with tamoxifen, whereas the levels of LC3-II and SQSTM1 are increased, while LAMP2B is 

downregulated and CTSD and CTSL activities are almost completely blocked (K.S. Choi, 

personal communication). Thus, the effect of tamoxifen may differ depending on the cell type. 

Other data suggest that tamoxifen acts by blocking cholesterol biosynthesis, and that the sterol 

balance may determine whether autophagy acts in a protective versus cytotoxic manner.
1175,1176

 

Finally, screens have identified small molecules that induce autophagy independently of 



 221 

rapamycin and allow the removal of misfolded or aggregate-prone proteins,
1161,1177

 suggesting 

that they may prove useful in therapeutic applications. However, caution should be taken 

because of the crosstalk between autophagy and the proteasomal system. For example, trehalose, 

an MTOR-independent autophagy inducer,
1178

 can compromise proteasomal activity in cultured 

primary neurons.
1179

  

Because gangliosides are implicated in autophagosome morphogenesis, pharmacological 

or genetic impairment of gangliosidic compartment integrity and function can provide useful 

information in the analysis of autophagy. To deplete cells of gangliosides, an inhibitor of 

CERS/ceramide synthase, such as a fungal metabolite produced by Fusarium moniliforme 

(fumonisin B1), or, alternatively, siRNA to CERS or ST8SIA1, can be used.
567

 

Finally, in addition to genetic and chemical compounds, it was recently reported that 

electromagnetic fields can induce autophagy in mammalian cells. Studies of biological effects of 

novel therapeutic approaches for cancer therapy based on the use of noninvasive radiofrequency 

fields reveals that autophagy, but not apoptosis, is induced in cancer cells in response to this 

treatment, which leads to cell death.
1180

 This effect was tumor specific and different from 

traditional ionizing radiation therapy that induces apoptosis in cells. 

Conclusion: Considering that pharmacological inhibitors or activators of autophagy have 

an impact on many other cellular pathways, the use of more than one methodology, including 

molecular methods, is desirable. Rapamycin is less effective at inhibiting MTOR and inducing 

autophagy than catalytic inhibitors; however, it must be kept in mind that catalytic inhibitors also 

affect MTORC2. The main concern with pharmacological manipulations is pleiotropic effects of 

the compound being used. Accordingly, genetic confirmation is preferred whenever possible. 
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3. Basal autophagy. Basal levels of LC3-II or GFP-LC3 puncta may change according to 

the time after addition of fresh medium to cells, and this can lead to misinterpretations of what 

basal autophagy means. This is particularly important when comparing the levels of basal 

autophagy between different cell populations (such as knockout versus wild-type clones). If cells 

are very sensitive to nutrient supply and display a high variability of basal autophagy, the best 

experimental condition is to monitor the levels of basal autophagy at different times after the 

addition of fresh medium. One example is the chicken lymphoma DT40 cells (see Chicken B-

lymphoid DT40 cells) and their knockout variant for all 3 ITPR isoforms.
1181-1183

 In these cells, 

no differences in basal levels of LC3-II can be observed up to 4 h after addition of fresh medium, 

but differences can be observed after longer times (J.M. Vicencio and G. Szabadkai, personal 

communication). This concept should also be applied to experiments in which the effect of a 

drug upon autophagy is the subject of study. If the drugs are added after a time in which basal 

autophagy is already high, then the effects of the drug can be masked by the cell’s basal 

autophagy, and wrong conclusions may be drawn. To avoid this, fresh medium should be added 

first (followed by incubation for 2-4 h) in order to reduce and equilibrate basal autophagy in cells 

under all conditions, and then the drugs can be added. The basal autophagy levels of the cell 

under study must be identified beforehand to know the time needed to reduce basal autophagy.  

A similar caution must be exercised with regard to cell culture density and hypoxia. 

When cells are grown in normoxic conditions at high cell density, HIF1A/HIF-1 is stabilized at 

levels similar to that obtained with low-density cultures under hypoxic conditions.
1184

 This 

results in the induction of BNIP3 and BNIP3L and “hypoxia”-induced autophagy, even though 

the conditions are theoretically normoxic.
1185

 Therefore, researchers need to be careful about cell 

density to avoid accidental induction of autophagy. 
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It should be realized that in yeast species, medium changes can trigger a higher “basal” 

level of autophagy in the cells. In the methylotrophic yeast species P. pastoris and Hansenula 

polymorpha a shift of cells grown in batch from glucose to methanol results in stimulation of 

autophagy.
1186,1187

 A shift to a new medium can be considered a stress situation. Thus, it appears 

to be essential to cultivate the yeast cells for a number of hours to stabilize the level of basal 

autophagy before performing experiments intended to study levels of (selective) autophagy (e.g., 

pexophagy). Finally, plant root tips cultured in nutrient-sufficient medium display constitutive 

autophagic flux (i.e., a basal level), which is enhanced in nutrient-deprived medium.
1072,1188,1189

 

Conclusion: The levels of basal autophagy can vary substantially and can mask the 

effects of the experimental parameters being tested. Changes in media and growth conditions 

need to be examined empirically to determine affects on basal autophagy and the appropriate 

times for subsequent manipulations. 

 

4. Experimental systems. Throughout these guidelines we have noted that it is not possible 

to state explicit rules that can be applied to all experimental systems. For example, some 

techniques may not work in particular cell types or organisms. In each case, efficacy of 

autophagy promotors, inhibitors and measurement techniques must be empirically determined, 

which is why it is important to include appropriate controls. Differences may also be seen 

between in vivo or perfused organ studies and cell culture analyses. For example, INS/insulin has 

no effect on proteolysis in suspended rat hepatocytes, in contrast to the result with perfused rat 

liver. The INS/insulin effect reappears, however, when isolated hepatocytes are incubated in 

stationary dishes
1190,1191

 or are allowed to settle down on the matrix (D. Häussinger, personal 

communication). The reason for this might be that autophagy regulation by insulin and some 
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amino acids requires volume sensing via integrin-matrix interactions and also intact 

microtubules.
1192-1194

 Along these lines, the use of whole embryos makes it possible to 

investigate autophagy in multipotent cells, which interact among themselves in their natural 

environment, bypassing the disadvantages of isolated cells that are deprived of their normal 

network of interactions.
914

 In general, it is important to keep in mind that results from one 

particular system may not be generally applicable to others. 

Conclusion: Although autophagy is conserved from yeast to human, there may be 

tremendous differences in the specific details among systems. Thus, results based on one system 

should not be assumed to be applicable to another. 

 

5. Nomenclature. To minimize confusion regarding nomenclature, we make the following 

notes: In general, we follow the conventions established by the nomenclature committees for 

each model organism whenever appropriate guidelines are available, and briefly summarize the 

information here using “ATG1” as an example for yeast and mammals. The standard 

nomenclature of autophagy-related wild-type genes, mutants and proteins for yeast is ATG1, atg1 

(or atg1∆ in the case of deletions) and Atg1, respectively, according to the guidelines adopted by 

the Saccharomyces Genome Database (http://www.yeastgenome.org/gene_guidelines.shtml). For 

mammals we follow the recommendations of the International Committee on Standardized 

Genetic Nomenclature for Mice (http://www.informatics.jax.org/mgihome/nomen/), which 

dictates the designations Atg1, atg1 and ATG1 (for all rodents), respectively, and the guidelines 

for human genes established by the HUGO Nomenclature Committee 

(http://www.genenames.org/guidelines.html), which states that human gene symbols are in the 
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form ATG1 and recommends that proteins use the same designation without italics, as with 

ATG1; mutants are written for example as ATG1
-/-

.
1195

  

 

C. Methods and challenges of specialized topics/model systems 

There are now a large number of model systems being used to study autophagy. These 

guidelines cannot cover every detail, and as stated in the Introduction this article is not 

meant to provide detailed protocols. Nonetheless, we think it is useful to briefly discuss 

what techniques can be used in these systems and to highlight some of the specific 

concerns and/or challenges. We also refer readers to the 3 volumes of Methods in 

Enzymology that provide additional information for “nonstandard” model systems.
38-40

 

1. C. elegans. C. elegans has a single ortholog of most yeast Atg proteins; however, 

2 nematode homologs exist for Atg4, Atg8 and Atg16.
1196-1198

 Multiple studies have 

established C. elegans as a useful multicellular genetic model to delineate the autophagy 

pathway and associated functions (see for example refs. 
253,603,713,714,1199

). The LGG-

1/Atg8/LC3 reporter is the most commonly used tool to detect autophagy in C. elegans. 

Similar to Atg8, which is incorporated into the double membrane of autophagic vacuoles 

during autophagy,
139,251,574

 the C. elegans LGG-1 localizes into cytoplasmic puncta under 

conditions known to induce autophagy. Fluorescent reporter fusions of LGG-1/Atg8 with 

GFP, DsRED or mCherry have been used to monitor autophagosome formation in vivo, 

in the nematode. These reporters can be expressed either in specific cells and tissues or 

throughout the animal.
253,714,1200,1201

 LGG-2 is the second LC3 homolog and is also a 

convenient marker for autophagy either using specific antibodies
713

 or fused to GFP,
1202
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especially when expressed from an integrated transgene to prevent its germline 

silencing.
713

 The exact function of LGG-1 versus LGG-2 remains to be addressed.
1203

 

For observing autophagy by GFP-LC3 fluorescence in C. elegans, it is best to use 

integrated versions of the marker
713,714,1204

 (GFP::LGG-1 and GFP::LGG-2; Fig. 27) 

rather than extrachromosomal transgenic strains
253,1202

 because the latter show variable 

expression among different animals or mosaic expression (C. Kang, personal 

communication; V. Galy, personal communication). It is also possible to carry out 

indirect immunofluorescence microscopy using antibodies against endogenous LGG-1, 

603,714
 or LGG-2.

713
 In addition, with the integrated version, or with antibodies directed 

against endogenous LGG-1, it is possible to perform a western blot analysis for 

lipidation, at least in embryos
1204

 and in the whole animal.
714

 Finally, we point out the 

increasing availability of instruments that are capable of “super-resolution” fluorescence 

microscopy, which will further enhance the value and possibilities afforded by this 

technology.
1205,1206

 

LGG-1-I (the nonlipidated form) and LGG-1-II/LGG-1–PE (the lipidated form) 

can be detected in a western blot assay using anti-LGG-1 antibody.
603

 The LGG-1 

precursor accumulates in atg-4.1 mutants, but is undetectable in wild-type animals.
1197

 In 

some autophagy mutants, including epg-3, epg-4, epg-5, and epg-6 mutants, levels of 

LGG-1-I and LGG-1-II are elevated.
542,603,1207,1208

 In an immunostaining assay, 

endogenous LGG-1 forms distinct punctate structures, mostly at the ~64- to 100-cell 

embryonic stage. LGG-1 puncta are absent in atg-3, atg-7, atg-5 and atg-10 

mutants,
603,1198

 but dramatically accumulate in some autophagy mutants.
542,603

 The widely 

used GFP::LGG-1 reporter forms aggregates in atg-3 and atg-7 mutant embryos, in 
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which endogenous LGG-1 puncta are absent, indicating that GFP::LGG-1 could be 

incorporated into protein aggregates during embryogenesis. Immunostaining for 

endogenous VPS-34 is also a useful marker of autophagy induction in C. elegans 

embryos.
1209

 

A variety of protein aggregates, including PGL granules (PGL-1-PGL-3-SEPA-1) 

and the C. elegans SQSTM1 homolog SQST-1, are selectively degraded by autophagy 

during embryogenesis; impaired autophagy activity results in their accumulation and the 

generation of numerous aggregates.
603,1199

 Thus, degradation of these autophagy 

substrates can also be used to monitor autophagy activity, with similar cautionary notes to 

those described in section A3 (see SQSTM1 and related LC3 binding protein turnover 

assays) for the SQST-1 turnover assay. Similar to mammalian cells, the total amount of 

LGG-1::GFP along with SQST-1::GFP transcriptional expression coupled with its 

posttranscriptional accumulation can be informative with regard to autophagic flux (again 

with the same cautionary notes described in section A3) (N. Ventura, personal 

communication).
599

  

As with its mammalian counterpart, loss of the C. elegans TP53 ortholog, cep-1, 

increases autophagosome accumulation
1210

 and extends the animal’s life span.
1211

 bec-1- 

and cep-1-regulated autophagy is also required for optimal life span extension and to 

reduce lipid accumulation in response to silencing FRH-1/frataxin, a protein involved in 

mitochondrial respiratory chain functionality.
1212

 Again similar to its mammalian 

counterpart, the TFEB-ortholog HLH-30 transcriptionally regulates autophagy and 

promotes lipid degradation and longevity in C. elegans.
599,787,1213
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For a more complete review of methods for monitoring autophagy in C. elegans 

see ref. 
1214

. 

2. Chicken B-lymphoid DT40 cells, retina and inner ear. The chicken B-

lymphoid DT40 cell line represents a suitable tool for the analysis of autophagic 

processes in a nonmammalian vertebrate system. In DT40 cells, foreign DNA integrates 

with a very high frequency by homologous recombination compared to random 

integration. This makes the cell line a valuable tool for the generation of cellular gene 

knockouts. Generally, the complete knockout of genes encoding autophagy-regulatory 

proteins is preferable compared to RNAi-mediated knockdown, because in some cases 

these proteins function normally when expressed at reduced levels.
237

 Different Atg-

deficient DT40 cell lines already exist, including atg13
-/-

, ulk1
-/-

, ulk2
-/-

, ulk1/2
-/-

,
1215

 

becn1
-/-

, and rb1cc1/fip200
-/-

 (B. Stork, personal communication). Many additional non-

autophagy-related gene knockout DT40 cell lines have been generated and are 

commercially available.
1216

  

DT40 cells are highly proliferative (the generation time is approximately 10 h), 

and knockout cells can be easily reconstituted with cDNAs by retroviral gene transfer for 

the mutational analysis of signaling pathways. DT40 cells mount an autophagic response 

upon starvation in EBSS,
1215

 and autophagy can be analyzed by a variety of assays in this 

cell line. Steady state methods that can be used include TEM, LC3 western blotting and 

fluorescence microscopy; flux measurements include monitoring LC3-II turnover and 

tandem mRFP/mCherry-GFP-LC3 fluorescence microscopy. Using atg13
-/-

 and ulk1/2
-/-

 

DT40 cells, it was shown that ATG13 and its binding capacity for RB1CC1/FIP200 are 

mandatory for both basal and starvation-induced autophagy, whereas ULK1/2 and in 
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vitro-mapped ULK1-dependent phosphorylation sites of ATG13 appear to be dispensable 

for these processes.
1215

  

Another useful system is chick retina, which can be used for monitoring 

autophagy at different stages of development. For example, lipidation of LC3 is observed 

during starvation, and can be blocked with a short-term incubation with 3-MA.
374,375

 

LEP-100 antibody is commercially available for the detection of this lysosomal protein. 

In the developing chicken inner ear, LC3 flux can be detected in otic vesicles cultured in 

a serum-free medium exposed to either 3-MA or chloroquine.
376

 

One of the salient features of chicken cells, including primary cells such as 

chicken embryo fibroblasts, is the capacity of obtaining rapid, efficient and sustained 

transcript/protein downregulation with replication-competent retrovirus for shRNA 

expression.
1217

 In chicken embryo fibroblasts, nearly complete and general (i.e., in nearly 

all cells) protein downregulation can be observed within a few days after transfection of 

the shRNA retroviral vector.
156

 

Cautionary notes: Since the DT40 cell line derives from a chicken bursal 

lymphoma, not all ATG proteins and autophagy-regulatory proteins are detected by the 

commercially available antibodies produced against their mammalian orthologs; 

however, commercially available antibodies for mammalian LC3 and GABARAP have 

been reported to detect the chicken counterparts in western blots.
156

 The chicken genome 

is almost completely assembled, which facilitates the design of targeting constructs. 

However, in the May 2006 chicken (Gallus gallus) v2.1 assembly, 5% of the sequence 

has not been anchored to specific chromosomes, and this might also include genes 

encoding autophagy-regulatory proteins. It is possible that there is some divergence 
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within the signaling pathways between mammalian and nonmammalian model systems. 

One example might be the role of ULK1/2 in starvation-induced autophagy described 

above. Additionally, neither rapamycin nor torin1 seem to be potent inducers of 

autophagy in DT40 cells, although MTOR activity is completely repressed as detected by 

phosphorylated RPS6KB western blotting.
1215

 Finally, DT40 cells represent a 

transformed cell line, being derived from an avian leukosis virus-induced bursal 

lymphoma. Thus, DT40 cells release avian leukosis virus into the medium, and the 3'-

long terminal repeat has integrated upstream of the MYC gene, leading to increased MYC 

expression.
1218

 Both circumstances might influence basal and starvation-induced 

autophagy. 

3. Chlamydomonas. The unicellular green alga Chlamydomonas reinhardtii is an 

excellent model system to investigate autophagy in photosynthetic eukaryotes. Most of 

the ATG genes that constitute the autophagy core machinery including the ATG8 and 

ATG12 ubiquitin-like systems are conserved as single-copy genes in the nuclear genome 

of this model alga. Autophagy can be monitored in Chlamydomonas by western blotting 

through the detection of Atg8 lipidation as well as an increase in the abundance of this 

protein in response to autophagy activation.
275

 Localization of Atg8 by 

immunofluorescence microscopy can also be used to study autophagy in Chlamydomonas 

since the cellular distribution of this protein changes drastically upon autophagy 

induction. The Atg8 signal is weak and usually detected as a single spot in nonstressed 

cells, whereas autophagy activation results in the localization of Atg8 in multiple spots 

with a very intense signal.
275,1219,1220

 Finally, enhanced expression of ATG8 and other 

ATG genes has also been reported in stressed Chlamydomonas cells.
1219

 These 
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methodological approaches have been used to investigate the activation of autophagy in 

Chlamydomonas under different stress conditions including nutrient (nitrogen or carbon) 

limitation, rapamycin treatment, ER stress, oxidative stress, photo-oxidative damage or 

high light stress.
275,1219,1220

 

4. Drosophila. Drosophila provides an excellent system for in vivo analysis of autophagy, 

partly because the problem of animal-to-animal variability can be circumvented by the use of 

clonal mutant cell analysis, a major advantage of this model system. In this scenario, somatic 

clones of cells are induced that either overexpress the gene of interest, or silence the gene 

through expression of a transgenic RNA interference construct, or homozygous mutant cells are 

generated. These gain- or loss-of-function clones are surrounded by wild-type cells, which serve 

as an internal control for autophagy induction. In such an analysis, autophagy in these genetically 

distinct cells is always compared to neighboring cells of the same tissue, thus eliminating most of 

the variability and also ruling out potential non-cell-autonomous effects that may arise in mutant 

animals. Along these lines, clonal analysis should be an integral part of in vivo Drosophila 

studies when possible. Multiple steps of the autophagic pathway can now be monitored in 

Drosophila due to the recent development of useful markers, corresponding to every step of the 

process. Interested readers may find further information in 2 reviews with a detailed discussion 

of the currently available assays and reagents for the study of autophagy in Drosophila.
127,1221

 

LC3-II western blotting using antibodies against mammalian proteins does not work in 

Drosophila (E. Baehrecke, D. Denton, S. Kumar and T. Neufeld, unpublished results). Western 

blotting and fluorescence microscopy have been used successfully in Drosophila by monitoring 

flies expressing human GFP-LC3,
81,261

 GFP-Atg8a
1222

 or using any of several antibodies directed 

against the endogenous Atg8 protein.
490,594,1223

 In addition, cultured Drosophila (S2) cells can be 
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stably transfected with GFP fused to Drosophila Atg8a, which generates easily resolvable GFP-

Atg8a and GFP-Atg8a–PE forms that respond to autophagic stimuli (S. Wilkinson, personal 

communication); stable S2 cells with GFP-Atg8a under the control of a 2-kb Atg8a 5’ UTR are 

also available.
1224

 Similarly, cultured Drosophila cells (l[2]mbn or S2) stably transfected with 

EGFP-HsLC3B respond to autophagy stimuli (nutrient deprivation) and inhibitors (3-MA, 

bafilomycin A1) as expected, and can be used to quantify GFP-LC3 puncta, which works best 

using fixed cells with the aid of an anti-GFP antibody.
1225

 However, in the Drosophila eye, 

overexpression of GFP-Atg8 results in a significant increase in Atg8–PE by western blot, and 

this occurs even in control flies in which punctate GFP-Atg8 is not detected by 

immunofluorescence (M. Fanto, unpublished results), and in transfected Drosophila Kc167 cells, 

uninducible but persistent GFP-Atg8 puncta are detected (A. Kiger, unpublished results). In 

contrast, expression of GFP-LC3 under the control of the ninaE/rh1 promoter in wild-type flies 

does not result in the formation of LC3-II detectable by western blot, nor the formation of 

punctate staining; however, increased GFP-LC3 puncta by immunofluorescence or LC3-II by 

western blot are observed upon activation of autophagy.
422

 Autophagy can also be monitored 

with mCherry-Atg18, which is displayed in punctate patterns that are very similar to mCherry-

Atg8a.
127

 Tandem fluorescence reporters have been established in Drosophila in vivo, where 

GFP-mCherry-Atg8a can be expressed in the nurse cells of the developing egg chamber or in 

other cell types.
127,1024

 A Drosophila transgenic line (Ref[2]P-GFP) and different specific 

antibodies against Ref(2)P, the Drosophila SQSTM1 homolog, are available to follow Ref(2)P 

expression and localization.
383,403,1226

 Finally, it is worth noting that Atg5 antibody can be used in 

the Drosophila eye and the staining is similar to GFP-LC3.
1227

 In addition, Atg5-GFP and Atg6-

GFP constructs are available in Drosophila.
1228
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5. Erythroid cells. The unique morphology of red blood cells (RBCs) is instrumental to 

their function. These cells have a bi-concave shape provided by a highly flexible membrane and 

a cytoplasm deficient in organelles. This architecture allows unimpeded circulation of the RBC 

even through the thinnest blood vessels, thereby delivering O2 to all the tissues of the body. 

Erythroid cells acquire this unique morphology upon terminal erythroid maturation, which 

commences in the bone marrow and is completed in the circulation. This process involves 

extrusion of the pycnotic nucleus through a specialized form of asymmetric division, and 

degradation of the ribosome and mitochondria machinery via a specialized form of autophagy 

(Fig. 28). In the context of RBC biogenesis, autophagy exerts a unique function to sculpt the 

cytoplasm, with the mature autophagic vacuoles engulfing and degrading organelles, such as 

mitochondria and ribosomes, whose presence would impair the flexibility of the cells. 

 Another unique feature of erythropoiesis is that expression of genes required for 

autophagosome assembly/function, such as LC3B, does not appear to be regulated by nutrient 

deprivation, but rather is upregulated by the erythroid-specific transcription factor GATA1.
612

 

FOXO3, a transcription factor that modulates RBC production based on the levels of O2 present 

in the tissues,
1229

 amplifies GATA1-mediated activation of autophagy genes
612

 and additional 

genes required for erythroid maturation.
1230

 Furthermore, lipidation of the cytosolic form of 

LC3B into the lipidated LC3-II form is controlled by EPO (erythropoietin), the erythroid-specific 

growth factor that ensures survival of the maturing erythroid cells. The fact that the genes 

encoding the autophagic machinery are controlled by the same factors that regulate expression of 

genes encoding important red cell constituents (such as red blood cell antigens and cytoskeletal 

components, globin, and proteins mediating heme biosynthesis),
1231-1233

 ensures that the process 

of terminal maturation progresses in a highly ordered fashion. 
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 The importance of autophagy for RBC production has been established through the use of 

mutant mouse strains lacking genes encoding proteins of the autophagy machinery (BNIP3L, 

ULK1, ATG7).
1234-1237

 These mutant mice exhibit erythroid cells blocked at various stages of 

terminal erythroid maturation and are anemic. Abnormalities of the autophagic machinery are 

also linked to anemia observed in certain human diseases, especially those categorized as 

ribosomopathies. As in other cell types, in erythroid cells TP53 activation may influence the 

functional consequences of autophagy—to determine cell death rather than maturation. TP53, 

through MDM2, is the gatekeeper to ensure normal ribosome biosynthesis by inducing death of 

cells lacking sufficient levels of ribosomal proteins. Diseases associated with congenic or 

acquired loss-of-function mutations of genes encoding ribosomal proteins, such as Diamond-

Blackfan anemia or myelodysplastic syndrome, are characterized by activated TP53 and 

abnormally high levels of autophagic death of erythroid cells and anemia. Conversely, the 

anemia of at least certain Diamond-Blackfan anemia patients may be treated with glucocorticoids 

that inhibit TP53 activity. 

6. Filamentous fungi. As in yeast, autophagy is involved in nutrient recycling during 

starvation.
257,258,1238-1242

 In addition, macroautophagy seems to be involved in many normal 

developmental processes such as sexual and asexual reproduction, where there is a need for 

reallocation of nutrients from one part of the mycelium to another to supply the developing 

spores and spore-bearing structures.
258,697,1238,1239,1241,1243-1245

 Similarly, autophagy also affects 

conidial germination under nitrogen-limiting conditions.
258

 In Podospora anserina, autophagy 

has been studied in relation to incompatibility reactions between mating strains where it seems to 

play a prosurvival role.
256,1243

 During aging of this long-standing aging model, autophagy is 

increased (numbers of GFP-Atg8 puncta and increased autophagy-dependent degradation of a 
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GFP reporter protein) and acts as a prosurvival pathway.
1246 

Of special interest to many 

researchers of autophagy in filamentous fungi has been the possible involvement of autophagy in 

plant and insect pathogen infection and growth inside the host.
257,680,1238,1239,1247-1250 

Autophagy 

also appears to be necessary for the development of aerial hyphae,
258,1238,1243,1248 

and for 

appresorium function in M. oryzae, Colletotrichum orbiculare and Metarhizium 

robertsii.
257,1247,1248,1250

 Some of these effects could be caused by the absence of autophagic 

processing of storage lipids (lipophagy) to generate glycerol for increasing turgor and recycling 

the contents of spores into the incipient appressorium, as a prerequisite to infection.
1238,1248,1249

 

Methods for functional analysis of autophagy have been covered in a review article (see 

ref. 
1251

). Most studies on autophagy in filamentous fungi have involved deleting some of the key 

genes necessary for autophagy, followed by an investigation of what effects this has on the 

biology of the fungus. Most commonly, ATG1, ATG4 and/or ATG8 have been 

deleted.
257,1238,1239,1241-1243,1248,1250,1252,1253

 To confirm that the deletion(s) affects autophagy, the 

formation of autophagic bodies in the wild type and the mutant can be compared. In filamentous 

fungi the presence of autophagic bodies can be detected using MDC staining,
257,1238

 TEM
257,1239

 

or fluorescence microscopy to monitor Atg8 tagged with a fluorescent protein.
258,1241,1243

 This 

type of analysis is most effective after increasing the number of autophagic bodies by starvation 

or alternatively by adding the autophagy-inducing drug rapamycin,
258,1238

 in combination with 

decreasing the degradation of the autophagic bodies through the use of the protease inhibitor 

PMSF.
257,1239,1241,1243

 In filamentous fungi it might also be possible to detect the accumulation of 

autophagic bodies in the vacuoles using differential interference contrast microscopy, especially 

following PMSF treatment.
1241,1243

 Additional information regarding the timing of autophagy 
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induction can be gained by monitoring transcript accumulation of ATG1 and/or ATG8 using 

qRT-PCR.
1239

   

 Autophagy has been investigated intensively in Aspergilli, and in particular in the 

genetically amenable species Aspergillus nidulans, which is well suited to investigate 

intracellular traffic.
1254

 In A. oryzae, autophagy has been monitored by the rapamycin-induced 

and Atg8-dependent delivery of DsRed2, which is normally cytosolic, to the vacuoles.
258

 In A. 

nidulans, autophagy has been monitored by the more “canonical” GFP-Atg8 proteolysis assays, 

by monitoring the delivery of GFP-Atg8 to the vacuole (by time-lapse microscopy), and by 

directly following the biogenesis of GFP-Atg8-labeled phagophores and autophagosomes, which 

can be tracked in large numbers using kymographs traced across the hyphal axis. In these 

kymographs, the autophagosome cycle starting from a PAS “draws” a cone whose apex and base 

correspond to the “parental” PAS punctum and to the diameter of the “final” autophagosome, 

respectively.
1255

 Genetic analyses revealed that autophagosomes normally fuse with the vacuole 

in a Rab7-dependent manner. However, should Rab7 fusogenic activity be mutationally 

inactivated, autophagosomes can traffic to the endosomes in a RabB/Rab5- and CORVET-

dependent manner.
1255

 An important finding was that RabO/Rab1 plays a key role in A. nidulans 

autophagy (and actually can be observed on the phagophore membranes). This finding agrees 

with previous work in S. cerevisiae demonstrating that Ypt1 (the homolog of RAB1) is activated 

by the Trs85-containing version of TRAPP, TRAPPIII, for autophagy.
1256,1257

 This crucial 

involvement of RabO/Ypt1 points at the ER as one source of membrane for autophagosomes. 

The suitability of A. nidulans for in vivo microscopy has been exploited to demonstrate that 

nascent phagophores are cradled by ER-associated structures resembling mammalian 

omegasomes.
1255

 The macroautophagic degradation of whole nuclei that has been observed in A. 
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oryzae
692

 might be considered as a specialized version of reticulophagy. Finally, autophagosome 

biogenesis has also been observed using a PtdIns3P-binding GFP-tagged FYVE domain probe in 

mutant cells lacking RabB/Rab5. Under these genetic conditions Vps34 cannot be recruited to 

endosomes and is entirely at the disposition of autophagy,
1255

 such that PtdIns3P is only present 

in autophagic membranes. 

Mitophagy has been studied in M. oryzae, by detecting the endogenous level of porin (a 

mitochondrial outer membrane protein) by western blot, and by microscopy observation of 

vacuolar accumulation of mito-GFP.
680

 Mitophagy is involved in regulating the dynamics of 

mitochondrial morphology and/or mitochondrial quality control, during asexual development and 

invasive growth in M. oryzae. Pexophagy has also been studied in rice-blast fungus and it serves 

no obvious biological function, but is naturally induced during appressorial development, likely 

for clearance of excessive peroxisomes prior to cell death.
1258

 Methods to monitor pexophagy in 

M. oryzae include microscopy observation of the vacuolar accumulation of GFP-SRL 

(peroxisome-localized GFP), and detection of the endogenous thiolase,
1258

 or Pex14 levels. 

7. Food biotechnology. Required for yeast cell survival under a variety of stress 

conditions, autophagy has the potential to contribute to the outcome of many food 

fermentation processes. For example, autophagy induction is observed during the primary 

fermentation of synthetic grape must
1259

 and during sparkling wine production (secondary 

fermentation).
1260

 A number of genome-wide studies have identified vacuolar functions 

and autophagy as relevant processes during primary wine fermentation or for ethanol 

tolerance, based on gene expression data or cell viability of knockout yeast 

strains.
1259,1261-1265

 However, determining the relevance of autophagy to yeast-driven food 
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fermentation processes requires experimentation using some of the methods available for 

S. cerevisiae as described in these guidelines. 

Autophagy is a target for some widespread food preservatives used to prevent 

yeast-dependent spoilage. For example, the effect of benzoic acid is exacerbated when 

concurrent with nitrogen starvation.
1266

 This observation opened the way to devise 

strategies to improve the usefulness of sorbic and benzoic acid, taking advantage of their 

combination with stress conditions that would require functional autophagy for yeast cell 

survival.
1166

 Practical application of these findings would also require extending this 

research to other relevant food spoilage yeast species, which would be of obvious 

practical interest. 

In the food/health interface, the effect of some food bioactive compounds on 

autophagy in different human cell types has already attracted some attention.
1267,1268

 

Interpreting the results of this type of research, however, warrants 2 cautionary notes.
1269

 

First, the relationship between health status and autophagic activity is obviously far from 

being direct. Second, experimental design in this field must take into account the actual 

levels of these molecules in the target organs after ingestion, as well as exposure time and 

their transformations in the human body. In addition, attention must be paid to the fact 

that several mechanisms might contribute to the observed biological effects. Thus, 

relevant conclusions about the actual involvement of autophagy on the health-related 

effect of food bioactive compounds would only be possible by assaying the correct 

molecules in the appropriate concentrations. 

8. Honeybee. The reproductive system of bees, or insects whose ovaries exhibit a meroistic 

polytrophic developmental cycle can be a useful tool to analyze and monitor physiological 
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autophagy. Both queen and worker ovaries of Africanized A. mellifera display time-regulated 

features of cell death that are, however, linked to external stimuli.
1270

 Features of apoptosis and 

autophagy are frequently associated with the degeneration process in bee organs, but only more 

recently has the role of autophagy been highlighted in degenerating bee tissues. The primary 

method currently being used to monitor autophagy is following the formation of autophagosomes 

and autolysosomes by TEM. This technique can be combined with cytochemical and 

immunohistochemical detection of acid phosphatase as a marker for autolysosomes.
1271,1272

 

Acidotropic dyes can also be used to follow autophagy in bee organs, as long as the cautions 

noted in this article are followed. The honeybee genome has been sequenced, and differential 

gene expression has been used to monitor Atg18 in bees parasitized by Varroa destructor.
1273

 

9. Human. Considering that much of the research conducted today is directed at 

understanding the functioning of the human body, in both normal and disease states, it is 

pertinent to include humans and primary human tissues and cells as important models for the 

investigation of autophagy. Although clinical studies are not readily amenable to these types of 

analyses, it should be kept in mind that the MTORC1 inhibitor rapamycin, the lysosomal 

inhibitors chloroquine and hydroxychloroquine, and the microtubule depolymerizing agent 

colchicine are all available as clinically approved drugs. However, these drugs have serious side 

effects, which often impede their clinical use to study autophagy (e.g., severe 

immunesuppressive effects of rapamycin; gastrointestinal complaints, bone marrow depression, 

neuropathy and acute renal failure induced by colchicine; gastrointestinal complaints, neuropathy 

and convulsions, retinopathy induced by [hydroxyl]chloroquine). Theses side effects may in part 

be exacerbated by potential inhibition of macroautophagy in itself by these drugs.
1274

 In cancer 

treatetment, for example, autophagy inhibiting drugs are used in combination with other 
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anticancer drugs to increase their potency. Conversely, normal tissues such as kidney induce 

macroautophagy in response to anticancer drugs to resist against their toxicity;
1275

 additional 

blockade of autophagy could worsen normal tissue toxicity and cause serious side effects. 

Therefore, the potential for serious adverse effects and toxicity of these drugs warrants caution, 

especially when studying a role of autophagy in high-risk patients, such as the critically ill. 

Furthermore, fresh biopsies of some human tissues are possible to obtain. Blood, in particular, as 

well as samples of adipose and muscle tissues, can be obtained from needle biopsies or from 

elective surgery. For example, in a large study, adipocytes were isolated from pieces of adipose 

tissue (obtained during surgery) and examined for INS/insulin signaling and autophagy. It was 

demonstrated that autophagy was strongly upregulated (based on LC3 flux, EM, and lipofuscin 

degradation) in adipocytes obtained from obese patients with type 2 diabetes compared with 

nondiabetic subjects.
277

 

 The study of autophagy in the blood has revealed that SNCA may represent a further 

marker to evaluate the autophagy level in T lymphocytes isolated from peripheral blood.
1276

 In 

these cells it has been shown that (a) knocking down the SNCA gene results in increased 

macroautophagy, (b) autophagy induction by energy deprivation is associated with a significant 

decrease of SNCA levels, (c) macroautophagy inhibition (e.g., with 3-MA or knocking down 

ATG5) leads to a significant increase of SNCA levels, and d) SNCA levels negatively correlate 

with LC3-II levels. Thus, SNCA, and in particular the 14 kDa monomeric form, can be detected 

by western blot as a useful tool for the evaluation of macroautophagy in primary T lymphocytes. 

In contrast, the analysis of SQSTM1 or NBR1 in freshly isolated T lymphocytes fails to reveal 

any correlation with either LC3-II or SNCA, suggesting that these markers cannot be used to 

evaluate basal macroautophagy in these primary cells. Conversely, LC3-II upregulation is 
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correlated with SQSTM1 degradation in neutrophils, as demonstrated in a human sepsis 

model.
987

 

A major caveat of the work concerning autophagy on human tissue is the problem of 

postmortem times, agonal state, premortem clinical history (medication, diet, etc.) and tissue 

fixation. Time to fixation is typically longer in autopsy material than when biopsies are obtained. 

For tumors, careful sampling to avoid necrosis, hemorrhagic areas and non-neoplastic tissue is 

required. The problem of fixation is that it can diminish the antibody binding capability; in 

addition, especially in autopsies, material is not obtained immediately after death.
1277,1278

 The 

possibilities of postmortem autolysis and fixation artifacts must always be taken into 

consideration when interpreting changes attributed to autophagy.
1279

 Analyses of these types of 

samples require not only special antigen retrieval techniques, but also histopathological 

experience to interpret autophagy studies by IHC, immunofluorescence or TEM. Nonetheless, at 

least one recent study demonstrated that LC3 and SQSTM1 accumulation can be readily detected 

in autopsy-derived cardiac tissue from patients with chloroquine- and hydroxychloroquine-

induced autophagic vacuolar cardiomyopathy.
920

 Despite significant postmortem intervals, 

sections of a few millimeters thickness cut from fresh autopsy brain and fixed in appropriate 

glutaraldehyde-formalin fixative for EM, can yield TEM images of sufficient ultrastructural 

morphology to discriminate different autophagic vacuole subtypes and  their relative regional 

abundance in some cases (R. Nixon, personal communication). 

The situation is even worse with TEM, where postmortem delays can cause 

vacuolization. Researchers experienced in the analysis of TEM images corresponding to 

autophagy should be able to identify these potential artifacts because autophagic vacuoles should 

contain cytoplasm. While brain biopsies may be usable for high quality TEM (Fig. 29, 30), this 
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depends upon proper handling at the intraoperative consultation stage, and such biopsies are 

performed infrequently except for brain tumor diagnostic studies. Conversely, biopsies of organs 

such as the digestive tract, the liver, muscle and the skin are routinely performed and thus nearly 

always yield high-quality TEM images. When possible, nonsurgical biopsies are preferable since 

surgery is usually performed in anesthetized and fasting patients, 2 conditions possibly affecting 

autophagy. Moreover, certain surgical procedures require tissue ischemia-reperfusion strategies 

that can also affect autophagy level.
1280

 An analysis that examined liver and skeletal muscle from 

critically ill patients utilized tissue biopsies that were taken within 30 ± 20 min after death and 

were flash-frozen in liquid nitrogen followed by storage at -80°C.
1010

 Samples could 

subsequently be used for EM and western blot analysis. 

A major limitation of studying patient biopsies is that only static measurements can be 

performed. This limitation does not apply, however, for dynamic experiments on tissue biopsies 

or cells derived from biopsies, as described above.
277

 Multiple measurements over time, 

especially when deep (vital) organs are involved, are impossible and ethically not justifiable. 

Hence, quantitative flux measurements are virtually impossible in patients. To overcome these 

problems to the extent possible and to gain a more robust picture of the autophagic status, 

observational studies need to include 2 different aspects. First, a static marker for phagophore or 

autophagosome formation needs to be measured. This can be done by assessing ultrastructural 

changes with TEM and/or on the molecular level by measuring LC3-II protein levels. Second, 

accumulation of autophagy substrates, such as SQSTM1 and (poly)ubiquitinated proteins, can 

provide information on the overall efficacy of the pathway and can be a surrogate marker of the 

consequences of altered autophagic flux, especially when autophagy is insufficient, although 

these changes can also be affected by the ubiquitin-proteasome system as mentioned above. In 
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addition, and even more so when problems with specific pathways are suspected (e.g., 

mitophagy), specific substrates of these pathways should be determined. Again, none of these 

measurements on its own provides enough information on (the efficacy of) autophagy, because 

other processes may confound every single parameter. However, the combination of multiple 

analyses should be informative. Of note, there has been recent interest in assessing markers of 

autophagy and autophagic flux in right atrial biopsy samples obtained from patients undergoing 

cardiac surgery.
1281,1282

 Evidence to date suggests that cardiac surgery may be associated with an 

increase in autophagic flux, and that this response may protect the heart from perioperative 

cardiac ischemia-reperfusion injury.
1281 Although still in its infancy with regard to autophagy, it 

is worth pointing out that mathematical modeling has the power to bridge whole body in vivo 

data with in vitro data from tissues and cells. The usefulness of so-called hierarchical or 

multilevel modeling has thus been demonstrated when examining the relevance of INS/insulin 

signaling to glucose uptake in primary human adipocytes compared with whole-body glucose 

homeostasis.
1283

 

 Lipophagy is an important pathway of lipid droplet clearance in hepatocytes, and the 

extent of lipophagy modulates the lipid content in these cells. Hepatocytes break down lipid 

droplets through lipophagy as a pathway of endogenous lipid clearance in response to hormones 

or daily rhythms of nutrient supply.
1011

 LC3-II colocalizes with lipid droplets, indicating a role 

for autophagy in the mobilization of free fatty acids.
782

 Little is known regarding the changes of 

lipophagy under pathological conditions, such as drug toxicity, alcoholic steatohepatitis or 

nonalcoholic steatohepatitis (NASH). The accumulation of lipid droplets in hepatocytes activates 

ATG5 in the droplets, and initiates a lipophagy process; in addition, increased influx of fatty 

acids in hepatocytes results in oxidant stress, ER stress and autophagy,
1284,1285

 as indicated by the 
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fact that there is enhanced staining of LC3-II in NASH tissue.
1284,1286

 However, autophagy flux is 

impaired in liver specimens of NASH patients as indicated by increased levels of SQSTM1.
1287

 

Therefore, the value of using LC3-II staining in tissue as an indication of autophagy or lipophagy 

is in question.  

A stepwise process can be proposed for linking changes in the autophagic pathway to 

changes in disease outcome. First, in an observational study, the changes in the autophagic 

pathway (see above) should be quantified and linked to changes in disease outcome. To prove 

causality, a subsequent autophagy-modifying intervention should be tested in a randomized 

study. Before an intervention study is performed in human patients, the phenotype of (in)active 

autophagy contributing to poor outcome should be established in a validated animal model of the 

disease. For the validation of the hypothesis in an animal model, a similar two-step process is 

suggested, with the assessment of the phenotype in a first stage, followed by a proof-of-concept 

intervention study (see Large animals). 

10. Hydra. Hydra is a freshwater cnidarian animal that provides a unique model 

system to test autophagy. The process can be analyzed either in the context of nutrient 

deprivation, as these animals easily survive several weeks of starvation,
1288,1289

 or in the 

context of regeneration, because in the absence of protease inhibitors, bisection of the 

animals leads to an uncontrolled wave of autophagy. In the latter case, an excess of 

autophagy in the regenerating tip immediately after amputation is deleterious.
1290-1292

 

Most components of the autophagy and MTOR pathways are evolutionarily conserved in 

Hydra.
1289

 For steady-state measurements, autophagy can be monitored by western blot 

for ATG8/LC3, by immunofluorescence (using antibodies to ATG8/LC3, 

lysobisphosphatidic acid or RPS6KA/RSK), or with dyes such as MitoFluor Red 589 and 
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LysoTracker Red. Flux measurements can be made by following ATG8/LC3 turnover 

using lysosomal protease inhibitors (leupeptin and pepstatin A) or in vivo labeling using 

LysoTracker Red. It is also possible to monitor MTOR activity with phosphospecific 

antibodies to RPS6KB and EIF4EBP1 or to examine gene expression by semiquantitative 

RT-PCR, using primers that are designed for Hydra. Autophagy can be induced by 

RNAi-mediated knockdown of Kazal1,
1290,1291

 or with rapamycin treatment, and can be 

inhibited with wortmannin or bafilomycin A1.
1288,1289

 

11. Large animals. This section refers in particular to mammals other than humans. 

Assessment of autophagy (and, in particular, autophagic flux) in clinically relevant large 

animal models is critical in establishing its (patho)physiological role in multiple disease 

states. For example, evidence obtained in swine suggests that upregulation of autophagy 

may protect the heart against damage caused by acute myocardial infarction/heart 

attack.
1293

 Ovine models of placental insufficiency leading to intrauterine growth 

restriction have shown that there is no change in the expression of markers of autophagy 

in the fetus in late gestation
1294

 or in the lamb at 21 days after birth.
1295

 Furthermore, 

there is an increase in markers of autophagy in the placenta of human intrauterine growth 

restriction pregnancies.
1296

 Studies in rabbits suggest a protective role of upregulated 

autophagy against critical illness-induced multiple organ failure and muscle 

weakness,
1297,1298

 which is corroborated by human studies.
1009,1010

 Conversely, autophagy 

may contribute to the pathogenesis of some types of tissue injury, at least in the 

lung.
1299,1300

  

 Autophagy also plays an important role in the development and remodeling of the 

bovine mammary gland. In vitro studies with the use of a 3-dimensional culture model of 
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bovine mammary epithelial cells (MECs) have shown that this process is involved in the 

formation of fully developed alveoli-like structures.
1301

 Earlier studies show that 

intensified autophagy is observed in bovine MECs at the end of lactation and during the 

dry period, when there is a decrease in the levels of lactogenic hormones, increased 

expression of auto/paracrine apoptogenic peptides, increased influence of sex steroids 

and enhanced competition between the intensively developing fetus and the mother 

organism for nutritional and bioactive compounds.
1302,1303

 These studies were based on 

some of the methods described elsewhere in these guidelines, including GFP-Atg8/LC3 

fluorescence microscopy, TEM, and western blotting of LC3 and BECN1. Creation of a 

specific GFP-LC3 construct by insertion of cDNA encoding bovine LC3 into the pEGFP-

C1 vector makes it possible to observe induction of autophagy in bovine MECs in a more 

specific manner than can be achieved by immunofluoresce techniques, in which the 

antibodies do not show specific reactivity to bovine cells and tissues.
1301,1303

 However, it 

is important to remember that definitive confirmation of cause-and-effect is challenging 

for studies on large animals, given the lack or poor availability of specific antibodies and 

other molecular tools, the frequent inability to utilize genetic approaches, and the often 

prohibitive costs of administering pharmacological inhibitors in these translational 

preparations. 

In contrast with cell culture experiments, precise monitoring of autophagic flux is 

practically impossible in vivo in large animals. Theoretically, repetitive analyses of small 

tissue biopsies should be performed to study ultrastructural and molecular alterations 

over time in the presence or absence of an autophagy inhibitor (e.g., chloroquine). 

However, several practical problems impede applicability of this approach. First, 
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repetitive sampling of small needle biopsies in the same animal (a major challenge by 

itself) could be assumed to induce artifacts following repetitive tissue destruction, 

especially when deep (vital) organs are involved. In addition, chemical inhibitors of 

autophagy have considerable side effects and toxicity, hampering their usage. Also, the 

general physical condition of an animal may confound results obtained with 

administration of a certain compound, for instance altered uptake of the compound when 

perfusion is worse. 

Therefore, in contrast to cells, where it is more practical to accurately document 

autophagic flux, we suggest the use of a stepwise approach in animal models to provide a 

proof of concept with an initial evaluation of sequellae of (in)active autophagy and the 

relation to the outcome of interest. 

First, prior to an intervention, the static ultrastructural and molecular changes in 

the autophagic pathway should be documented and linked to the outcome of interest 

(organ function, muscle mass or strength, survival, etc.). These changes can be evaluated 

by light microscopy, EM and/or by molecular markers such as LC3-II. In addition, the 

cellular content of specific substrates normally cleared by autophagy should be 

quantified, as, despite its static nature, such measurement could provide a clue about the 

results of altered autophagic flux in vivo. These autophagic substrates can include 

SQSTM1 and (poly)ubiquitinated substrates or aggregates, but also specific substrates 

such as damaged mitochondria. As noted above, measurement of these autophagic 

substrates is mainly informative when autophagic flux is prohibited/insufficient, and, 

individually, all have specific limitations for interpretation. As mentioned several times 

in these guidelines, no single measurement provides enough information on its own to 
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reliably assess autophagy, and all measurements should be interpreted in view of the 

whole picture. In every case, both static measurements reflecting the number of 

autophagosomes (ultrastructural and/or molecular) and measurements of autophagic 

substrates as surrogate markers of autophagic flux need to be combined. Depending on 

the study hypothesis, essential molecular markers can further be studied to pinpoint at 

which stage of the process autophagy may be disrupted. 

Second, after having identified a potential role of autophagy in mediating an 

outcome in a clinically relevant large animal model, an autophagy-modifying 

intervention should be tested. For this purpose, an adequately designed, randomized 

controlled study of sufficient size on the effect of a certain intervention on the phenotype 

and outcome can be performed in a large animal model. Alternatively, the effect of a 

genetic intervention can be studied in a small animal model with clinical relevance to the 

studied disease.  

As mentioned above, exact assessment of autophagic flux requires multiple time 

points, which cannot be done in the same animal. Alternatively, different animals can be 

studied for different periods of time. Due to the high variability between animals, 

however, it is important to include an appropriate control group and a sufficiently high 

number of animals per time point as corroborated by statistical power analyses. This 

requirement limits feasibility and the number of time points that can be investigated. The 

right approach to studying autophagy in large animals likely differs depending on the 

question that is being addressed. Several shortcomings regarding the methodology, 

inherent to working with large animals, can be overcome by an adequate study design. As 
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for every study question, the use of an appropriate control group with a sufficient number 

of animals is crucial in this regard. 

12. Lepidoptera. Some of the earliest work in the autophagy field was carried out in 

the area of insect metamorphosis.
1031

 Microscopy and biochemical research revealed 

autophagy during the metamorphosis of American silkmoths and the tobacco hornworm, 

Manduca sexta, and included studies of the intersegmental muscles, but they did not 

include molecular analysis of autophagy. Overall, these tissues cannot be easily 

maintained in culture, and antibodies against mammalian proteins do not often work. 

Accordingly, these studies were confined to biochemical measurements and electron 

micrographs. During metamorphosis, the bulk of the larval tissue is removed by 

autophagy and other forms of proteolysis.
1304

 Bombyx mori is now used as a 

representative model among Lepidoptera, for studying not only the regulation of 

autophagy in a developmental setting, but also the relations between autophagy and 

apoptosis. The advantages of this model are the large amount of information gathered on 

its developmental biology, physiology and endocrinology, the availability of numerous 

genetic and molecular biology tools, and a completely sequenced genome.
1305

 The basic 

studies of B. mori autophagy have been carried out in 4 main larval systems: the silk 

gland, the fat body, the midgut and the ovary.  

 The techniques used for these studies are comparatively similar, starting from 

EM, which is the most widely used method to follow the changes of various autophagic 

structures and other features of the cytosol and organelles that are degraded during 

autophagy.
590,1306-1309

 Immuno-TEM also can be used, when specific antibodies for 

autophagic markers are available. As in other model systems the use of Atg8 antibodies 
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has been reported in Lepidoptera. In B. mori midgut
590

 and fat body,
591

 as well as in 

various larval tissues of Galleria mellonella
1310

 and Helicoverpa armigera,
1311

 the use of 

custom antibodies makes it possible to monitor Atg8 conversion to Atg8–PE by western 

blotting. Moreover transfection of GFP-Atg8 or mCherry-GFP-Atg8 has been used to 

study autophagy in several lepidopteran cell lines.
1311

 Activation of TOR can be 

monitored with a phosphospecific antibody against EIF4EBP1.
591

 Acidotropic dyes such 

as MDC and LysoTracker Red staining have been used as markers for autophagy in 

silkmoth egg chambers combined always with additional assays.
1306,1307

 Acid phosphatase 

also can be used as a marker for autolysosomal participation in these tissues.
590,1308,1312

 

Systematic cloning and analysis revealed that homologs of most of the Atg genes 

identified in other insect species such as Drosophila are present in B. mori, and 14 Atg 

genes have now been identified in the silkworm genome, as well as other genes involved 

in the TOR signal transduction pathway.
1313-1315

 Variations in the expression of several of 

these genes have been monitored not only in silkworm larval organs, where autophagy is 

associated with development,
590,1313,1314,1316

 but also in the fat body of larvae undergoing 

starvation.
1313,1317

 

In the IPLB-LdFB cell line, derived from the fat body of the caterpillar of the 

gypsy moth Lymantria dispar, indirect immunofluorescence experiments have 

demonstrated an increased number of Atg8-positive dots in cells with increased 

autophagic activity; however, western blotting did not reveal the conversion of Atg8 into 

Atg8–PE. Instead, a single band with an approximate molecular mass of 42 kDa was 

observed that was independent of the percentage of cells displaying punctate Atg8 (D. 

Malagoli, unpublished results). In contrast, with B. mori midgut, the use of an antibody 
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specific for BmAtg8 makes it possible to monitor BmAtg8 processing to BmAtg8–PE by 

western blotting.
590

 Thus, the utility of monitoring Atg8 in insects may depend on the 

particular organism and antibody. 

13. Marine invertebrates. The invaluable diversity of biological properties in marine 

invertebrates offers a unique opportunity to explore the different facets of autophagy at 

various levels from cell to tissue, and throughout development and evolution. For 

example, work on the tunicate Ciona intestinalis has highlighted the key role of 

autophagy during the late phases of development in lecithotrophic organisms (larvae 

during metamorphosis feed exclusively from the egg yolk resources).
260,1318

 This work 

has also helped in pinpointing the coexistence of autophagy and apoptosis in cells as well 

as the beneficial value of combining complementary experimental data such as LC3 

immunolabeling and TUNEL detection. This type of approach could shed a new light on 

the close relationship between autophagy and apoptosis and provide valuable information 

about how molecular mechanisms control the existing continuum between these 2 forms 

of programmed cell death. Autophagy plays a key role in the resistance to nutritional 

stress as is known to be the case in many Mediterranean bivalve molluscs in the winter. 

For example, the European clam Ruditapes decussatus is able to withstand strict fasting 

for 2 months, and this resistant characteristic is accompanied by massive macroautophagy 

in the digestive gland (Fig. 31). This phenomenon, observed by TEM, demonstrates once 

again the advantage of using this classical ultrastructural method to study autophagy in 

unconventional biological models for which molecular tools may not be operational. 

Finally, autophagy also appears to play a role in the cell renewal process observed during 

the regeneration of the carnivorous sponge Asbestopluma hypogea.
1319

 The presence of 



 252 

the autophagic machinery in this sister group of Eumetazoans should incite interest into 

considering the study of the molecular networks that regulate autophagy within an 

evolutionary framework.  

14. Neotropical teleosts. In tropical environments, fish have developed different 

reproductive strategies, and many species have the potential for use as a biological model 

in cell and molecular biology, especially for studying the mechanisms that regulate 

gametogenesis and embryo development. In these fish, the ovary is a suitable 

experimental model system for studying autophagy and its interplay with cell death 

programs due to the presence of postovulatory follicles (POFs) and atretic follicles, 

which follow different routes during ovarian remodeling after spawning.
1320

 In the fish 

reproductive biology, POFs are excellent morphological indicators of spawning, whereas 

atretic follicles are relevant biomarkers of environmental stress. In addition, many 

freshwater teleosts of commercial value do not spawn spontaneously in captivity, 

providing a suitable model for studying the mechanisms of follicular atresia under 

controlled conditions.
1321 

When these species are subjected to induced spawning, the final 

oocyte maturation (resumption of meiosis) occurs, and POFs are formed and quickly 

reabsorbed in ovaries after spawning.
1322

 Assessment of autophagy in fish has been 

primarily made using TEM at different times of ovarian regression.
1323

 Due to the 

difficulty of obtaining antibodies specific for each fish species, immunodetection of 

ATG-proteins (mainly LC3 and BECN1) by IHC associated with analyses by western 

blotting can be performed using antibodies that are commercially available for other 

vertebrates.
377

 Such studies suggest dual roles for autophagy in follicular cells;
1320 

however, evaluation of the autophagic flux in different conditions is critical for 
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establishing its physiological role during follicular regression and ovarian remodeling 

after spawning. Given the ease of obtaining samples and monitoring them during 

development, embryos of these fish are also suitable models for studying autophagy that 

is activated in response to different environmental stressors, particularly in studies in 

vivo. 

15. Odontoblasts. Odontoblasts are long-lived dentin-forming postmitotic cells, 

which evolved from neural crest cells early during vertebrate evolution. These cells are 

aligned at the periphery of the dental pulp and are maintained during the entire healthy 

life of a tooth. As opposed to other permanent postmitotic cells such as cardiac myocytes 

or central nervous system neurons, odontoblasts are significantly less protected from 

environmental insult such as dental caries and trauma. Mature odontoblasts develop a 

well-characterized autophagy-lysosomal system, including a conspicuous autophagic 

vacuole that ensures turnover and degradation of cell components. Immunocytochemical 

and TEM studies make it possible to monitor age-related changes in autophagic activity 

in human odontoblasts.
1324

 

16. Planarians. Because planarians are one of the favorite model systems in which to 

study regeneration and stem cell biology, these flatworms represent a unique model 

where it is possible to investigate autophagy in the context of regeneration, stem cells and 

growth. Currently the method used to detect autophagy is TEM. A detailed protocol 

adapted to planarians has been described.
1325,1326

 However, complementary methods to 

detect autophagy are also needed, since TEM cannot easily distinguish between 

activation and blockage of autophagy, which would both be observed as an accumulation 

of autophagosomes. Other methods to detect autophagy are being developed (C. 
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González-Estévez, personal communication), including IHC and western blotting 

approaches for the planarian homolog of LC3. Several commercial antibodies against 

human LC3 have been tried for cross-reactivity without success, and 3 planarian-specific 

antibodies have been generated. Some preliminary results show that LysoTracker Red 

can be a useful reagent to analyze whole-mount planarians. Most of the components of 

the autophagy and MTOR signaling machinery are evolutionarily conserved in 

planarians. Whether autophagy genes vary at the mRNA level during starvation and after 

depletion of MTOR signaling components is still to be determined. 

17. Plants. As stated above with regard to other organisms, staining with MDC or 

derivatives (such as monodansylamylamine) is not sufficient for detection of autophagy, 

as these stains also detect vacuoles. Similarly, the use of LysoTracker Red, Neutral Red 

or acridine orange is not proof of autophagy, because these stains also detect vacuoles. 

The fluorophore of the red fluorescent protein shows a relatively high stability under 

acidic pH conditions. Thus, chimeric RFP fusion proteins that are sequestered within 

autophagosomes and delivered to the plant vacuole can be easily detected by fluorescence 

microscopy. Furthermore, fusion proteins with some versions of RFP tend to form 

intracellular aggregates, allowing the development of a visible autophagic assay for plant 

cells.
1327

 For example, fusion of cytochrome b5 and the original (tetrameric) RFP 

generate an aggregated cargo protein that displays cytosolic puncta of red fluorescence 

and, following vacuolar delivery, diffuse staining throughout the vacuolar lumen. 

However, it is not certain whether these puncta represent autophagosomes or small 

vacuoles, and therefore these data should be combined with immuno-TEM or with 

conventional TEM using high-pressure frozen and freeze-substituted samples.
1328
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In plant studies, GFP-Atg8 fluorescence is typically assumed to correspond to 

autophagosomes; however, as with other systems, caution needs to be exercised because 

it cannot be ruled out that Atg8 is involved in processes other than autophagy. 

Immunolabeled GFP-Atg8 can be detected both on the inner and outer membrane of an 

autophagosome in an Arabidopsis root cell, using chemical fixation (see Fig. 6b in ref. 

1329
), suggesting that it will be a useful marker to monitor autophagy. Arabidopsis cells 

can be stably transfected with GFP fused to plant ATG8, and the lipidated and 

nonlipidated forms can be separated by SDS-PAGE.
200

 Furthermore, the GFP-ATG8 

processing assay is particularly robust in Arabidopsis and can be observed by western 

blotting.
201,238

 Two kinds of GFP-ATG8 transgenic seeds are currently available from the 

Arabidopsis Biological Resource Center, each expressing similar GFP-ATG8a transgenes 

but having different promoter strength. One transgene is under the control of the stronger 

Cauliflower mosaic virus 35S promoter,
521

 while the other uses a promoter of the 

Arabidopsis ubiquitin10 gene.
1330

 In the GFP-ATG8 processing assay, the former has a 

higher ratio of GFP-ATG8a band intensity to that of free GFP than does the latter.
1330

  

Since free GFP level reflects vacuolar delivery of GFP-ATG8, the ubiquitin promoter 

line may be useful when studying an inhibitory effect of a drug/mutation on autophagic 

delivery. Likewise, the 35S promoter line may be used for testing potential autophagy 

inducers. 

Thus, as with other systems, autophagosome formation in plants can be monitored 

through the combined use of fluorescent protein fusions to ATG8, immunolabeling and 

TEM (Fig. 32). A tandem fluorescence reporter system is also available in 

Arabidopsis.
1331

 The number of fluorescent Atg8-labeled vesicles can be increased by 



 256 

pretreatment with concanamycin A, which inhibits vacuolar acidification;
1042,1329

 

however, this may interfere with the detection of MDC and LysoTracker Red. It is also 

possible to use plant homologs of SQSTM1 and NBR1 in Arabidopsis
1331

 (the NBR1 

homolog is called JOKA2 in tobacco
1332

) as markers for selective autophagy when 

constructed as fluorescent chimeras. In addition, detection of the NBR1 protein level by 

western blot, preferably accompanied by qPCR analysis of its transcript level, provides 

reliable semi-quantitative data about autophagic flux in plant cells.
1333

 

It has been assumed that, just as in yeast, autophagic bodies are found in the 

vacuoles of plant cells, since both microautophagy and macroautophagy are detected in 

plant cells.
1334

 The data supporting this conclusion are mainly based on EM studies 

showing vesicles filled with material in the vacuole of the epidermis cells of Arabidopsis 

roots; these vesicles are absent in ATG4a and ATG4b mutant plants.
264

 However, it 

cannot be excluded that these vacuolar vesicles are in fact cytoplasmic/protoplasmic 

strands, or that they arrived at the vacuole independent of macroautophagy; although the 

amount of such strands would not be expected to increase following treatment with 

concanamycin. Immunolabeling with an antibody to detect ATG8 could clarify this issue.   

Other methods described throughout these guidelines can also be used in 

plants.
1335

 For example, in tobacco cells cultured in sucrose starvation medium, the net 

degradation of cellular proteins can be measured by a standard protein assay; this 

degradation is inhibited by 3-MA and E-64c (an analog of E-64d), and is thus presumed 

to be due to autophagy.
1336-1338

 

Cautionary notes: Although the detection of vacuolar RFP can be applied to both 

plant cell lines and to intact plants, it is not practical to measure RFP fluorescence in 
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intact plant leaves, due to the very high red autofluorescence of chlorophyll in the 

chloroplasts. Furthermore, different autophagic induction conditions cause differences in 

protein synthesis rates; thus, special care should be taken to monitor the efficiency of 

autophagy by quantifying the intact and processed cargo proteins.  

18. Protists. An essential role of autophagy during the differentiation of parasitic 

protists (formerly called protozoa) is clearly emerging. Only a few of the known ATG 

genes are present in these organisms, which raises the question about the minimal system 

that is necessary for the normal functioning of autophagy. The reduced complexity of the 

autophagic machinery in many protists provides a simplified model to investigate the 

core mechanisms of autophagosome formation necessary for selective proteolysis; 

accordingly, protist models have the potential to open a completely new area in 

autophagy research. Some of the standard techniques used in other systems can be 

applied to protists including indirect immunofluorescence using antibodies generated 

against ATG8 and the generation of stable lines expressing mCherry- or GFP-fused 

ATG8 for live microscopy and immuno-TEM analyses. Extrachromosomal constructs of 

GFP-ATG8 also work well with lower eukaryotes,
269-271

 as do other fluorescently-tagged 

ATG proteins including ATG5 and ATG12. 

The unicellular amoeba Dictyostelium discoideum provides another useful system 

for monitoring autophagy.
1339

 The primary advantage of Dictyostelium is that it has a 

unique life cycle that involves a transition from a unicellular to a multicellular form. 

Upon starvation, up to 100,000 single cells aggregate by chemotaxis and form a 

multicellular structure that undergoes morphogenesis and cell-type differentiation. 

Development proceeds via the mound stage, the tipped aggregate and a motile slug, and 
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culminates with the formation of a fruiting body that is composed of a ball of spores 

supported by a thin, long stalk made of vacuolized dead cells. Development is dependent 

on autophagy and, at present, all of the generated mutants in Dictyostelium autophagy 

genes display developmental phenotypes of varying severity.
1339,1340

 D. discoideum is 

also a versatile model to study infection with human pathogens and the role of autophagy 

in the infection process. The susceptibility of D. discoideum to microbial infection and its 

strategies to counteract pathogens are similar to those in higher eukaryotes.
1341

 Along 

these lines, Dictyostelium utilizes some of the proteins involved in autophagy that are not 

present in S. cerevisiae including ATG101 and VMP1, in addition to the core Atg 

proteins. The classical markers GFP-ATG8 and GFP-ATG18 can be used to detect 

autophagosomes by fluorescence microscopy. Flux assays based on the proteolytic 

cleavage of cytoplasmic substrates are also available.
36,304

  

One cautionary note with regard to the use of GFP-ATG8 in protists is that these 

organisms display some “nonclassical” variations in their ATG proteins (see LC3-associated 

apicoplast) and possibly a wide phylogenetic variation since they constitute a paraphyletic 

taxon.
1342

 For example, Leishmania contains many apparent ATG8-like proteins (the number 

varying per species; e.g., up to 25 in L. major) grouped in 4 families, but only one labels true 

autophagosomes even though the others form puncta,
269

 and ATG12 requires truncation to 

provide the C-terminal glycine before it functions in the canonical way. Unusual variants in 

protein structures also exist in other protists, including apicomplexan parasites, for example, the 

malaria parasite Plasmodium spp. or Toxoplasma gondii, which express ATG8 with a terminal 

glycine not requiring cleavage to be membrane associated.
1343

 Thus, in each case care needs to 

be applied and the use of the protein to monitor autophagy validated. In addition, due to possible 
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divergence in the upstream signaling kinases, classical inhibitors such as 3-MA, or inducers such 

as rapamycin, which are not as potent for trypanosomes
1344

 or apicomplexan parasites as in 

mammalian cells or yeast, must be used with caution (I. Coppens, personal communication);
271

 

however, RNAi knockdown of TORC1 (e.g., TOR1 or RPTOR) is effective in inducing 

autophagy in trypanosomes.  

In conventional autophagy, the final destination of autophagosomes is their fusion with 

lysosomes for intracellular degradation. However, T. gondii and certain stages of Plasmodium 

(insect and hepatic) lack degradative lysosomes, which makes questionable the presence of 

canonical autophagosomes and a process of autophagy in these parasites. Nevertheless, if 

protozoa employ their autophagic machineries in unconventional manners, studies of their core 

machinery of autophagy will provide information as to how autophagy has changed and adapted 

through evolution. 

The scuticociliate Philasterides dicentrarchi has proven to be a good experimental 

organism for identifying autophagy-inducing drugs or for autophagy initiation by starvation-like 

conditions, since this process can be easily induced and visualized in this ciliate.
1345

 In 

scuticociliates, the presence of autophagic vacuoles can be detected by TEM, fluorescence 

microscopy or confocal laser scanning microscopy by using dyes such as MitoTracker Deep Red 

FM and MDC. 

Finally, a novel autophagy event has been found in Tetrahymena thermophila, which is a 

free-living ciliated protist. A remarkable, virtually unique feature of the ciliates is that they 

maintain spatially differentiated germline and somatic nuclear genomes within a single cell. The 

germline genome is housed in the micronucleus, while the somatic genome is housed in the 

macronucleus. These nuclei are produced during sexual reproduction (conjugation), which 
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involves not only meiosis and mitosis of the micronucleus and its products, but also degradation 

of some of these nuclei as well as the parental old macronucleus. Hence, there should be a 

mechanism governing the degradation of these nuclei. The inhibition of PtdIns3Ks with 

wortmannin or LY294002 results in the accumulation of additional nuclei during conjugation.
1346

 

During degradation of the parental old macronucleus, the envelope of the nucleus becomes 

MDC- and LysoTracker Red-stainable without sequestration of the nucleus by a double 

membrane and with the exposure of certain sugars and phosphatidylserine on the envelope.
1347

 

Subsequently, lysosomes fuse only to the old parental macronucleus, but other co-existing nuclei 

such as developing new macro- and micronuclei are unaffected.
1347

 Using gene technology it has 

been shown that ATG8 and VPS34 play critical roles in nuclear degradation.
1348,1349

 Knockout 

mutations of the corresponding genes result in a block in nuclear acidification, suggesting that 

these proteins function in lysosome-nucleus fusion. In addition, the envelope of the nucleus in 

the VPS34 knockout mutant does not become stainable with MDC. This evidence suggests that 

selective autophagy may be involved in the degradation of the parental macronucleus and 

implies a link between VPS34 and ATG8 in controlling this event.  

19. Rainbow trout. Salmonids (e.g., salmon, rainbow trout) experience long periods 

of fasting often associated with seasonal reductions in water temperature and prey 

availability or spawning migrations. As such, they represent an interesting model system 

for studying and monitoring the long-term induction of autophagy. Moreover, the 

rainbow trout (Oncorhynchus mykiss) displays unusual metabolic features that may allow 

us to gain a better understanding of the nutritional regulation of this degradative system 

(i.e., a high dietary protein requirement, an important use of amino acids as energy 

sources, and an apparent inability to metabolize dietary carbohydrates). It is also probably 
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one of the most deeply studied fish species with a long history of research carried out in 

physiology, nutrition, ecology, genetics, pathology, carcinogenesis and toxicology.
1350

 Its 

relatively large size compared to model fish, such as zebrafish or medaka, makes rainbow 

trout a particularly well-suited alternative model to carry out biochemical and molecular 

studies on specific tissues or cells that are impossible to decipher in small fish models. 

The genomic resources in rainbow trout are now being extensively developed; a high-

throughput DNA sequencing program of EST has been initiated associated with 

numerous transcriptomics studies,
1351-1354

 and the full genome sequence is now available.  

 Most components of the autophagy and associated signaling pathways (AKT, 

TOR, AMPK, FOXO) are evolutionarily conserved in rainbow trout;
597,1355-1357

 however, 

not all ATG proteins and autophagy-regulatory proteins are detected by the commercially 

available antibodies produced against their mammalian orthologs. Nonetheless, the 

expressed sequence transcript databases facilitate the design of targeting constructs. For 

steady-state measurement, autophagy can be monitored by western blot or by 

immunofluorescence using antibodies to ATG8/LC3.
1357

 Flux measurements can be made 

in a trout cell culture model (e.g., in primary culture of trout myocytes) by following 

ATG8/LC3 turnover in the absence and presence of bafilomycin A1. It is also possible to 

monitor the mRNA levels of ATG genes by real-time PCR using primer sequences 

chosen from trout sequences
 

available in the above-mentioned expressed sequence 

transcript database. A major challenge in the near future will be to develop for this model 

the use of RNAi-mediated gene silencing to analyze the role of some signaling proteins in 

the control of autophagy, and also the function of autophagy-related proteins in this 

species. 
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20. Sea urchin. Sea urchin embryo is an appropriate model system for studying and 

monitoring autophagy and other defense mechanisms activated during physiological 

development and in response to stress.
914

 This experimental model offers the possibility 

of detecting LC3 through both western blot and immunofluorescence in situ analysis. 

Furthermore, in vivo staining of autolysosomes with acidotropic dyes can also be carried 

out. Studies on whole embryos make it possible to obtain qualitative and quantitative data 

for autophagy and also to get information about spatial localization aspects in cells that 

interact among themselves in their natural environment. Furthermore, since 

embryogenesis of this model system occurs simply in a culture of sea water, it is very 

easy to study the effects of inducers or inhibitors of autophagy by adding these 

substances directly into the culture. Exploiting this potential, it has recently been possible 

to understand the functional relationship between autophagy and apoptosis induced by 

cadmium stress during sea urchin development. In fact, inhibition of autophagy by 3-MA 

results in a concurrent reduction of apoptosis; however, using a substrate for ATP 

production, methyl pyruvate, apoptosis (assessed by TUNEL assay and cleaved CASP3 

immunocytochemistry) is substantially induced in cadmium-treated embryos where 

autophagy is inhibited. Therefore, autophagy could play a crucial role in the stress 

response of this organism since it could energetically contribute to apoptotic execution 

through its catabolic role.
1358

 Cautionary notes include the standard recommendation that 

it is always preferable to combine molecular and morphological parameters to validate 

the data. 

21. Ticks. In the hard tick Haemaphysalis longicornis, endogenous autophagy-related 

proteins (Atg6 and Atg12) can be detected by western blotting and/or by 
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immunohistochemical analysis of midgut sections.
1359,1360

 It is also possible to detect 

endogenous Atg3 and Atg8 by western blotting using antibodies produced against the H. 

longicornis proteins (R. Umemiya-Shirafuji, unpublished results). Commercial antibodies 

against mammalian ATG orthologs (ATG3, ATG5, and BECN1) can be also used for 

western blotting. However, when the tick samples include blood of a host animal, the 

animal species immunized with autophagy-related proteins should be checked before use 

to avoid nonspecific background cross-reactivity. In addition to these methods, TEM is 

recommended to detect autophagosomes and autolysosomes. Although acidotropic dyes 

can be useful as a marker for autolysosomes in some animals, careful attention should be 

taken when using the dyes in ticks. Since the midgut epithelial cells contain acidic 

organelles (e.g., lysosomes) that are related to blood digestion during blood feeding, this 

method may cause confusion. It is difficult to distinguish between autophagy 

(autolysosomes) and blood digestion (lysosomes) with acidotropic dyes. Another 

available monitoring method is to assess the mRNA levels of tick ATG genes by real-time 

PCR.
1361,1362

 However, this method should be used along with other approaches such as 

western blotting, immunostaining, and TEM as described in this article. Unlike model 

insects, such as Drosophila, powerful genetic tools to assess autophagy are still not 

established in ticks. However, RNAi-mediated gene silencing is now well established in 

ticks,
1363

 and is currently being developed to analyze the function of autophagy-related 

genes in ticks during nonfeeding periods (R. Umemiya-Shirafuji, unpublished results) 

and in response to pathogen infection. Recently, “omics” technologies such as 

transcriptomics and proteomics have been applied to the study of apoptosis pathways in 

Ixodes scapularis ticks in response to infection with Anaplasma phagocytophilum.
1364

 I. 
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scapularis, the vector of Lyme disease and human granulocytic anaplasmosis, is the only 

tick species for which genome sequence information is available (assembly 

JCVI_ISG_i3_1.0; http://www.ncbi.nlm.nih.gov/nuccore/NZ_ABJB000000000). For 

related tick species such as I. ricinus, mapping to the I. scapularis genome sequence is 

possible,
1365

 but for other tick species more sequence information is needed for these 

analyses. 

22. Zebrafish. Zebrafish (Danio rerio) have many characteristics that make them a 

valuable vertebrate model organism for the analysis of autophagy. For example, taking 

advantage of the transparency of embryos, autophagosome formation can be visualized in 

vivo during development using transgenic GFP-Lc3 and GFP-Gabarap fish.
35,1366,1367

 

Visualization of later-stage embryos is enhanced when medium is supplemented with 1-

phenyl-2-thiourea, which inhibits melanogenesis. Lysosomes can also be readily detected 

in vivo by the addition of LysoTracker Red to fish media prior to visualization. 

Additionally, protocols have been developed to monitor Lc3 protein levels and 

conjugation to PE by western blot analysis using commercially available Lc3 

antibodies.
35,1368

 

Because of their translucent character and external fertilization and development, 

zebrafish have proven to be an exceptional choice for developmental research. In situ 

hydridization of whole embryos can be performed to determine expression patterns. 

Knockdown of gene function is performed by treatment with morpholinos; the core 

autophagy machinery protein Gabarap,
1369

 and regulatory proteins such as the 

phosphoinositide phosphatase Mtmr14,
1370

 Raptor and Mtor,
1371

 have all been 
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successfully knocked down by morpholino treatment. The CRISPR/Cas system is now 

being used for efficient targeted gene deletions. 

Zebrafish are ideal organisms for in vivo drug discovery and/or verification 

because of their relatively small size and aqueous habitat, and several chemicals have 

been identified that modulate zebrafish autophagy activity.
1368

 Many chemicals can be 

added to the media and are absorbed directly through the skin. Because of simple drug 

delivery and the onset of neurodegenerative disease phenotypes at the larval stage, 

zebrafish are a promising organism for the study of autophagy’s role in 

neurodegenerative disease. Along these lines, a zebrafish model of Huntington disease 

has been developed.
1140

 In the case of infection, studies in zebrafish have made important 

contributions to understanding the role of bacterial autophagy in vivo.
1372,1373

 These 

studies have also contributed to understanding the role of autophagy in different aspects 

of development, including cardiac morphogenesis, and muscle and brain 

development.
1366,1374,1375

  

 

D. Noncanonical use of autophagy-related proteins 

1. LC3-associated phagocytosis. Although the lipidation of LC3 to form LC3-II is a 

commonly used marker of macroautophagy, studies have established that LC3-II can also 

be targeted to phagosomes to promote maturation independently of traditional autophagy, 

in a noncanonical autophagic process termed LC3-associated phagocytosis.
1,25,1376

 LAP 

occurs upon engulfment of particles that engage a receptor-mediated signaling pathway, 

resulting in the recruitment of some but not all of the autophagic machinery to the 

phagosome. These autophagic components facilitate rapid phagosome maturation and 
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degradation of engulfed cargo, and play roles in the generation of signaling molecules 

and regulation of immune responses.
168,169,1377

 LAP thus represents a unique process that 

marries the ancient pathways of phagocytosis and autophagy.   

 Despite overlap in molecular machinery, there currently exist several criteria by 

which to differentiate LAP from macroautophagy: (a) Whereas LC3-decorated 

autophagosomes can take hours to form, LC3 can be detected on LAP-engaged 

phagosomes as early as 10 min after phagocytosis, and PtdIns3P can also be seen at LAP-

engaged phagosomes minutes after phagocytosis.
169,171,1377

 (b) EM analysis reveals that 

LAP involves single-membrane structures.
171

 In contrast, macroautophagy is expected to 

generate double-membrane structures surrounding cargo. (c) Whereas most of the core 

autophagy components are required for LAP, the 2 processes can be distinguished by the 

involvement of the pre-initiation complex. RB1CC1, ATG13, and ULK1 are dispensable 

for LAP, which provides a convenient means for distinguishing between the 2 

processes.
169,1377

 (d) LAP involves LC3 recruitment in a manner that requires ROS 

production by the NADPH oxidase family, notably CYBB/NOX2/gp91
phox

. It should be 

noted that most cells express at least one member of the NADPH oxidase family. 

Silencing of the common subunits, CYBB or CYBA/p22
phox

, is an effective way to 

disrupt NADPH oxidase activity and therefore LAP. It is anticipated that more specific 

markers of LAP will be identified as this process is further characterized.  

 Finally, an ATG5- and CTSL-dependent cell death process has been reported that 

can be activated by the small molecule NID-1; this process depends on PtdIns3K 

signaling, generates LC3B puncta and single-membrane vacuoles, and results in the 
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clearance of SQSTM1. Thus, LAP and/or related processes can be co-opted to cause cell 

death in some cases.
1378

 

2. LC3-associated apicoplast. In the Apicomplexa parasitic protists (e.g., T. gondii and 

Plasmodium spp.), the single ATG8 homolog localizes to an endosymbiotic 

nonphotosynthetic plastid, called the apicoplast.
1343,1379-1382

 This organelle is the product 

of a secondary endosymbiotic event, in which a red alga was endocytosed by an 

auxotrophic eukaryote (ancestor of an apicomplexan parasite); the apicoplast is the main 

remnant of this red alga. This organelle is approximately 300 nm in diameter, and is 

composed of 4 membranes that trace their ancestry to 3 different organisms. The 

outermost membranes of the apicoplast are derived from the plasma membrane of the 

auxotrophic eukaryote and the plasma membrane of the internalized alga. ATG8 is 

located in the outermost membranes that are enriched in PtdIns3P, which marks 

autophagic structures in mammalian cells. Consequently, caution must be taken when 

identifying stress-induced autophagosomes by electron microscopy or by fluorescence 

microscopy with ATG8 labeling in these parasites.  

3. LC3 conjugation system for IFNG-mediated pathogen control. Similar to LAP, 

LC3 localizes on the parasitophorus vacuole membrane (PVM) of T. gondii.
170

 The 

parasitophorus vacuole is a vesicle-like structure formed from host plasma membrane 

during the invasion of T. gondii, and it sequesters and protects the invasive T. gondii from 

the hostile host cytoplasm. The cell-autonomous immune system uses IFNG-induced 

effectors, such as immunity related GTPases and guanylate binding proteins (GBPs), to 

attack and disrupt this type of membrane structure; consequently, naked T. gondii in the 

cytoplasm are killed by a currently unknown mechanism. Intriguingly, proper targeting of 
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these effectors onto the PVM of T. gondii requires the autophagic ubiquitin-like 

conjugation system, including ATG7, ATG3, and the ATG12–ATG5-ATG16L1 

complex, although the necessity of LC3-conjugation itself for the targeting is not yet 

clear. In contrast, up- or downregulation of canonical autophagy using rapamycin, 

wortmannin, or starvation do not significantly affect the IFNG-mediated control of T. 

gondii. Furthermore, the degradative function or other components of the autophagy 

pathway, such as ULK1/2 and ATG14, are dispensable. Many groups have confirmed the 

essential nature of the LC3-conjugation system for the control of T. gondii,
1383-1385

 and 

the same or a similar mechanism also functions against other pathogens such as murine 

norovirus and Chlamydia trachomatis.
1147,1383

 Although topologically and 

mechanistically similar to LAP, the one notable difference is that the parasitophorous 

vacuole of T. gondii is actively made by the pathogen itself using host membrane, and the 

LC3-conjugation system-dependent targeting happens even in nonphagocytic cells. GBP-

mediated lysis of pathogen-containing vacuoles is important for the activation of 

noncanonical inflammasomes,
1386

 but the targeting mechanism of GBPs to the vacuoles is 

unknown. Considering the necessity of the LC3-conjugation system to target GBPs to the 

PVM of T. gondii, this system may play crucial roles in the general guidance of various 

effector molecules to target membranes as well as in selective autophagosome-dependent 

sequestration, phagophore membrane expansion and autophagosome maturation. 

4. Intracellular trafficking of bacterial pathogens. Some ATG proteins are involved in 

the intracellular trafficking and cell-to-cell spread of bacterial pathogens by noncanonical 

autophagic pathways. For example, ATG9 and WIPI1, but not ULK1, BECN1, ATG5, 

ATG7 or LC3B are required for the establishment of an endoplasmic reticulum-derived 
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replicative niche after cell invasion with Brucella abortus.
1387

 In addition, the cell-to-cell 

transmission of B. abortus seems to be dependent on ULK1, ATG14 and 

PIK3C3/VPS34, but independent of ATG5, ATG7, ATG4B and ATG16L1.
1388

 

5. Other processes. ATG proteins are involved in various other nonautophagic 

processes, particularly apoptosis and noncanonical protein secretion, as discussed in 

various papers.
26,551,1377,1389-1394,523,69

 

 

E. Interpretation of in silico assays for monitoring autophagy 

 The increasing availability of complete (or near complete) genomes for key 

species spanning the eukaryotic domain provides a unique opportunity for delineating the 

spread of autophagic machinery components in the eukaryotic world.
1395,1396

 Fast and 

sensitive sequence similarity search procedures are already available; an increasing 

number of experimental biologists are now comfortable “BLASTing” their favorite 

sequences against the ever-increasing sequence databases for identifying putative 

homologs in different species.
1397

 Nevertheless, several limiting factors and potential 

pitfalls need to be taken into account. 

 In addition to sequence comparison approaches, a number of computational tools 

and resources related to autophagy have become available online. All the aforementioned 

methods and approaches may be collectively considered as “in silico assays” for 

monitoring autophagy, in the sense that they can be used to identify the presence of 

autophagy components in different species and provide information on their known or 

predicted associations.  
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 In the following sections we briefly present relevant in silico approaches, 

highlighting their strengths while underscoring some inherent limitations, with the hope 

that this information will provide guidelines for the most appropriate usage of these 

resources. 

 

1. Sequence comparison and comparative genomics approaches 

 Apart from the generic shortcomings when performing sequence comparisons 

(discussed in ref. 
1398

), there are some important issues that need to be taken into account, 

especially for autophagy-related proteins. Since autophagy components seem to be 

conserved throughout the eukaryotic domain of life, the deep divergent relations of key 

subunits may reside in the so called “midnight zone” of sequence similarity: i.e., genuine 

orthologs may share even less than 10% sequence identity at the amino acid sequence 

level.
1399

 This is the case with autophagy subunits in protists
1400,1401

 and with other 

universally conserved eukaryotic systems, as for example the nuclear pore complex.
1402

 

In such cases, sophisticated (manual) iterative database search protocols, including proper 

handling of compositionally biased subsequences and considering domain architecture 

may assist in eliminating spurious similarities.
1401,1402

  

 Genome-aware comparative genomics methods
1403

 can also provide invaluable 

information on yet unidentified components of autophagy. However, care should be taken 

to avoid possible Next Generation Sequencing artifacts (usually incorrect genome 

assemblies): these may directly (via a similarity to a protein encoded in an incorrectly 

assembled genomic region) or indirectly (via propagating erroneous annotations in 

databases) give misleading homolog assignments (V.J. Promponas, I. Iliopoulos and C.A. 
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Ouzounis, submitted). In addition, taking into account other types of high-throughput 

data available in publicly accessible repositories (e.g., EST/RNAseq data, expression 

data) can provide orthogonal evidence for validation purposes when sequence similarities 

are marginal.
1402

  

2. Web-based resources related to autophagy 

A number of autophagy related resources are now available online, providing access to 

diverse data types ranging from gene lists and sequences to comprehensive catalogs of 

physical and indirect interactions. In the following we do not attempt to review all 

functionalities offered by the different servers, but to highlight those that (a) offer 

possibilities for identifying novel autophagy-related proteins or (b) characterize features 

that may link specific proteins to autophagic processes. Two comments regarding 

biological databases in general also apply to autophagy-related resources as well: (a) the 

need for regular updates, and (b) data and annotation quality. Nevertheless, these issues 

are not discussed further herein. 

 a. The THANATOS database. THANATOS (THe Apoptosis, Necrosis, 

AuTophagy OrchestratorS) is a resource being developed by the CUCKOO Workgroup 

at the Huazhong University of Science and Technology (Wuhan, Hubei,China). 

THANATOS is still under development (Y. Xue, personal communication) and it is 

focused on the integration of sequence data related to the main mechanisms leading to 

programmed cell death in eukaryotes. A simple web interface assists in data retrieval, 

using keyword searches, browsing by species and cell death type, performing BLAST 

searches with user-defined sequences, and by requesting the display of orthologs among 

predefined species. A Java application is also available to download for standalone usage 
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of the THANATOS resource. The THANATOS database is publicly available online at 

the URL http://thanatos.biocuckoo.org/. 

 b. The human autophagy database (HADb). The human autophagy database, 

developed in the Laboratory of Experimental Hemato-Oncology (Luxembourg), lists over 

200 human genes/proteins related to autophagy.
578

 These entries have been manually 

collected from the biomedical literature and other online resources
578

 and there is 

currently no information that the initially published list has been further updated. For 

each gene there exists information on its sequence, transcripts and isoforms (including 

exon boundaries) as well as links to external resources. HADb provides basic search and 

browsing functionalities and is publicly available online at the URL http://autophagy.lu/.  

 c. The Autophagy Database. The Autophagy Database is a multifaceted online 

resource providing information for proteins related to autophagy and their homologs 

across several eukaryotic species, with a focus on functional and structural data.
1404

 It is 

developed by the National Institute of Genetics (Japan) under the Targeted Proteins 

Research Program of the Ministry of Education, Culture, Sports, Science and Technology 

(http://www.tanpaku.org/). This resource is regularly updated and as of August 2014 

contained information regarding 312 reviewed protein entries; when additional data 

regarding orthologous/homologous proteins from more than 50 eukaryotes is considered, 

the total number of entries reaches approximately 9,000. In addition to the browse 

functionalities offered under the “Protein List” and the “Homologs” menus, an instance 

of the NCBI-BLAST software facilitates sequence-based queries against the database 

entries. Moreover, interested users may download the gene list or the autophagy dump 

files licensed under a Creative Commons Attribution-ShareAlike 2.1 Japan License. The 

http://thanatos.biocuckoo.org/
http://autophagy.lu/
http://www.tanpaku.org/
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Autophagy Database is publicly available online at the URL 

http://www.tanpaku.org/autophagy/index.html.  

 d. The Autophagy Regulatory Network (ARN). The most recent addition to the 

web-based resources relevant to autophagy research is the Autophagy Regulatory 

Network (ARN), developed at the Eötvös Loránd University and Semmelweis University 

(Budapest, Hungary) in collaboration with the Institute of Food Research and The 

Genome Analysis Centre (Norfolk, UK). Maintanence and hosting the ARN resource is 

secured at The Genome Analysis Centre until at least 2019. ARN is an integrated 

systems-level resource aiming to collect and provide an interactive user interface 

enabling access to validated or predicted protein-protein, transcription factor-gene and 

miRNA-mRNA interactions related to autophagy in human.
1405

 ARN contains data from 

26 resources, including an in-house extensive manual curation, the dataset of the ChIP-

MS study of Behrends et al.,
444

 ADB and ELM. As of June 2015, a total of more than 

14,000 proteins and 386 miRNAs are included in ARN, including 38 core autophagy 

proteins and 113 predicted regulators. Importantly, all autophagy-related proteins are 

linked to major signaling pathways. A flexible—in terms of both content and format—

download functionality enables users to locally use the ARN data under the Creative 

Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. The autophagy 

regulatory network resource is publicly available online at the URL http://autophagy-

regulation.org. 

 e. Prediction of Atg8-family interacting proteins. Being central components of 

the autophagic core machinery, Atg8-family members (e.g., LC3 and GABARAP in 

mammals) and their interactome have attracted substantial interest.
444,1406,1407

 During the 

http://www.tanpaku.org/autophagy/index.html
http://arn.elte.hu/
http://arn.elte.hu/
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last decade, a number of proteins have been shown to interact with Atg8 homologs via a 

short linear peptide; depending on context, different research groups have described this 

peptide as the LIR,
301

 the LC3 recognition sequence (LRS),
631

 or the AIM.
1408

 Recently, 2 

independent efforts resulted in the first online available tools for identification of these 

motifs (LIR-motifs for brevity) in combination with other sequence features, which may 

signify interesting targets for further validation (see below).  

 f. The iLIR server. The iLIR server is a specialized web server that scans an input 

sequence for the presence of a degenerate version of LIR, the extended LIR-motif 

(xLIR).
1409

 Currently, the server also reports additional matches to the “canonical” LIR 

motif (WxxL), described by the simple regular expression x(2)-[WFY]-x(2)-[LIV]. 

Kalvari and colleagues have also compiled a position-specific scoring matrix (PSSM) 

based on validated instances of the LIR motif, demonstrating that many of the false 

positive hits (i.e., spurious matches to the xLIR motif) are eliminated when a PSSM score 

>15 is sought. In addition, iLIR also overlays the aforementioned results to segments that 

reside in or are adjacent to disordered regions and are likely to form stabilizing 

interactions upon binding to another globular protein as predicted by the ANCHOR 

package.
1410

 A combination of an xLIR match with a high PSSM score (>13) and/or an 

overlap with an ANCHOR segment is shown to give reliable predictions.
1409

 It is worth 

mentioning that, intentionally, iLIR does not provide explicit predictions of functional 

LIR-motifs but rather displays all the above information accompanied by a graphical 

depiction of query matches to known protein domains and motifs; it is up to the user to 

interpret the iLIR output. As mentioned in the original iLIR publication, a limitation of 

this tool is that it does not handle any noncanonical LIR motifs at present. The iLIR 
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server was jointly developed by the University of Warwick and University of Cyprus and 

is freely available online at the URL http://repeat.biol.ucy.ac.cy/iLIR. 

 g. The Eukaryotic Linear Motif resource (ELM). The Eukaryotic Linear Motif 

resource
1411

 is a generic resource for examining functional sites in proteins in the form of 

short linear motifs, which have been manually curated from the literature. Sophisticated 

filters based on known (or predicted) query features (such as taxonomy, subcellular 

localization, structural context) are used to narrow down the results lists, which can be 

very long lists of potential matches due to the short lengths of ELMs. This resource has 

incorporated 4 entries related to the LIR-motif (since May 2014; 

http://elm.eu.org/infos/news.html), while another 3 are being evaluated as candidate ELM 

additions (Table 3).  Again, the ELM resource displays matches to any motifs and users 

are left with the decision as to which of them are worth studying further. ELM is 

developed/maintained by a consortium of European groups coordinated by the European 

Molecular Biology Laboratory and is freely available online at the URL http://elm.eu.org. 

3. Dynamic and mathematical models of autophagy 

 Mathematical modeling methods and  approaches can be used as in silico models to study 

autophagy. For example, systems pharmacology approach has been used to build an integrative 

dynamic model of interaction between macroautophagy and apoptosis in mammalian cells.
1412

 

This model is a general predictive in silico model of macroautophagy, and the model has 

trasnlated the signaling networks that control the cell fate concerning the crosstalk of 

macroautophagy and apoptosis to a set of rrdinary differential equations.
1412,1413

 The model can 

be adapted for any type of cells including cancer cell lines and drug interventions by adjusting 

the  numerical parameters based on experimental data.
1413

 Another example is seen with an 

http://repeat.biol.ucy.ac.cy/iLIR
http://elm.eu.org/infos/news.html
http://elm.eu.org/
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agent-based mathematical model of autophagy that focuses on the dynamic process of 

autophagosome formation and degradation in cells,
1414

 and there is a mathematical model of 

macroautophagy that can be used to interpret the formation of autophagosomes in single cells.
1415

 

As this aspect of the field progresses we will likely start to see these models used to help predict 

and understand autophagic responses to new therapeutic treatments. 

 

Conclusions and future perspectives 

There is no question that research on the topic of autophagy has expanded dramatically since the 

publication of the first set of guidelines.
2
 To help keep track of the field we have published a 

glossary of autophagy-related molecules and processes,
1416,1417

 and now include the glossary as 

part of these guidelines.  

 With this continued influx of new researchers we think it is critical to try to define 

standards for the field. Accordingly, we have highlighted the uses and caveats of an expanding 

set of recommended methods for monitoring macroautophagy in a wide range of systems (Table 

4). Importantly, investigators need to determine whether they are evaluating levels of early or 

late autophagic compartments, or autophagic flux. If the question being asked is whether a 

particular condition changes autophagic flux (i.e., the rate of delivery of autophagy substrates to 

lysosomes or the vacuole, followed by degradation and efflux), then assessment of steady state 

levels of autophagosomes (e.g., by counting GFP-LC3 puncta, monitoring the amount of LC3-II 

without examining turnover, or by single time point electron micrographs) is not sufficient as an 

isolated approach. In this case it is also necessary to directly measure the flux of autophagosomes 

and/or autophagy cargo (e.g., in wild-type cells compared to autophagy-deficient cells, the latter 

generated by treatment with an autophagy inhibitor or resulting from ATG gene knockdowns). 
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Collectively, we strongly recommend the use of multiple assays whenever possible, rather than 

relying on the results from a single method.  

As a final reminder, we stated at the beginning of this article that this set of guidelines is 

not meant to be a formulaic compilation of rules, because the appropriate assays depend in part 

on the question being asked and the system being used. Rather, these guidelines are presented 

primarily to emphasize key issues that need to be addressed such as the difference between 

measuring autophagy components, and flux or substrate clearance; they are not meant to 

constrain imaginative approaches to monitoring autophagy. Indeed, it is hoped that new methods 

for monitoring autophagy will continue to be developed, and new findings may alter our view of 

the current assays. Similar to the process of autophagy, this is a dynamic field, and we need to 

remain flexible in the standards we apply.  
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Table 1. Genetic and pharmacological regulation of autophagy.
1
  

Method   Comments        

1. 3-methyladenine A PtdIns3K inhibitor that effectively blocks an early stage  

of autophagy by inhibiting the class III PtdIns3K, but not a 

specific autophagy inhibitor. 3-MA also inhibits the class I 

PI3K and can thus, at suboptimal concentrations in long-

term experiments, promote autophagy in some systems, as 

well as affect cell survival through AKT and other kinases. 

3-MA does not inhibit BECN1-independent autophagy. 

2. 10-NCP  10-(4′-N-diethylamino)butyl)-2-chlorophenoxazine; an  

AKT inhibitor that induces autophagy in neurons.
1139

 

3. 17-AAG  An inhibitor of the HSP90-CDC37 chaperone complex;  

induces autophagy in certain systems (e.g., neurons), but 

impairs starvation-induced autophagy and mitophagy in 

others by promoting the turnover of ULK1.
438

 

4. Akti-1/2  An allosteric inhibitor of AKT1 and AKT2 that promotes  

   autophagy in B-cell lymphoma.
1418

 

5. AR7   AR7 was developed as a highly potent and selective  

   enhancer of CMA through antagonizing RARA/RARα;  

   AR7 is the first small molecule developed to selectively  

   stimulate CMA without affecting macroautophagy.
1419

 

                                                 
1
 This table is not meant to be complete, as there are many compounds and genetic 

methods that regulate autophagy, and new ones are being discovered routinely.  
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6. ARN5187  Lysosomotropic compound with a dual inhibitory activity  

   against the circadian regulator NR1D2/REV-ERB and  

   autophagy.
1420

 

7. ATG4
C74A

  An active site mutant of ATG4 that is defective for  

autophagy.
1421

 

8. Bafilomycin A1 A V-ATPase inhibitor that causes an increase in  

lysosomal/vacuolar pH, and, ultimately, blocks fusion of 

autophagosomes with the vacuole; the latter may result 

from inhibition of ATP2A/SERCA.
210

 

9. Betulinic acid   A pentacyclic triterpenoid that promotes paralell damage in 

   mitochondrial and lysosomal compartments, and,   

   ultimately, jeopardizes lysosomal degradative capacity.
219

 

10. Calcium  An autophagy activator that can be released from ER or  

lysosomal stores under stress conditions; however, calcium 

can also inhibit autophagy.
1182

 

11. Chloroquine, NH4Cl Lysosomotropic compounds that elevate/neutralize the  

lysosomal/vacuolar pH.
152

 

12. DFMO   α-difluoromethylornithine, an irreversible inhibitor of  

   ODC1 (ornithine decarboxylase 1) that blocks spermidine  

   synthesis and ATG gene expression. 

13. E-64d   A membrane-permeable cysteine protease inhibitor that can  
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block the activity of a subset of lysosomal hydrolases; 

should be used in combination with pepstatin A to inhibit 

lysosomal protein degradation. 

14. ESC8   A cationic estradiol derivative that induces autophagy and  

    apoptosis simultaneously by downregulating the MTOR  

    kinase pathway in breast cancer cells. 

15. Everolimus  An inhibitor of MTORC1 that induces both autophagy and  

   apoptosis in B-cell lymphoma primary cultures.
1418

 

16. Fumonisin B1  An inhibitor of ceramide synthesis that interferes with  

   macroautophagy. 

17. Gene deletion  This method provides the most direct evidence for the role  

of an autophagic component; however, more than one gene 

involved in autophagy should be targeted to avoid indirect 

effects. 

18. HMOX1 induction Mitophagy and the formation of iron-containing   

   cytoplasmic inclusions and corpora amylacea are   

   accelerated in HMOX1-transfected rat astroglia and   

   astrocytes of GFAP in HMOX1 transgenic mice. Heme- 

   derived ferrous iron and carbon monoxide, products of the  

   HMOX1 reaction, promote macroautophagy in these  

   cells.
1422-1424

 

19. Knockdown  This method (including miRNA, RNAi, shRNA and  

   siRNA) can be used to inhibit gene expression and provides 
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   relatively direct evidence for the role of an autophagic  

   component. However, the efficiency of knockdown varies,  

   as does the stability of the targeted protein. In addition,  

   more than one gene involved in autophagy should be  

   targeted to avoid misinterpreting indirect effects. 

20. KU-0063794  An MTOR inhibitor that binds the catalytic site and  

activates autophagy.
323,1425

 

21. Leupeptin  An inhibitor of cysteine, serine and threonine proteases that  

can be used in combination with pepstatin A and/or E-64d 

to block lysosomal protein degradation. Leupeptin is not 

membrane permeable, so its effect on cathepsins may 

depend on endocytic activity. 

22. microRNA  Can be used to reduce the levels of target mRNA(s) or  

   block translation. 

23. MLN4924  A small molecule inhibitor of NAE (NEDD8 activating  

    enzyme);
1426

 induces autophagy by blockage of MTOR  

    signals via DEPTOR and the HIF1A-DDIT4/REDD1- 

    TSC1/2 axis as a result of inactivation of cullin-RING  

    ligases.
1427-1429

  

24. NAADP-AM  Activates the lysosomal TPCN/two-pore channel and  

   induces autophagy.
1164

 

25. NED-19  Inhibits the lysosomal TPCN and NAADP- 

induced autophagy.
1164
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26. NVP-BEZ235  A dual inhibitor of PIK3CA/p110 and the MTOR catalytic  

site that activates autophagy.
1430,1431

  

27. Pathogen-derived  Virally-encoded autophagy inhibitors including HSV-1  

   ICP34.5, Kaposi sarcoma-associated herpesvirus vBCL2, - 

   herpesvirus 68, M11, ASFV vBCL2, HIV-1 Nef and  

   influenza A virus M2.
545,852,856,857,862

 

28. Pepstatin A  An aspartyl protease inhibitor that can be used to partially  

block lysosomal degradation; should be used in 

combination with other inhibitors such as E-64d. Pepstatin 

A is not membrane permeable. 

29. Protease inhibitors These chemicals inhibit the degradation of autophagic  

substrates within the lysosome/vacuole lumen. A 

combination of inhibitors (e.g., leupeptin, pepstatin A and 

E-64d) is needed for complete blockage of degradation. 

30. PMI   p62 (SQSTM1)-mediated mitophagy inducer  is a   

   pharmacological activator of autophagic selection of  

   mitochondria that operates without collapsing the   

   mitochondrial membrane potential (m) and hence by  

   exploiting the autophagic compoenent of the   

   process.
684

 

31. Rapamycin  Binds to FKBP1A/FKBP12 and inhibits MTORC1; the  

   complex binds to the FRB domain of MTOR and limits its  

   interaction with RPTOR, thus inducing autophagy, but only 
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   providing partial MTORC1 inhibition. Rapamycin also  

   inhibits yeast TOR. 

32. Resveratrol  A natural polyphenol that affects many proteins
1432

 and  

   induces autophagy via activation of AMPK.
1433,1434

 

33. RNAi   Can be used to inhibit gene expression. 

34. RSVAs  Synthetic small-molecule analogs of resveratrol that  

potently activate AMPK and induce autophagy.
1435

 

35. Saikosaponin-d A natural small-molecule inhibitor of ATP2A/SERCA that  

    induces autophagy and autophagy-dependent cell death in  

    apoptosis-resistant cells.
1436

 

36. Tat-Beclin 1   A cell penetrating peptide that potently induces   

   macroautophagy.
1027,1165

 

37. Thapsigargin   An inhibitor of ATP2A/SERCA that inhibits autophagic  

   sequestration through the depletion of intracellular Ca
2+

  

   stores;
202,1437

 however, thapsigargin may also block fusion  

   of autophagosomes with endosomes by interfering with  

   recruitment of RAB7, resulting in autophagosome   

   accumulation.
1438

  

38. TMS    Trans-3,5,4-trimethoxystilbene upregulates the expression  

   of TRPC4, resulting in MTOR inhibition.
1439

 

39. Torin1   A catalytic MTOR inhibitor that induces autophagy and  

provides more complete inhibition than rapamycin (it 

inhibits all forms of MTOR).
1132
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40. Trehalose  An inducer of autophagy that may be relevant for the  

treatment of different neurodegenerative 

 diseases.
1178,1440,1441

 

41. Tunicamycin  A glycosylation inhibitor that induces autophagy due to ER  

stress.
1442

 

42. Vacuolin-1  A RAB5A activator that reversibly blocks autophagosome- 

   lysosome fusion.
1443

 

43. Vinblastine  A depolymerizer of both normal and acetylated  

microtubules that interferes with autophagosome-lysosome 

fusion.
211

 

44. Wortmannin  An inhibitor of PI3K and PtdIns3K that blocks autophagy,  

   but not a specific inhibitor (see 3-MA above).  
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Table 2. Phosphorylation targets of AKT, AMPK, GSK3B, MTORC1, PKA and Atg1/ULK1. 

Protein and 

phosphorylation 

site 

Main kinase Function Ref 

AMBRA1 S52 TORC1 

Inhibits AMBRA1-

dependent activation of 

ULK1 

481
 

Atg1 TORC1 
Inhibits Atg1 kinase 

activity 
484

 

Atg1 PKA 
Regulation of kinase 

activity 
1444

 

Atg9 Atg1 
Recruitment of Atg 

protein to the PAS 
473

 

Atg13 TORC1 

Interaction with Atg1, 

assembly of Atg1 kinase 

complex 

484,1445
 

Atg13 PKA 
Regulates localization to 

the PAS 
1446

 

BECN1 S14 ULK1 
Increases the activity of 

the PtdIns3K 
474

 

BECN1 S90 
MAPKAPK2-

MAPKAPK3 

Stimulates 

macroautophagy 
1447

 

BECN1 S91, 

S94 (S93, S96 in 

human) 

AMPK 

Required for glucose 

starvation-induced 

macroautophagy 

1448
 

BECN1 Y229, 

Y233 
EGFR Inhibits macroautophagy 

502
 

BECN1 S234, 

S295 
AKT 

Suppresses 

macroautophagy 
501
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LC3 S12 PKA 

Inhibits macroautophagy 

by reducing recruitment 

to phagophores 

325
 

MTOR S2448 AKT 
Correlates with the 

activity of MTORC1  
1449

 

MTOR S2481 Autophosphorylation 

Necessary for MTORC1 

formation and kinase 

activity  

1450
 

NBR1 T586 GSK3A/B 
Modulates protein 

aggregation 
1451

 

RPS6KB T389 

MTORC1 (apparently 

indirect, through 

reduction of 

dephosphorylation)  

Necessary for protein 

activity 
1452

 

RPS6KB S371 GSK3B 

Necessary for T389 

phosphorylation and the 

activity of RPS6KB 

1453
 

RPTOR S792 AMPK Suppresses MTORC1 
455

 

SQSTM1 S403 
ULK1 (also TBK1, 

CSNK, CDK1) 

Promotes autophagic 

degradation of SQSTM1 

and its substrates 

1454
 

ULK1 S555 AMPK (direct) 

Necessary for ATG13-

ULK1 interaction and for 

autophagy mediated by 

ULK complex 

457
 

ULK1 S317, 

S467, S555, 

S574, S777 

AMPK (direct) 
Necessary for the kinase 

activity of ULK1 
457,458

 

ULK1 S757 MTORC1 
Prevents ULK1 

interaction with AMPK 
458

 

ULK1 S758 MTORC1 Facilitates ULK1 
458,1455
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interaction with AMPK 

ULK1 S638 MTORC1, AMPK 
Facilitates ULK1 

interaction with AMPK 
457,1455

 

ULK1 (uncertain 

site between 278 

and 351) 

Autophosphorylation 

Modulates the 

conformation of the C-

terminal tail and prevents 

its interaction with 

ATG13 

472,1456
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Table 3. Eukaryotic linear motif entries related to the LIR-motif (obtained from 

http://elm.eu.org/). 

ELM identifier ELM Description Status 

LIG_LIR_Gen_1 [EDST].{0,2}[WFY]..[ILV] Canonical LIR motif 

that binds to Atg8 

protein family members 

to mediate processes 

involved in autophagy. 

ELM 

LIG_LIR_Apic_2 [EDST].{0,2}[WFY]..P Apicomplexa-specific 

variant of the canonical 

LIR motif that binds to 

Atg8 protein family 

members to mediate 

processes involved in 

autophagy. 

ELM 

LIG_LIR_Nem_3 [EDST].{0,2}[WFY]..[ILVFY] Nematode-specific 

variant of the canonical 

LIR motif that binds to 

Atg8 protein family 

members to mediate 

processes involved in 

autophagy. 

ELM 

LIG_LIR_LC3C_4 [EDST].{0,2}LVV Noncanonical variant of ELM 
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the LIR motif that binds 

to Atg8 protein family 

members to mediate 

processes involved in 

autophagy. 

LIG_AIM [WY]..[ILV] Atg8-family interacting 

motif found in Atg19, 

SQSTM1/p62, ATG4B 

and CALR/calreticulin, 

involved in autophagy-

related processes. 

Candidate 

LIG_LIR WxxL or [WYF]xx[LIV] The LIR might link 

ubiquitinated substrates 

that should be degraded 

to the autophagy-related 

proteins in the 

phagophore membrane. 

Candidate 

LIG_GABARAP W.FL GABAA receptor binding 

to clathrin and CALR; 

possibly linked to 

trafficking. 

Candidate 
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Table 4. Recommended methods for monitoring autophagy. 

Method      Description     

1. Electron microscopy     Quantitative electron microscopy, 

immuno-TEM; monitor autophagosome 

number, volume, and content/cargo. 

2. Atg8/LC3 western blotting   Western blot. The analysis is carried out in  

the absence and presence of lysosomal 

protease or fusion inhibitors to monitor flux; 

an increase in the LC3-II amount in the 

presence of the inhibitor is usually indicative 

of flux. 

3. GFP-Atg8/LC3 lysosomal delivery and  Western blot +/- lysosomal fusion or 

proteolysis      degradation inhibitors; the generation of free  

GFP indicates lysosomal/vacuolar delivery.  

4. GFP-Atg8/LC3 fluorescence microscopy  Fluorescence microscopy, flow cytometry to 

       monitor vacuolar/lysosomal localization.  

       Also, increase in punctate GFP-Atg8/LC3 or 

       Atg18/WIPI, and live time-lapse   

       fluorescence microscopy to track the   

       dynamics of GFP-Atg8/LC3-positive  

       structures. 

5. Tandem mRFP/mCherry-GFP fluorescence  Flux can be monitored as a decrease in 

microscopy, Rosella    green/red (yellow) fluorescence  
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(phagophores, autophagosomes) and an 

increase in red fluorescence 

(autolysosomes). 

6. Autophagosome quantification   FACS/flow cytometry. 

7. SQSTM1 and related LC3 binding protein The amount of SQSTM1increases when  

turnover      autophagy is inhibited and decreases when  

       autophagy is induced, but the potential  

       impact of transcriptional/translational  

       regulation or the formation of insoluble  

       aggregates should be addressed in individual 

       experimental systems. 

8. MTOR, AMPK and Atg1/ULK1 kinase activity Western blot, immunoprecipitation or kinase 

        assays. 

9. WIPI fluorescence microscopy   Quantitative fluorescence analysis using  

endogenous WIPI proteins, or GFP- or 

MYC-tagged versions. Suitable for high-

throughput imaging procedures. 

10. Bimolecular fluorescence complementation Can be used to monitor protein-protein  

       interaction in vivo. 

11. FRET      Interaction of LC3 with gangliosides to  

       monitor autophagosome formation. 

12. Transcriptional and translational regulation Northern blot, or qRT-PCR, autophagy- 

dedicated microarray. 
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13. Autophagic protein degradation   Turnover of long-lived proteins to monitor  

flux. 

14. Pex14-GFP, GFP-Atg8, Om45-GFP,   A range of assays can be used to monitor 

mitoPho8∆60     selective types of autophagy. These typically  

involve proteolytic maturation of a resident 

enzyme or degradation of a chimera, which 

can be followed enzymatically or by western 

blot. 

15. Autophagic sequestration assays   Accumulation of cargo in autophagic  

       compartments in the presence of lysosomal  

       protease or fusion inhibitors by biochemical  

       or multilabel fluorescence techniques. 

16. Turnover of autophagic compartments  Electron microscopy with  

morphometry/stereology at different time 

 points. 

17. Autophagosome-lysosome colocalization Fluorescence microscopy. 

and dequenching assay 

18. Sequestration and processing assays  Chimeric RFP fluorescence and processing, 

in plants      and light and electron microscopy. 

19. Tissue fractionation    Centrifugation, western blot and electron  

Microscopy. 

20. Degradation of endogenous lipofuscin  Fluorescence microscopy.   
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Glossary 

3-MA (3-methyladenine): An inhibitor of class I PI3K and class III PtdIns3K, which 

results in macroautophagy inhibition due to suppression of class III PtdIns3K,
311

 but may 

under some conditions show the opposite effect.
312

 At concentrations >10 mM 3-MA 

inhibits other kinases such as AKT (Ser473), MAPK/p38 (Thr180/Tyr182) and 

MAPK/JNK (Thr183/Tyr185).
1457

 

11'-deoxyverticillin A (C42): An epipolythiodioxopiperazine fungal secondary 

metabolite that is used as an anticancer drug; it triggers apoptotic and necrotic cell death, 

and enhances macroautophagy through the action of PARP1 and RIPK1.
1458

 

12-ylation: The modification of substrates by covalent conjugation to ATG12, first used 

to describe the autocatalytic conjugation of ATG12 to ATG3.
1459

 

14-3-3: See YWHAZ.  

ABT737: A BH3 mimetic that competitively disrupts the interaction between BECN1 and BCL2 

or BCL2L1, thus inducing macroautophagy.
1460

 It should be noted, however, that by its 

inhibitory action on the anti-apoptotic BCL2 family members, ABT737 also leads to 

apoptosis.
1461

 

ACBD5 (acyl-CoA binding domain containing 5): ACBD5 is the human ortholog 

of fungal Atg37; it is a peroxisomal protein that is required for pexophagy.
327,1462

 See also 

Atg37. 

Acetyl-coenzyme A: A central energy metabolite that represses macroautophagy if 

present in the cytosol.
1463,1464

 

Acinus: A protein that in Drosophila regulates both endocytosis and macroautophagy; 

the acn mutant is defective in autophagosome maturation, whereas stabilization of 
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endogenous Acn by mutation of its caspase cleavage site,
1465

 or overexpression of Acn 

leads to excessive macroautophagy.
1466

 Note that Acn can also induce DNA condensation 

or fragmentation after its activation by CASP3 in apoptotic cells. 

ActA: A L. monocytogenes protein that recruits the Arp2/3 complex and other actin-

associated components to the cell surface to evade recognition by xenophagy; this effect 

is independent of bacterial motility.
1467

  

Adaptophagy: Selective degradation of signaling adaptors downstream of TLRs or 

similar types of receptor families.
1468

 

ADNP (activity-dependent neuroprotective homeobox): A protein that interacts with 

LC3B and shows an increased expression in lymphocytes from schizophrenia patients.
973

 

AEG-1: See MTDH.  

AEN/ISG20L1 (apoptosis-enhancing nuclease): A protein that localizes to nucleolar 

and perinucleolar regions of the nucleus, which regulates macroautophagy associated 

with genotoxic stress; transcription of AEN is regulated by TP53 family members.
1469

  

AGER/RAGE (advanced glycosylation end product-specific receptor): A member of the 

immunoglobulin gene superfamily that binds the HMGB1 (high mobility group box 1) chromatin 

binding protein.
1470

 AGER overexpression enhances macroautophagy and reduces apoptosis. 

This can occur in response to ROS, resulting in the upregulation of macroautophagy and the 

concomitant downregulation of apoptosis, favoring tumor cell survival in response to anticancer 

treatments that increase ROS production.
1471

 See also HMGB1. 

Aggrephagy: The selective removal of aggregates by a macroautophagy-like process.
703

  

AGS3: See GPSM1.  
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Aggresome: An aggregation of misfolded proteins formed by a highly regulated process 

mediated by HDAC6 or BAG3.
1472,1473

 This process requires protein transport by a dynein motor 

and microtubule integrity. Aggresomes form at the microtubule-organizing center and are 

surrounded by a cage of the intermediate filament protein VIM/vimentin. Note that not all 

proteins that aggregate and form filaments like HTT or MAPT form aggregsomes. 

AHA (L-azidohomoalanine): An amino acid analog used for labeling newly synthesized protein 

and monitoring autophagic protein degradation.
630

 

AICAR (aminoimidazole-4-carboxamide riboside): Cell permeable nucleotide analog 

that is an activator of AMPK; inhibits macroautophagy
452

 through mechanisms that are 

not related to its effect on AMPK.
463,1474

 

AIM (Atg8-family interacting motif): A short peptide motif that allows interaction with 

Atg8.
1408

 See WXXL and LIR/LRS.  

AKT/PKB (v-akt murine thymoma viral oncogene homolog 1): A serine/threonine kinase that 

negatively regulates macroautophagy in some cellular systems. 

Alfy: See WDFY3. 

ALIS (aggresome-like induced structures): These structures may function as protein 

storage compartments and are cleared by macroautophagy.
297

 SQSTM1 may regulate 

their formation and macroautophagic degradation.
299

 See also DALIS. 

Allophagy: The selective degradation of sperm components by macroautophagy; this 

process occurs in C. elegans.
711

 

ALOX5 (arachidonate 5-lipoxygenase): See lipoxygenases. 

ALOX15 (arachidonate 15-lipoxygenase): See lipoxygenases. 

ALR: See autophagic lysosome reformation.  
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ALS2/alsin (amyotrophic lateral sclerosis 2 [juvenile]): A guanine nucleotide exchange factor 

for the small GTPase RAB5 that regulates endosome and autophagosome fusion and 

trafficking.
1435,1436

 Loss of ALS2 accounts for juvenile recessive amyotrophic lateral sclerosis, 

juvenile primary lateral sclerosis, and infantile-onset ascending hereditary spastic 

paralysis.
1475,1476

 

ALSFTD: See C9orf72. 

AMBRA1 (autophagy/beclin-1 regulator 1): A positive regulator of macroautophagy. 

AMBRA1 interacts with both BECN1 and ULK1, modulating their activity.
468,481,1145

 Also, a role 

in both PARK2-dependent and -independent mitophagy has been described for AMBRA1.
739

 

Finally, AMBRA1 is the macroautophagy adaptor linking this process to cell proliferation, by 

negatively regulating the oncogene MYC through the latter’s phosphorylation status.
1477

 

AMFR/gp78 (autocrine motility factor receptor, E3 ubiquitin protein ligase): An ER-

associated E3 ubiquitin ligase that degrades the MFN/mitofusin mitochondrial fusion proteins 

and induces mitophagy.
1478

 

Amiodarone: An FDA-approved antiarrhythmic drug that induces macroautophagic flux via 

AMPK- and AKT-mediated MTOR inhibition.
1479,1480

  

Amphisome (AM): Intermediate compartment formed by the fusion of an autophagosome with 

an endosome (this compartment can be considered a type of autophagic vacuole and may be 

equivalent to a late autophagosome, and as such has a single limiting membrane); the amphisome 

has not yet fused with a lysosome.
1481

 Amphisomes can also fuse with the plasma membrane to 

release the macroautophagic cargo (exosomal pathway). See also exophagy. 

AMPK (AMP-activated protein kinase): A sensor of energy level that is activated by an 

increase in the AMP/ATP ratio via the STK11/LKB1 kinase. Phosphorylates the MTORC1 
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subunit RPTOR to cause induction of macroautophagy. AMPK also activates the TSC1/2 

complex (thus inhibiting RHEB), and binds and directly phosphorylates (and activates) ULK1 as 

part of the ULK1 kinase complex, which includes ATG13, ATG101 and RB1CC1.
457,458

 The 

yeast homolog of AMPK is Snf1.
452,1482

 Conversely, ULK1 can phosphorylate AMPK through a 

negative feedback loop.
476

 AMPK is a heterotrimeric enzyme composed of the 

PRKAA1/AMPK1 or PRKAA2/AMPK2 subunit, the PRKAB1/AMPK1 or 

PRKAB2/AMPK2 subunit and the PRKAG1/ AMPK1, PRKAG2/AMPK2 or 

PRKAG3/AMPK subunits. 

Ams1/-mannosidase: A cargo of the Cvt pathway; Ams1 forms an oligomer in the cytosol 

similar to prApe1. 

AMSH1/3: Two Arabidopsis deubiquitinating enzymes that have been linked to plant 

macroautophagy.
1483,1484

 

Ape1 (aminopeptidase I): A resident vacuolar hydrolase that can be delivered in its precursor 

form (prApe1) to the vacuole through either the cytoplasm-to-vacuole targeting (Cvt) pathway or 

macroautophagy, in vegetative or starvation conditions, respectively.
120

 The propeptide of 

prApe1 is removed upon vacuolar delivery, providing a convenient way to monitor localization 

of the protein and the functioning of these pathways, although it must be noted that delivery 

involves a receptor and scaffold so that its transit involves a type of selective macroautophagy 

even in starvation conditions. See also Atg11, Atg19 and cytoplasm-to-vacuole targeting 

pathway. 

Ape1 complex/prApe1 complex: A large protein complex comprised of multiple prApe1 

dodecamers localized in the cytosol.
123
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APE4: An aspartyl aminopeptidase that binds the Atg19 receptor and is transported to the 

vacuole through the Cvt pathway.
1485

 

APMA (autophagic macrophage activation): A collection of macroautophagy-related 

processes in cells of the reticulo-endothelial system. APMA includes (1) convergence of 

phagocytosis and the macroautophagic machinery, (2) enhanced microbicidal properties of 

autolysosomes in comparison to standard phagolysosomes, (3) macroautophagic modulation of 

pathogen recognition receptor signaling, (4) cooperation between immunity-related GTPases and 

ATG proteins in attacking parasitophorus vacuoles, and (5) enhanced antigen presentation. 

APMA is thus recognized as a complex outcome of macroautophagy stimulation in 

macrophages, representing a unique composite process that brings about a heightened state of 

immunological activation.
1486

  

Appressorium: A specialized infection structure produced by pathogenic fungi to rupture the 

outer layer of their host and gain entry to host cells. In plant pathogenic fungi, such as the rice 

blast fungus M. oryzae, formation of appressoria follows macroautophagy in conidia and 

recycling of the spore contents to the developing infection cell.
257,1252

  

ARD1: See NAA10.  

Are1: See Ayr1. 

Are2: See Ayr1. 

ARRB1/-arrestin-1 (arrestin, beta 1): Members of arrestin/beta-arrestin protein family are 

thought to participate in agonist-mediated desensitization of G-protein-coupled receptors and 

cause specific dampening of cellular responses to stimuli such as hormones, neurotransmitters, or 

sensory signals. ARRB1 is a cytosolic protein and acts as a cofactor in the ADRBK/BARK 

(adrenergic, beta, receptor kinase)-mediated desensitization of beta-adrenergic receptors. Besides 
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the central nervous system, it is expressed at high levels in peripheral blood leukocytes, and thus 

the ADRBK/beta-arrestin system is thought to play a major role in regulating receptor-mediated 

immune functions. This protein plays a neuroprotective role in the context of cerebral ischemia 

through regulating BECN1-dependent autophagosome formation.
1487

 

ARHI: See DIRAS3. 

ARN5187: Lysosomotropic compound with dual inhibitory activity against the circadian 

regulator NR1D2/REV-ERB and autophagy. Although ARN5187 and chloroquine have similar 

lysosomotropic potency and are equivocal with regard to autophagy inhibition, ARN5187 has a 

significantly improved in vitro anticancer activity.
1420

 

ASB10 (ankyrin repeat and SOCS box containing 10): The ASB family of proteins mediate 

ubiquitination of protein substrates via their SOCS box and as such have been implicated as 

negative regulators of cell signaling. ASB10 colocalizes with aggresome biomarkers and pre-

autophagic structures and may form ALIS.
1488

  

ATF4 (activating transcription factor 4): A transcription factor that is induced by hypoxia, 

amino acid starvation and ER stress, and is involved in the unfolded protein response, playing a 

critical role in stress adaptation; ATF4 binds to a cAMP response element binding site in the 

LC3B promoter, resulting in upregulation of LC3B,
1489

 and also directs a macroautophagy gene 

transcriptional program in response to amino acid depletion and ER stress.
389

 

ATF5 (activating transcription factor 5): A transcription factor that is upregulated by the 

BCR-ABL protein tyrosine kinase, a macroautophagy repressor, through the PI3K-AKT pathway 

that inhibits FOXO4, a repressor of ATF5 transcription; one of the targets of ATF5 is MTOR.
1490
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Atg (autophagy-related): Abbreviation used for most of the components of the protein 

machinery that are involved in selective and nonselective macroautophagy and in selective 

microautophagy.
1491

 

Atg1: A serine/threonine protein kinase that functions in recruitment and release of other Atg 

proteins from the PAS.
1492

 The functional homologs in higher eukaryotes are ULK1 and ULK2, 

and in C. elegans UNC-51. 

Atg2: A protein that interacts with Atg18; in atg2∆ mutant cells Atg9 accumulates primarily at 

the PAS.
1493,1494

  

Atg3: A ubiquitin-conjugating enzyme (E2) analog that conjugates Atg8/LC3 to 

phosphatidylethanolamine (PE) after activation of the C-terminal residue by Atg7.
1495,1496

 ATG3 

can also be conjugated to ATG12 in higher eukaryotes.
1459

 See also 12-ylation. 

Atg4: A cysteine protease that processes Atg8/LC3 by removing the amino acid residue(s) that 

are located on the C-terminal side of what will become the ultimate glycine. Atg4 also removes 

PE from Atg8/LC3 in a step referred to as “deconjugation”.
199

 Mammals have 4 ATG4 proteins 

(ATG4A to ATG4D), but ATG4B appears to be the most relevant for macroautophagy and has 

the broadest range of activity for all of the Atg8 homologs.
161,1497

 See also deconjugation. 

Atg5: A protein containing ubiquitin folds that is part of the Atg12–Atg5-Atg16 complex, which 

acts in part as an E3 ligase for Atg8/LC3–PE conjugation.
1498

  

Atg6: See Vps30.  

Atg7: A ubiquitin activating (E1) enzyme homolog that activates both Atg8/LC3 and Atg12 in 

an ATP-dependent process.
1499,1500

 

Atg8: A ubiquitin-like protein that is conjugated to PE; involved in cargo recruitment into, and 

biogenesis of, autophagosomes. Autophagosomal size is regulated by the amount of Atg8.
99
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Since Atg8 is selectively enclosed into autophagosomes, its breakdown allows measurement of 

the rate of macroautophagy. Mammals have several Atg8 homologs that are members of the LC3 

and GABARAP subfamilies, which are also involved in autophagosome formation.
134,139,574

 The 

C. elegans homologs are LGG-1 and LGG-2. 

Atg9: A transmembrane protein that may act as a lipid carrier for expansion of the phagophore. 

In mammalian cells, ATG9A localizes to the trans-Golgi network and endosomes, whereas in 

fungi this protein localizes in part to peripheral sites (termed Atg9 reservoirs or tubulovesicular 

clusters) that are localized near the mitochondria, and to the PAS.
515,1501

 Whereas mammalian 

ATG9A is ubiquitously expressed, ATG9B is almost exclusively expressed in the placenta and 

pituitary gland.
1502

  

Atg9 peripheral sites/structures: In yeast, these are peri-mitochondrial sites where Atg9 

localizes, which are distinct from the phagophore assembly site.
515,516

 The Atg9 peripheral sites 

may be the precursors of the phagophore. 

Atg10: A ubiquitin conjugating (E2) enzyme analog that conjugates Atg12 to Atg5.
1503

  

Atg11: A scaffold protein that acts in selective types of macroautophagy including the Cvt 

pathway, mitophagy and pexophagy. Atg11 binds Atg19, Pichia pastoris Atg30 (PpAtg30) and 

Atg32 as part of its role in specific cargo recognition. It also binds Atg9 and is needed for its 

movement to the PAS.
1504

 Atg11 in conjunction with receptor-bound targets may activate Atg1 

kinase activity during selective macroautophagy.
1505

 Homologs of Atg11 include RB1CC1 in 

mammals (although RB1CC1 does not appear to function as an Atg11 ortholog), EPG-7 in C. 

elegans,
1506

 and ATG11 in Arabidopsis.
1507

 

Atg12: A ubiquitin-like protein that modifies an internal lysine of Atg5 by covalently binding 

via its C-terminal glycine.
1498

 In mouse and human cells, ATG12 also forms a covalent bond 
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with ATG3, and this conjugation event plays a role in mitochondrial homeostasis.
1459

 The C. 

elegans homolog is LGG-3. 

Atg13: A component of the Atg1 complex that is needed for Atg1 kinase activity. Atg13 is 

highly phosphorylated in a PKA- and TOR-dependent manner in rich medium conditions. 

During starvation-induced macroautophagy in yeast, Atg13 is partially dephosphorylated. In 

mammalian cells, at least MTOR and ULK1 phosphorylate ATG13. The decreased 

phosphorylation of Atg13/ATG13 that results from TOR/MTOR inhibition is partly offset in 

terms of the change in molecular mass by the ULK1-dependent phosphorylation that occurs upon 

ULK1 activation.
485,1508

 The C. elegans ortholog is EPG-1. 

Atg14: A component of the class III PtdIns3K complex that is necessary for the complex to 

function in macroautophagy.
1509

 Also known as ATG14/ATG14L/BARKOR in mammals,
527

 or 

EPG-8 in C. elegans.
1208

 

Atg15: A yeast vacuolar protein that contains a lipase/esterase active site motif and is needed for 

the breakdown of autophagic and Cvt bodies within the vacuole lumen (as well as MVB-derived 

and other subvacuolar vesicles) and the turnover of lipid droplets.
1510-1512

 

Atg16: A component of the Atg12–Atg5-Atg16 complex. Atg16 dimerizes to form a large 

complex.
1513

 There are 2 mammalian homologs, ATG16L1 and ATG16L2; mutations in either of 

the corresponding genes correspond to risk alleles associated with Crohn disease.
1514,1515

 

Atg17: A yeast protein that is part of the Atg1 kinase complex. Atg17 is not essential for 

macroautophagy, but modulates the magnitude of the response; smaller autophagosomes are 

formed in the absence of Atg17.
98,483

 

In yeast, Atg17 exists as part of a 

stable ternary complex that includes 
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Atg31 and Atg29; this complex functions as a dimer.
1516-1518

 The functional counterpart of this 

complex in mammalian cells may be RB1CC1. 

Atg18: A yeast protein that binds to PtdIns3P (and PtdIns[3,5]P2) via its WD40 -propeller 

domain. Atg18 interacts with Atg2, and in atg18∆ cells Atg9 accumulates primarily at the PAS. 

Atg18 has additional nonautophagic functions, such as in retrograde transport from the vacuole 

to the Golgi complex, and in the regulation of PtdIns(3,5)P2 synthesis; the latter function affects 

the vacuole’s role in osmoregulation.
532

 See also WIPI. 

Atg19: A receptor for the Cvt pathway that binds Atg11, Atg8 and the propeptide of precursor 

aminopeptidase I. Atg19 is also a receptor for Ams1/-mannosidase, another Cvt pathway 

cargo.
1519,1520

 

Atg20/Snx42: A yeast PtdIns3P-binding sorting nexin that is part of the Atg1 kinase complex 

and associates with Snx4/Atg24.
1521

 Atg20 is a PX-BAR domain-containing protein involved in 

pexophagy. M. oryzae Snx41 (MoSnx41) is homologous to both yeast Atg20 and Snx41, and 

carries out functions in both pexophagy and nonautophagy vesicular trafficking.
1522

 

Atg21: A yeast PtdIns3P binding protein that is a homolog of, and partially redundant with, 

Atg18.
317

 See also WIPI. 

Atg22: A yeast vacuolar amino acid permease that is required for efflux after autophagic 

breakdown of proteins.
1523,1524

 

Atg23: A yeast peripheral membrane protein that associates and transits with Atg9.
517,1525,1526

 

Atg24: See Snx4.  

Atg25: A coiled-coil protein required for macropexophagy in H. polymorpha.
1527

  

Atg26: A sterol glucosyltransferase that is required for micro- and macropexophagy in P. 

pastoris, but not in S. cerevisiae.
1528,1529
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Atg27: A yeast integral membrane protein that is required for the movement of Atg9 to the PAS; 

the absence of Atg27 results in a reduced number of autophagosomes under autophagy-inducing 

conditions.
1530

 

Atg28: A coiled-coil protein involved in micro- and macropexophagy in P. pastoris.
1531

  

Atg29: A yeast protein required for efficient nonselective macroautophagy in fungi. Part of the 

yeast Atg17-Atg31-Atg29 complex that functions at the PAS for protein recruitment.
1516-1518,1532

 

Atg30: A protein required for the recognition of peroxisomes during micro- and 

macropexophagy in P. pastoris. It binds the peroxin PpPex14 and the selective autophagy 

receptor protein PpAtg11.
679

  

Atg31: A yeast protein required for nonselective macroautophagy in fungi. Part of the yeast 

Atg17-Atg31-Atg29 complex that functions at the PAS for protein recruitment and initiation of 

phagophore formation.
1516-1518,1533

 

Atg32: A mitochondrial outer membrane protein that is required for mitophagy in yeast. Atg32 

binds Atg8 and Atg11 preferentially during mitophagy-inducing conditions.
658,659

 See also 

BCL2L13. 

Atg33: A mitochondrial outer membrane protein that is required for mitophagy in yeast.
657

  

Atg34: A protein that functions as a receptor for import of Ams1/-mannosidase during 

macroautophagy (i.e., under starvation conditions) in yeast.
1534

 This protein was initially 

referred to as Atg19-B based on predictions from in silico studies.
1535

  

Atg35: The Atg35 protein relocates to the peri-nuclear structure and specifically 

regulates MIPA formation during micropexophagy; the atg35∆ mutant is able to form 

pexophagosomes during macropexophagy.
1536
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Atg36: Atg36 is a pexophagy receptor, which localizes to the membrane of peroxisomes 

in S. cerevisiae. Atg36 binds Atg8 and the scaffold protein Atg11 that links receptors for 

selective types of autophagy to the core autophagy machinery.
1537

 

Atg37: Atg37 is a conserved acyl-CoA-binding protein that is required specifically for 

pexophagy in P. pastoris at the stage of phagophore formation.
327

 See also ACBD5. 

Atg38: Atg38 physically interacts with Atg14 and Vps34 via its N terminus. Atg38 is 

required for macroautophagy as an integral component of the PtdIns3K complex I in 

yeast, and Atg38 functions as a linker connecting the Vps15-Vps34 and Vps30/Atg6-

Atg14 subcomplexes to facilitate complex I formation.
1538

 

Atg39: A receptor for selective macroautophagic degradation of nuclear membrane in 

yeast.
802

 

Atg40: A receptor that functions in yeast reticulophagy.
802

 See also FAM134B. 

ATG101: An ATG13-binding protein conserved in various eukaryotes but not in S. cerevisiae. 

Forms a stable complex with ULK1/2-ATG13-RB1CC1 (i.e., not nutrient-dependent) required 

for macroautophagy and localizes to the phagophore.
1539,1540

 Note that the official name for this 

protein in rodents is 9430023L20Rik, and in C. elegans it is EPG-9. 

ATI1/2 (ATG8-interacting protein 1/2): Two closely related ATG8-binding proteins in 

Arabidopsis, which are unique to plants and define a stress-induced and ER-associated 

compartment that may function in a direct, Golgi-independent, ER-to-vacuole trafficking 

pathway.
1541

 ATI1 is also found in plastids following abiotic stress where it interacts with both 

ATG8 and plastid-localized proteins to act in their delivery to the central vacuole in an ATG5-

dependent manner.
766
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ATM (ATM serine/threonine kinase): A protein kinase that activates TSC2 via the 

STK11/LKB1-AMPK cascade in response to elevated ROS, resulting in inhibition of MTOR and 

activation of macroautophagy.
1542

  

ATP13A2 (ATPase type 13A2): A transmembrane lysosomal type 5 P-type ATPase that is 

mutated in recessive familial atypical parkinsonism, with effects on lysosomal function.
1543

 Loss 

of ATP13A2 function inhibits the clearance of dysfunctional mitochondria.
1544

 

ats-1 (Anaplasma translocated substrate-1): A type IV secretion effector of the 

obligatory intracellular bacterium Anaplasma phagocytophilum that binds BECN1 and 

induces autophagosome formation; the autophagosomes traffic to, and fuse with, A. 

phagocytophilum-containing vacuoles, delivering macroautophagic cargoes into the 

vacuole, which can serve as nutrients for bacterial growth.
1545,1546

  

ATRA (all-trans retinoic acid): A signaling molecule derived from vitamin A that actives 

macroautophagy and cell differentiation as demonstrated in leukemia cells.
394,1547,1548

 

AtTSPO (Arabidopsis thaliana TSPO-related): An ER- and Golgi-localized polytopic 

membrane protein transiently induced by abiotic stresses. AtTSPO binds ATG8 and heme in 

vivo and may be involved in scavenging of cytosolic porphyrins through selective 

macroautophagy.
1549

 

AUTEN-67 (autophagy enhancer-67): An inhibitor of MTMR14, which enhances 

macroautophagy.
1550

 

Autophagic lysosome reformation (ALR): A self-regulating tubulation process in which the 

macroautophagic generation of nutrients reactivates MTOR, suppresses macroautophagy and 

allows for the regeneration of lysosomes that were consumed as autolysosomes.
506

 See also 

autolysosome. 
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Autolysosome (AL): A degradative compartment formed by the fusion of an autophagosome (or 

initial autophagic vacuole/AVi) or amphisome with a lysosome (also called degradative 

autophagic vacuole/AVd). Upon completion of degradation the autolysosome can become a 

residual body,
1481,1551

 or the autolysosomal membrane can be recycled to generate mature 

lysosomes during macroautophagic flux. This regenerative process, referred to as autophagic 

lysosome reformation (ALR), relies on the scission of extruded autolysosomal membrane tubules 

by the mechanoenzyme DNM2 (dynamin 2).
506,1552

  

Autophagic body (AB): The inner membrane-bound structure of the autophagosome that is 

released into the vacuolar lumen following fusion of the autophagosome with the vacuole 

limiting membrane. In S. cerevisiae, autophagic bodies can be stabilized by the addition of the 

proteinase B inhibitor PMSF to the medium or by the deletion of the PEP4 or ATG15 genes. 

Visualization of the accumulating autophagic bodies by differential interference contrast using 

light microscopy is a convenient, but not easily quantified, method to follow macroautophagy.
86

  

Autophagic cell death: A historically ambiguous term describing cell death with morphological 

features of increased autophagic vacuoles. This term is best reserved for cell death contexts in 

which specific molecular methods, rather than only pharmacological or correlative methods, are 

used to demonstrate increased cell survival following inhibition of macroautophagy. 

Autophagic stress: A pathological situation in which induction of autophagy exceeds the 

cellular capacity to complete lysosomal degradation and recycling of constituents; may involve a 

combination of bioenergetics, acidification and microtubule-dependent trafficking deficits, to 

which neurons may be particularly vulnerable.
14
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Autophagic vacuole: A term typically used for mammalian cells that collectively refers to 

autophagic structures at all stages of maturation. We recommend using this term when the 

specific identity of autophagosomes, amphisomes and autolysosomes are not distinguished. 

AutophagamiR: A term to describe miRNAs that function in the regulation of 

macroautophagy.
1553

 

Autophagist: A researcher working in the field of autophagy. 

Autophagolysosome (APL): A degradative compartment formed by the fusion of an LC3-

containing phagosome (see LAP) or an autophagosome that has sequestered a partial or complete 

phagosome with a lysosome. In contrast to a phagolysosome, formation of the 

autophagolysosome involves components of the macroautophagic machinery. Note that this term 

is not interchangeable with “autophagosome” or “autolysosome”.
846

 

Autophagoproteasome (APP): A cytosolic membrane-bound compartment denoted by a 

limiting single, double or multiple membrane, which contains both LC3 and UPS antigens. The 

autophagoproteasome may be derived from the inclusion of ubiquitin-proteasome structures 

within either early or late autophagosomes containing cytoplasmic material at various stages of 

degradation.
1554

 

Autophagosome (AP): A cytosolic membrane-bound compartment denoted by a limiting double 

membrane (also referred to as initial autophagic vacuole, AVi, or early autophagosome). The 

early autophagosome contains cytoplasmic inclusions and organelles that are morphologically 

unchanged because the compartment has not fused with a lysosome and lacks proteolytic 

enzymes. Notably, the double-membrane structure may not be apparent with certain types of 

fixatives. Although in most cases the term autophagosome refers to a double-membrane 
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compartment, the late autophagosome may also appear to have a single membrane (also referred 

to as an intermediate or intermediate/degradative autophagic vacuole, AVi/d).
1481,1551

  

Autophagy: This term summarizes all processes in which intracellular material is degraded 

within the lysosome/vacuole and where the macromolecular constituents are recycled. 

Autophagy: A journal devoted to research in the field of autophagy 

(http://www.tandfonline.com/toc/kaup20/current#.VdzKoHjN5xu).  

Autophagy adaptor: A LIR-containing protein that is not itself a cargo for macroautophagy. 

Autophagy receptor: A LIR/AIM-containing protein that targets specific cargo for degradation 

and itself becomes degraded by macroautophagy (e.g., SQSTM1, NBR1, OPTN, Atg19).
1555

  

Autophagy-like vesicles (ALVs): Double-membraned vesicles (70–400 nm) that accumulate in 

cells infected by a number of different viruses. These vesicles also have been referred to as 

compound membrane vesicles (CMVs) or as double-membraned vesicles (DMVs). 

Autosis: A form of macroautophagy-dependent cell death that requires Na
+
,K

+
-ATPase activity 

(in addition to the macroautophagy machinery).
1027

 Morphologically, autosis has increased 

numbers of autophagosomes and autolysosomes, and nuclear convolution during its early stages, 

followed by focal swelling of the perinuclear space. Autosis occurs in response to various types 

of stress including starvation and hypoxia-ischemia. 

Ayr1: A triacylglycerol lipase involved in macroautophagy in yeast.
1556

 Enzymes that participate 

in the metabolism of lipid droplets including Dga1 and Lro1 (acyltransferases involved in 

triacylglycerol synthesis) and Are1/2 (Acyl-CoA:sterol acyltransferases) that generate the major 

components of lipid droplets, triacylglycerols and steryl esters, are required for efficient 

macroautophagy. Deletion of the genes encoding Yeh1 (a steryl ester hydrolase), Ayr1 or Ldh1 

(an enzyme with esterase and triacylglycerol lipase activities) also partially blocks 
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macroautophagy. Finally, Ice2 and Ldb16, integral membrane proteins that participate in 

formation of ER-lipid droplet contact sites that may be involved in lipid transfer between these 

sites are also needed for efficient macroautophagy. 

AZD8055: A novel ATP-competitive inhibitor of MTOR kinase activity. AZD8055 shows 

excellent selectivity against all class I PI3K isoforms and other members of the PI3K-like kinase 

family. Treatment with AZD8055 inhibits MTORC1 and MTORC2 and prevents feedback to 

AKT.
1134

 

Bafilomycin A1 (BAFA1/BAF): An inhibitor of the V-type ATPase as well as certain P-type 

ATPases that prevents acidification and alters the membrane potential of certain compartments; 

treatment with bafilomycin A1 ultimately results in a block in fusion of autophagosomes with 

lysosomes, thus preventing the maturation of autophagosomes into autolysosomes.
146,147,210

 Note 

that the abbreviation for bafilomycin A1 is not “BFA,” as the latter is the standard abbreviation 

for brefeldin A; nor should BAF be confused with the abbreviation for the caspase inhibitor boc-

asp(o-methyl)fluoremethylketone. 

BAG3 (BCL2-associated athanogene 3): A stress-induced co-chaperone that interacts with 

dynein; BAG3 directs HSP70 misfolded protein substrates to dynein, which targets them to 

aggresomes, leading to their selective degradation via a ubiquitin-independent mechanism.
1472

  

BAG6/BAT3 (BCL2-associated athanogene 6): BAG6 tightly controls macroautophagy by 

modulating EP300 intracellular localization, affecting the accessibility of EP300 to its substrates, 

TP53 and ATG7. In the absence of BAG6 or when this protein is located exclusively in the 

cytosol, macroautophagy is abrogated, ATG7 is hyperacetylated, TP53 acetylation is abolished, 

and EP300 accumulates in the cytosol, indicating that BAG6 regulates the nuclear localization of 

EP300.
1557
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BARA (- repeated, autophagy-specific): A domain at the C terminus of Vps30/Atg6 that is 

required for targeting PtdIns3K complex I to the PAS.
1558

 The BARA domain is also found at the 

C terminus of BECN1. 

Barkor: See ATG14.  

Basal autophagy: Constitutive autophagic degradation that proceeds in the absence of any overt 

stress or stimulus. Basal autophagy is important for the clearance of damaged proteins and 

organelles in normal cells (especially fully differentiated, nondividing cells).  

BATS (Barkor/Atg14[L] autophagosome targeting sequence) domain: A protein domain 

within ATG14 that is required for the recruitment of the class III PtdIns3K to LC3-containing 

puncta during macroautophagy induction; the predicted structure of the BATS domain suggests 

that it senses membrane curvature.
529

  

Bck1: A MAPKKK downstream of Pkc1 and upstream of Mkk1/2 and Slt2 that controls cell 

integrity in response to cell wall stress; Bck1 is required for pexophagy
654

 and mitophagy.
488

 See 

also Slt2 and Hog1. 

BCL2 family of proteins: There are 3 general classes of BCL2 proteins; anti-apoptotic proteins 

include BCL2, BCL2L1/Bcl-XL, BCL2L2/BCL-W and MCL1 that inhibit macroautophagy, the 

pro-apoptotic BH3-only proteins include BNIP3, BAD, BIK, PMAIP1/NOXA, BBC3/PUMA 

and BCL2L11/Bim/BimEL that induce macroautophagy, and the pro-apoptotic effector proteins 

BAX and BAK1. Interaction of BCL2 with BECN1 prevents the association of the latter with the 

class III PtdIns3K; however, anti-apoptotic BCL2 proteins require BAX and BAK1 to modulate 

macroautophagy.
1559
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BCL2L13/BCL-RAMBO (BCL2-like 13 [apoptosis facilitator]): BCL2L13 is a mammalian 

holomog of Atg32, which is located in the mitochondrial outer membrane and has an LC3-

interacting region. BCL2L13 induces mitochondrial fission and mitophagy.
1560

 See also Atg32. 

BCL10 (B-cell CLL/lymphoma 10): The adaptor protein BCL10 is a critically important 

mediator of T cell receptor (TCR)-to-NFKB signaling. After association with the 

receptor SQSTM1, BCL10 is degraded upon TCR engagement. Selective macroautophagy 

of BCL10 is a pathway-intrinsic homeostatic mechanism that modulates TCR signaling to NFKB 

in effector T cells.
1561

 

BEC-1: The C. elegans ortholog of BECN1.  

Beclin 1: See BECN1. 

BECN1/Beclin 1 (beclin 1, autophagy related): A mammalian homolog of yeast Vps30/Atg6 

that forms part of the class 

III PtdIns3K complex 

involved in activating 

macroautophagy.
1562

 BECN1 interacts with many proteins including BCL2, VMP1, ATG14, 

UVRAG, PIK3C3 and KIAA0226/Rubicon through its BH3, coiled-coil and BARA domains, the 

latter including the evolutionarily conserved domain (ECD).
1563

 The C. elegans ortholog is BEC-

1. 

BECN1s (BECN1 short isoform):  A splice variant of BECN1 that lacks the sequence 

corresponding to exons 10 and 11; BECN1s associates with the mitochondrial outer membrane 

and is required for mitophagy.
1564

 BECN1s can bind ATG14 and activate PIK3C3/VPS34, but 

does not bind UVRAG. 

BH3 CCD BARA

UVRAG

BCL2 PIK3C3

VMP1

BECN1:

KIAA0226

ATG14
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BECN2/Beclin 2 (beclin 2): A mammalian-specific homolog of yeast Vps30/Atg6 that forms 

part of the class III PtdIns 3K complex involved in activating macroautophagy and that also 

functions in the endolysosomal degradation of G protein-coupled receptors (independently of the 

class III PtdIns3K complex).
1565

 

Betulinic acid: Betulinic acid and its derivatives activate macroautophagy as rescue mechanism 

to deal with damaged micothondria;
219,1106,1107,1566

 however, betulinic acid impairs lysosomal 

integrity and converts macroautophagy into a detrimental process, leading to accumulation of 

nonfunctional autolysosomes that can be detected over a long time frame.
219

  

BH domain: BCL2 homology domain. There are 4 domains of homology, consisting of BH1, 

BH2, BH3 and BH4. 

BH3 domain: A BCL2 homology (BH) domain that is found in all BCL2 family proteins, 

whether they are pro-apoptotic or anti-apoptotic. A BH3 domain is also present in BECN1 and 

mediates the interaction with anti-apoptotic proteins possessing a BH3 receptor domain (i.e., 

BCL2, BCL2L1/bcl-xL, BCL2L2/BCL-W and MCL1).  

BH3-only proteins: A series of proteins that contain a BH3 domain (but not any other BCL2 

homology domains). Several BH3-only proteins (BNIP3, BAD, BIK, PMAIP1/NOXA, 

BBC3/PUMA and BCL2L11/Bim/BimEL) can competitively disrupt the inhibitory interaction 

between BCL2 and BECN1 to allow the latter to act as an allosteric activator of PtdIns3K and to 

activate macroautophagy.  

Bif-1: See SH3GLB1. 

BIPASS (BAG-instructed proteasomal to autophagosomal switch and sorting): 

Upon proteasomal impairment, cells switch to autophagy to ensure proper clearance of substrates 
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(the proteasome-to-autophagy switch). Following this proteasome impairment, increasing 

the BAG3:BAG1 ratio ensures the initiation of BIPASS.
1567

 

BNIP3 (BCL2/adenovirus E1B 19kDa interacting protein 3): Identified in a yeast 

two-hybrid screen as interacting through its amino terminal 40 amino acids with BCL2 

and adenovirus 

E1B.
1568

 Originally 

classified as a pro-

apoptotic protein, 

BNIP3 promotes mitophagy through direct interaction with LC3B-II mediated by a 

conserved LIR motif that overlaps with its BCL2 interacting region.
1569,1570

  BNIP3 also 

modulates mitochondrial fusion through inhibitory interactions with OPA1 via its 

carboxy terminal 10 amino acids.
1571

 BNIP3 is transcriptionally regulated by HIF1A,
1572

 

E2Fs,
1573

 FOXO3,
448

 TP53
1574

 and NFKB
1575

 and is most highly expressed in adult heart 

and liver.
1576,1577

 

BNIP3L/NIX (BCL2/adenovirus E1B 19kDa interacting protein 3-like): Identified as a 

BNIP3 homolog, BNIP3L is required for mitophagy in red blood cells.
1236,1237

 Like BNIP3, 

BNIP3L is hypoxia-inducible and also interacts with LC3B-II and GABARAP through a 

conserved LIR motif in its amino terminus.
196

 BNIP3L also interacts with RHEB at the 

mitochondria and the LC3-BNIP3L-RHEB complex promotes mitochondrial turnover and 

efficient mitochondrial function.
1578

  

Bre5: A cofactor for the deubiquitinase Ubp3. See also Ubp3. 

C/EBP: See CEBPB.  

BCL2-BCL2L1
interaction domain

W181 49

LC3 interaction motif

TM

Transmembrane domain

164
184

194

NH2
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C9orf72/ALSFTD: C9ORF72 plays an important role in the regulation of endosomal 

trafficking, and interacts with RAB proteins involved in macroautophagy and endocytic 

transport. C9orf72 contains a DENN (differentially expressed in normal and neoplasia)-like 

domain, suggesting that it may function as a GDP-GTP exchange factor for a RAB GTPase, 

similar to other DENN proteins. The normal function of C9orf72 remains unknown but it is 

highly conserved and expressed in many tissues, including the cerebellum and cortex. 

Hexanucleotide (GGGGCC) repeat expansions in a noncoding region of the C9orf72 gene are 

the major cause of familial ALS and frontotemporal dementia.
1579

 

C12orf5: See TIGAR.  

C12orf44: See ATG101  

Ca-P60A/dSERCA: The Drosophila ER Ca
2+

-translocating ATPase. Inhibition of Ca-

P60A with bafilomycin A1 blocks autophagosome-lysosome fusion.
210

 

Caf4: A component of the mitochondrial fission complex that is recruited to degrading 

mitochondria to facilitate mitophagy-specific fission.
676

 

CAL-101: A small molecule inhibitor of the PIK3CD/p110 subunit of class 1A 

phosphoinositide 3-kinase; treatment of multiple myeloma cells results in 

macroautophagy induction.
1580

 

Calcineurin: See PPP3R1. 

CALCOCO2/NDP52 (calcium binding and coiled-coil domain 2): A receptor that binds to the 

bacterial ubiquitin coat and Atg8/LC3 to target invasive bacteria, including S. typhimurium and 

Streptococcus pyogenes for autophagosomal sequestration.
841
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Calpains: A class of calcium-dependent, non-lysosomal cysteine proteases that cleaves and 

inactivates ATG5 and the ATG12–ATG5 conjugate, hence establishing a link between reduced 

Ca
2+

 concentrations and induction of macroautophagy.
1581

  

CALR (calreticulin): A chaperone that is mainly associated with the ER lumen, where it 

performs important functions such as Ca
2+

 buffering, and participates in protein folding 

and maturation of, as well as antigen loading on, MHC molecules.
1582

 An extracellular 

role for CALR has emerged where it acts as an “eat me” signal on the surface of cancer 

cells.
1583

 Importantly, in the context of Hyp-PDT, macroautophagy suppresses CALR 

surface exposure by reducing ER-associated proteotoxicity.
1002,1007,1584

 Disruption of 

LAMP2A also affects CALR surface exposure.
1007

 

CaMKK: See CAMKK2.  

CAMKK2 (calcium/calmodulin-dependent protein kinase kinase 2, beta): Activates AMPK 

in response to an increase in the cytosolic calcium concentration,
1585

 resulting in the induction of 

macroautophagy.
1162

  

CAPNS1 (calpain, small subunit 1): The regulatory subunit of micro- and millicalpain; 

CAPNS1-deficient cells are macroautophagy defective and display a substantial increase in 

apoptotic cell death.
1586

  

CASA (chaperone-assisted selective autophagy): A degradative process that utilizes the 

Drosophila co-chaperone Starvin or its mammalian homolog BAG3 to direct the degradation of 

aggregated substrates through the action of HSPA8, HSPB8, the STUB1/CHIP ubiquitin ligase 

and SQSTM1.
1063

 The requirement for ubiquitination of the substrates (and the absence of a 

requirement for the KFERQ motif) along with the involvement of the ATG proteins differentiate 

this process from CMA, which also uses chaperones for lysosome-dependent degradation. 
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Caspases (cysteine-dependent aspartate-directed proteases): A class of proteases that play 

essential roles in apoptosis (formerly called programmed cell death type I) and inflammation. 

Several pro-apoptotic caspases cleave essential macroautophagy proteins, resulting in the 

inhibition of macroautophagy.
418

 For example, CASP3 and CASP8 cleave BECN1 and inhibit 

macroautophagy.
1587,1588

 

CCCP (carbonyl cyanide m-chlorophenylhydrazone): Protonophore and uncoupler of 

oxidative phosphorylation in mitochondria; stimulates mitochondrial degradation inducing 

mitophagic activity.
232

 

CCDC88A/GIV (coiled-coil domain containing 88A): A guanine nucleotide exchange factor 

for GNAI3 that acts to downregulate macroautophagy.
1589

 CCDC88A disrupts the GPSM1-

GNAI3 complex in response to growth factors, releasing the G protein from the phagophore or 

autophagosome membrane; GNAI3-GTP also activates the class I PI3K, thus inhibiting 

macroautophagy. See also GNAI3. 

CCI-779 (temsirolimus): A water-soluble rapamycin ester that induces macroautophagy. 

Cdc48: A yeast protein that extracts ubiquitinated proteins from the membrane as part of 

ERAD and ER homeotypic fusion,
1590

 but is also required for nonselective 

macroautophagy.
1591

 See also Shp1 and VCP. 

CD46: A cell-surface glycoprotein that interacts with the scaffold protein GOPC to mediate an 

immune response to invasive pathogens including Neisseria and Group A Streptococcus. 

Interaction of pathogens via the Cyt1 cytosolic tail induces macroautophagy, which involves 

GOPC binding to BECN1. CD46 is also used as a cellular receptor by several pathogens.
1592
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CDKN1A/p21 (cyclin-dependent kinase inhibitor 1A [p21, Cip1]): A cyclin-dependent kinase 

inhibitor that is associated with the induction of macroautophagy in melanoma cells upon 

exposure to a telomeric G-quadruplex stabilizing agent.
1593

 

CDKN1B/p27 (cyclin-dependent kinase inhibitor 1B [p27, Kip1]): A cyclin-dependent kinase 

inhibitor that is phosphorylated and stabilized by an AMPK-dependent process and stimulates 

macroautophagy.
1594

  

CDKN2A (cyclin-dependent kinase inhibitor 2A): The CDKN2A locus encodes 2 overlapping 

tumor suppressors that do not share reading frame: p16
INK4a

 and p14
ARF

. The p14
ARF

 tumor 

suppressor protein (p19
ARF

 in mouse) can localize to mitochondria and induce macroautophagy. 

Tumor-derived mutant forms of p14
ARF

 that do not affect the p16
INK4a

 coding region are impaired 

for macroautophagy induction, thus implicating this activity in tumor suppression by this 

commonly mutated locus.
1595

 This gene also encodes a smaller molecular weight variant called 

smARF. See also smARF. 

CEBPB/C/EBP (CCAAT/enhancer binding protein [C/EBP], beta): A transcription factor 

that regulates several autophagy genes; CEBPB is induced in response to starvation, and the 

protein levels display a diurnal rhythm.
954

 

Cell differentiation: This is a process through which a cell commits to becoming a more 

specialized cell type having a distinct form and a specific function(s). Autophagy is activated 

during the differentiation of various normal and cancerous cells, as revealed, for example, in 

adipocytes, erythrocytes, lymphocytes and leukemia cells.
432

  

CEP-1 (C. elegans P-53-like protein): See TP53. 

Ceramide: Ceramide is a bioactive sphingolipid, which plays a mitochondrial receptor role to 

recruit LC3-II-associated phagophores to mitochondria for degradation in response to ceramide 
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stress and DNM1L-mediated mitochondrial fission; the direct binding between ceramide and 

LC3-II involves F52 and I35 residues of LC3B.
570

 

Chaperone-mediated autophagy (CMA): An autophagic process in mammalian cells by which 

proteins containing a particular pentapeptide motif related to KFERQ are transported across the 

lysosomal membrane and degraded.
1596,1597

 The translocation process requires the action of the 

integral membrane protein LAMP2A and both cytosolic and lumenal HSPA8.
1598,1599

  

CHKB (choline kinase beta): A kinase involved in phosphatidylcholine synthesis; mutations in 

CHKB cause mitochondrial dysfunction leading to mitophagy and megaconial congenital 

muscular dystrophy.
1600

 

Chloroquine (CQ): Chloroquine and its derivatives (such as 3-hydroxychloroquine) raise the 

lysosomal pH and ultimately inhibit the fusion between autophagosomes and lysosomes, thus 

preventing the maturation of autophagosomes into autolysosomes, and blocking a late step of 

macroautophagy.
1601

 

CHMP1A (charged multivesicular body protein 1A): CHMP1A is a member of the CHMP 

family of proteins that are involved in multivesicular body sorting of proteins to the interiors of 

lysosomes. CHMP1A regulates the macroautophagic turnover of plastid constituents in 

Arabidopsis thaliana.
767

 

Chromatophagy: A form of macroautophagy that involves nuclear chromatin/DNA leakage 

captured by autophagosomes or autolysosomes.
768

  

Ciliophagy: Degradation by macroautophagy of proteins involved in the process of ciliogenesis 

(formation of primary cilia). Ciliophagy can modulate ciliogenesis positively or negatively 

depending on whether the subset of proteins degraded in autophagosomes are activators or 

inhibitors of the formation of primary cilia.  
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CISD2/NAF-1 (CDGSH iron sulfur domain 2): An integral membrane component that 

associates with the ITPR complex; CISD2 binds BCL2 at the ER, and is required for BCL2 to 

bind BECN1, resulting in the inhibition of macroautophagy.
1602

 CISD2 was reported to be 

associated with the ER, but the majority of the protein is localized at mitochondria, and 

mutations in CISD2 are associated with Wolfram syndrome 2; accelerated macroautophagy in 

cisd2
-/-

 mice may cause mitochondrial degradation, leading to neuron and muscle 

degeneration.
1603

  

CLEAR (coordinated lysosomal expression and regulation) gene network: A regulatory 

pathway involving TFEB, which regulates the biogenesis and function of the lysosome and 

associated pathways including macroautophagy.
607

 See also PPP3R1 and TFEB. 

CLEC16A (C-type lectin domain family 16, member A): See Ema. 

Clg1: A yeast cyclin-like protein that interacts with Pho85 to induce macroautophagy by 

inhibiting Sic1.
1604

  

CLN3 (ceroid-lipofuscinosis, neuronal 3): An endosomal/lysosomal protein whose deficiency 

causes inefficient autolysosome clearance and accumulation of autofluorescent lysosomal 

storage material and ATP5G/subunit c (ATP synthase, H+ transporting, mitochondrial Fo 

complex, ubunit C).
1605,1606

 In human, recessive CLN3 mutations cause juvenile neuronal ceroid 

lipofuscinosis (JNCL; Batten disease). Recessive CLN3 mutations have also been reported in 

cases of autophagic vacuolar myopathy and non-syndromic retinal disease.
1607,1608

 

COG (conserved oligomeric Golgi) complex: A cytosolic tethering complex that functions in 

the fusion of vesicles within the Golgi complex, but also participates in macroautophagy and 

facilitates the delivery of Atg8 and Atg9 to the PAS.
1609

  

Connexins: See gap junction protein.  
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CORM (CO-releasing molecule): Carbon monoxide, partly through activation of 

macroautophagy, exerts cardioprotective effects in a mouse model of metabolic syndrome-

induced myocardial dysfunction.
1610

 

Corynoxine/Cory: An oxindole alkaloid isolated from Uncaria rhynchophylla (Miq.) Jacks 

(Gouteng in Chinese) that is a Chinese herb that acts as a MTOR-dependent macroautophagy 

inducer.
1611

 

Corynoxine B/Cory B: An isomer of corynoxine, also isolated from the Chinese herb Uncaria 

rhynchophylla (Miq.) Jacks that acts as a BECN1-dependent macroautophagy inducer.
1612

 

Crinophagy: Selective degradation of secretory granules by macroautophagy.
1613

 See also 

zymophagy. 

Cryptides: Peptides with a cryptic biological function that are released from cytoplasmic 

proteins by partial degradation or processing through macroautophagy (e.g., neoantimocrobial 

peptide released from ribosomal protein FAU/RPS30).
1614

  

CSNK2 (casein kinase 2): A serine/threonine protein kinase that disrupts the BECN1-BCL2 

complex to induce macroautophagy.
1615

 

 CSNK2 also phosphorylates ATG16L1, in particular on Ser139, to positively regulate 

macroautophagy. See also PPP1. 

Ctl1: A multi-transmembrane protein in the fission yeast Schizosaccharomyces pombe that binds 

to Atg9 and is required for autophagosome formation.
1616

 

Cue5: A yeast receptor similar to mammalian SQSTM1 that binds ubiquitin through its CUE 

domain and Atg8 via its C-terminal AIM.
431

 Some Cue5-dependent substrates are ubiquitinated 

by Rsp5. See also CUET. 
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CUET (Cue5/TOLLIP): A family of macroautophagy receptor proteins containing a CUE 

domain that are involved in macroautophagic clearance of protein aggregates. See also Cue5.
431

 

CUP-5 (coelomocyte uptake defective mutant-5): The ortholog of human MCOLN1 

(mucolipin 1), in C. elegans CUP-5 localizes to lysosomes, and is required for endo-lysosomal 

transport, lysosomal degradation,
1617-1619

 and proteolytic degradation in autolysosomes.
1620

 

CUPS (compartment for unconventional protein secretion): A compartment located near ER 

exit sites that is involved in the secretion of Acb1; Grh1 is localized to the CUPS membrane, and 

Atg8 and Atg9 are subsequently recruited under starvation conditions.
1621

 Atg8 and Atg9 

function in Acb1 secretion, but rapamycin-induced macroautophagy does not result in CUPS 

formation. 

Cvt body: The single-membrane vesicle present inside the vacuole lumen that results from the 

fusion of a Cvt vesicle with the vacuole.
123

  

Cvt complex: A cytosolic protein complex consisting primarily of prApe1 dodecamers in the 

form of an Ape1 complex that are bound to the Atg19 reeptor. This complex may also contain 

Ams1 and Ape4, but prApe1 is the predominant component.
123

 

Cvt vesicle: The double-membrane sequestering vesicle of the Cvt pathway.
123

  

Cysmethynil: A small-molecule inhibitor of ICMT (isoprenylcysteine carboxyl 

methyltransferase); treatment of PC3 cells causes an increase in LC3-II and cell death with 

macroautophagic features.
1622

  

Cytoplasm-to-vacuole targeting (Cvt) pathway: A constitutive, biosynthetic pathway in yeast 

that transports resident hydrolases to the vacuole through a selective macroautophagy-like 

process.
1623

 See also Ams1, Ape1, Ape4 and Atg19. 
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DAF-2 (abnormal dauer formation): Encodes the C. elegans IGF1 receptor homolog 

that acts through a conserved PI3K pathway to negatively regulate the activity of DAF-

16/FOXO, by inducing its phosphorylation and exclusion from the nucleus. DAF-2 acts 

upstream of TOR to inhibit macroautophagy.
253,598,1624

 

DAF-16: The C. elegans ortholog of FOXO transcription factors. 

DALIS (dendritic cell aggresome-like induced structures): Large poly-ubiquitinated 

protein aggregates formed in dendritic cells. These are similar to aggresomes, but they do 

not localize to the microtubule-organizing center. DALIS are transient in nature and 

small DALIS have the ability to move and form larger aggregates; they require 

proteasome activity to clear them.
300

 See also ALIS. 

DAMP (danger/damage-associated molecular pattern): DAMPs are recognized by 

receptors (DDX58/RIG-I-like receptors [RLRs] or TLRs) of the innate surveillance 

response system. DAMPs include “non-self” molecules such as viral RNA, or products of 

necroptosis such as HMGB1.
278

 Response includes activation of macroautophagy to clear 

the DAMP molecule(s).
1625

  

DAP (death-associated protein): A conserved phosphoprotein that is a substrate of 

MTOR and inhibits macroautophagy; inhibition of MTOR results in dephosphorylation 

of DAP and inhibition of macroautophagy, thus limiting the magnitude of the autophagic 

response.
1626

  

DAPK1 (death-associated protein kinase 1): A kinase that phosphorylates Thr119 of BECN1 

to activate it by causing dissociation from BCL2L1/Bcl-xL and BCL2, thus activating 

macroautophagy.
1627

  

DAPK3 (death-associated protein kinase 3): See Sqa. 
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DCN (decorin): An archetypical member of the small leucine rich proteoglycans that 

functions as a soluble pro-autophagic and pro-mitophagic signal. DCN acts as a partial 

agonist for KDR/VEGFR2 and MET for endothelial cell macroautophagy and tumor cell 

mitophagy, respectively. DCN elicits these processes in a PEG3-dependent manner to 

induce endothelial cell macroautophagy, and in a TCHP/mitostatin-dependent manner for 

tumor cell mitophagy. It is postulated that induction of these fundamental cellular 

programs underlies the oncostatic and angiostatic properties of DCN.
1628

 

Dcp-1 (death caspase-1): A Drosophila caspase that localizes to mitochondria and 

positively regulates macroautophagic flux.
1629

 

Dcp2/DCP2 (decapping mRNA 2): A decapping enzyme involved in the 

downregulation of ATG transcripts.
1630

 See also Dhh1. 

DCT-1: The C. elegans homolog of BNIP3 and BNIP3L, which functions downstream of 

PINK-1 and PDR-1 to regulate mitophagy under conditions of oxidative stress.
1631

 

DDIT4/DIG2/RTP801/REDD1 (DNA-damage-inducible transcript 4): The DDIT4 

protein is notably synthesized in response to glucocorticoids or hypoxia and inhibits 

MTOR, resulting in the induction of macroautophagy and enhanced cell survival.
1632

  

Deconjugation: The Atg4/ATG4-dependent cleavage of Atg8–PE/LC3-II that releases 

the protein from PE (illustrated for the nascent yeast protein that contains a C-terminal 

arginine). The liberated 

Atg8/LC3 can subsequently 

go through another round of 

conjugation. Atg8*, activated Atg8. 

Decorin: See DCN. 

Atg8 R

Atg4 Atg3

Conjugation Deconjugation

Atg8 *Atg8 PEAtg8 Atg8

Atg4Atg7

+ PE

+ PE
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Decoupled signaling: When limited for an auxotrophic requirement, yeast cells fail to induce the 

expression of autophagy genes even when growing slowly, which contributes to decreased 

cell viability.
1633

 

Desat1: A Drosophila lipid desaturase that localizes to autophagosomes under starvation 

conditions; the Desat mutant is defective in macroautophagy induction.
1634

  

DFCP1: See ZFYVE1.  

Dga1: See Ayr1. 

Dhh1: An RCK member of the RNA-binding DExD/H-box proteins involved in mRNA 

decapping; Dhh1 in S. cerevisiae and Vad1 in Cryptococcus neoformans bind certain ATG 

transcripts, leading to the recruitment of the Dcp2 decapping enzyme and mRNA 

degradation.
1630

 See also Dcp2. 

Diacylglycerol: A lipid second messenger that contributes to macroautophagic targeting of 

Salmonella-containing vacuoles.
1635

  

DIG2: See DDIT4.  

DIRAS3 (DIRAS family, GTP-binding RAS-like 3): A protein that interacts with BECN1, 

displacing BCL2 and blocking BECN1 dimer formation, thus promoting the interaction of 

BECN1 with PIK3C3 and ATG14, resulting in macroautophagy induction.
1636

  

Dnm1: A dynamin-related GTPase that is required for both mitochondrial and peroxisomal 

fission. Dnm1 is recruited to degrading mitochondria by Atg11, or to degrading peroxisomes by 

both Atg11 and Atg36 (or PpAtg30), to mediate mitophagy- or pexophagy-specific fission.
676,1637

 

See also DNM1L. 
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DNM1L/Drp1 (dynamin 1-like): The mammalian homolog of yeast Dnm1. PRKA-mediated 

phosphorylation of rat DNM1L on Ser656 (Ser637 in humans) prevents both mitochondrial 

fission and some forms of mitophagy in neurons.
1638

 See also Dnm1. 

DNM2 (dynamin 2): DNM2 is recruited to extruded autolysosomal membranes during the 

process of autophagic lysosome reformation and catalyzes their scission, promoting the 

regeneration of nascent protolysosomes during macroautophagic flux.
1552

 See also autophagic 

lysosome reformation. 

dom (domino): A Drosophila SWI2/SNF2 chromatin remodeling protein. A loss-of-function 

mutation at the dom locus synergizes with genotypes depressed in macroautophagy pathway 

activity.
1639

 

Dopamine: A neurotransmitter whose accumulation outside vesicles induces macroautophagy 

and cell degeneration.
1640

 

DOR: See TP53INP2.  

DRAM1 (damage-regulated autophagy modulator 1): DRAM1 gene expression is induced by 

TP53 in response to DNA damage that results in cell death by macroautophagy.
559

 DRAM1 is an 

endosomal-lysosomal membrane protein that is required for the induction of macroautophagy. 

The knockdown of DRAM1 causes downregulation of VRK1 by macroautophagy, similar to the 

effect of knocking down BECN1. 

Draper: A Drosophila homolog of the Caenorhabditis elegans engulfment receptor 

CED-1 that is required for macroautophagy associated with cell death during salivary 

gland degradation, but not for starvation-induced macroautophagy in the fat body.
1641

  

Drs: See SRPX.  
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E2F1: A mammalian transcription factor that upregulates the expression of BNIP3, LC3, ULK1 

and DRAM1 directly, and ATG5 indirectly.
1642

 E2F1 plays a role during DNA damage- and 

hypoxia-induced macroautophagy. 

EAT (early autophagy targeting/tethering) domain: The C-terminal domain of Atg1, which is 

able to tether vesicles.
1643

 This part of the protein also contains the binding site for Atg13. 

EAT-2 (eating abnormal): A ligand-gated ion channel subunit closely related to the non-alpha 

subunit of nicotinic acetylcholine receptors, which functions to regulate the rate of pharyngeal 

pumping. eat-2 loss-of-function mutants are dietary restricted and require macroautophagy for 

the extension of life span.
1624,1644,1645

  

EDTP: See MTMR14. 

EEA1 (early endosome antigen 1): A RAB5 effector used as a common marker for 

early endosome vesicles. 

EEF1A1/EF1A/eF1 (eukaryotic translation elongation factor 1 alpha 1): 

Multifunctional member of the family of G-proteins with different cellular variants. The 

lysosomal variant of this protein acts coordinately with GFAP at the lysosomal 

membrane to modulate the stability of the CMA translocation complex. Release of 

membrane bound EEF1A1 in a GTP-dependent manner promotes disassembly of the 

translocation complex and consequently reduces CMA activity.
1646

  

eF1: See EEF1A1.  

EGFR (epidermal growth factor receptor): A tyrosine kinase receptor that negatively 

regulates macroautophagy through PI3K, AKT, and MTOR modulation.
502

 

EGO complex: The Ego1, Ego3 and Gtr2 proteins form a complex that positively regulates 

yeast microautophagy.
1647
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eIF2 kinase:  See EIF2S1 kinase.  

EIF2AK2/PKR (eukaryotic translation initiation factor 2-alpha kinase 2): A mammalian 

EIF2S1/EIF2 alpha kinase that induces macroautophagy in response to viral infection.
537

  

EIF2AK3/PERK (eukaryotic translation initiation factor 2-alpha kinase 3): A mammalian 

EIF2S1/EIF2 alpha kinase that may induce macroautophagy in response to ER stress.
576

  

EIF2S1 (eukaryotic translation initiation factor 2, subunit 1, alpha, 35kDa): An initiation 

factor that is involved in stress-induced translational regulation of macroautophagy. 

EIF2S1/eIF2 kinase: There are 4 mammalian EIF2S1/EIF2 alpha kinases that respond to 

different types of stress. EIF2AK2 and EIF2AK3 induce macroautophagy in response to virus 

infection and ER stress, respectively.
576,1648

 See also Gcn2, EIF2AK2 and EIF2AK3. 

Elaiophylin: A natural compound late-stage macroautophagy inhibitor that results in lysosomal 

membrane permeabilization and decreased cell viability.
1649

 See also LMP. 

Ema (endosomal maturation defective): Ema is required for phagophore expansion and for 

efficient mitophagy in Drosophila fat body cells. It is a transmembrane protein that relocalizes 

from the Golgi to phagophores following starvation.
1650

 The vertebrate ortholog CLEC16A 

regulates mitophagy and is a susceptibility locus for many autoimmune disorders.
1651,1652

 

Embryoid bodies/EBs: Three-dimensional aggregates of pluripotent stem cells including 

embryonic stem cells and induced pluripotent stem cells. 

EMC6/TMEM93 (ER membrane protein complex subunit 6): A novel ER-localized 

transmembrane protein, which interacts with both RAB5A and BECN1 and colocalizes with the 

omegasome marker ZFYVE1/DFCP1.
1653

 EMC6 enhances autophagosome formation when 

overexpressed. 
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Endorepellin: The anti-angiogenic C-terminal cleavage product of HSPG2/perlecan. 

Endorepellin engages KDR/VEGFR2 and ITGA2/21 integrin in a novel mechanism termed 

dual receptor antagonism for achieving endothelial cell specificity and function. Endorepellin 

evokes endothelial cell macroautophagy downstream of KDR and in a PEG3-dependent 

manner.
1654

 

Endosomal microautophagy (e-MI): A form of autophagy in which cytosolic proteins are 

sequestered into late endosomes/MVBs through a microautophagy-like process. Sequestration 

can be nonselective or can occur in a selective manner mediated by HSPA8. This process differs 

from chaperone-mediated autophagy as it does not require substrate unfolding and it is 

independent of the CMA receptor LAMP2A.
1062

 This process occurs during MVB formation and 

requires the ESCRT-I and ESCRT-III protein machinery. See also endosome and multivesicular 

body. 

Endosome: The endosomal compartments receive molecules engulfed from the extracellular 

space and are also in communication with the Golgi apparatus. The endosomal system can be 

viewed as a series of compartments starting with the early endosome. From there, cargos can be 

recycled back to the plasma membrane; however, more typically, internalized cargo is 

transported to the late endosome/MVB. These latter compartments can fuse with lysosomes. 

Ensosomal maturation from early endosomes is a dynamic process that involves a progressive 

reduction in lumenal pH. In mammalian cells, early and/or multivesicular endosomes fuse with 

autophagosomes to generate amphisomes. 

EP300/p300 (E1A binding protein p300): An acetyltransferase that inhibits 

macroautophagy by acetylating ATG5, ATG7, ATG12 and/or LC3.626 EP300 is also 
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involved in the GLI3-dependent transcriptional activation of VMP1 in cancer 

cells.604
 See also GLI3. 

EPAS1/HIF2A/Hif-2 (endothelial PAS domain protein 1): Part of a dimeric transcription 

factor in which the  subunit is regulated by oxygen; the hydroxylated protein is degraded by the 

proteasome. EPAS1 activation in mouse liver augments peroxisome turnover by pexophagy, and 

the ensuing deficiency in peroxisomal function encompass major changes in the lipid profile that 

are reminiscent of peroxisomal disorders.
744

 

epg (ectopic PGL granules) mutants: C. elegans mutants that are defective in the 

macroautophagic degradation of PGL-1, SEPA-1 and/or SQST-1.
603

 The EPG-3, EPG-7, 

EPG-8 and EPG-9 proteins are homologs of VMP1, Atg11/RB1CC1, ATG14 and 

ATG101, respectively, whereas EPG-1 may be a homolog of ATG13.
1655

  

EPG-1: The highly divergent homolog of Atg13 in C. elegans. EPG-1 directly interacts 

with the C. elegans Atg1 homolog UNC-51.
1655

 See also Atg13. 

EPG-2: A nematode-specific coiled-coil protein that functions as a scaffold protein 

mediating the macroautophagic degradation of PGL granule in C. elegans. EPG-2 

directly interacts with SEPA-1 and LGG-1. EPG-2 itself is also degraded by 

macroautophagy.
603

 

EPG-3: A metazoan-specific macroautophagy protein that is the homolog of human 

VMP1. EPG-3/VMP1 are involved in an early step of autophagosome formation.
603

 

EPG-4: An ER-localized transmembrane protein that is the homolog of human 

EI24/PIG8. EPG-4 is conserved in multicellular organisms, but not in yeast. EPG-4 

functions in THE progression of omegasomes to autophagosomes.
603
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EPG-5: A novel macroautophagy protein that is conserved in multicellular organisms. 

EPG-5 regulates lysosome degradative capacity and thus could be involved in other 

pathways that terminate at this organelle.
603

 Mutations in the human EPG5 gene lead to 

Vici syndrome.
1656

 

EPG-6: A WD40 repeat PtdIns3P-binding protein that directly interacts with ATG-2.
542

 

EPG-6 is the C. elegans functional homolog of yeast Atg18 and probably of mammalian 

WDR45/WIPI4. EPG-6 is required for the progression of omegasomes to 

autophagosomes. See also Atg18. 

EPG-7: A scaffold protein mediating the macroautophagic degradation of the C. elegans 

SQSTM1 homolog SQST-1.
1506

 EPG-7 interacts with SQST-1 and also with multiple 

ATG proteins. EPG-7 itself is degraded by macroautophagy. 

EPG-8: An essential macroautophagy protein that functions as the homolog of yeast 

Atg14 in C. elegans.
1208

 EPG-8 is a coiled-coil protein and directly interacts with the C. 

elegans BECN1 homolog BEC-1. See also Atg14. 

EPG-9: A protein with significant homology to mammalian ATG101 in C. elegans.
1207

 

EPG-9 directly interacts with EPG-1/Atg13. See also ATG101. 

EPG-11: An arginine methyltransferase in C. elegans that is the homolog of PRMT1.
1657

 

EPG-11 regulates the association of PGL granules with EPG-2 and LGG-1 puncta. EPG-

11 directly methylates arginine residues in the RGG domain of PGL-1 and PGL-3.  

EPM2A/laforin (epilepsy, progressive myoclonus type 2A, Lafora disease [laforin]): A 

member of the dual specificity protein phosphatase family that acts as a positive regulator of 

macroautophagy probably by inhibiting MTOR, as EPM2A deficiency causes increased MTOR 

activity.
1658

 Mutations in the genes encoding EPM2A or the putative E3-ubiquitin ligase 
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NHLRC1/malin, which form a complex, are associated with the majority of defects causing 

Lafora disease, a type of progressive neurodegeneration. See also NHLRC1. 

ER-phagy: See reticulophagy. 

ERK1: See MAPK3.  

ERK2: See MAPK1. 

ERMES (ER-mitochondria encounter structure): A complex connecting the endoplasmic 

reticulum and the mitochondrial outer membrane in yeast. The core components of ERMES are 

the mitochondrial outer membrane proteins Mdm10 and Mdm34, the ER membrane protein 

Mmm1, and the peripheral membrane protein Mdm12. ERMES plays an important role in yeast 

mitophagy presumably by supporting the membrane lipid supply for the growing phagophore 

membrane.
1659

 

Everolimus (RAD-001): An MTOR inhibitor similar to rapamycin that induces 

macroautophagy. 

ESC8: A macroautophagy inducer that bears a cationic estradiol moiety and causes 

downregulation of p-MTOR and its downstream effectors including p-RPS6KB.
1660

 

EVA1A/FAM176A/TMEM166 (eva-1 homolog A [C. elegans]): An integral 

membrane protein that induces macroautophagy and cell death when 

overexpressed.
1661,1662

 See also TMEM74. 

EXOC2/SEC5L1 (exocyst complex component 2): A component of the exocyst 

complex; EXOC2 binds RALB, BECN1, MTORC1, ULK1 and PIK3C3 under nutrient-

rich conditions and prevents these components from interacting with EXOC8/EXO84, 

thus inhibiting macroautophagy.
1663

 See also RALB and EXOC8. 
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EXOC8/EXO84 (exocyst complex component 8): A component of the exocyst complex, and 

an effector of RALB that is involved in nucleation and/or expansion of the phagophore; EXOC8 

binds RALB under nutrient-poor conditions, and stimulates the formation of a complex that 

includes ULK1 and the class III PtdIns3K.
1663

 See also RALB and EXOC2. 

Exophagy: A process in yeast and mammalian cells that is used for protein secretion that 

is independent of the secretory pathway (i.e., unconventional secretion), and dependent 

on Atg proteins and the Golgi protein Grh1; Acb1 (acyl-coenzyme A-binding protein) 

uses this route for delivery to the cell surface.
1664-1666

 See also secretory autophagy. 

FAM48A: See SUPT20H. 

FAM134B (family with sequence similarity 134, member B): ER-resident receptors 

that function in reticulophagy through interaction with LC3 and GABARAP.
808

 

FAM176A: See EVA1A. 

Fasudil: A ROCK (Rho-associated, coiled-coil containing protein kinase) inhibitor that 

enhances macroautophagy.
1667

  

Far11: A MAP kinase target that is involved in the dephosphosphorylation of Atg13 and the 

induction of macroautophagy.
1668

 Far11 interacts with Pph21, Pph22 and Pph3 and may 

coordinate different cellular stress responses by regulating phosphatase activity. 

Ferritinophagy: The selective degradation of ferritin through a macroautophagy-like process.
769

 

This process involves a specificity receptor, NCOA4. 

FEZ1 (fasciculation and elongation protein zeta 1 [zygin I]): FEZ1 interacts with ULK1 or with 

UVRAG, and forms a trimeric complex with either component by also binding SCOC.
1669

 FEZ1 

appears to be a negative regulator of macroautophagy when it is bound only to ULK1, and this 

inhibition is relieved upon formation of the trimeric complex containing SCOC. Similarly, the 
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SCOC-FEZ1-UVRAG complex is inhibitory; dissociation of UVRAG under starvation 

conditions allows the activation of the class III PtdIns3K complex. See also SCOC. 

FIP200: See RB1CC1. 

FIG4 (FIG4 phosphoinositide 5-phosphatase): A phospholipid phosphatase that controls the 

generation and turnover of the PtdIns(3,5)P2 phosphoinositide. Loss of FIG4 causes a decrease of 

PtdIns(3,5)P2 levels, enlargement of late endosomes and lysosomes and cytosolic 

vacuolization.
1670

 In human, recessive mutations in FIG4 are responsible for the 

neurodegenerative Yunis-Varón syndrome, familial epilepsy with polymicrogyria, and Charcot-

Marie-Tooth type 4J neuropathy. Haploinsufficiency of FIG4 may also be a risk factor for 

amyotrophic lateral sclerosis. 

Fis1: A component of the mitochondrial fission complex. Fis1 also plays a role in peroxisomal 

fission by recruiting Dnm1 to peroxisomes; it interacts with Atg11 to facilitate mitophagy- and 

pexophagy-specific fission.
676,1637

 See also Dnm1. 

FKBP1A (FK506 binding protein 1A, 12kDa): An immunophilin that forms a complex with 

rapamycin and inhibits MTOR. 

FKBP5/FKBP51 (FK506 binding protein 5): An immunophilin that forms a complex with 

FK506 and rapamycin; FKBP5 promotes macroautophagy in irradiated melanoma cells, thus 

enhancing resistance to radiation therapy.
1671

 FKBP5 also associates with BECN1 and shows 

synergistic effects with antidepressants on macroautophagy in cells, mice and humans, possibly 

explaining its requirement in antidepressant action.
1672

 

FKBP12: See FKBP1A. 

FKBP51: See FKBP5.  
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FLCN (folliculin): A tumor suppressor mutated in Birt-Hogg-Dubé syndrome.
1673

 FLCN 

interacts with GABARAP and this association is modulated by the presence of either FNIP1 

(folliculin interacting protein 1) or FNIP2. ULK1 can induce FLCN phosphorylation, which 

modulates the FLCN-FNIP-GABARAP interaction.
1674

 FLCN is also linked to MTOR 

modulation through its interaction with the RRAG GTPases on lysosomes.
1675,1676

 

FM 4-64: A lipophilic dye that primarily stains endocytic compartments and the yeast 

vacuole limiting membrane. 

FNBP1L (formin binding protein 1-like): An F-BAR-containing protein that interacts 

with ATG3 and is required for the macroautophagy-dependent clearance of S. 

typhimurium, but not other types of autophagy.
1677

  

FNIP1 (folliculin interacting protein 1): An interactor with the tumor suppressor 

FLCN. FNIP1
444

 and its homolog FNIP2
1674

 can also interact with GABARAP. 

FOXO1 (forkhead box O1): A mammalian transcription factor that regulates 

macroautophagy independent of transcriptional control; the cytosolic form of FOXO1 is 

acetylated after dissociation from SIRT2, and binds ATG7 to allow induction of 

macroautophagy in response to oxidative stress or starvation.
1678

 FOXO1 can also be 

deacetylated by SIRT1, which leads to upregulation of RAB7 and increased autophagic 

flux.
1679

 The C. elegans ortholog is DAF-16. See also SIRT1. 

FOXO3 (forkhead box O3): A transcription factor that stimulates macroautophagy through 

transcriptional control of autophagy-related genes.
613,1680

 The C. elegans ortholog is DAF-16. 

Frataxin: See FXN. 

Fsc1: A type I transmembrane protein localizing to the vacuole membrane in the fission yeast 

Schizosaccharomyces pombe; required for the fusion of autophagosomes with vacuoles.
1616

 



 476 

FUNDC1 (FUN14 domain containing 1): A mitochondrial outer membrane protein that 

functions as a receptor for hypoxia-induced mitophagy.
1681

 FUNDC1 contains a LIR and binds 

LC3. 

FUS (FUS RNA binding protein): A DNA/RNA binding protein involved in DNA repair, gene 

transcription, and RNA splicing. FUS has also been implicated in tumorigenesis and RNA 

metabolism, and multiple missense and nonsense mutations in FUS are associated with 

amyotrophic lateral sclerosis. Macroautophagy reduces FUS-positive stress granules.
1682

 

FXN (frataxin): A nuclear-encoded protein involved in iron-sulfur cluster protein biogenesis. 

Reduced expression of the C. elegans homolog, FRH-1, activates autophagy in an evolutionarily 

conserved manner.
1212

 

FYCO1 (FYVE and coiled-coil domain containing 1): A protein that interacts with LC3, 

PtdIns3P and RAB7 to move autophagosomes toward the lysosome through microtubule plus 

end-directed transport.
1683

  

Gi3: See GNAI3. 

GABA (γ‐ aminobutyric acid): GABA inhibits the selective autophagy pathways mitophagy 

and pexophagy through Sch9, leading to oxidative stress, which can be mitigated by the Tor1 

inhibitor rapamycin.
1684

 

GNAI3 (guanine nucleotide binding protein [G protein], alpha inhibiting activity 

polypeptide 3): A heterotrimeric G protein that activates macroautophagy in the GDP-bound 

(inactive) form, and inhibits it when bound to GTP (active state).
1685,1686

 See also GPSM1, 

RGS19, MAPK1/3 and CCDC88A. 

GABARAP [GABA(A) receptor-associated protein]: A homolog of LC3.
513,1687

 The 

GABARAP family includes GABARAP, GABARAPL1/Atg8L/GEC1, and 
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GABARAPL2/GATE-16/GEF2. The GABARAP proteins are involved in autophagosome 

formation and cargo recruitment.
134

  

GADD34: See PPP1R15A.  

GAIP: See RGS19.  

Gap junction proteins/connexins: Multispan membrane proteins that mediate intercellular 

communication through the formation of hemi-channels or gap junctions at the plasma 

membrane. These proteins act as endogenous inhibitors of autophagosome formation by directly 

interacting and sequestering in the plasma membrane essential ATG proteins required for 

autophagosome biogenesis.  

GATA1: A hematopoietic GATA transcription factor, expressed in erythroid precursors, 

megakaryocytes, eosinophils, and mast cells,  that provides the differentiating cells with the 

requisite macroautophagy machinery and lysosomal components to ensure high-fidelity 

generation of erythrocytes.
612

 See also ZFPM1/FOG1. 

GATE-16: See GABARAP.  

Gaucher disease (GD): Caused by mutations in the gene encoding 

GBA/glucocerebrosidase (glucosidase, beta, acid), Gaucher disease is the most common 

of the lysosomal storage disorders and can increase susceptibility to Parkinson disease. 

1688-1690
 

GBA/glucocerbrosidase (glucosidase, beta acid): A lysosomal enzyme that breaks down 

glucosylceramide to glucose and ceramide. Mutations cause Gaucher disease and are associated 

with increased risk of Parkinson Disease. Loss of GBA is also associated with impaired 

autophagy and failure to clear dysfunctional mitochondria, which accumulate in the cell.
1691
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Gcn2: A mammalian and yeast EIF2S1/eIF2 serine/threonine kinase that causes the activation 

of Gcn4 in response to amino acid depletion, thus positively regulating macroautophagy.
1648

  

Gcn4: A yeast transcriptional activator that controls the synthesis of amino acid biosynthetic 

genes and positively regulates macroautophagy in response to amino acid depletion.
1648

  

GCN5L1: A component of the mitochondrial acetyltransferase activity that 

modulates mitophagy and mitochondrial biogenesis.
1692

 

GEEC (GPI-enriched endocytic compartments) pathway: A form of clathrin-

independent endocytosis that contributes membrane for phagophore expansion.
1693

 

GFAP (glial fibrilary acid protein): intermediate filament protein ubiquitously 

distributed in all cell types that bears functions beyond filament formation. Monomeric 

and dimeric forms of this protein associate with the cytosolic side of the lysosomal 

membrane and contribute to modulating the stability of the CMA translocation complex 

in a GTP-dependent manner coordinated with EEF1A/eF1 also at the lysosomal 

membrane.
1646

  

GFER/ERV1 (growth factor, augmenter of liver regeneration): A flavin adenine 

dinucleotide-dependent sulfhydryl oxidase that is part of a disulfide redox system in the 

mitochondrial intermembrane space, and is also present in the cysosol and nucleus. 

Downregulation of GFER results in elevated levels of the mitochondrial fission GTPase 

DNM1L/DRP1, and decreased mitophagy.
1694

  

GILT: See IFI30. 

GIV/Girdin: See CCDC88A.  
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GLI3 (GLI family zinc finger 3): A C2H2 type of zinc finger transcription factor that plays a 

role in the transcriptional activation of VMP1 during the induction of autophagy by the oncogene 

KRAS.
604

 See also EP300. 

Glycophagy (glycogen autophagy): The selective sequestration of glycogen and subsequent 

vacuolar hydrolysis of glycogen to produce glucose; this can occur by a micro- or 

macroautophagic process and has been reported in mammalian newborns as well as filamentous 

fungi.
1244,1245,1695,1696

 

GOPC/PIST/FIG/CAL (Golgi-associated PDZ and coiled-coil motif-containing protein): 

Interacts with BECN1, and the SNARE protein STX6 (syntaxin 6). GOPC can induce autophagy 

via a CD46-Cyt-1 domain-dependent pathway following pathogen invasion.
1592

  

Gp78: See AMFR. 

GPNMB (glycoprotein [transmembrane] nmb): A protein involved in kidney repair that 

controls the degradation of phagosomes through macroautophagy.
1697

  

GPSM1/AGS3 (G-protein signaling modulator 1): A guanine nucleotide dissociation inhibitor 

for GNAI3 that promotes macroautophagy by keeping GNAI3 in an inactive state.
1589

 GPSM1 

directly binds LC3 and recruits GNAI3 to phagophores or autophagosomes under starvation 

conditions to promote autophagosome biogenesis and/or maturation. See also GNAI3. 

Granulophagy: The process of bulk autophagic degradation of mRNP granules. The process has 

been characterized in S. cerevisiae and mammalian cells and is dependent on Cdc48/VCP in 

addition to the core autophagic machinery. The process is partially impaired by disease-causing 

mutations in VCP.
1698

 

GSK3B/GSK-3 (glycogen synthase kinase 3 beta): A regulator of macroautophagy. GSK3B 

may act positively by inhibiting MTOR through the activation of TSC1/2 and by activating 
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ULK1 through KAT5.
1699

 GSK3B modulates protein aggregation through the phosphorylation of 

the macroautophagy receptor NBR1.
1451

 GSK3B, however, it is also reported to be a negative 

regulator of macroautophagy. See also KAT5. 

HDAC6 (histone deacetylase 6): A microtubule-associated deacetylase that interacts with 

ubiquitinated proteins. HDAC6 stimulates autophagosome-lysosome fusion by promoting the 

remodeling of F actin, and the quality control function of macroautophagy.
635,636,1700

 HDAC is 

also a biomarker of aggresomes.
1701

 

HIF1A/HIF-1(hypoxia-inducible factor 1, alpha subunit [basic helix-loop-helix 

transcription factor]): A dimeric transcription factor in which the  subunit is regulated by 

oxygen; the hydroxylated protein is degraded by the proteasome. HIF1A-mediated expression of 

BNIP3 results in the disruption of the BCL2-BECN1 interaction, thus inducing 

macroautophagy.
1702,1703

 HIFA also regulates xenophagic degradation of intracellular E. coli.
1704

 

HK2 (hexokinase 2): The enzyme responsible for phosphorylation of glucose at the 

beginning of glycolysis; during glucose starvation, HK2 switches from a glycolytic role 

and directly binds to and inhibits MTORC1 to induce macroautophagy.
1705

 

HLH-30: C. elegans ortholog of the helix-loop-helix transcription factor TFEB. 

HMGB1 (high mobility group box 1): A chromatin-associated nuclear protein that 

translocates out of the nucleus in response to stress such as ROS; HMGB1 binds to 

BECN1, displacing BCL2, thus promoting macroautophagy and inhibiting apoptosis.
278

 

In addition, macroautophagy promotes the release of HMGB1 from the nucleus and the 

cell, and extracellular HMGB1 can further induce macroautophagy through binding 

AGER.
1706,1707

 See also AGER. 
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Hog1: A yeast MAPK involved in hyperosmotic stress, which is a homolog of mammalian 

MAPK/p38; Hog1 is required for mitophagy, but not other types of selective autophagy or 

nonselective autophagy.
1708

 See also Pbs2, Slt2 and MAPK. 

Hrr25: A casein kinase δ/ε homologous protein kinase regulating diverse cellular processes such 

as DNA repair and vesicular trafficking. Hrr25 phosphorylates the C terminus of Atg19, which is 

essential for Atg19 binding to Atg11 and subsequent Cvt vesicle formation.
1709

 Hrr25 also 

phosphorylates Atg36, and this phosphorylation is required for the interation of Atg36 with 

Atg11 and subsequent pexophagy.
1710

 

HSPA1A: The major cytosolic stress-inducible version of the HSP70 family. This protein 

localizes to the lysosomal lumen in cancer cells, and pharmacological inhibition leads to 

lysosome dysfunction and inhibition of autophagy.
1711

  

HSPA5/GRP78/BiP (heat shock 70 kDa protein 5 [glucose-regulated protein, 78 kDa]): A 

master regulator of the UPR. This chaperone, maintaining ER structure and homeostasis, can 

also facilitate macroautophagy.
1712

 

HSPA8/HSC70 (heat shock 70kDa protein 8): This multifunctional cytosolic chaperone is the 

constitutive member of the HSP70 family of chaperones and participates in targeting of cytosolic 

proteins to lysosomes for their degradation via chaperone-mediated autophagy.
1713

 The cytosolic 

form of the protein also regulates the dynamics of the CMA receptor, whereas the lumenal form 

(lys-HSPA8) is required for substrate translocation across the membrane.
1714

 This chaperone 

plays a role in the targeting of aggregated proteins (in a KFERQ-independent manner) for 

degradation through chaperone-assisted selective autophagy,
1063

 and in KFERQ-dependent 

targeting of cytosolic proteins to late endosomes for microautophagy.
1062

 See also chaperone-

assisted selective autophagy, chaperone-mediated autophagy, and endosomal microautophagy. 
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HSC70: See HSPA8. 

HSP70 (heat shock protein 70): The major cytosolic heat shock-inducible member of the 

HSP70 family. This form accumulates in the lysosomal lumen in cancer cells. HSP70 is also a 

biomarker of aggresomes.
1715

 See also HSPA1A.   

HSP90: See HSP90AA1.  

HSP90AA1/HSP90/HSPC1 (heat shock protein 90kDa alpha [cytosolic], class A member 1): 

A cytosolic chaperone that is also located in the lysosome lumen. The cytosolic form helps to 

stabilize BECN1, and promotes macroautophagy.
1716

 The lysosomal form of HSP90AA1 

contributes to the stabilization of LAMP2A during its lateral mobility in the lysosomal 

membrane.
1717

  

HSPC1: See HSP90AA1. 

HTRA2/Omi (HtrA serine peptidase 2): A serine protease that degrades HAX1, a BCL2 

family-related protein, to allow macroautophagy induction; knockdown of HTRA2, or the 

presence of a protease-defective mutant form, results in decreased basal macroautophagy and 

may lead to neurodegeneration.
1718

  

Hypersensitive response: A rapid and locally restricted form of programmed cell death as part 

of the plant immune response to pathogen attack. The hypersensitive response is activated by 

different immune receptors upon recognition of pathogen-derived effector proteins, and can be 

positively regulated by autophagy.
1039,1043,1719

 

iC-MA (immune cell-mediated autophagy): IL2-activated natural killer cell- and T cell-

induced macroautophagy.
1720

 

Ice2: See Ayr1. 
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ICP34.5: A neurovirulence gene product encoded by the herpes simplex virus type 1 (nns) that 

blocks EIF2S1-EIF2AK2 induction of autophagy.
1648

 ICP34.5-dependent inhibition of autophagy 

depends upon its ability to bind to BECN1.
852

  

IDP (Intrinsically disordered protein): A protein that does not possess unique structure and 

exists as a highly dynamic ensemble of interconverting conformations.
1721-1724

 IDPs are very 

common in nature
1725

 and have numerous biological functions that complement the functional 

repertoire of ordered proteins.
1726-1729

 Many proteins involved in autophagy are IDPs.
1730,1731

 

IDPR (intrinsically disordered protein region): A protein region without unique structure that 

may be biologically important. IDPRs are considered as a source of functional novelty,
1732

 and 

they are common sites of protein-protein interactions
1733

 and posttranslational modifications.
1734

  

IFI30/GILT (interferon, gamma-inducible protein 30): A thiol reductase that controls ROS 

levels; in the absence of IFI30 there is an increase in oxidative stress that results in the 

upregulation of macroautophagy.
1735

 

IKK (IB kinase): An activator of the classical NFKB pathway composed of 3 subunits 

(CHUK/IKK/IKK1, IKBKB/IKK/IKK2, IKBKG/IKK/NEMO) that are required for optimal 

induction of macroautophagy in human and mouse cells.
1736

  

iLIR: A web resource for prediction of Atg8 family interacting proteins 

(http://repeat.biol.ucy.ac.cy/iLIR).
1409

 

Iml1 complex: A protein complex containing Iml1, Npr2 and Npr3 that regulates non-nitrogen-

starvation-induced autophagosome formation; the complex partially localizes to the PAS.
1737

 See 

also non-nitrogen-starvation (NNS)-induced autophagy. 

http://repeat.biol.ucy.ac.cy/iLIR


 484 

Immunoamphisomes: An organelle derived from the fusion of endosomes/phagosomes 

with autophagosomes that regulate dendritic cell-mediated innate and adaptive immune 

responses.
1738

  

Immunophagy: A sum of diverse immunological functions of autophagy.
1739

  

InlK: An internalin family protein on the surface of L. monocytogenes that recruits vault 

ribonucleoprotein particles to escape xenophagy.
1740

 

Innate immune surveillance: Recognition and response system for the sensing of DAMPs, 

including pathogens and products of somatically mutated genes. Innate surveillance responses 

include activation of macroautophagy to degrade DAMPs.
1625

  

IMPA/inositol monophosphatase: An enzyme that regulates the level of inositol 1,4,5-

triphosphate (IP3) levels. Inhibition of IMPA stimulates macroautophagy independent of 

MTOR.
1159

  

IP3R: See ITPR.  

IRGM (immunity-related GTPase family, M): Involved in the macroautophagic control of 

intracellular pathogens.
1741

 In mouse, this protein is named IRGM1. 

Irs4: Irs4 and Tax4 localize to the PAS under autophagy-inducing conditions in yeast and play a 

role in the recruitment of Atg17.
1742

 These proteins have partially overlapping functions and are 

required for efficient nonselective macroautophagy and pexophagy. 

Isolation membrane: See phagophore. 

ITM2A (integral membrane protein 2A): A target of PRKA/PKA-CREB that interacts with 

the V-ATPase and interferes with macroautophagic flux.
1743

 

ITPR1/2/3 (inositol 1,4,5-trisphosphate receptor, type 1/2/3): A large tetrameric intracellular 

Ca
2+

-release channel present in the ER that is responsible for the initiation/propagation of 
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intracellular Ca
2+

 signals that can target the cytosol and/or organelles. The ITPR is activated by 

inositol 1,4,5-trisphosphate produced in response to extracellular agonists. Many proteins 

regulate the ITPR including anti-apoptotic BCL2-family proteins and BECN1. The ITPR can 

inhibit autophagy by scaffolding BECN1 as well as by driving Ca
2+

-dependent ATP 

production,
1159,1181,1183

 whereas BECN1-dependent sensitization of ITPR-mediated Ca
2+

 release 

(e.g., in response to starvation) can promote macroautophagic flux.
280

 

JNK1: See MAPK8. 

Jumpy: See MTMR14.  

JUN/c-Jun/JunB (jun proto-oncogene): A mammalian transcription factor that inhibits 

starvation-induced macroautophagy.
1744

  

KAT5/TIP60 (K[lysine] acetyltransferase 5): In response to growth factor deprivation, KAT5 

is phosphorylated and activated by GSK3 and then acetylates and activates ULK1.
1699

 

Kcs1: A yeast inositol hexakisphosphate/heptakisposphate kinase; the kcs1∆ strain has a 

decrease in macroautophagy that may be associated with an incorrect localization of the PAS.
1745

 

KDM4A (lysine [K]-specific demethylase 4A): A mammalian demethylase that regulates the 

expression of a subset of ATG genes.
571,572

 See also Rph1. 

KEAP1 (kelch-like ECH-associated protein 1): An E3 ubiquitin ligase responsible for the 

degradation of transcription factor NFE2L2/NRF2 and the NFKB activator IKBKB/IKKβ. 

KEAP1 is a substrate for SQSTM1-dependent sequestration. SQSTM1 influences oxidative 

stress-related gene transcription and regulates the NFKB pathway via its interaction with 

KEAP1.
408,1746,1747
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KIAA0226/Rubicon: KIAA0226 is part of a PtdIns3K complex (KIAA0226-UVRAG-BECN1-

PIK3C3-PIK3R4) that localizes to the late endosome/lysosome and inhibits 

macroautophagy.
525,526

  

KIAA1524/CIP2A/cancerous inhibitor of protein phosphatase 2A: KIAA1524/CIP2A 

suppresses MTORC1-associated PPP2/PP2A activity in an allosteric manner thereby stabilizing 

the phosphorylation of MTORC1 substrates and inhibiting autophagy. KIAA1524/CIP2A can be 

degraded by autophagy in an SQSTM1-dependent manner.
1748  

KillerRed: A red fluorescent protein that produces a high amount of superoxide upon 

excitation. The construct with a mitochondria targeting sequence (mitoKillerRed) can be 

used to induce mitochondria damage and subsequent mitophagy.
737,738

  

Knockdown: An experimental technique to reduce protein expression without altering 

the endogenous gene encoding that protein, through the means of short DNA or RNA 

oligonucleotides (miRNA, RNAi, shRNA, siRNA) that are complementary to the 

corresponding mRNA transcript. 

Knockout: Targeted inactivation of an endogenous genetic locus (or multiple loci) via 

homologous recombination or gene targeting technology. 

Ku-0063794: A catalytic MTOR inhibitor that increases macroautophagic flux to a 

greater level than allosteric inhibitors such as rapamycin; short-term treatment with Ku-

0063794 can inhibit both MTORC1 and MTORC2, but the effects on flux are due to the 

former.
323

 See also WYE-354. 

KU55933: An inhibitor of the class III PtdIns3K, which inhibits autophagosome 

formation at concentrations not affecting the class I PI3K.
228

 Also inhibits ATM. 
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LACRT (lacritin): A prosecretory mitogen primarily in tears and saliva that transiently 

accelerates autophagic flux in stressed cells.
1749

 Lacritin targets heparanase-deglycanated 

SDC1 (syndecan 1) on the cell surface,
1750

 and accelerates flux by stimulating the 

acetylation of FOXO3 as a novel ligand for ATG101 and by promoting the coupling of 

stress acetylated FOXO1 with ATG7.
1751

 

Laforin: See EPM2A.  

LAMP2 (lysosomal-associated membrane protein 2): A widely expressed and abundant 

single-span lysosomal membrane protein. Three spliced variants of the LAMP2 gene have been 

described. Knockout of the entire gene results in altered intracellular vesicular trafficking, 

defective lysosomal biogenesis, inefficient autophagosome clearance and alterations in 

intracellular cholesterol metabolism.
1752-1754

 In human, deficiency of LAMP2 causes a 

cardioskeletal autophagic vacuolar myopathy, called Danon disease.
1755

 

LAMP2A (lysosomal-associated membrane protein 2A): One of the spliced variants of the 

LAMP2 gene that functions as a lysosomal membrane receptor for chaperone-mediated 

autophagy.
1055

 LAMP2A forms multimeric complexes that allow translocation of substrates 

across the lysosome membrane.
1717

 Regulation of LAMP2A is partly achieved by dynamic 

movement into and out of lipid microdomains in the lysosomal membrane.
1714

  

Late nucleophagy: A process in which bulk nucleoplasm is delivered to the vacuole after 

prolonged periods of nitrogen starvation and subsequently degraded within the vacuole lumen.
691

 

LC3: See MAP1LC3.  

LC3-associated phagocytosis (LAP): Phagocytosis in macrophages that involves the 

conjugation of LC3 to single-membrane phagosomes, a process that promotes phagosome 
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acidification and fusion with lysosomes.
171

 TLR signaling is required for LAP and leads to the 

recruitment of the BECN1 complex to phagosomes. See also NADPH oxidase. 

Ldb16: See Ayr1. 

Ldh1: See Ayr1. 

LGG-1: A C. elegans homolog of Atg8. 

LGG-2: A C. elegans homolog of Atg8. 

LGG-3: A C. elegans homolog of Atg12. 

Lipophagy: Selective degradation of lipid droplets by lysosomes contributing to lipolysis 

(breakdown of triglycerides into free fatty acids). In mammals, this selective degradation has 

been described to occur via macroautophagy (macrolipophagy),
782

 whereas in yeast, 

microlipophagy of cellular lipid stores has also been described. This process is distinct from the 

PNPLA5-dependent mobilization of lipid droplets as contributors of lipid precursors to 

phagophore membranes. 

Lipoxygenases: Mycobacterial infection-responsive expression of these proteins, such as 

ALOX5 and ALOX15, inhibits IFNG-induced macroautophagy in macrophages.
507

  

LIR/LRS (LC3-interacting region): This term refers to the WXXL-like sequences (consensus 

sequence [W/F/Y]-X-X-[I/L/V]) found in proteins that bind to the Atg8/LC3/GABARAP family 

of proteins (see also AIM and WXXL-motif).
345

 The core LIR residues interact with 2 

hydrophobic pockets of the ubiquitin-like domain of the Atg8 homologs. 

LITAF (lipopolysaccharide-induced TNF factor): An activator of inflammatory cytokine 

secretion in monocytes that has other functions in different cell types; LITAF is a positive 

regulator of macroautophagy in B cells.
1756

 LITAF associates with autophagosomes, and controls 

the expression of MAP1LC3B. 
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LKB1: See STK11.  

LMP (lysosome membrane permeabilization): The process by which lysosomal membranes 

become disrupted through the action of lysosomotropic agents, detergents or toxins.
1757

 LMP 

blocks lysosomal activity and thus autophagy and induces the release of lysosomal content to the 

cytoplasm including cathepsins that can induce cell death.
1758,1759

 

LON2 (LON protease 2): A protease localized to the peroxisome matrix that  impedes 

pexophagy in Arabidopsis.
1760

 

Long-lived protein degradation (LLPD): Macroautophagy is a primary mechanism 

used by cells to degrade long-lived proteins, and a corresponding assay can be used to 

monitor autophagic flux;
3
 a useful abbreviation is LLPD.

466
  

Lro1: See Ayr1. 

Lucanthone: An anti-schistosome compound that inhibits a late stage of 

macroautophagy; treatment results in deacidification of lysosomes and the accumulation 

of autophagosomes.
1761

  

LRPPRC (leucine-rich pentatricopeptide repeat containing): A mitochondrion-associated 

protein that binds BCL2 and PARK2 to control the initiation of general autophagy and 

mitophagy.
1762,1763

 

LRRK2 (leucine-rich repeat kinase 2): A large multidomain, membrane-associated kinase and 

GTPase whose Parkinson disease-associated mutations affect the regulation of 

macroautophagy.
185,1764

 

LRS (LC3 recognition sequence): See LIR/LRS. 
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LRSAM1 (leucine rich repeat and sterile alpha motif containing 1): A human leucine-rich 

repeat protein that potentially interacts with GABARAPL2; knockdown of LRSAM1 results in a 

defect in anti-Salmonella autophagy.
1765

  

Ltn1: See Rkr1. 

LY294002: An inhibitor of phosphoinositide 3-kinases and PtdIns3K; it inhibits 

macroautophagy.
1766

  

LYNUS (lysosomal nutrient sensing): A complex including MTORC1 and the V-ATPase 

located on the lysosomal surface that senses nutrient conditions.
788

 The LYNUS complex 

regulates TFEB activity. 

Lys05: A dimeric chloroquine derivative that accumulates in the lysosome and inhibits 

macroautophagy.
1767,1768

 

Lysophagy: The macroautophagic removal of damaged lysosomes.
792,793

 

Lysosome: A degradative organelle in higher eukaryotes that compartmentalizes a range of 

hydrolytic enzymes and maintains a highly acidic pH. A primary lysosome is a relatively small 

compartment that has not yet participated in a degradation process, whereas secondary 

lysosomes are sites of present or past digestive activity. The secondary lysosomes include 

autolysosomes and telolysosomes. Autolysosomes/early secondary lysosomes are larger 

compartments actively engaged in digestion, whereas telolysosomes/late secondary lysosomes do 

not have significant digestive activity and contain residues of previous digestions. Both may 

contain material of either autophagic or heterophagic origin. 

Macroautophagy: The largely nonselective autophagic sequestration of cytoplasm into a 

double- or multiple-membrane-delimited compartment (an autophagosome) of non-

lysosomal/vacuolar origin and its subsequent degradation by the lysosomal system. Note that 
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certain proteins and organelles may be selectively degraded via a macroautophagy-related 

process, and, conversely, some cytosolic components such as cytoskeletal elements are 

selectively excluded. 

MAGEA3 (melanoma antigen family A3): MAGEA3 and MAGEA6 form a complex with the 

E3 ligase TRIM28, resulting in the degradation of AMPK and the subsequent increase in MTOR 

activity, which in turn causes a downregulation of macroautophagy.
1769

 See also TRIM28. 

MAP1LC3/LC3 (microtubule-associated protein 1 light chain 3): A homolog of yeast Atg8, 

which is frequently used as a phagophore or autophagosome marker. Cytosolic LC3-I is 

conjugated to phosphatidylethanolamine to become phagophore- or autophagosome-associated 

LC3-II.
251

 The LC3 family includes LC3A, LC3B, LC3B2 and LC3C. These proteins are 

involved in the biogenesis of autophagosomes, and in cargo recruitment.
134

 Vertebrate LC3 is 

regulated by phosphorylation of the N-terminal helical region by PRKA/PKA.
325

 

MAP1S (microtubule-associated protein 1S): A ubiquitiously distributed homolog of the 

neuron-specifc MAP1A and MAP1B with which LC3 was originally copurified. It is required for 

autophagosome trafficking along microtubular tracks.
1770,1771

 

MAP3K7/MEKK7/TAK1 (mitogen-activated protein kinase kinase kinase 7): 

Required for TNFSF10/TRAIL-induced activation of AMPK. Required for optimal 

macroautophagy induction by multiple stimuli.
1772

  

MAPK1 (mitogen-activated protein kinase 1): A kinase that along with MAPK3 

phosphorylates and stimulate RGS19/G-interacting protein/GAIP, which is a GTPase 

activating protein (GAP) for the trimeric GNAI3 protein that activates 

macroautophagy,
1773

 and which may be involved in BECN1-independent autophagy.
76

 

Constitutively active MAPK1/3 also traffics to mitochondria to activate mitophagy.
729
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MAPK3: See MAPK1. 

MAPK8/JNK1: A stress-activated kinase that phosphorylates BCL2 at Thr69, Ser70 and Ser87, 

causing its dissociation from BECN1, thus inducing macroautophagy.
548

  

MAPK8IP1/JIP1 (mitogen-activated protein kinase 8 interacting protein 1): A LIR-

containing LC3-binding protein that mediates the retrograde movement of RAB7-positive 

autophagosomes in axons.
1774

 Movement toward the proximal axon involves activation of 

dynein, whereas binding of LC3 to MAPK8IP1 prevents activation of kinesin. The 

DUSP1/MKP1 phosphatase may dephosphorylate Ser421, promoting binding to dynein. 

MAPK9/JNK2: A stress-activated kinase that prevents the accumulation of acidic compartments 

in cells undergoing macroautophagic flux, thus keeping stressed cells alive.
1775

 

MAPK14 (mitogen-activated protein kinase 14): A signaling component that negatively 

regulates the interaction of ATG9 and SUPT20H/FAM48A, and thus inhibits macroautophagy. 

In addition MAPK14-mediated phosphorylation of ATG5 at T75 negatively regulates 

autophagosome formation.
1776

 The yeast homolog is Hog1. See also Hog1. 

MAPK15/ERK7/ERK8 (mitogen activated protein kinase 15): MAPK15 is a LIR-containing 

protein that interacts with LC3B, GABARAP and GABARAPL1.
1777

 This kinase is localized in 

the cytoplasm and can be recruited to macroautophagic membranes through its binding to ATG8-

like proteins. MAPK15 responds to starvation stimuli by self-activating through phosphorylation 

on its T-E-Y motif, and its activation contributes to the regulation of macroautophagy. 

MAPKAPK2 (mitogen-activated protein kinase-activated protein kinase 2): MAPKAPK2 is 

a Ser/Thr protein kinase downstream of MAPK/p38. Its activation contributes to starvation-

induced macroautophagy by phosphorylating BECN1/Beclin 1.
1447

 See also BECN1. 
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MAPKAPK3 (mitogen-activated protein kinase-activated protein kinase 3): MAPKAPK3 

shares a similar function with MAPKAPK2 in macroautophagy.
1447

 See also MAPKAPK2 and 

BECN1. 

Matrine: A natural compound extract from traditional Chinese medicine that inhibits autophagy 

by elevating lysosomal pH and interfering with the maturation of lysosomal proteases.
1778

  

MB21D1/cGAS (Mab-21 domain containing 1): A cytosolic sensor that produces cGAMP to 

initiate IFN production via TMEM173/STING upon binding microbial DNA.
1779

 MB21D1 also 

binds to BECN1, releasing KIAA0226/Rubicon, resulting in the induction of macroautophagy to 

eliminate cytosolic pathogens and cytosolic DNA; the latter serves to downregulate the immune 

response to prevent overactivation. 

MDC (monodansylcadaverine): A lysosomotropic autofluorescent compound that accumulates 

in acidic compartments such as autolysosomes, and also labels (but is not specific for) 

autophagosomes.
1,1074

 

MDK-ALK axis: MDK (midkine [neurite growth-promoting factor 2]) is a growth factor for 

which increased levels are associated with a poor prognosis in malignant tumors. MDK promotes 

resistance to cannabinoid-evoked autophagy-mediated cell death via stimulation of ALK 

(anaplastic lymphoma receptor tyrosine kinase). Targeting of the MDK-ALK axis could help to 

improve the efficacy of antitumoral therapies based on the stimulation of macroautophagy-

mediated cancer cell death.
1780,1781

 

Mdm10: A component of the ERMES complex in yeast that is required for mitophagy. 

See also ERMES.
1659

 

Mdm12: A component of the ERMES complex in yeast. Mdm12 colocalizes with Atg32-

Atg11 and is required for mitophagy. See also Atg11, Atg32, and ERMES.
676,1659
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Mdm34: A component of the ERMES complex in yeast. Mdm34 colocalizes with Atg32-

Atg11 and is required for mitophagy. See also Atg11, Atg32, and ERMES.
676,1659

 

Mdv1: A component of the mitochondrial fission complex. It plays a role in mediating 

mitophagy-specific fission.
676

 See also Dnm1. 

Mega-autophagy: The final lytic process during developmental programmed cell death in plants 

that involves tonoplast permeabilization and rupture, resulting in the release of hydrolases from 

the vacuole, followed by rapid disintegration of the protoplast at the time of cell death.
1334,1782,1783

 

This term has also been used to refer to the rupture of the yeast vacuole during sporulation, 

which results in the destruction of cellular material, including nuclei that are not used to form 

spores.
1784

 

Megaphagosomes: Very large (5-10 μm) double-membraned, autophagy-related vesicles that 

accumulate in cells infected by coxsackievirus and, possibly, influenza virus.
183

 

MGEA5/NCOAT/O-GlcNAcase/oga-1 (meningioma expressed antigen 5 [hyaluronidase]):  

MGEA5 removes the O-GlcNAc modification and regulates the macroautophagy machinery by 

countering the action of OGT.
1785 

Microautophagy: An autophagic process involving direct uptake of cytosol, inclusions (e.g., 

glycogen) and organelles (e.g., ribosomes, peroxisomes) at the lysosome/vacuole by protrusion, 

invagination or septation of the sequestering organelle membrane. 

MIPA (micropexophagic apparatus): A curved double-membrane structure formed by the PAS 

that may serve as a scaffold for completion of the sequestration of peroxisomes during 

micropexophagy; fusion with the vacuolar sequestering membranes encloses the organelles 

within an intralumenal vesicle.
1786

 See also vacuolar sequestering membranes. 
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Mitochondrial spheroid: A mitochondrial structure formed in PARK2-deficient cells treated 

with a mitochondrial uncoupler (such as CCCP).
1787,1788

 Under this condition, mitophagy fails to 

occur and a damaged mitochondrion can transform into a spheroid containing cytosolic 

components in the newly formed lumen. 

MIR21 (microRNA 21): A miRNA that is overexpressed in almost all types of solid tumors and 

is involved in cancer chemoresistance. MIR21 modulates macroautophagy and the sensitivity of 

tumor cells towards drugs that induce macroautophagy.
1789

  

Mir31 (microRNA 31): A mouse miRNA that targets PPP2/PP2A to inhibit IFNG-induced 

macroautophagy in macrophages during mycobacterial infection.
507

 See also Mir155. 

MIR101: A microRNA precursor; inhibits macroautophagy and the expression of STMN1, 

RAB5A and ATG4D.
227

 

Mir155: A mouse miRNA that targets PPP2/PP2A to inhibit IFNG-induced macroautophagy in 

macrophages during mycobacterial infection.
507

 See also Mir31. 

MIR205: A microRNA precursor that impairs the autophagic flux in castration-resistant prostate 

cancer cells by downregulating the lysosome-associated proteins RAB27A and LAMP3.
1790

 

MITF (microphthalmia-associated transcription factor): A transcription factor belonging to 

the microphthalmia/transcription factor E (MiT/TFE) family, along with TFEB and TFE3; MITF 

binds to symmetrical DNA sequences (E-boxes; 5-CACGTG-3), and regulates lysosomal 

biogenesis and macroautophagy (including the genes BCL2, UVRAG, ATG16L1, ATG9B, 

GABARAPL1, and WIPI1). MITF shares a common mechanism of regulation with TFEB and 

TFE3; MITF can partially compensate when TFEB is lost upon specific stimuli or in specific cell 

types.
610,1791

 See also TFEB. 
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Mitophagic body: The single-membrane vesicle present inside the vacuole lumen following the 

fusion of a mitophagosome with a vacuole. 

Mitophagosome: An autophagosome containing mitochondria and no more than a small amount 

of other cytoplasmic components, as observed during selective macromitophagy.
41,720

  

Mitophagy: The selective autophagic sequestration and degradation of mitochondria; can occur 

by a micro- or macroautophagic process.
1792

  

Mitostatin: See TCHP. 

Mkk1/2: A MAPKK downstream of Bck1 that is required for mitophagy and pexophagy in 

yeast.
1708

 See also Bck1 and Slt2. 

MLN4924: An inhibitor of NAE1 (NEDD8-activating enzyme E1 subunit 1) that is required for 

CUL/CULLIN-RING E3 ligase activation; treatment with MLN4924 induces macroautophagy 

through the accumulation of the MTOR inhibitory protein DEPTOR.
1427

 

Mmm1: A component of the ERMES complex in yeast that is required for mitophagy. 

See also ERMES.
1659

 

MORN2 (MORN repeat containing 2): MORN2 is a membrane occupation and recognition 

nexus (MORN)-motif protein that was identified in mouse testis. The gene localizes on 

chromosome 17E3, spanning approximately 7 kb; Morn2 contains 669 nucleotides of open 

reading frame, and encodes 79 amino acids.
1793

 MORN domains have the sequence 

GKYQGQWQ. MORN2 promotes the recruitment of LC3 in LAP, and MORN2 co-

immunopreciptates with LC3.
494

 

MREG (melanoregulin): A cargo sorting protein that associates with MAP1LC3 in LC3- 

associated phagocytosis.
1794,1795
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MTDH/AEG-1 (metadherin): An oncogenic protein that induces noncanonical (BECN1- and 

class III PtdIns3K-independent) macroautophagy as a cytoprotective mechanism.
1796

  

MTM-3: A C. elegans myotubularin lipid phosphatase that is an ortholog of human MTMR3 

and MTMR4; MTM-3 acts upsteam of EPG-5 to catalyze the turnover of PtdIns3P and promote 

autophagosome maturation.
1797

 

MTM1 (myotubularin 1): A PtdIns3P and PtdIns(3,5)P2 3-phosphatase.
1798

 Mutations affecting 

MTM1 lead to myotubular myopathy and alteration of macroautophagy. 

MTMR3 (myotubularin related protein 3): This protein localizes to the phagophore and 

negatively regulates macroautophagy. See also MTMR14.
1799

  

MTMR6 (myotubularin related protein 6): A PtdIns3-phosphatase; knockdown of MTMR6 

increases the level of LC3-II.
1800

 

MTMR7 (myotubularin related protein 7): A PtdIns3-phosphatase; knockdown of MTMR7 

increases the level of LC3-II.
1800

 

MTMR8 (myotubularin related protein 8): A phosphoinositide phosphatase with activity 

toward PtdIns3P and PtdIns(3,5)P2; MTMR8 in a complex with MTMR9 inhibits 

macroautophagy based on the formation of WIPI1 puncta.
1801

 

MTMR9 (myotubularin related protein 9): A catalytically inactive myotubularin that 

increases the activity of other members of the MTMR family and controls their substrate 

specificity; MTMR8-MTMR9 preferentially dephosphorylates PtdIns3P and thus inhibits 

macroautophagy.
1801

 

MTMR13: See SBF2. 
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MTMR14/Jumpy (myotubularin related protein 14): A member of the myotubularin family 

that is a PtdIns 3-phosphatase; knockdown increases macroautophagic activity.
1800,1802

 MTMR14 

regulates the interaction of WIPI1 with the phagophore. The Drosophila homolog is EDTP. 

MTOR (mechanistic target of rapamycin [serine/threonine kinase]): The mammalian 

ortholog of TOR. Together with its binding partners it forms either MTOR complex 1 

(MTORC1) or MTOR complex 2 (MTORC2). See also TORC1 and TORC2. 

MTORC1/2 (MTOR complex 1/2): See TORC1 and TORC2. 

Multivesicular body (MVB)/multivesicular endosome: An endosome containing multiple 50- 

to 80-nm vesicles that are derived from invagination of the limiting membrane. Under some 

conditions the MVB contains hydrolytic enzymes in which case it may be considered to be a 

lysosome or autolysosome with ongoing microautophagy. 

Multivesicular body sorting pathway: A process in which proteins are sequestered into 

vesicles within the endosome through the invagination of the limiting membrane. This process is 

usually, but not always, dependent upon ubiquitin tags on the cargo and serves as one means of 

delivering integral membrane proteins destined for degradation into the vacuole/lysosome lumen. 

ESCRT (endosomal sorting complex required for transport) complexes are required for the 

formation of MVBs and for autophagosome maturation. 

MYO1C (myosin IC): A class I myosin that functions as an actin motor protein essential for the 

trafficking of cholesterol-rich lipid rafts from intracellular storage compartments to the plasma 

membrane; MYO1C is important for efficient autophagosome-lysosome fusion.
1803

 

MYO6 (myosin VI): A unique, minus-end directed actin motor protein required for 

autophagosome maturation and fusion with a lysosome via delivery of early endosomes to 
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autophagosomes; mediated by the interaction of MYO6 with the alternative endosomal sorting 

complexes required for transport (ESCRT)-0 protein TOM1.
1804

{[Tumbarello, 2015 #3760} 

NAA10/ARD1 (N[alpha]-acetyltransferase 10, NatA catalytic subunit): A protein that 

interacts with and stabilizes TSC2 by acetylation, resulting in repression of MTOR and induction 

of macroautophagy.
1805

  

NACC1/NAC1 (nucleus accumbens associated 1, BEN and BTB [POZ] domain containing): 

A transcription factor that increases the expression and cytosolic levels of HMGB1 in response 

to stress, thereby increasing macroautophagy activity.
1806

 

NADPH oxidases: These enzymes contribute to macroautophagic targeting of Salmonella in 

leukocytes and epithelial cells through the generation of reactive oxygen species.
843

 The 

CYBB/NOX2 NADPH oxidase in macrophages is required for LC3-associated phagocytosis. 

NAF-1: See CISD2.  

NAMPT/visfatin (nicotinamide phosphoribosyltransferase): NAMPT is a protein that 

catalyzes the condensation of nicotinamide with 5-phosphoribosyl-1-pyrophosphate to yield 

nicotinamide mononucleotide, one step in the biosynthesis of nicotinamide adenine dinucleotide. 

The protein belongs to the nicotinic acid phosphoribosyltransferase (NAPRTase) family and is 

thought to be involved in many important biological processes, including metabolism, stress 

response and aging. NAMPT promotes neuronal survival through inducing macroautophagy via 

regulating the TSC2-MTOR-RPS6KB1 signaling pathway in a SIRT1-dependent manner during 

cerebral ischemia.
1807

 

NAPA/αSNAP (N-ethylmaleimide-sensitive factor attachment protein, alpha): A key 

regulator of SNARE-mediated vesicle fusion. Loss of NAPA promotes noncanonical 
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macroautophagy in human epithelila cell by interrupting ER-Golgi vesicle trafficking and 

triggering Golgi fragmentation.
1808

 

NBR1 (neighbor of BRCA1 gene 1): A selective substrate of macroautophagy with structural 

similarity to SQSTM1. Functions as a receptor that binds ubiquitinated proteins and LC3 to 

allow the degradation of the former by a macroautophagy-like process.
345

 NBR1 shows 

specificity for substrates including peroxisomes
1809

 and ubiquitinated aggregates.
345

 

Phosphorylation of NBR1 by GSK3A/B prevents the aggregation of ubiquitinated proteins.
1451

 

NCOA4 (nuclear receptor coactivator 4): A selective cargo receptor that is involved in iron 

homeostasis through the recycling of ferritin by macroautophagy.
769

 See also ferritinophagy. 

NDP52: See CALCOCO2.  

Necroptosis: A form of programmed necrotic cell death;
1810

 induction of macroautophagy-

dependent necroptosis is required for childhood acute lymphoblastic leukemia cells to overcome 

glucocorticoid resistance.
1811

  

NFKB/NF-B (nuclear factor of kappa light polypeptide gene enhancer in B-cells): NFKB 

activates MTOR to inhibit macroautophagy.
1812

  

NH4Cl (ammonium chloride): A weak base that is protonated in acidic compartments and 

neutralizes them; inhibits the clearance of autophagosomes and amphisomes. 

NHLRC1/EPM2B/malin (NHL repeat containing E3 ubiquitin protein ligase 1): A putative 

E3-ubiquitin ligase, which forms a complex with EPM2A/laforin. Recessive mutations in the 

genes EPM2A, or NHLRC1/EMP2B are found in the majority of cases of Lafora disease, a very 

rare type of progressive neurodegeneration associated with impaired macroautophagy.
1813

 

Nitric oxide: A gas and a messenger that has complex regulatory roles in macroautophagy, 

depending on its concentration and the cell type.
326,1814-1816
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NID-1 (novel inducer of cell death 1): A small molecule that induces activation of an ATG5- 

and CTSL-dependent cell death process reminiscent of macroautophagy.
1378

 

NIX: See BNIP3L.  

NOD (nucleotide-binding oligomerization domain): An intracellular peptidoglycan (or pattern 

recognition) receptor that senses bacteria and induces macroautophagy, involving ATG16L1 

recruitment to the plasma membrane during bacterial cell invasion.
1817

  

Non-nitrogen-starvation (NNS)-induced autophagy: A type of macroautophagy that is 

induced when yeast cells are shifted from rich to minimal medium; this process is controlled in 

part by the Iml1, Npr2 and Npr3 proteins.
1737

 

Noncanonical autophagy: A functional macroautophagy pathway that only uses a subset of the 

characterized ATG proteins to generate an autophagosome. BECN1-independent,
76,1392

 and 

ATG5-ATG7-independent
26

 forms of macroautophagy have been reported. 

NPY (neuropeptide Y): An endogenous neuropeptide produced mainly by the hypothalamus 

that mediates caloric restriction-induced macroautophagy.
1818

 

NR1D1/Rev-erba (nuclear receptor subfamily 1, group D, member 1): A nuclear receptor 

that represses macroautophagy in mouse skeletal muscle. nr1d1
-/-

 mice display increased 

autophagy gene expression along with consistent changes in autophagy protein levels and 

macroautophagy flux.
584

 

NRBF2 (nuclear receptor binding factor 2): NRBF2 is the mammalian homolog of yeast 

Atg38, and is a binding partner of the BECN1-PIK3C3 complex; NRBF2 is required for the 

assembly of the ATG14-BECN1-PIK3C3/VPS34-PIK3R4/VPS15 complex and regulates 

macroautophagy.
1819,1820

 Nrbf2 knockout mice display impaired ATG14-linked PIK3C3 lipid 

kinase activity and impaired macroautophagy.  



 502 

NSP2: A nonstructural protein of Chikungunya virus that interacts with human CALCOCO2 

(but not the mouse ortholog) to promote viral replication. In contrast, binding of SQSTM1 to 

ubiquitinated capsid leads to viral degradation through macroautophagy.
1821

 

Nucleophagy: The selective autophagic degradation of the nucleus or parts of the nucleus. 

Nucleus-vacuole junctions (NVJ): Junctions formed by the interaction between Nvj1, a 

membrane protein of the outer nuclear membrane, and Vac8 of the vacuole membrane, that are 

necessary for micronucleophagy.
689

 See also piecemeal microautophagy of the nucleus. 

NUPR1/p8 (nuclear protein, transcriptional regulator, 1): A transcriptional regulator that 

controls macroautophagy by repressing the transcriptional activity of FOXO3.
1822

  

NVP-BGT226 (8-[6-methoxy-pyridin-3-yl]-3-methyl-1-[4-piperazin-1-yl-3-trifluoromethyl-

phenyl]-1,3-dihydroimidazo[4,5-c]quinolin-2-one maleate): A class I PI3K and MTOR dual 

inhibitor that induces macroautophagy.
1823

 

OATL1: See TBC1D25.  

OGT/ogt-1 (O-linked N-acetylglucosamine [GlcNAc] transferase):  OGT is a nutrient-

dependent signaling transferase that regulates the autophagy machinery by adding the O-GlcNAc 

modification. Similar to phosphorylation, this modification is involved in signaling.
1785 

Omegasome: ZFYVE1-containing structures located at the ER that are involved in 

autophagosome formation during amino acid starvation.
562

 
 

Omi: See HTRA2.  

Oncophagy: A general term describing cancer-related autophagy.
1824 

 

OPTN (optineurin): An autophagy receptor that functions in the elimination of 

Salmonella; OPTN has a LIR and a ubiquitin-binding domain, allowing it to link tagged 

bacteria to the autophagy machinery.
842

 Phosphorylation of OPTN by TBK1 increases its 
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affinity for LC3. OPTN may function together with CALCOCO2/NDP52 and 

TAX1BP1/CALCOCO3. See also CALCOCO2, TAX1BP1 and TBK1. 

Organellophagy: General terminology for autophagic processes selective for organelles 

such as the peroxisome, mitochondrion, nucleus, and ER.
675,1825

 

Oxiapoptophagy: A type of cell death induced by oxysterols that involves OXIdation + 

APOPTOsis + autoPHAGY.
800,801

 

Oxidized phospholipids: Oxidized phospholipids induce macroautophagy, and in ATG7-

deficient keratinocytes and melanocytes the levels of phospholipid oxidation are elevated.
1826,1827

 

Oxysterols: Oxysterols are cholesterol oxide derivatives obtained either from auto-oxixation or 

by enzymatic oxidation of cholesterol (http://lipidlibrary.aocs.org/Lipids/chol_der/index.htm). 

Some of them (7-ketocholesterol, 7β-hydroxycholesterol, 24[S]-hydroxycholesterol) can induce 

a complex type of cell death named oxiapoptophagy.
799-801

 

P0: A plant virus-encoded F-box protein that targets AGO1/ARGONAUTE1 to macroautophagy 

in order to suppress RNA silencing.
812

 

p8: See NUPR1.  

p14ARF: See CDKN2A. 

p27/p27
Kip1

: See CDKN1B.  

p38: See MAPK14.  

p38IP: See SUPT20H.  

p53: See TP53.  

p62: see SQSTM1.  

p97: See VCP. 
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PARK2/parkin (parkin RBR E3 ubiquitin protein ligase): An E3 ubiquitin ligase (mutated in 

autosomal recessive forms of Parkinson disease) that is recruited from the cytosol to 

mitochondria following mitochondrial depolarization, mitochondrial import blockade or 

accumulation of unfolded proteins in the mitochondrial matrix, to promote their clearance by 

mitophagy.
232,1828-1830

 PINK1-dependent phosphorylation of Ser65 in the ubiquitin-like domain 

of PARK2 and in ubiquitin itself (see phosphorylated ubiquitin/p-S65-Ub) promotes activation 

and recruitment of PARK2 to mitochondria (reviewed in ref. 
717

),
1831

 and USP8 deubiquitination 

of K6-linked ubiquitin on PARK2 to promote its efficient recruitment.
1832

  

PARK7/DJ-1 (parkinson protein 7): An oncogene product whose loss of function is associated 

with Parkinson disease; overexpression suppresses macroautophagy through the MAPK8/JNK 

pathway.
1833

  

Parkin: See PARK2. 

PARL (presenilin associated, rhomboid-like): The mammalian homolog of Drosophila 

rhomboid-7, a mitochondrial protease; regulates the stability and localization of PINK1. A 

missense mutation in the N terminus has been identified in some patients with Parkinson 

disease.
1834

  

PARP1 (poly [ADP-ribose] polymerase 1): A nuclear enzyme involved in DNA damage repair; 

doxorubicin-induced DNA damage elicits a macroautophagic response that is dependent on 

PARP1.
1835

 In conditions of oxidative stress, PARP1 promotes macroautophagy through the 

STK11/LKB1-AMPK-MTOR pathway.
1836

   

PAS: See phagophore assembly site.  
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PAWR/par-4 (PRKC, apoptosis, WT1, regulator): A cancer selective apoptosis-inducing 

tumor suppressor protein that functions as a positive regulator of macroautophagy when 

overexpressed.
1837,1838

 

PBPE: A selective and high affinity ligand of the microsomal antiestrogen-

binding site (AEBS). PBPE induces protective macroautophagy in cancer cells 

through an AEBS-mediated accumulation of zymostenol (5α-cholest-8-en-3β-

ol).
1176,1839

  

Pbs2: A yeast MAPKK upstream of Hog1 that is required for mitophagy.
1708

 

Pcl1: A yeast cyclin that activates Pho85 to stimulate macroautophagy by inhibiting Sic1.
1604

 

Pcl5: A yeast cyclin that activates Pho85 to inhibit macroautophagy through degradation of 

Gcn4.
1604

  

PDPK1/PDK1 (3-phosphoinositide dependent protein kinase 1): An activator of AKT. 

Recruited to the plasma membrane and activated by PtdIns(3,4,5)P3 which is generated by the 

class I phosphoinositide 3-kinase. 

PEA15/PED (phosphoprotein enriched in astrocytes 15): A death effector domain-containing 

protein that modulates MAPK8 in glioma cells to promote macroautophagy.
1840

  

PDCD6IP (programmed cell death 6 interacting protein): PDCD6IP is an ESCRT-associated 

protein that interacts with the ATG12–ATG3 conjugate to promote basal macroautophagy.
1841

 

See also 12-ylation. 

PEG3 (paternally expressed 3): A DCN (decorin)- and endorepellin-induced, genomically 

imprinted tumor suppressor gene that is required for macroautophagy in endothelial cells.
1628

 

PEG3 colocalizes with and phyiscally binds to canonical macroautophagic markers such as 

BECN1 and LC3. Moreover, loss of PEG3 ablates the DCN- or endorepellin-mediated induction 

O

N
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of BECN1 or MAP1LC3A; basal expression of BECN1 mRNA and BECN1 protein requires 

PEG3. See also DCN and endorepellin. 

Peripheral structures: See Atg9 peripheral structures. 

PERK: See EIF2AK3.  

PES/pifithrin-µ (2-phenylethynesulfonamide): A small molecule inhibitor of 

HSPA1A/HSP70-1/HSP72; PES interferes with lysosomal function, causing a defect in 

macroautophagy and chaperone-mediated autophagy.
1842

  

peup (peroxisome unusual positioning): Mutants isolated in Arabidopsis thaliana that 

accumulate aggregated peroxisomes.
1843

 The peup1, peup2 and peup4 mutants correspond to 

mutations in ATG3, ATG18a and ATG7. 

Pexophagic body: The single-membrane vesicle present inside the vacuole lumen following the 

fusion of a pexophagosome with a vacuole. 

Pexophagosome: An autophagosome containing peroxisomes, but largely excluding other 

cytoplasmic components; a pexophagosome forms during macropexophagy.
1844

 

Pexophagy: A selective type of autophagy involving the sequestration and degradation of 

peroxisomes; it can occur by a micro- or macroautophagy-like process (micro- or 

macropexophagy).
122

  

PGRP (peptidoglycan-recogntion protein): A cytosolic Drosophila protein that induces 

autophagy in response to invasive L. monocytogenes.
1845

  

Phagolysosome: The product of a single-membrane phagosome fusing directly with a lysosome 

in a process that does not involve macroautophagy (we include this definition here simply for 

clarification relative to autolysosome, autophagosome and autophagolysosome).
846
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Phagophore (PG): Membrane cisterna that has been implicated in an initial 

event during formation of the autophagosome. Thus, the phagophore may be 

the initial sequestering compartment of macroautophagy.
1846

 The phagophore 

has previously been referred to as the “isolation membrane.”
4
 

Phagophore assembly site (PAS): A perivacuolar compartment or location that is involved in 

the formation of Cvt vesicles, autophagosomes and other sequestering compartments used in 

macroautophagy and related processes in fungi. The PAS may supply membranes during the 

formation of the sequestering vesicles or may be an organizing center where most of the 

autophagic machinery resides, at least transiently. The PAS or its equivalent is yet to be defined 

in mammalian cells.
166,1847

 

Pho8: A yeast vacuolar phosphatase that acts upon 3' nucleotides generated by Rny1 to generate 

nucleosides.
1848

 A modified form of Pho8, Pho8∆60, is used in an enzymatic assay for 

monitoring macroautophagy in yeast. See also Rny1. 

Pho23: A component of the yeast Rpd3L histone deacetylase complex that negatively regulates 

the expression of ATG9 and other ATG genes.
575

 

Pho80: A yeast cyclin that activates Pho85 to inhibit macroautophagy in response to high 

phosphate levels.
1604

 

Pho8∆60 assay: An enzymatic assay used to monitor macroautophagy in yeast. Deletion of the 

N-terminal cytosolic tail and transmembrane domain of Pho8 prevents the protein from entering 

the secretory pathway; the cytosolic mutant form is delivered to the vacuole via macroautophagy, 

where proteolytic removal of the C-terminal propeptide by Prb1 generates the active 

enzyme.
243,244,647
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Pho85: A multifunctional cyclin-dependent kinase that interacts with at least 10 different cyclins 

or cyclin-like proteins to regulate the cell cycle and responses to nutrient levels. Pho85 acts to 

negatively and positively regulate macroautophagy, depending on its binding to specific 

cyclins.
1604

 See also Clg1, Pcl1, Pcl5, Pho80 and Sic1. 

Phosphatidylinositol 3-kinase (PtdIns3K): A family of enzymes that 

add a phosphate group to the 3' hydroxyl on the inositol ring of 

phosphatidylinositol. The 3' phosphorylating lipid kinase isoforms are 

subdivided into 3 classes (I-III) and the class I enzymes are further 

subdivided into class IA and IB. The class III phosphatidylinositol 3-kinases (see PIK3C3 and 

Vps34) are stimulatory for macroautophagy, whereas class I enzymes (referred to as 

phosphoinositide 3-kinases) are inhibitory.
1849

 The class II PtdIns3K substantially contributes to 

PtdIns3P generation and autophagy in Pik3c3 knockout MEFs, also functioning as a positive 

factor for macroautophagy induction.
1850

 In yeast, Vps34 is the catalytic subunit of the PtdIns3K 

complex. There are 2 yeast PtdIns3K complexes, both of which contain Vps34, Vps15 (a 

regulatory kinase), and Vps30/Atg6. Complex I includes Atg14 and Atg38 and is involved in 

autophagy, whereas complex II contains Vps38 and is involved in the vacuolar protein sorting 

(Vps) pathway. See also phosphoinositide 3-kinase. 

Phosphatidylinositol 3-phosphate (PtdIns3P): The product of the PtdIns3K. PtdIns3P is 

present at the PAS, and is involved in the recruitment of components of the macroautophagic 

machinery. It is important to note that PtdIns3P is also generated at the endosome (e.g., by the 

yeast PtdIns3K complex II). Additionally, FYVE-domain probes block PtdIns3P-dependent 

signaling, presumably by sequestering the molecule away from either interactions with 

downstream effectors or preventing its interconversion by additional kinases.
1851

 Thus, general 

Vps34Vps15

Atg38Atg14

Vps30

Atg38
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PtdIns3P probes such as GFP-tagged FYVE and PX domains are generally not good markers for 

the macroautophagy-specific pool of this phosphoinositide.  

Phosphatidylinositol 3,5-bisphosphate (PtdIns[3,5]P2): This molecule is generated by 

PIKFYVE (phosphoinositide kinase, FYVE finger containing) and is abundant at the membrane 

of the late endosome. Its function is relevant for the replication of intracellular pathogens such as 

the bacteria Salmonella,
1852

 and ASFV.
1853

 PtdIns(3,5)P2 also plays a role in regulating 

macroautophagy.
1854

 

Phosphoinositide 3-kinase/PI3K: The class I family of enzymes that add a phosphate group to 

the 3' hydroxyl on the inositol ring of phosphoinositides. PI3K activity results in the activation of 

MTOR and the inhibition of macroautophagy. 

Phosphoinositides (PI) or inositol phosphates: These are membrane phospholipids that control 

vesicular traffic and physiology. There are several different phosphoinositides generated by 

quick interconversions by phosphorylation/dephosphorylation at different positions of their 

inositol ring by a number of kinases and phosphatases. The presence of a particular PI 

participates in conferring membrane identity to an organelle. 

Phosphorylated ubiquitin/p-S65-Ub: Phosphorylated ubiquitin is essential for PINK1-

PARK2-mediated mitophagy and plays a dual role in the intial activation and recruitment 

of PARK2 to damaged mitochondria (reviewed in ref. 
717

) Specific antibodies can be used 

to faithfully detect PINK1-PARK2-dependent mitophagy at early steps;
716

 however, the 

exact functions of p-S65-Ub during the different phases of mitophagy remain unclear. 

Piecemeal microautophagy of the nucleus (PMN)/micronucleophagy: A process in which 

portions of the yeast nuclear membrane and nucleoplasm are invaginated into the vacuole, 

scissioned off from the remaining nuclear envelope and degraded within the vacuole lumen.
686,687
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PI4K2A/PI4KIIα (phosphatidylinositol 4-kinase type 2 alpha): A lipid kinase that generates 

PtdIns4P, which plays a role in autophagosome-lysosome fusion.
1855

 PI4K2A is recruited to 

autophagosomes through an interaction with GABARAP or GABARAPL2 (but the protein does 

not bind LC3). 

PIK3C3 (phosphatidylinositol 3-kinase, catalytic subunit type 3): The mammalian homolog 

of yeast Vps34, a class III PtdIns3K that generates PtdIns3P, which is required for 

macroautophagy.
1849

 In mammalian cells there are at least 3 PtdIns3K complexes that include 

PIK3C3/VPS34, PIK3R4/VPS15 and BECN1, and combinations of ATG14, UVRAG, 

AMBRA1, SH3GLB1 and/or KIAA0226/RUBICON. See also phosphatidylinositol 3-kinase) 

PIK3CB/p110 hosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit beta): A 

catalytic subunit of the class IA phosphoinositide 3-kinase; this subunit plays a positive role in 

macroautophagy induction that is independent of MTOR or AKT, and instead acts through the 

generation of PtdIns3P, possibly by acting as a scaffold for the recruitment of phosphatases that 

act on PtdIns(3,4,5)P3 or by recruiting and activating PIK3C3.
1856

  

PIK3R4/p150/VPS15 (phosphoinositide-3-kinase, regulatory subunit 4): The mammalian 

homolog of yeast Vps15, PIK3R4 is a core component of all complexes containing PIK3C3 and 

is required for macroautophagy.
1857

 PIK3R4 interacts with the kinase domain of PIK3C3, to 

regulate its activity and also functions as a scaffold for binding to NRBF2 and ATG14.
1819,1820

 

While PIK3R4 is classified as a protein serine/threonine kinase, it possesses an atypical catalytic 

domain and lacks catalytic activity, at least in vitro (J. Murray, personal communication). 

PIK3R4 also interacts with RAB GTPases, including RAB5
1858

 that may be responsible for 

recruitment of PIK3C3-PIK3R4-complexes to sites of autophagosome formation. 
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PINK1/PARK6 (PTEN induced putative kinase 1): A mitochondrial protein kinase (mutated 

in autosomal recessive forms of Parkinson disease) that is normally degraded in a membrane 

potential-dependent manner to maintain mitochondrial structure and function,
1859

 suppressing the 

need for mitophagy.
728

 Upon mitochondrial depolarization, mitochondrial import blockade or 

accumulation of unfolded proteins in the mitochondrial matrix, PINK1 is stabilized and 

activated, phosphorylating ubiquitin (see phosphorylated ubiquitin/p-S65-Ub) and PARK2 for 

full activation and recruitment of PARK2 (reviewed in ref. 
717

) to facilitate mitophagy.
1828-

1831,1860
 

PKA (protein kinase A): A serine/threonine kinase that negatively regulates macroautophagy in 

yeast;
1861

 composed of the Tpk1/2/3 catalytic and Bcy1 regulatory subunits. The mammalian 

PKA homolog, PRKA, directly phosphorylates LC3.
325

 Bacterial toxins that activate mammalian 

PRKA can also inhibit autophagy.
1862

 Phosphorylation of the fission modulator DNM1L by 

mitochondrially-localized PRKA blocks mitochondrial fragmentation and autophagy induced by 

loss of endogenous PINK1 or by exposure to a neurotoxin in neuronal cell cultures.
1638

 See also 

DNM1L.  

PKB: See AKT.  

Pkc1: A yeast serine/threonine kinase involved in the cell wall integrity pathway upstream of 

Bck1; required for pexophagy and mitophagy.
1708

 See also Bck1 and Slt2. 

PKC: See PRKCD. 

PKR: See EIF2AK2.  

Plastolysome: A plant plastid that transforms into a lytic compartment, with acid phosphatase 

activity, engulfing and digesting cytoplasmic regions in particular cell types and under particular 



 512 

developmental processes (V. Parra-Vega, P Corral-Martinez, A Rivas-Sendra and J.M Seguí-

Simarro, unpublished results).
776,777,778

  

PLEKHM1: An autophagic adaptor protein that contains a LIR motif, which directs binding to 

all of the LC3/GABARAP proteins. PLEKHM1 also interacts with GTP-bound RAB7 and the 

HOPS (homotypic fusion and protein sorting) complex. PLEKHM1 is present on the cytosolic 

face of late endosomes, autophagosomes, amphisomes and lysosomes, and serves to coordinate 

endocytic and macroautophagic pathway convergence at, and fusion with, the lysosome.
1863

 

PMT7: A phloroglucinol derivative used as a chemotherapeutic drug to target glycolytic cancer 

cells.
1864

 

PND (programmed nuclear destruction): A yeast cell death-related process that occurs during 

gametogenesis involving a noncanonical type of vacuole-dependent degradation.
1784

 

PNPLA5 (patatin-like phospholipase domain containing 5): A lipase that mobilizes neutral 

lipid stores (e.g., triglycerides in lipid droplets) to enhance macroautophagic capacity of the cell 

by contributing lipid precursors for membrane biogenesis (thus enhancing macroautophagic 

capacity) and signaling.
1865

 This process should not be confused with the process of lipophagy, 

which is uptake of lipid droplets for triglyceride degradation in autolysosomes. 

PNS (peri-nuclear structure): A punctate structure in P. pastoris marked by Atg35, which 

requires Atg17 for recruitment and is involved in micropexophagy; the PNS may be identical to 

the PAS.
1536

  

PP242: A pharmacological catalytic kinase inhibitor of TOR; inhibits TORC1 and TORC2. 

PPARs (peroxisome proliferator-activated receptors):  Ligand-activated transcription factors, 

members of the nuclear receptor superfamily, consisting of 3 isotypes: PPARA/PPARNR1C1 

(peroxisome proliferator-activated receptor alpha), PPARD/PPAR/NR1C2, and 
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PPARG/PPAR/NR1C3.
743

 PPAR-mediated signalling pathways regulate, or are regulated by, 

molecules involved in macroautophagy.
1866,1867

 

PPI (protein-protein interaction): Proper biological activity of many proteins depends on 

physical interactions with other proteins. Specific PPI has a functional objective. Therefore, 

complete understanding of protein function requires consideration of proteins in the context of 

their binding partners.
1868,1869

 Often, interactions beween proteins and protein complexes are 

presented in a form of large densely connected networks (PPI networks). Such network-based 

representation of PPIs provide the means for a more complete understanding of physiological 

and pathogenic mechanisms.
1870

 

PPM1D/Wip1 (protein phosphatase, Mg2+/Mn2+ dependent, 1D): A protein phosphatase 

that negatively regulates ATM and macroautophagy.
1871

 

PPP1 (protein phosphatase 1): A serine/threonine protein phosphatase that regulates ATG16L1 

by dephosphorylation of CSNK2-modified Ser139 to inhibit macroautophagy. See also 

CSNK2.
1615

 

PPP1R15A/GADD34 (protein phosphatase 1, regulatory subunit 15A): A protein that is 

upregulated by growth arrest and DNA damage; PPP1R15A binds to and dephosphorylates 

TSC2, leading to MTOR suppression and macroautophagy induction.
1872

  

PPP2 (protein phosphatase 2): A serine/threonine protein phosphatase that positively regulates 

macroautophagy via BECN1.
1873

 

PPP2R5A (protein phosphatase 2, regulatory subunit B', alpha): B56 subunit of PPP2/PP2A, 

a phosphatase that binds to and dephosphorylates GSK3B at Ser9 to make it active and thus 

activate macroautophagy.
507
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PPP3R1 (protein phosphatase 3, regulatory subunit B, alpha): A regulatory subunit of the 

calcium-dependent phosphatase PPP3/calcineurin. In response to a calcium pulse via the 

lysosomal calcium channel MCOLN1, PPP3 dephosphorylates Ser142 and Ser211 of TFEB, 

leading to nuclear localization and upregulation of the CLEAR network.
1874

 See also CLEAR 

and TFEB. 

prApe1 (precursor Ape1):  See Ape1. 

Pre-autophagosomal structure (PAS): See phagophore assembly site. 

PRKA (protein kinase, cAMP-dependent): The mammalian homolog of yeast PKA. See also 

PKA. 

PRKCD/PKC (protein kinase C, delta): PRKCD regulates MAPK8 activation. PRKCD also 

activates NADPH oxidases, which are required for antibacterial macroautophagy.
1635

  

PRKD1 (protein kinase D1): A serine/threonine kinase that activates PIK3C3/VPS34 by 

phosphorylation; recruited to phagophore membranes.
1875

 

PROC/APC (protein C [inactivator of coagulation factors Va and VIIIa]): Activated PROC 

modulates cardiac metabolism and augments macroautophagy in the ischemic heart by inducing 

the activation of AMPK in a mouse model of ischemia/reperfusion injury.
1876

 

Programmed cell death (PCD): Regulated self-destruction of a cell. Type I is associated with 

apoptosis and is marked by cytoskeletal breakdown and condensation of cytoplasm and 

chromatin followed by fragmentation. Type II is associated with macroautophagy and is 

characterized by the presence of autophagic vacuoles (autophagosomes) that sequester 

organelles. Type III is marked by the absence of nuclear condensation, and the presence of a 

necrotic morphology with swelling of cytoplasmic organelles (oncosis). These categories of cell 

death are based on morphological criteria, and the Nomenclature Committee on Cell Death now 
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recommends the use of terms that are more precise and refer to different types of regulated cell 

death (RCD).
1038

 

PROPPINs (β-propellers that bind phosphoinositides): A WD40-protein family conserved 

from yeast to human.
1877

 These proteins fold as 7-bladed β-propellers, and each blade contains 4 

antiparallel β-strands. With 2 lipid binding sites at the circumference of their propeller they bind 

PtdIns3P and PtdIns(3,5)P2.
1878-1880

 The S. cerevisiae PROPPINs are Atg18, Atg21 and Hsv2, 

and the mammalian counterparts are termed WIPIs. 

Proteaphagy: The selective macroautophagic degradation of the 26S proteasome.
1881

 

Proteaphagy is stimulated by either starvation or proteasome activation. 

Proto-lysosomes: Vesicles derived from autolysosomes that mature into lysosomes during 

autophagic lysosome reformation.
506

 See also autophagic lysosome reformation.  

Protophagy: Autophagy-like processes in microbial populations. The term summarizes all self-

destructing patterns in prokaryotic colonies including bacterial cannibalism, autolysis, 

programmed cell death, and other processes, in which a part of the colony is lysed and consumed 

by neighboring prokaryotic cells to recycle matter and energy.
1882

 

PSEN (presenilin): A protease that is part of the -secretase complex. Mutations in PSEN1 

result in the accumulation of autophagosomes resulting at least in part from a defect in lysosomal 

acidification; one of the V-ATPase subunits does not target properly to the lysosome.
57,1883

  

PTEN (phosphatase and tensin homolog): A 3' phosphoinositide phosphatase that 

dephosphorylates PtdIns(3,4,5)P3, thereby inhibiting PDPK1/PDK1 and AKT activity. 

PTM (posttranslational modification): After biosynthesis, many proteins undergo covalent 

modifications that are often catalyzed by special enzymes that recognize specific target 

sequences in particular proteins. PTMs provide dramatic extension of the structures, properties, 
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and physico-chemical diversity of amino acids, thereby diversifying structures and functions of 

proteins.
1884

 There are more than 300 physyological PTMs.
1885

 Some PTMs (e.g., 

phosphorylation, acetylation, glycosylation, etc.) are reversible by the action of specific 

deconjugating enzymes. The interplay between modifying and demodifying enzymes allows for 

rapid and economical control of protein function.
1884

 PTMs clearly play a role in regulating the 

macroautophagy machinery.
621,1886

 

PTP4A3 (protein tyrosine phosphatase type IVA, member 3): A plasma membrane- and 

endosome-localized prenylated protein phosphatase that stimulates macroautophagy; PTP4A3 is 

also an autophagic substrate.
1887

 

PTPRS/PTP (protein tyrosine phosphatase, receptor type, S): A dual domain protein 

tyrosine phosphatase that antagonizes the action of the class III PtdIns3K; loss of PTPRS results 

in hyperactivation of basal and induced macroautophagy.
1888

  

PULKA (p-ULK1 assay): This acronym describes the analysis of Ser317 phosphorylated 

(activated) ULK1 puncta by fluorescence microscopy.
1889

 

RAB1: See Ypt1. 

RAB4A: This small GTPase was previously called HRES-1/Rab4, as it is encoded by the 

antisense strand of the HRES-1 human endogenous retroviral locus in region q42 of human 

chromosome 1.
1890

 It has been recently designated as RAB4A to distinguish it from RAB4B on 

human chromosome 19. RAB4A regulates the endocytic recycling of surface proteins, such as 

CD4, CD247/CD3, and CD2AP, and TFRC/CD71, which control signal transduction through 

the immunological synapse in human T lymphocytes.
1890,1891

 Among these proteins, CD4 and 

CD247 are targeted by RAB4A for lysosomal degradation via macroautophagy.
1890-1892

 Beyond 

T lymphocytes, RAB4A generally promotes the formation of LC3
+
 autophagosomes and the 
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accumulation of mitochondria during macroautophagy.
1893

 During accelerated macroautophagy, 

RAB4A also promotes the lysosomal degradation of intracellular proteins, such as DNM1L/Drp1 

that initiates the fission and turnover of mitochondria.
929,1894

 Thus, RAB4A-mediated depletion 

of DNM1L selectively inhibits mitophagy and causes the accumulation of mitochondria in 

patients and mice with lupus.
1892

 The formation of interconnected mitochondrial tubular 

networks is enhanced by constitutively active RAB4A
Q72L

 upon starvation, which may contribute 

to the retention of mitochondria during macroautophagy.
1893

 

RAB7: A small GTPase of the RAS oncogene family functioning in transport from early to late 

endosomes and from late endosomes to lysosomes.
1895

 RAB7 is also needed for the clearance of 

autophagic compartments, most likely for the fusion of amphisomes with lysosomes.
1076,1896

 The 

yeast homolog is Ypt7. 

RAB8: A small GTPase of the RAS oncogene family. RAB8A functions in secretory 

autophagy,
989

 whereas RAB8B plays a role in degradative autophagy.
1897

  

RAB11: A small GTPase that is required for autophagosome formation; ULK1 and ATG9 

localize in part to RAB11-positive recycling endosomes.
1898

 See also TBC1D14. 

RAB12: A small GTPase that controls degradation of the amino acid transporter SLC36A4 

[solute carrier family 36 (proton/amino acid symporter), member 4]/PAT4 and indirectly 

regulates MTORC1 activity and macroautophagy.
1899

 

RAB21: A small GTPase that is required for autophagosome-lysosome fusion. Starvation 

induces RAB21 activity that promotes VAMP8 trafficking to the lysosome, where VAMP8 is 

needed to mediate fusion. See also SBF2.
1900

 

RAB24: A small GTPase with unusual characteristics that associates with autophagic 

compartments in amino acid-starved cells.
1901
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RAB32: A small GTPase that localizes to the ER, and enhances autophagosome formation under 

basal conditions.
1902

  

RAB33B: A small GTPase of the medial Golgi complex that binds ATG16L1 and plays a role in 

autophagosome maturation by regulating fusion with lysosomes.
1903

 RAB33B is a target of 

TBC1D25/OATL1, which functions as a GAP.
1904

  

RABG3b: A RAB GTPase that functions in the differentiation of tracheary elements of the 

Arabidopsis xylem through its role in macroautophagy; this protein is a homolog of 

RAB7/Ypt7.
1041

  

RAD001 (Everolimus): An orally administered derivative of rapamycin. 

RAG: See RRAG. 

RAGE: See AGER.  

RAL: A RRAS-like subfamily in the RAS family, RAL small GTPases typically function 

downstream of the RRAS effector RALGDS/RalGEF and are inhibited by RALGAP, a 

heterodimeric GAP structurally analogous to TSC1/2 that functions as a GAP for RHEB.
1905,1906

 

The RAL subfamily includes mammalian RALA and RALB, Drosophila Rala, and C. elegans 

RAL-1. Mammalian RALB regulates exocytosis, the immune response and an anabolic/catabolic 

switch. In nutrient-rich conditions RALB-GTP binds EXOC2/Sec5 and EXOC8/Exo84, and 

through the latter associates with MTORC1 to promote anabolic metabolism.
1907

 Under 

starvation conditions RALB-GTP nucleates phagophore formation through assembly of a ULK1-

BECN1-PIK3C3 complex, also via interaction with the EXOC8/Exo84 protein.
1663

 Although 

RALB direct activation and indirect inactivation (through MTORC1) of macroautophagy appears 

contradictory, RALB may function as a critical anabolic/catabolic switch in response to global 
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and local nutrient contexts. RALB may be an analog of yeast Sec4.
1908

 See also EXOC2, 

Sec4/RAB40B and EXOC8. 

RALGAP: A heterodimeric complex consisting of catalytic alpha and regulatory beta subunits, 

RALGAP inactivates RAL small GTPases.  RALGAP is structurally analogous to the TSC1/2 

GAP, and like TSC1/2 is phosphorylated and inhibited by AKT.
1905,1909

 An additional partner of 

the RALGAP complex, NKIRAS1/kappaB-Ras, also inhibits RAL function.
1910

 

RANS (required for autophagy induced under non-nitrogen-starvation conditions) 

domain: Also referred to as domain of unknown function 3608 (DUF3608; PFAM: PF12257, 

http://pfam.xfam.org/family/PF12257), this sequence in Iml1 is required for non-nitrogen 

starvation-induced autophagy.
1737

  This domain is spread throughout the eukaryotes (see for 

example, http://pfam.xfam.org/family/PF12257#tabview=tab7) and frequently reported in 

combination with a DEP (Dishevelled, Egl-10, and Pleckstrin) domain (PFAM: PF00610), which 

is also the case with Iml1.
1737

 See also non-nitrogen starvation (NNS)-induced autophagy. 

Rapamycin: Allosteric TOR (in particular, TOR complex 1) inhibitor, which induces autophagy. 

TOR complex 2 is much less sensitive to inhibition by rapamycin. 

RAPTOR: See RPTOR. 

Ras: See RRAS. 

RB1-E2F1 (Retinoblastoma 1-E2 transcription factor 1): RB1 is a tumor suppressor that 

promotes growth arrest, and protects against apoptosis. E2F1 regulates the transition from the G1 

to the S phase in the cell cycle, and is a pro-apoptotic member of the E2F transcription family. In 

addition to controlling the cell cycle and apoptosis, the interaction between RB1 and E2F1 

regulates macroautophagy; RB1 and E2F1 downregulate and upregulate BCL2, respectively, 

resulting in the induction of macroautophagy or apoptosis.
1911

  

http://pfam.xfam.org/family/PF12257
http://pfam.xfam.org/family/PF12257#tabview=tab7
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RB1CC1/FIP200 (RB1-inducible coiled-coil 1): A putative mammalian functional counterpart 

of yeast Atg17. RB1CC1 is a component of the ULK1 complex.
1456

 In addition, RB1CC1 

interacts with other proteins in several signaling pathways, suggesting the possibility of 

macroautophagy-independent functions, and a potential role in linking other cellular functions 

and signaling pathways to macroautophagy.     

Reactive oxygen species (ROS): Chemically-reactive molecules that contain oxygen, including 

hydrogen peroxide, the hydroxyl radical ·OH, and the superoxide radical ·O2
-
. Hydrogen 

peroxide transiently inhibits delipidation of LC3 by ATG4, which is permissive for starvation-

induced autophagy.
498

 Superoxide is essential for triggering injury-induced mitochondrial fission 

and mitophagy.
728

  

Ref(2)P: The Drosophila homolog of SQSTM1. 

Residual body: A lysosome that contains indigestible material such as lipofuscin.
1912

  

Resveratrol: An allosteric activator of SIRT1 and 

inhibitor of several other cellular proteins
1432

 that 

induces macroautophagy.
1913

  

Reticulophagy: The selective degradation of ER by 

a macroautophagy-like process.
806

 Macroautophagy 

counterbalances ER expansion during the unfolded protein response. Activation of the UPR in 

yeast induces reticulophagy. 

RGS19/GAIP (regulator of G-protein signaling 19): A GTPase activating protein that 

inactivates GNAI3 (converting it to the GDP-bound form) and stimulates macroautophagy.
1914

 

See also GNAI3. 

OH

OH

HO

Resveratrol
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RHEB (Ras homolog enriched in brain): A small GTP-binding protein that activates MTOR 

when it is in the GTP-bound form.
262

  

Ribophagy: The selective sequestration and degradation of ribosomes by a macroautophagy-like 

process.
810

  

Rim15: A yeast kinase that regulates transcription factors in response to nutrients. Rim15 

positively regulates macroautophagy and is negatively regulated by several upstream kinases 

including TOR, PKA, Sch9 and Pho85.
1604,1915

  

RIPK1 (receptor [TNFRSF]-interacting serine-threonine kinase 1): RIPK1 inhibits basal 

macroautophagy independent of its kinase function, through activation of MAPK1/3 and 

inhibition of TFEB.
1916

 

Rkr1: A yeast ubiquitin ligase that antagonizes ribophagy.
811

 

RNASE2/RNS2 (ribonuclease, RNase A family, 2 [liver, eosinophil-derived neurotoxin]): A 

class II RNase of the T2 family that localizes to the lumen of the ER (or an ER-related structure) 

and vacuole in Arabidopsis; RNASE2 is involved in rRNA turnover, and rnase2 mutants display 

constitutive macroautophagy, likely due to a defect in cellular homeostasis.
1917

  

RNF216 (ring finger protein 216): An E3 ubiquitin ligase that mediates the ubiquitination and 

the subsequent degradation of BECN1, thus acting as a negative regulator of 

macroautophagy.
1918

 

Rny1: A yeast vacuolar RNase that hydrolyzes RNA, delivered to the vacuole via 

macroautophagy, into 3' nucleotides.
1848

 See also Pho8. 

Rpd3: A yeast histone deacetylase that negatively regulates the expression of ATG8.
1170

 See also 

Sin3/SIN3 and Ume6. 



 522 

Rph1: A histone demethylase that negatively regulates the expression of ATG7; demethylase 

activity is not required for transcriptional repression.
571,572

 

RPN10: A component of the 26S proteasome lid. RPN10 acts as a receptor that binds ATG8 

during proteaphagy in Arabidopsis.
1881

 

RPS6KB1/p70S6 kinase/S6K1 (ribosomal protein S6 kinase, 70kDa, polypeptide 1): A 

substrate of MTORC1, in mammalian cells RPS6KB1/2 inhibits INSR (insulin receptor), which 

in turn causes a reduction in the activity of the class I PI3K and subsequently MTORC1; this 

may represent a feedback loop to help maintain basal levels of macroautophagy.
1085,1157

 

Conversely, under conditions of long-term starvation RPS6KB1/2 levels may fall sufficiently to 

allow reactivation of MTORC1 to prevent excessive macroautophagy. In Drosophila, the 

RPS6KB1/2 ortholog S6k may act in a more direct manner to positively regulate 

macroautophagy.
262

 

RPS6KB2: See RPS6KB1. 

RPTOR/raptor (regulatory associated protein of MTOR, complex 1): A component of 

MTORC1. RPTOR interacts with ULK1, allowing MTORC1 to phosphorylate both ULK1 and 

ATG13, and thus repress ULK1 kinase activity and autophagy.
470,471,1919

 This interaction also 

permits a negative feedback loop to operate, whereby ULK1 phosphorylates RPTOR to inhibit 

MTORC1 activity.
475,1920

 

RRAG (Ras-related GTP binding): A GTPase that activates MTORC1 in response to amino 

acids.
1921

 There are RRAGA, B, C and D isoforms. 

RRAS/RAS (related RAS viral [r-ras] oncogene homolog): The small GTPase RRAS is an 

oncogene involved in the regulation of several cellular signaling pathways. RRAS can upregulate 
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or downregulate autophagy through distinct signaling pathways that depend on the cellular 

contexts.
1922

 

Rsp5: A yeast E3 ubiquitin ligase that is responsible for the autophagic clearance of certain 

cytosolic proteins via Cue5.
431

 See also Cue5. 

Rubicon: See KIAA0226.  

SAHA/vorinostat (suberoylanilide hydroxamic acid): An HDAC inhibitor that induces 

macroautophagy;
1923

 however, SAHA/vorinostat treatment has also been reported to suppress 

macroautophagy (e.g. see ref. 
1924

), suggesting context dependency. 

Saikosaponin d: An ATP2A/SERCA inhibitor that induces macroautophagy and 

macroautophagy-dependent cell death in apoptosis-defective cells.
1436

 

SBF2/MTMR13 (SET binding factor 2): A catalytically inactive myotubularin that is also a 

RAB21 guanine nucleotide exchange factor (GEF) required with RAB21 for autophagosome-

lysosome fusion. Starvation induces SBF2 RAB21 GEF activity that promotes VAMP8 

trafficking to the lysosome, where VAMP8 is needed to mediate fusion. See also RAB21.
1900

 

The Drosophila homolog is Sbf. 

Sch9: A yeast kinase that functions in parallel with PKA to negatively regulate macroautophagy. 

Sch9 appears to function in parallel with TOR, but is also downstream of the TOR kinase.
1915

  

SCOC (short coiled-coil protein): A protein in the Golgi that interacts with FEZ1 in a complex 

with either ULK1 or UVRAG; the ternary complex with ULK1 promotes macroautophagy, 

whereas the complex with UVRAG has a negative effect by sequestering the latter from the 

BECN1-containing PtdIns3K complex.
1669

 See also FEZ1. 

SEA (Seh1-associated) protein complex: A complex found in yeast that includes the Seh1 

nucleoporin and the COPII component Sec13 (also a nucleoporin), in addition to Npr2 and Npr3, 
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and 4 other relatively uncharacterized proteins; the SEA complex associates with the vacuole, 

potentially acting as a membrane coat and is involved in protein trafficking, amino acid 

biogenesis, and the starvation response including macroautophagy.
1925

  

Sec1: Functions with the plasma membrane SNAREs Sso1/Sso2 and Sec9 to form the site for 

vesicle-mediated exocytosis; as with Sso1/Sso2 and Sec9, temperature sensitive sec1 mutations 

also abrogate macroautophagic delivery of GFP-Atg8.
1926

 See also Sso1/Sso2. 

Sec2: A guanine nucleotide exchange factor for Sec4 that normally functions in exocytosis. 

Upon the induction of macroautophagy, Sec2 function is diverted to promote membrane delivery 

to the PAS.
1908

  

Sec4: A Rab family GTPase that normally functions in exocytosis; under macroautophagy-

inducing conditions yeast Sec4 is needed for the anterograde movement of Atg9 to the PAS.
1908

 

The mammalian homolog is RAB40B. 

SEC5L1: See EXOC2. 

Sec9: Plasma membrane SNARE light chain that forms a complex with Sso1/Sso2 to generate 

the target complex of vesicle exocytosis; as with Sso1/Sso2, loss of Sec9 function blocks 

macroautophagy at an early stage by disrupting targeting of Atg9 to the Atg9 peripheral sites and 

PAS.
1927

 See also Sso1/Sso2. See also Atg9 peripheral sites/structures. 

Sec18: Homolog of mammalian NSF, an ATPase globally responsible for SNARE disassembly. 

Loss of function inhibits SNARE-dependent early and late events of macroautophagy (i.e., 

vesicular delivery of Atg9 to the Atg9 peripheral sites and PAS
1927

 and fusion of 

autophagosomes with the vacuole
1928

). See also Atg9 peripheral sites/structures. 

Sec22: A vesicle SNARE involved in ER and Golgi transport; mutations in Sec22 also block 

Atg9 trafficking to the Atg9 peripheral sites and PAS. Crosslinking experiments suggest Sec22 
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may be the v-SNARE responsible for the macroautophagy functions of the ordinarily plasma 

membrane Sso1/Sso2-Sec9 t-SNARE complex.
1927

 See also Sso1/Sso2. See also Atg9 peripheral 

sites/structures. 

Secretory autophagy: A biosynthetic mode of autophagy that occurs in mammalian cells.
989,1929

 

Secretory autophagy depends on the ATG proteins, RAB8A and the Golgi protein 

GORASP2/GRASP55, and is used for the extracellular delivery (via unconventional secretion) 

of proteins such as the cytokines IL1B and IL18, and HMGB1. See also exophagy. 

SEPA-1 (suppressor of ectopic P granule in autophagy mutants-1): A C. elegans protein that 

is involved in the selective degradation of P granules through a macroautophagy-like process.
1199

 

SEPA-1 self-oligomerizes and functions as the receptor for the accumulation of PGL-1 and PGL-

3 aggregates. SEPA-1 directly binds PGL-3 and LGG-1. 

Septin cages: Septins are GTP-binding proteins that assemble into nonpolar filaments 

(characterized as unconventional cytoskeleton), often acting as scaffolds for the recruitment of 

other proteins. Septin cages form in response to infection by Shigella; the cages surround the 

bacteria, preventing intercellular spread, and serve to recruit autophagy components such as 

SQSTM1 and LC3.
1930

  

SERPINA1/A1AT (serpin peptidase inhibitor, clade A [alpha-1 antiproteinase, 

antitrypsin], member 1): SERPINA1 is the must abundant circulating protease inhibitor and is 

synthesized in the liver. A point mutation in the SERPINA1 gene alters protein folding of the 

gene product, making it aggregation prone; the proteasomal and macroautophagic pathways 

mediate degradation of mutant SERPINA1.
1931
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sesB (stress-sensitive B): A Drosophila mitochondrial adenine nucleotide translocase that 

negatively regulates autophagic flux, possibly by increasing cytosolic ATP levels.
1629

 See also 

Dcp-1. 

SESN2 (sestrin 2): A stress-inducible protein that reduces oxidative stress, inhibits MTORC1 

and induces macroautophagy, also acting as an AMPK activator.
1932

 SESN2 physically 

associates with ULK1 and SQSTM1, promotes ULK1-dependent phosphorylation of SQSTM1, 

and facilitates autophagic degradation of SQSTM1 targets such as KEAP1.
1454,1933

 SESN2 

suppresses MTORC1 in response to diverse stresses including DNA damage,
1934

 ER stress,
1935

 

nutritional stress,
786,1933

 or energetic stress.
1936

 

SH3GLB1/Bif-1 (SH3-domain GRB2-like endophilin B1): A protein that interacts with 

BECN1 via UVRAG and is required for macroautophagy. SH3GLB1 has a BAR domain that 

may be involved in deforming the membrane as part of autophagosome biogenesis.
1937

 

SH3GLB1 activity is regulated by phosphorylation at residue T145, which in starved neurons 

occurs via CDK5.
1938

 SH3GLB1 regulates autophagic degradation of EGFR,
1939

 NTRK1,
1938

 and 

CHRNA1.
1940

 Turnover of CHRNA1 is coregulated by TRIM63.
1940

 

SHH (sonic hedgehog): A ligand of the sonic hedgehog pathway. Activation of this pathway 

suppresses IFNG-induced macroautophagy in macrophages during mycobacterial infection.
507

 

Shp1/Ubx1: A yeast Ubx (ubiquitin regulatory x)-domain protein that is needed for the 

formation of autophagosomes during nonselective macroautophagy; Shp1 binds Cdc48 and 

Atg8–PE, and may be involved in extracting the latter during phagophore expansion.
1591

  

Sic1: A yeast cyclin-dependent kinase inhibitor that blocks the activity of Cdc28-Clb kinase 

complexes to control entry into the S phase of the cell cycle. Sic1 is a negative regulator of 

macroautophagy that inhibits Rim15.
1604
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Signalphagy: A type of macroautophagy that degrades active signaling proteins.
1941

 

Sin3/SIN3 (SIN3 transcription regulator family member): Part of the Rpd3L regulatory 

complex including Rpd3 and Ume6 in yeast, which downregulates transcription of ATG8 in 

growing conditions.
1170

 In mammalian cells knockdown of both SIN3A and SIN3B is needed to 

allow increased expression of LC3. See also Rpd3 and Ume6. 

Sirolimus: An immunosuppressant also referred to as rapamycin. 

SIRT1 (sirtuin 1): A NAD
+
-dependent protein deacetylase that is activated by caloric restriction 

or glucose deprivation; SIRT1 can induce macroautophagy through the deacetylation of 

autophagy-related proteins and/or FOXO transcription factors.
1942

 Deacetylation of K49 and K51 

of nuclear LC3 leads to localization in the cytosol and association with phagophores.
627

 See also 

SIRT2.  

SIRT2 (sirtuin 2): A NAD
+
-dependent protein deacetylase sharing homology with SIRT1 that is 

involved in neurodegeneration and might play a role in macroautophagy activation through 

regulation of the acetylation state of FOXO1.
1678

 Under prolonged stress the SIRT2-dependent 

regulation of FOXO1 acetylation is impaired, and acetylated FOXO1 can bind to ATG7 in the 

cytoplasm and directly affect macroautophagy. 

SIRT3 (sirtuin 3): A mitochondrial NAD
+
-dependent protein deacetylase sharing homology 

with SIRT1, which is responsible for deacetylation of mitochondrial proteins and modulation of 

mitophagy.
1943

 

SIRT5: A mitochondrial SIRT1 homolog with NAD
+
-dependent protein 

desuccinylase/demalonylase activity; SIRT5 modulates ammonia-induced macroautophagy.
1944

 

SLAPs (spacious Listeria-containing phagosomes): SLAPs can be formed by L. 

monocytogenes during infection of macrophages or fibroblasts if bacteria are not able to escape 
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into the cytosol.
1945

 SLAPs are thought to be immature autophagosomes in that they bear LC3 

but are not acidic and do not contain lysosomal degradative enzymes. The pore-forming toxin 

listeriolysin O is essential for SLAPs formation and is thought to create small pores in the SLAP 

membrane that prevent acidification by the v-ATPase. SLAP-like structures have been observed 

in a model of chronic L. monocytogenes infection,
1946

 suggesting that autophagy may contribute 

to the establishment/maintenance of chronic infection. 

SLC1A5 (solute carrier family 1 [neutral amino acid transporter], member 5): A high 

affinity, Na
+
-dependent transporter for L-glutamine; a block of transport activity leads to 

inhibition of MTORC1 signaling and the subsequent activation of macroautophagy.
322

 See also 

SLC7A5. 

SLC7A5 (solute carrier family 7 [amino acid transporter light chain, L system], member 

5): A bidirectional transporter that allows the simultaneous efflux of L-glutamine and influx of 

L-leucine; this transporter works in conjunction with SLC1A5 to regulate MTORC1.
322

  

SLC9A3R1 (solute carrier family 9, subfamily A [NHE3, cation proton antiporter 3], 

member 3 regulator 1): A scaffold protein that competes with BCL2 for binding to BECN1, 

thus promoting macroautophagy.
1947

 

SLC25A1 (solute carrier family 25 [mitochondrial carrier; citrate transporter], member 1): 

This protein maintains mitochondrial activity and promotes the movement of citrate from the 

mitochondria to the cytoplasm, providing cytosolic acetyl-coenzyme A.  Inhibition of SLC25A1 

results in the activation of macroautophagy and mitophagy.
1948

  

SLC38A9 (solute carrier family 38, member 9): A multi-spanning membrane protein that 

localizes to the lysosome as part of the RRAG-Ragulator complex. SLC38A9 functions as a 

transceptor (transporter-receptor) to link amino acid status with MTORC1 activity.
1949-1951
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Slg1 (Wsc1): A yeast cell surface sensor in the Slt2 MAPK pathway that is required for 

mitophagy.
488

 See also Slt2. 

SLR (sequestosome 1/p62-like receptor): Proteins that act as macroautophagy receptors, and in 

proinflammatory or other types of signaling.
1952

  

Slt2: A yeast MAPK that is required for pexophagy and mitophagy.
488

 See also Pkc1, Bck1 and 

Mkk1/2. 

smARF (short mitochondrial ARF): A small isoform of CDKN2A/p19ARF that results from 

the use of an alternate translation initiation site, which localizes to mitochondria and disrupts the 

membrane potential, leading to a massive increase in macroautophagy and cell death.
1953

  

SNAPIN (SNAP-associated protein): An adaptor protein involved in dynein-mediated late 

endocytic transport; SNAPIN is needed for the delivery of endosomes from distal processes to 

lysosomes in the neuronal soma, allowing maturation of autolysosomes.
140

  

SNCA/-synuclein: A presynaptic protein relevant for Parkinson disease pathogenesis because 

of its toxicity resulting from aggregation. SNCA degradation in neuronal cells involves the 

autophagy-lysosomal pathway via macroautophagy and chaperone-mediated autophagy.
1954

 

Conversely, SNCA accumulation over time might impair autophagy function, and an inhibitory 

interaction of SNCA with HMGB1 has been reported.
1955

 This interaction can be reversed by the 

natural autophagy inducer corynoxine B. Similarly, in human T lymphocytes the aggregated 

form of SNCA, once generated, can be degraded by macroautophagy, whereas interfering with 

this pathway can result in the abnormal accumulation of SNCA. Hence, SNCA can be considered 

as an autophagy-related marker of peripheral blood lymphocytes.
1276
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Snx4/Atg24: A yeast PtdIns3P-binding sorting nexin that is part of the Atg1 kinase complex and 

binds Atg20.
1521

 Snx4/Atg24 is also involved in recycling from early endosomes. In the 

filamentous fungus M. oryzae, Atg24 is required for mitophagy.
680

 

SNX18: A PX-BAR domain-containing protein involved in phagophore elongation.
1956

 

SpeB: A cysteine protease secreted by Streptococcus pyogenes that degrades macroautophagy 

components at the bacterial surface, leading to autophagy escape.
1957

 The lack of SpeB allows 

capture and killing of cytoplasmic S. pyogenes by the macroautophagy system.
118,1957

 

Spautin-1 (specific and potent autophagy inhibitor-1): An inhibitor of USP10 and USP13, 

identified in a screen for inhibitors of macroautophagy, which promotes the degradation of the 

PIK3C3/VSP34-BECN1 complex.
1958

 

Spermidine: A natural polyamine that induces macroautophagy through the inhibition of histone 

acetylases such as EP300.
601,1959

  

Sphingolipids: Sphingolipids are a major class of lipids. Some metabolites including ceramide, 

sphingosine and sphingosine 1-phosphate are bioactive signaling molecules. Ceramide and 

sphingosine 1-phosphate are positive regulators of macroautophagy.
1960,1961

  

SPNS/spinster: A putative lysosomal efflux permease required for autophagic lysosome 

reformation.
1962

  

Sqa (spaghetti-squash activator): A myosin light chain kinase-like protein that is a substrate of 

Atg1 in Drosophila; required for starvation-induced autophagosome formation, and the 

mammalian homolog DAPK3 is also involved in ATG9 trafficking.
469

  

SQST-1: The C. elegans homolog of SQSTM1. 

SQSTM1/p62 (sequestosome 1): An autophagy receptor that links ubiquitinated proteins to 

LC3. SQSTM1 accumulates in cells when macroautophagy is inhibited. SQSTM1 interaction 
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with LC3 requires a WXXL or a LIR motif analogous to the interaction of Atg8 with Atg19.
77

 

See also LIR/LRS. 

SRPX/Drs (sushi-repeat-containing protein, x-linked): An apoptosis-inducing tumor 

suppressor that is involved in the maturation of autophagosomes.
1963

 

SseL: A Salmonella deubiquitinase secreted by a type III secretion system; deubiquitination of 

aggregates and ALIS decreases host macrophage macroautophagic flux and results in an 

environment more favorable to bacterial replication.
1964

 

Ssk1: A yeast component of the Hog1 signaling cascade that is required for mitophagy.
488

 See 

also Hog1. 

Sso1/Sso2: Highly homologous plasma membrane syntaxins (SNAREs) of S. cerevisiae 

involved in exocytosis; the Sso1/Sso2 proteins also control the movement of Atg9 to the Atg9 

peripheral sites and PAS during macroautophagy and the Cvt pathway.
1927

  

STAT3 (signal transducer and activator of transcription 3 (acute-phase response factor]): 

A transcription factor that also functions in the cytosol as a suppressor of macroautophagy.
1965

 

STAT3 binds EIF2AK2/PKR and inhibits the phosphorylation of EIF2S1. 

Stationary phase lipophagy: A type of lipophagy that occurs in yeast cells entering 

quiescence.
1966,1967

 

STK3 (serine/threonine kinase 3): The mammalian homolog of the Hippo/Ste20 kinase, which 

can phosphorylate LC3 on Thr50; this modification is needed for the fusion of autophagosomes 

with lysosomes.
1968

 

STK4/MST1 (serine/threonine kinase 4): As with STK3, STK4 can phosphorylate LC3.
1968

 

STK4 also phosphorylates Thr108 of BECN1, promoting the interaction of BECN1 with BCL2 

or BCL2L1, inhibiting macroautophagy.
1969
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STK11/LKB1 (serine/threonine kinase 11): A kinase that is upstream of, and activates, 

AMPK.
1594

  

STX5 (syntaxin 5): A Golgi-localized SNARE protein involved in vesicular transport of 

lysosomal hydrolases, a process that is critical for lysosome biogenesis; STX5 is needed for the 

later stages of autophagy.
1970

  

STX12/STX13/STX14 (syntaxin 12): A genetic modifier of mutant CHMP2B in frontotemporal 

dementia that is required for autophagosome maturation; STX12 interacts with VTI1A.
1971

 

STX17 (syntaxin 17): An autophagosomal SNARE protein required for fusion of the completed 

autophagosome with an endosome or lysosome in metazoans.
563,564

 STX17 is also required for 

recruitment of ATG14 to the ER-mitochondria contact sites.
1972

 

Sui2: The yeast homolog of EIF2S1/eIF2. 

SUPT20H/FAM48A (suppressor of Ty 20 homolog [S. cerevisiae]): A protein that interacts 

with the C-terminal domain of ATG9; this interaction is negatively regulated by MAPK14.
1973

  

Sunitinib: An autofluorescent multitarget tyrosine kinase inhibitor with lysosomotropic 

properties; sunitinib interferes with autophagic flux by blocking trafficking to lysosomes.
1974

  

Symbiophagy: A process in which invertebrates such as the coralline demosponge Astrosclera 

willeyana degrade part of their symbiotic bacterial community, as part of a biomineralization 

pathway that generates the sponge skeleton.
1975

 

Syx13 (Syntaxin 13): The Drosophila homolog of human STX12 that is required for 

autophagosome maturation.
1971

 

TAB2 (TGF-beta activated kinase 1/MAP3K7 binding protein 2): MAP3K7-binding protein 

that consitutively interacts with TAB3 and inhibits macroautophagy; upon macroautophagy 

induction these proteins dissociate from BECN1 and bind MAP3K7.
1976,1977

 

http://www.ncbi.nlm.nih.gov/pubmed/23455425
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TAB3 (TGF-beta activated kinase 1/MAP3K7 binding protein 3): See TAB2. 

TAK1: See MAP3K7.  

TAKA (transport of Atg9 after knocking out ATG1) assay: An epistasis analysis that 

examines the localization of Atg9-GFP in a double mutant, where one of the mutations is a 

deletion of ATG1.
98

 In atg1∆ mutants, Atg9-GFP is restricted primarily to the PAS; if the second 

mutation results in a multiple puncta phenotype, the corresponding protein is presumably 

required for anterograde transport of Atg9 to the PAS.
699

 This analysis can be combined with 

localization of RFP-Ape1 to determine if any of the Atg9-GFP puncta reach the PAS, in which 

case that punctum would colocalize with the RFP-Ape1 PAS marker.  

Tamoxifen: A triphenylethylenic compound widely used for the 

management of estrogen receptor-positive breast cancers. This drug is a 

dual modulator of ESR (estrogen receptor) and a high affinity ligand of 

the microsomal antiestrogen binding site (AEBS). Tamoxifen induces 

protective macroautophagy in cancer cells through an AEBS-mediated accumulation of 

zymostenol (5α-cholest-8-en-3β-ol).
1176,1839,1978

 

TARDBP/TDP-43 (TAR DNA binding protein): A DNA/RNA binding protein that stabilizes 

Atg7 mRNA.
1979

 

TASCC (TOR-autophagy spatial coupling compartment): A compartment located at the trans 

Golgi where autolysosomes and MTOR accumulate during RRAS-induced senescence to provide 

spatial coupling of protein secretion (anabolism) with degradation (catabolism); for example, 

amino acids generated from autophagy would quickly reactivate MTOR, whereas autophagy 

would be rapidly induced via MTOR inhibition when nutrients are again depleted.
1980

  

O

N
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TAX1BP1/CALCOCO3 (Tax1 [human T-cell leukemia virus type I] binding protein 1): An 

autophagy receptor that contains a LIR motif and a double zinc-finger ubiquitin binding domain.  

TAX1BP1 interacts with ubiquitinated substrates, such as S. typhimurium, and recruits LC3-

positive autophagosomal membrane.{[Newman, 2012 #3759;Tumbarello, 2012 

#3096;Tumbarello, 2015 #3760} 

Tax4: See Irs4.
1742

 

TBC1D7 (TBC1 domain family, member 7): This protein is the third functional subunit of the 

TSC1-TSC2 complex upstream of MTORC1. Loss of function of TBC1D7 results in an increase 

of MTORC1 signaling, delayed induction of autophagy and enhancement of cell growth under 

poor growth conditions.
1981

 Mutations in TBC1D7 have been associated with intellectual 

disability, macrocrania, and delayed autophagy.
1982,1983

 

TBC1D14 (TBC1 domain family, member 14): TBC1D14 colocalizes and interacts with 

ULK1 and upon overexpression causes tubulation of ULK1-positive endosomes, inhibiting 

autophagosome formation.
1898

 TBC1D14 binds activated RAB11, but does not function as a 

GAP. TBC1D14 localizes to the Golgi complex during amino acid starvation. See also RAB11. 

TBC1D25/OATL1 (TBC1 domain family, member 25): A Tre2-Bub2-Cdc16 (TBC) domain-

containing GAP for RAB33B; TBC1D25 is recruited to phagophores and autophagosomes via 

direct interaction with the Atg8 family proteins (via a LIR/LRS-like sequence), and it regulates 

the interaction of autophagosomes with lysosomes by inactivating RAB33B.
1904

 Overexpression 

of TBC1D25 inhibits autophagosome maturation at a step prior to fusion, suggesting that it 

might interfere with a tethering/docking function of RAB33B. See also RAB33B and LIR/LRS. 
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TBK1 (TANK-binding kinase 1): A serine/threonine protein kinase that is similar to IKK 

involved in the activation of NFKB.
1984

 TBK1 binds and directly phosphorylates OPTN at 

Ser177 (in humans) within the LIR, increasing the affinity of the latter for LC3.
842

 

TCHP/mitostatin (trichoplein, keratin filament binding): A DCN (decorin)-inducible tumor 

suppressor gene that functions in, and is required for, tumor cell mitophagy. TCHP/mitostatin 

responds to DCN as well as canonical cues (e.g., nutrient deprivation and rapamycin) for 

mitophagic induction. DCN regulates mitostatin in a PPARGC1A/PGC-1-dependent manner. 

Moreover, DCN-induced mitophagy is entirely dependent on TCHP for angiogenic inhibition.
1985

 

TECPR1 (tectonin beta-propeller repeat containing 1): A protein that interacts with ATG5 

and WIPI2, and localizes to the phagophore (localization is dependent on WIPI2); TECPR1 is 

needed for phagophore formation during macroautophagic elimination of Shigella, but not for 

starvation-induced autophagy.
1986

 TECPR1 also localizes to autophagosomes that target other 

pathogenic microbes such as group A Streptococcus, to depolarized mitochondria and to protein 

aggregates, suggesting a general role in selective macroautophagy. TECPR1 also plays a role in 

fusion of the autophagosome with the lysosome by competing with ATG16L1 to bind ATG5 and 

PtdIns3P, recruiting ATG5 to the lysosome membrane.
1987

 

TECPR2: A WD repeat- and TECPR domain-containing protein that plays a role in 

macroautophagy; mutation of TECPR2 results in a form of monogenic hereditary spastic 

paraparesis.
1988,1989

 

TFE3 (transcription factor binding to IGHM enhancer 3): A transcription factor belonging to 

the microphthalmia/transcription factor E (MiT/TFE) family, along with TFEB and MITF.
610,1791

 

See also TFEB and MITF. 
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TFEB (transcription factor EB): A transcription factor that positively regulates the expression 

of genes involved in lysosomal biogenesis (those in the CLEAR network
607

), and also several of 

those involved in macroautophagy (including UVRAG, WIPI, MAP1LC3B and ATG9B); the use 

of a common transcription factor allows the coordinated expression of genes whose products are 

involved in the turnover of cytoplasm.
605

 See also CLEAR and PPP3R1. 

TGFB1/TGF-(transforming growth factor, beta 1): A cytokine that activates autophagy 

through the SMAD and MAPK8 pathways. TGFB1 induces the expression of several ATG genes 

including BECN1. 

TGM2/TG2/TGase 2 (transglutaminase 2): An enzyme that catalyzes the formation of an 

isopeptide bond between a free amine group (e.g., protein- or peptide-bound lysine) and the acyl 

group at the end of the side chain of protein- or peptide-bound glutamine (protein crosslinking); 

TGM2 interacts with SQSTM1 and is involved in the macroautophagic clearance of 

ubiquitinated proteins.
747,1990

 

THC (∆9-Tetrahydrocannabinol): The main active component of the hemp plant Cannabis 

sativa. The anticancer activity of THC in several animal models of cancer relies on its ability to 

stimulate autophagy-mediated cancer cell death. This effect occurs via THC binding to 

cannabinoid receptors, and the subsequent triggering of an ER stress-related response, which 

leads in turn to the inhibition of the AKT-MTORC1 axis.
1991-1993

 

TIGAR/C12orf5 (TP53 induced glycolysis regulatory phosphatase): A protein that 

modulates glycolysis, causing an increase in NADPH, which results in a lower ROS 

level; this reduces the sensitivity to oxidative stress and apoptosis, but also has the effect 

of lowering the level of macroautophagy.
1994
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Timosaponin A-III: A medicinal saponin that induces a type of macroautophagy with some 

features that are distinct from rapamycin-induced macroautophagy.
1995

 

Tlg2: A yeast endocytic SNARE light chain involved in early stages of the Cvt pathway
700

 and 

in autophagosome membrane formation.
1927

 Deletion of TLG2 results in a modest impairment in 

Atg9 delivery to the PAS. 

TLR (toll-like receptor): A family of receptors that induces macroautophagy following binding 

to a corresponding PAMP. 

TM9SF1 (transmembrane 9 superfamily member 1): A protein with 9 transmembrane 

domains that induces macroautophagy when overexpressed.
1996

  

TMEM59 (transmembrane protein 59): A type-I transmembrane protein able to induce an 

unconventional autophagic process involving LC3 labeling of single-membrane endosomes 

through direct interaction with ATG16L1.
1997

 

TMEM74 (transmembrane protein 74): An integral membrane protein that induces 

macroautophagy when overexpressed.
1661,1662

 See also EVA1A. 

TMEM166: See EVA1A.  

TNFAIP3/A20 (tumor necrosis factor, alpha-induced protein 3): An E3 ubiquitin ligase that 

also functions as a deubiquitinating enzyme that removes K63-linked ubiquitin from BECN1, 

thus limiting macroautophagy induction in response to TLR signaling.
1998

 In contrast, TNFAIP3 

restricts MTOR signaling, acting as a positive factor to promote macroautophagy in CD4 T 

cells.
1999

 

TNFSF10/TRAIL (tumor necrosis factor [ligand] superfamily, member 10): Induces 

macroautophagy by activating AMPK, thus inhibiting MTORC1 during lumen formation. 
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TOLLIP (toll interacting protein): A mammalian ubiquitin-binding receptor protein similar to 

yeast Cue5 that contains a CUE domain and plays a role in the macroautophagic removal of 

protein aggregates.
431

 See also Cue5 and CUET. 

TOR (target of rapamycin): A serine/threonine protein kinase that negatively regulates yeast 

macroautophagy. Present in 2 complexes, TORC1 and TORC2. TORC1 is particularly sensitive 

to inhibition by rapamycin. TORC1 regulates macroautophagy in part through Tap42-protein 

phosphatase 2A, and also by phosphorylating Atg13 and Atg1. 

TORC1 (TOR complex I): A rapamycin-sensitive protein complex of TOR that includes at 

least Tor1 or Tor2 (MTOR), Kog1 (RPTOR), Lst8 (MLST8), and Tco89.
2000

 MTORC1 also 

includes DEPTOR and AKT1S1/PRAS40.
2001

 In mammalian cells, sensitivity to rapamycin is 

conferred by RPTOR. TORC1 directly regulates macroautophagy.  

TORC2 (TOR complex II): A relatively rapamycin-insensitive protein complex of TOR that 

includes at least Tor2 (MTOR), Avo1 (MAPKAP1/SIN1), Avo2, Avo3 (RICTOR), Bit61, Lst8 

(MLST8) and Tsc11; MTORC2 also includes FKBP8/FKBP38, and PRR5/Protor-1.
2000-2002

 A 

critical difference in terms of components relative to TORC1 is the replacement of RPTOR by 

RICTOR. TORC2 is primarily involved with regulation of the cytoskeleton, but this complex 

functions to positively regulate macroautophagy during amino acid starvation.
2003

 Finally, studies 

also support the idea that TORC2 activity is required to sustain autophagosome biogenesis,
2004

 

22:4528–4544) whereas it exerts  an inhibitory effect on CMA,
2005

 suggesting that a switch in 

TORC2 substrates may contribute to coordinating the activity of these 2 types of autophagy. 

Torin1: A selective catalytic ATP-competitive MTOR inhibitor that directly inhibits both 

TORC1 and TORC2.
1132
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TP53/p53 (tumor protein 53): A tumor suppressor. Nuclear TP53 activates macroautophagy, at 

least in part, by stimulating AMPK and DRAM1, whereas cytoplasmic TP53 inhibits 

macroautophagy.
1211

 Note that the official name for this protein in rodents is TRP53. The p53 C. 

elegans ortholog, cep-1, also regulates macroautophagy.
1210,1212

 

TP53INP1 (tumor protein p53 inducible nuclear protein 1): A stress-response protein that 

promotes TP53 transcriptional activity; cells lacking TP53INP1 display reduced basal and stress-

induced autophagy,
2006

 whereas its overexpression enhances autophagic flux.
2007

 TP53INP1 

interacts directly with LC3 via a functional LIR and stimulates autophagosome formation.
2008

 

Cells lacking TP53INP1 display reduced mitophagy; TP53INP1 interacts with PARK2 and 

PINK1, and thus could be a recognition molecule involved in mitophagy.
2009

 

TP53INP2/DOR (tumor protein p53 inducible nuclear protein 2): A mammalian and 

Drosophila regulatory protein that shuttles between the nucleus and the cytosol; the nuclear 

protein interacts with deacetylated LC3
627

 and GABARAPL2 and stimulates autophagosome 

formation.
2010

 TP53INP2 also interacts with GABARAP and VMP1 and is needed for the 

recruitment of BECN1 and LC3 to autophagosomes. TP53INP2 translocates from the nucleus to 

phagophores during macroautophagy induction and binds VMP1 and LC3 directly.
2011

 In 

addition, TP53INP2 modulates muscle mass in mice through the regulation of 

macroautophagy.
2012

 

TPCN/two-pore channel (two pore segment channel): TPCNs are endolysosomal cation 

channels that maintain the proton gradient and membrane potential of endosomal and lysosomal 

membranes. TPCN2 physically interacts with MTOR and regulates MTOR reactivation and 

macroautophagy flux.
2013,2014
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TPR (translocated promoter region, nuclear basket protein): TPR is a component of the 

nuclear pore complex that presumably localizes at intranuclear filaments or nuclear 

baskets.  Nuclear pore complex components, including TPR, are jointly referred to as 

nucleoporins. TPR was originally identified as the oncogenic activator of the MET and 

NTRK1/trk proto-oncogenes. Knockdown of TPR facilitates macroautophagy. TPR depletion is 

not only responsible for TP53 nuclear accumulation, which also activates the TP53-induced 

macroautophagy modulator DRAM, but also contributes to HSF1 and HSP70 mRNA trafficking, 

and transcriptional regulation of ATG7 and ATG12.
2015

  

TRAF2 (TNF receptor-associated factor 2): An E3 ubiquitin ligase that plays an essential role 

in mitophagy in unstressed cardiac myocytes, as well as those treated with TNF or CCCP.
752

 

TRAF6 (TNF receptor-associated factor 6, E3 ubiquitin protein ligase): An E3 ubiquitin 

ligase that ubiquitinates BECN1 to induce TLR4-triggered macroautophagy in macrophages.
1998

  

TRAIL: See TNFSF10.  

Transgenic: Harboring genetic material of another species/organism or extra copies of an 

endogenous gene, usually gained through transfer by genetic engineering. 

Transmitophagy/transcellular mitophagy: A process in which axonal mitochondria are 

degraded in a cell-nonautonomous mechanism within neighboring cells.
761

 

TRAPPII (transport protein particle II): A guanine nucleotide exchange factor for Ypt1 and 

perhaps Ypt31/32 that functions in macroautophagy in yeast.
2016

 TRAPPII is composed of Bet3, 

Bet5, Trs20, Trs23, Trs31, Trs33 and the unique subunits Trs65, Trs120 and Trs130. 

TRAPPIII (transport protein particle III): A guanine nucleotide exchange factor for Ypt1 that 

functions in macroautophagy in yeast.
1257

 TRAPPIII is composed of Bet3, Bet5, Trs20, Trs23, 

Trs31, Trs33 and a unique subunit, Trs85. 
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TRIB3 (tribbles pseudokinase 3): A pseudokinase that plays a crucial role in the mechanism by 

which various anticancer agents (and specifically cannabinoids, the active components of 

marijuana and their derived products) activate macroautophagy in cancer cells. Cannabinoids 

elicit an ER stress-related response that leads to the upregulation of TRIB3 whose interaction 

with AKT impedes the activation of this kinase, thus leading to a decreased phosphorylation of 

TSC2 and AKT1S1/PRAS40. These events trigger the inhibition of MTORC1 and the induction 

of macroautophagy.
1992

 Conversely, TRIB3 binding to SQSTM1 via its UBA and LIR motifs 

interferes with autophagic flux, in particular of ubiquitinated proteins, and also reduces the 

efficiency of the UPS, promoting tumor progression due to the accumulation of tumor-promoting 

factors.
1991,2017,2018

 

Trichostatin A: An inhibitor of class I and class II HDACs that induces autophagy.
2019

 

TRIM5/TRIM5 (tripartite motif containing 5): A selective macroautophagy receptor for 

xenophagy; TRIM5 binds the HIV-1 capsid.
1889

 

TRIM28 (tripartite motif containing 28): TRIM28 is an E3 ligase that is part of a ubiquitin 

ligase complex that targets PRKAA1, leading to ubiquitination and proteasomal degradation in 

part through the upregulation of MTOR activity.
1769

 See also MAGEA3. 

TRIM50 (tripartite motif containing 50): TRIM50 is a cytoplasmic E3-ubiquitin ligase,
2020

 

which interacts and colocalizes with SQSTM1 and promotes the formation and clearance of 

aggresome-associated polyubiquitinated proteins through HDAC6-mediated interaction and 

acetylation.
2021,2022

 

TRIM63/MURF-1 (tripartite motif containing 63, E3 ubiquitin protein ligase): Muscle-

specific atrophy-related E3 ubiquitin ligase
2023,2024

 that cooperates with SH3GLB1 to regulate 
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autophagic degradation of CHRNA1 in skeletal muscle, particularly upon muscle-atrophy 

induction.
1940

 

TRPC4 (transient receptor potential cation channel, subfamily C, member 4): A cation 

channel in human umbilical vascular endothelial cells; upregulation of TRPC4 increases the 

intracellular Ca
2+

 concentration results in activation of CAMKK2, which leads to MTOR 

inhibition and the induction of macroautophagy.
1439

  

Trs85: A component of the TRAPPIII complex that is required specifically for 

macroautophagy.
670

 

Trs130: A component of the TRAPPII complex that is required for the transport of Atg8 and 

Atg9 to the PAS.
2016

 

TSC1/2 (tuberous sclerosis 1/2): A stable heterodimer (composed of TSC1/hamartin and 

TSC2/tuberin) inhibited by AKT and MAPK1/3 (phosphorylation causes dissociation of the 

dimer), and activated by AMPK. TSC1/2 acts as a GAP for RHEB, thus inhibiting MTOR. 

TSPO (translocator protein [18kDa]): TSPO is a mitochondrial protein that interacts with 

VDAC1 to modulate the efficiency of mitophagy.
2025

 

Tubulovesicular autophagosome (TVA): Cationic lipoplex and polyplex carriers used for 

nonviral gene delivery enter mammalian cells by endocytosis and fuse with autophagosomes, 

generating large tubulovesicular structures (tubulovesicular autophagosomes) that immunostain 

for LC3; these structures do not fuse efficiently with lysosomes and interfere with gene 

expression.
205

 

Tubulovesicular cluster (TVC): A structure identified morphologically in yeast that 

corresponds to the Atg9 peripheral sites.
516

 See also Atg9 peripheral sites/structures. 
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UBE2N (ubiquitin-conjugating enzyme E2N): A ubiquitin-conjugating enzyme involved in 

PARK2-mediated mitophagy.
2026,2027

 UBE2N activity may be only partly redundant with that of 

UBE2L3, UBE2D2 and UBE2D3, as it is also involved during later steps of mitophagy. 

Ubiquitin: A 76-amino acid protein that is conjugated to lysine residues. Ubiquitin is 

traditionally considered part of the ubiquitin-proteasome system and tags proteins for 

degradation; however, ubiquitin is also linked to various types of autophagy including 

aggrephagy (see SQSTM1 and NBR1). Lysine linkage-specific monoclonal antibodies, which 

are commercially available, can be used to investigate the degradation pathway usage.
2028

 

Proteins covalently tagged with polyubiquitin chains via K48 are destined for proteasomal 

degradation, whereas proteins tagged with K63-linked ubiquitin are degraded via the autophagy 

pathway. In addition, phosphorylated forms of ubiquitin have been identified including p-S65-

Ub, which is specifically generated during PINK1-PARK2-mediated mitophagy. Potentially, 

several PTMs of the modifier ubiquitin may turn out to be highly relevant and specific for 

distinct forms of selective autophagy (reviewed in ref. 
717

). 

Ubp3: A yeast deubiquitinase that forms a complex with Bre5 and is required for ribophagy.
810

 

Conversely, the Ubp3-Bre5 complex inhibits mitophagy.
2029

 

UBQLN/Ubiquilins: Receptor proteins that deliver ubiquitinated substrates to the proteasome. 

Ubiquilins may aid in the incorporation of protein aggregates into autophagosomes, and also 

promote the maturation of autophagosomes at the stage of fusion with lysosomes.
2030

  

ULK family (unc-51 like autophagy activating kinase): The ULK proteins are homologs of 

yeast Atg1. In mammalian cells the 

family consists of 5 members, 

ULK1, ULK2, ULK3, ULK4, 

Kinase Domain Serine Proline Rich C-terminal Domain (CTD)

GABARAP

LC3

RB1CC1

ULK1:

GABARAPL2

ATG13
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STK36/ULK5. ULK1 and ULK2 are required for macroautophagy, and ULK3 for oncogene-

induced senescence.
514,2031,2032

 See also Atg1. Figure modified from Fig. 2 of ref. 
2033

. 

Ume6: A component of the Rpd3L complex that binds to the URS1 sequence in the ATG8 

promoter and downregulates transcription in growing conditions.
1170

 See also Rpd3 and 

Sin3/SIN3. 

UNC-51: The C. elegans Atg1/ULK1/ULK2 homolog. See also Atg1. 

UPR (unfolded protein response): A coordinated process to adapt to ER stress, providing a 

mechanism to buffer fluctuations in the unfolded protein load. The activation of this pathway is 

often related with macroautophagy. 

USP8 (ubiquitin specific peptidase 8): A deubiquitinase that removes K6-linked ubiquitin 

chains from PARK2 to promote PARK2 recruitment to depolarized mitochondria and 

mitophagy.
1832

 

USP15 (ubiquitin specific peptidase 15): A deubiquitinating enzyme that antagonizes PARK2-

mediated mitophagy.
2034

 See also USP30. 

USP30: A deubiquitinating enzyme that antagonizes PARK2-mediated mitophagy.
2035

 USP30 is 

also a substrate of PARK2 and is subject to proteasome-mediated degradation. See also USP15. 

USP36:  A deubiquitinating enzyme that negatively regulates selective macroautophagy in 

Drosophila and human cells.
2036

 

UVRAG (UV radiation resistance associated): A 

Vps38 homolog that can be part of the class III 

PtdIns3K complex. UVRAG functions in several 

ways to regulate macroautophagy: 1) It disrupts 

BECN1 dimer formation and forms a heterodimer 

SH3GLB1 BECN1

AMBRA1

UVRAG

PIK3C3

PIK3R4
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that activates macroautophagy. 2) It binds to SH3GLB1 to allow activation of class III PtdIns3K 

to stimulate macroautophagy. 3) It interacts with the class C Vps/HOPS proteins involved in 

fusion of autophagosomes or amphisomes with the lysosome. 4) It competes with ATG14 for 

binding to BECN1, thus directing the class III PtdIns3K to function in the maturation step of 

macroautophagy.
2037

 MTORC1 phosphorylates UVRAG to inhibit macroautophagy.
2038

 In 

contrast, MTORC1 can also phosphorylate UVRAG to stimulate PIK3C3 activity and autophagic 

lysosome reformation.
2039

 UVRAG also has an autophagy-independent function, interacting with 

membrane fusion machinery to facilitate the cellular entry of enveloped viruses.
2040

 

Vacuolar cell death: One of the 2 major types of cell death in plants (another type is necrosis), 

wherein the content of the dying cell is gradually engulfed by growing lytic vacuoles without 

loss of protoplast turgor, and culminates in vacuolar collapse.
1040

 Vacuolar cell death is 

commonly observed during plant development, for example in the embryo-suspensor and xylem 

elements, and critically depends on macroautophagy.
1042

 A similar type of macroautophagy-

dependent vacuolar cell death is required for Dictyostelium development.
2041

 

Vacuolar H
+
-ATPase (V-ATPase): A ubiquitously expressed proton pump that is responsible 

for acidifying lysosomes and the yeast or plant vacuole, and therefore is important for the normal 

progression of autophagy. Inhibitors of the V-ATPase (e.g., bafilomycin A1) are efficient 

macroautophagy inhibitors.
146,147

  

Vacuolar sequestering membranes (VSM): Extensions/protrusions of the vacuole limiting 

membrane along the surface of peroxisomes that occurs during micropexophagy.
2042

  

Vacuole: The fungal and plant equivalent of the lysosome; this organelle also carries out storage 

and osmoregulatory functions.
2043

 The bona fide plant equivalent of the lysosome is the lytic 

vacuole. 
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Vacuole import and degradation (Vid): A degradative pathway in yeast in which a specific 

protein(s) is sequestered into small (30- to 50-nm) single-membrane cytosolic vesicles that fuse 

with the vacuole allowing the contents to be degraded in the lumen. This process has been 

characterized for the catabolite-induced degradation of the gluconeogenic enzyme Fbp1/fructose-

1,6-bisphosphatase in the presence of glucose, and sequestration is thought to involve 

translocation into the completed vesicle. An alternate pathway for degradation of Fbp1 by the 

ubiquitin-proteasome system has also been described.
2044

  

Vacuolin-1: A small chemical that potently and reversibly inhibits the fusion between 

autophagosomes or endosomes with lysosomes by activating RAB5A.
1443

 

Valinomycin: A K
+
 ionophore that destroys the electrochemical gradient across the 

mitochondrial membane and is widely used as a stimulator of mitophagy, similar to CCCP.
2045

 

Vam3: A yeast syntaxin homolog needed for the fusion of autophagosomes with the vacuole.
2046

  

VAMP3 (vesicle-associated membrane protein 3): A SNARE protein that facilitates the fusion 

of MVBs with autophagosomes to generate amphisomes.
2047

   

VAMP7 (vesicle-associated membrane protein 7): VAMP7 is a SNARE protein that 

colocalizes with ATG16L1 vesicles and phagophores, and is required, along with STX7 

(syntaxin 7), STX8 (syntaxin 8) and VTI1B, for autophagosome formation.
2048

 VAMP7 is also 

involved in the maturation of autophagosomes by facilitating fusion with a lysosome.
2047

  

VAMP8 (vesicle-associated membrane protein 8): A SNARE protein that, in conjunction with 

VTI1B, is needed for the fusion of autophagosomes with lysosomes.
2049

  

VCP/p97 (valosin-containing protein): A AAA
+
-ATPase that is required for autophagosome 

maturation under basal conditions or when the proteasomal system is impaired; mutations of 
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VCP result in the accumulation of immature, acidified autophagic vacuoles that contain 

ubiquitinated substrates.
2050,2051

 See also Cdc48. 

Verteporfin: An FDA-approved drug; used in photodynamic therapy, but it inhibits the 

formation of autophagosomes in vivo without light activation.
2052

  

VHL (von Hippel-Lindau tumor suppressor, E3 ubiquitin protein ligase): VHL serves as the 

substrate recognition subunit of a ubiquitin ligase that targets the  subunit of the heterodimeric 

transcription factor HIF1 for degradation. This interaction requires the hydroxylation of HIF1A 

on one or both of 2 conserved prolyl residues by members of the EGLN family of prolyl 

hydroxylases.
2053

 

VirG: A Shigella protein that is required for intracellular actin-based motility; VirG binds 

ATG5, which induces xenophagy; IcsB, a protein secreted by the type III secretion system, 

competitively blocks this interaction.
2054

 

VMP1 (vacuole membrane protein 1): A multispanning membrane protein that is required for 

macroautophagy.
602,2055

 VMP1 interacts with, and recruits, BECN1 to the phagophore assembly 

site, leading to the generation of PtdIns3P, binding of the ATG12–ATG5-ATG16L1 complex, 

and lipidation of LC3.
2056

 

Vps1: A dynamin-like GTPase required for peroxisomal fission. It interacts with Atg11 and 

Atg36 on peroxisomes that are being targeted for degradation by pexophagy.
1637

 See also Dnm1. 

Vps11: A member of the core subunit of the homotypic fusion and protein sorting (HOPS) and 

class C core vacuole/endosome tethering (CORVET) complexes, originally found in yeast but 

also conserved in higher eukaryotes.
2057,2058

 These complexes are important for correct 

endolysosomal trafficking, as well as the trafficking of black pigment cell organelles, 
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melanosomes; zebrafish Vps11 is involved in maintaining melanosome integrity, possibly 

through an autophagy-dependent mechanism.
2059

 

Vps30/Atg6: A component of the class III PtdIns3K complex. Vps30/Atg6 forms part of 2 

distinct yeast complexes (I and II) that are required for the Atg and Vps pathways, respectively. 

See also BECN1 and phosphatidylinositol 3-kinase.
1509

  

Vps34: The yeast phosphatidylinositol 3-kinase; the lipid kinase catalytic component of the 

PtdIns3K complex I and II.
1849

 See also PIK3C3 and phosphatidylinositol 3-kinase.  

Vps38: A yeast component of the class III PtdIns3K complex II, which directs it to function in 

the vacuolar protein sorting pathway.  

VTC (vacuolar transporter chaperone): A complex composed of Vtc1, Vtc2, Vtc3 and Vtc4 

that is required for microautophagy in yeast.
2060

 

Vti1: A yeast soluble SNARE that, together with Sec18/NSF, is needed for the fusion of 

autophagosomes with the vacuole.
1928

 In mammalian cells, the SNARE proteins VAMP8 and 

VTI1B mediate the fusion of antimicrobial and canonical autophagosomes with lysosomes.
2049

  

WAC (WW domain containing adaptor with coiled-coil): A positive regulator of 

macroautophagy that interacts with BECN1, WAC also negatively regulates the UPS.
1669

 

WDFY3/ALFY (WD repeat and FYVE domain containing 3): A scaffold protein that targets 

cytosolic protein aggregates for autophagic degradation.
2061

 WDFY3 interacts directly with 

ATG5,
2062

 GABARAP proteins,
137

 and SQSTM1.
2063

  

WDR45/WIPI4 (WD repeat domain 45): See WIPI. 

WHAMM: A nucleation-promoting factor that directs the activity of the Arp2/3 complex to 

function in autophagosome formation.
2064

 WHAMM colocalizes with LC3, ZFYVE1 and 
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SQSTM1 and acts in autophagosome biogenesis through a mechanism dependent on actin comet 

tail formation. 

WIPI (WD repeat domain, phosphoinositide interacting): The WIPI proteins are putative 

mammalian homologs of yeast Atg18 and Atg21. There are 4 WIPI proteins in mammalian cells. 

WIPI1/WIPI49 and WIPI2 localize with LC3 and bind PtdIns3P.
534

 WIPI2 is required for 

starvation-induced macroautophagy.
538

 WDR45/WIPI4 is also involved in macroautophagy. In 

humans, WDR45 is localized on the X-chromosome and so far only de novo loss-of-function 

mutations are described. Heterozygous and somatic mutations cause neurodegeneration with 

brain iron accumulation,
2065

 while hemizygous mutations result in early-onset epileptic 

encephalopathy.
2066

 Impaired autophagy has been shown in lymphoblastoid cell lines derived 

from affected patients, showing abnormal colocalization of LC3-II and ATG9A. Furthermore, 

lymphoblastoid cell lines from affected subjects, show increased levels of LC3-II, even under 

normal conditions.
2067

 Surprisingly, complete Wdr45 knockout mice develop normally, but show 

neurodegeneration, as of 9 months of age, thereby indicating overlapping activity of the 4 WIPI 

proteins in mammals.
2068

 WDR45/WIPI4 appears to be the member of the mammalian WIPI 

protein family that binds ATG2.
444,542

 

WNT (wingless-type MMTV integration site family): Cysteine-rich glycosylated secreted 

proteins that determine multiple cellular functions such as neuronal development, angiogenesis, 

tumor growth, and stem cell proliferation. Signaling pathways of WNT such as those that involve 

CTNNB1/beta-catenin can suppress macroautophagy.
2069,2070

 

WNT5A: A ligand of the WNT signaling pathway. Activation of the WNT5A-CTNNB1 

pathway suppresses IFNG-induced autophagy in macrophages during mycobacterial infection.
507
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Wortmannin (WM): An inhibitor of PI3K and PtdIns3K; it inhibits macroautophagy due to the 

downstream effect on PtdIns3K.
1766

  

WXXL motif: An amino acid sequence present in proteins that allows an interaction with 

Atg8/LC3/GABARAP proteins; the consensus is [W/F/Y]-X-X-[I/L/V]. Also see AIM and 

LIR/LRS.
1408

 

WYE-354: A catalytic MTOR inhibitor that increases macroautophagic flux to a greater level 

than allosteric inhibitors such as rapamycin (and may be used to induce macroautophagy in cell 

lines that are resistant to rapamycin and its derivatives); short-term treatment with WYE-354 can 

inhibit both MTORC1 and MTORC2, but the effects on flux are due to the former.
323

 See also 

Ku-0063794.  

XBP1 (X-box binding protein 1): A component of the ER stress response that activates 

macroautophagy. The XBP1 yeast ortholog is Hac1.
2071

 

Xenophagy: Cell-autonomous innate immunity defense, whereby cells eliminate intracellular 

microbes (e.g., bacteria, fungi, parasites and/or viruses) by sequestration into autophagosomes 

with subsequent delivery to the lysosome.
2072

  

Xestospongin B: An antagonist of the ITPR that dissociates the inhibitory 

interaction between ITPR and BECN1 and induces macroautophagy.
2073

  

Yeh1: See Ayr1. 

Ykt6: A prenylated vesicle SNARE involved in Golgi transport and fusion 

with the vacuole (including Cvt vesicle delivery to the vacuole
2074

); 

temperature sensitive ykt6 mutations also prevent closure of the 

phagophore.
1927

  

TORC2

Ypk1

Cmd1

Amino acid
starvation

calcineurin

Gcn2

Macroautophagy
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Ymr1: A yeast PtdIns3P-specific phosphatase involved in autophagosome maturation.
2075,2076

 

Ypk1: A downstream effector of TORC2 that stimulates macroautophagy under conditions of 

amino acid depletion.
2003

 TORC2 activation of Ypk1 results in inhibition of the 

PPP3/calcineurin-Cmd1/calmodulin phosphatase, which otherwise dephosphorylates and inhibits 

Gcn2, a positive regulator of macroautophagy. See also Gcn2. 

Ypt1: A yeast GTPase that functions in several forms of autophagy.
1257

 Ypt1 is needed for 

correct localization of Atg8 to the PAS. The mammalian homolog, RAB1, is required for 

autophagosome formation and for autophagic targeting of Salmonella.
2077,2078

 See also 

TRAPPIII. 

Ypt7: A yeast homolog of mammalian RAB7, needed for the fusion of autophagosomes with the 

vacuole. 

YWHAZ/14-3-3 (tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation 

protein, zeta): A member of the 14-3-3 family of proteins that inhibits macroautophagy; direct 

interaction with PIK3C3 negatively regulates kinase activity, and this interaction is disrupted by 

starvation or C2-ceramide.
2079

  

ZFPM1/FOG1 (zinc finger protein, FOG family member 1): A cofactor of GATA1, a 

positive regulator of macroautophagy gene transcription.
612

 See also GATA1. 

ZFYVE1/DFCP1 (zinc finger, FYVE domain containing 1): A PtdIns3P-binding protein that 

localizes to the omegasome.
562

 Knockdown of ZFYVE1 does not result in a macroautophagy-

defective phenotype. 

ZFYVE26/spastizin/SPG15 (zinc finger, FYVE domain containing 26): A protein involved in 

a complicated form of hereditary spastic paraparesis; it interacts with the macroautophagy 
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complex BECN1-UVRAG-KIAA0226/Rubicon and is required for autosphagosome 

maturation.
2080

 

ZIPK: See Sqa.  

Zoledronic acid: A bisphosphonate that induces macroautophagy and may result in autophagic 

cell death in prostate cancer cells.
2081

 

Zymophagy: The selective degradation of activated zymogen granules by a macroautophagy-

like process that is dependent on VMP1, SQSTM1 and the ubiquitin protease USP9X.
869

 See also 

crinophagy. 
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Quick guide 

1. Whenever possible, use more than one assay to monitor autophagy. 

2. Whenever possible, include flux measurements for autophagy (e.g., using tandem 

fluorochrome assays such as RFP-EGFP-LC3 or, preferably, cargo-specific variations 

thereof). 

3. Whenever possible, use genetic inhibition of autophagy to complement studies with 

nonspecific pharmacological inhibitors such as 3-MA. 

4. For analysis of genetic inhibition, a minimum of 2 ATG genes (including for example 

BECN1, ATG7 or ULK1) should be targeted to help ensure the phenotype is due to 

inhibition of autophagy. 

5. When monitoring GFP-LC3 puncta formation, provide quantification, ideally in the form 

of number of puncta per cell. 

6. For the interpretation of decreased SQSTM1 levels, use a pan-caspase inhibitor to ensure 

that the reduced SQSTM1 amount is not due to a caspase-induced cleavage of the 

protein. 

7. Whenever possible, monitor autophagic responses using both short-term and long-term 

assays. 
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Figure 1. Schematic model demonstrating the induction of autophagosome formation when 

turnover is blocked versus normal autophagic flux, and illustrating the morphological 

intermediates of macroautophagy. (A) The initiation of autophagy includes the formation of the 

phagophore, the initial sequestering compartment, which expands into an autophagosome. 

Completion of the autophagosome is followed by fusion with lysosomes and degradation of the 

contents, allowing complete flux, or flow, through the entire pathway. This is a different outcome 

than the situation shown in (B) where induction results in the initiation of autophagy, but a defect 

in autophagosome turnover due, for example, to a block in fusion with lysosomes or disruption 

of lysosomal functions will result in an increased number of autophagosomes. In this scenario, 

autophagy has been induced, but there is no or limited autophagic flux. (C) An autophagosome 

can fuse with an endosome to generate an amphisome, prior to fusion with the lysosome. (D) 

Schematic drawing showing the formation of an autophagic body in fungi. The large size of the 

fungal vacuole relative to autophagosomes allows the release of the single-membrane autophagic 

body within the vacuole lumen. In cells that lack vacuolar hydrolase activity, or in the presence 

of inhibitors that block hydrolase activity, intact autophagic bodies accumulate within the 

vacuole lumen and can be detected by light microscopy. The lysosome of most higher eukaryotes 

is too small to allow the release of an autophagic body. 

 

Figure 2. An autophagic body in a large lysosome of a mammalian epithelial cell in 

mouse seminal vesicle in vitro. The arrow shows the single limiting membrane covering 

the sequestered rough ER. Image provided by A.L. Kovács. 
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Figure 3. TEM images of autophagic vacuoles in isolated mouse hepatocytes. (A) One 

autophagosome or early autophagic vacuole (AVi) and one degradative autophagic 

vacuole (AVd) are shown. The AVi can be identified by its contents (morphologically 

intact cytoplasm, including ribosomes, and rough ER), and the limiting membrane that is 

partially visible as 2 bilayers separated by a narrow electron-lucent cleft, i. e., as a double 

membrane (arrow). The AVd can be identified by its contents, partially degraded, 

electron-dense rough ER. The vesicle next to the AVd is an endosomal/lysosomal 

structure containing 5-nm gold particles that were added to the culture medium to trace 

the endocytic pathway. (B) One AVi, containing rough ER and a mitochondrion, and one 

AVd, containing partially degraded rough ER, are shown. Note that the limiting 

membrane of the AVi is not clearly visible, possibly because it is tangentially sectioned. 

However, the electron-lucent cleft between the 2 limiting membranes is visible and helps 

in the identification of the AVi. The AVd contains a region filled by small internal 

vesicles (asterisk), indicating that the AVd has fused with a multivesicular endosome. mi, 

mitochondrion. Image provided by E.-L. Eskelinen. 

 

Figure 4. Cryoelectron microscopy can be used as a three-dimensional approach to 

monitor the autophagic process. Four computed sections of an electron tomogram of the 

autophagic vacuole-rich cytoplasm in a hemophagocyte of a semi-thin section after high-

pressure freezing preparation. The dashed area is membrane-free (A) but tomography 

reveals newly formed or degrading membranes with a parallel stretch (B). In another 

computed section (C) of the same tomogram, the parallel stretch of the 2 membranes 

shows only one membrane bilayer, and this membrane composition has disappeared in 
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the computed section shown in (D). Image published previously
2082

 and provided by M. 

Schneider and P. Walter.  

 

Figure 5. Different autophagic vacuoles observed after freeze fracturing in cultured 

osteosarcoma cells after treatment with the autophagy inducer voacamine.
94

 (A) Early 

autophagosome delimited by a double membrane. (B) Inner monolayer of an 

autophagosome membrane deprived of protein particles. (C) Autolysosome delimited by 

a single membrane rich in protein particles. In the cross-fractured portion (on the right) 

the profile of the single membrane and the inner digested material are easily 

visible. Images provided by S. Meschini, M. Condello and A. Giuseppe. 

 

Figure 6. LC3-I conversion and LC3-II turnover. (A) Expression levels of LC3-I and LC3-II 

during starvation. Atg5
+/+ 

(wild-type) and atg5
-/- 

MEFs were cultured in DMEM without amino 

acids and serum for the indicated times, and then subjected to immunoblot analysis using anti-

LC3 antibody and anti-tubulin antibody. E-64d (10 µg/ml) and pepstatin A (10 µg/ml) were 

added to the medium where indicated. Positions of LC3-I and LC3-II are marked. The inclusion 

of lysosomal protease inhibitors reveals that the apparent decrease in LC3-II is due to lysosomal 

degradation as easily seen by comparing samples with and without inhibitors at the same time 

points (the overall decrease seen in the presence of inhibitors may reflect decreasing 

effectiveness of the inhibitors over time). Monitoring autophagy by following steady state 

amounts of LC3-II without including inhibitors in the analysis can result in an incorrect 

interpretation that autophagy is not taking place (due to the apparent absence of LC3-II). 

Conversely, if there are high levels of LC3-II but there is no change in the presence of inhibitors 
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this may indicate that induction has occurred but that the final steps of autophagy are blocked, 

resulting in stabilization of this protein. This figure was modified from data previously published 

in ref. 
25

, and is reproduced by permission of Landes Bioscience, copyright 2007. (B) Lysates of 

4 human adipose tissue biopsies were resolved on 2 12% polyacrylamide gels, as described 

previously.
2083

 Proteins were transferred in parallel to either a PVDF or a nitrocellulose 

membrane, and blotted with anti-LC3 antibody, and then identified by reacting the membranes 

with an HRP-conjugated anti-rabbit IgG antibody, followed by ECL. The LC3-II/LC3-I ratio was 

calculated based on densitometry analysis of both bands. *, P< 0.05. (C) HEK 293 and HeLa 

cells were cultured in nutrient-rich medium (DMEM containing 10% fetal calf serum) or 

incubated for 4 h in starvation conditions (Krebs-Ringer medium) in the absence (-) or presence 

(+) of E-64d and pepstatin at 10 µg/ml each (Inhibitors). Cells were then lysed and the proteins 

resolved by SDS-PAGE. Endogenous LC3 was detected by immunoblotting. Positions of LC3-I 

and LC3-II are indicated. In the absence of lysosomal protease inhibitors, starvation results in a 

modest increase (HEK 293 cells) or even a decrease (HeLa cells) in the amount of LC3-II. The 

use of inhibitors reveals that this apparent decrease is due to lysosome-dependent degradation. 

This figure was modified from data previously published in ref. 
163

, and is reproduced by 

permission of Landes Bioscience, copyright 2005. (D) Sequence and schematic representation of 

the different forms of LC3B. The sequence for the nascent (proLC3) from mouse is shown. The 

glycine at position 120 indicates the cleavage site for ATG4. After this cleavage, the truncated 

LC3 is referred to as LC3-I, which is still a soluble form of the protein. Conjugation to PE 

generates the membrane-associated LC3-II form (equivalent to Atg8–PE). 
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Figure 7. Effect of different inhibitors on LC3-II accumulation. SH-SY5Y human 

neuroblastoma cells were plated and allowed to adhere for a minimum of 24 h, then 

treated in fresh medium. Treatments were as follows: rapamycin (Rap), (A) 1 µM, 4 h or 

(B) 10 µM, 4 h; E-64d, final concentration 10 µg/ml from a 1 mg/ml stock in ethanol 

(ETOH); NH4Cl (NH4
+
), final concentration 10 mM from a 1 M stock in water; pepstatin 

A (Pst), final concentration 10 µg/ml from a 1 mg/ml stock in ethanol, or 68.6 µg/ml 

from a 6.86 mg/ml stock in DMSO; ethanol or DMSO, final concentration 1%. Pre-

incubations in (B) were for 1 or 4 h as indicated. 10 mM NH4Cl (or 30 µM chloroquine, 

not shown) were the most effective compounds for demonstrating the accumulation of 

LC3-II. E-64d was also effective in preventing the degradation of LC3-II, with or without 

a preincubation, but ammomium chloride (or chloroquine) may be more effective. 

Pepstatin A at 10 µg/ml with a 1 h pre-incubation was not effective at blocking 

degradation, whereas a 100 µM concentration with 4 h pre-incubation had a partial effect. 

Thus, alkalinizing compounds are more effective in blocking LC3-II degradation, and 

pepstatin A must be used at saturating conditions to have any noticeable effect. Images 

provided by C. Isidoro. Note that the band running just below LC3-I at approximately 

17.5 kDa may be a processing intermediate of LC3-I; it is detectable in freshly prepared 

homogenates, but is less visible after the sample is subjected to a freeze-thaw cycle. 

 

Figure 8. GFP-LC3 processing can be used to monitor delivery of autophagosomal membranes. 

(A) atg5
-/-

 MEFs engineered to express Atg5 under the control of the Tet-off promoter were 

grown in the presence of doxycyline (Dox; 10 ng/ml) for one week to suppress autophagy. Cells 

were then cultured in the absence of drug for the indicated times, with or without a final 2 h 
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starvation. Protein lysates were analyzed by western blot using anti-LC3 and anti-GFP 

antibodies. The positions of untagged and GFP-tagged LC3-I and LC3-II, and free GFP are 

indicated. This figure was modified from data previously published in reference 
237

, FEBS 

Letters, 580, Hosokawa N, Hara Y, Mizushima N, Generation of cell lines with tetracycline-

regulated autophagy and a role for autophagy in controlling cell size, pp. 2623-2629, copyright 

2006, with permission from Elsevier. (B) Differential role of unsaturating and saturating 

concentrations of lysosomal inhibitors on GFP-LC3 cleavage. HeLa cells stably transfected with 

GFP-LC3 were treated with various concentrations of chloroquine (CQ) for 6 h. Total lysates 

were prepared and subjected to immunoblot analysis. (C) CQ-induced free GFP fragments 

require classical autophagy machinery. Wild-type and atg5
-/-

 MEFs were first infected with 

adenovirus GFP-LC3 (100 viral particles per cell) for 24 h. The cells were then either cultured in 

regular culture medium with or without CQ (10 µM), or subjected to starvation in EBSS buffer 

in the absence or presence of CQ for 6 h. Total lysates were prepared and subjected to 

immunoblot analysis. Panel B and C are modified from the data previously published in 

reference 
239

. 

 

Figure 9. Movement of activated pDendra2-hp62 (SQSTM1; orange) from the nucleus 

(middle) to an aggregate in ARPE-19 cells, revealed by confocal microscopy. Cells were 

exposed to 5 µM MG132 for 24 h to induce the formation of perinuclear aggregates.
2084

 

The cells were then exposed to a UV pulse (the UV-induced area is shown by red lines 

that are inside of the nucleus) that converts Dendra2 from green to red, and the time 

shown after the pulse is indicated. SQSTM1 is present in a small nuclear aggregrate, and 
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is shuttled from the nucleus to a perinuclear large protein aggregate (detected as red). 

Scale bar: 5 µm. Image provided by K. Kaarniranta. 

 

Figure 10. Changes in the detection and localization of GFP-LC3 upon the induction of 

autophagy. U87 cells stably expressing GFP-LC3 were treated with PBS, rapamycin (200 

nM), or rapamycin in combination with 3-MA (2 mM) for 24 h. Representative 

fluorescence images of cells counterstained with DAPI (nuclei) are shown. Scale bar: 10 

µm. This figure was modified from Figure 6 published in Badr et al. Lanatoside C 

sensitizes glioblastoma cells to tumor necrosis factor–related apoptosis-inducing ligand 

and induces an alternative cell death pathway. Neuro-Oncology, 13(11):1213-24, 2011, 

by permission of Oxford University Press.  

 

Figure 11. The GFP and mRFP signals of tandem fluorescent LC3 (tfLC3, mRFP-GFP-LC3) 

show different localization patterns. HeLa cells were cotransfected with plasmids expressing 

either tfLC3 or LAMP1-CFP. Twenty-four h after the transfection, the cells were starved in 

Hanks balanced salt solution for 2 h, fixed and analyzed by microscopy. The lower panels are a 

higher magnification of the upper panels. Bar: 10 µm in the upper panels and 2 µm in the lower 

panels. Arrows in the lower panels point to (or mark the location of) typical examples of 

colocalized signals of mRFP and LAMP1. Arrowheads point to (or mark the location of) typical 

examples of colocalized particles of GFP and mRFP signals. This figure was previously 

published in reference 
246

, and is reproduced by permission of Landes Bioscience, copyright 

2007. 

 



 566 

Figure 12. GFP fluorescence in the autolysosome can be recovered upon neutralization of the 

pH. (A) GFP-LC3 emits green fluorescence in the autolysosomes of post-mortem processed 

heart sections. Cryosections of 3.8% paraformaldehyde fixed ventricular myocardium from 3-

week-old GFP-LC3 transgenic mice at the baseline (control) or starved for 24 h (starved) were 

processed for immunostaining using a standard protocol (buffered at pH 7.4). Most of the GFP-

LC3 puncta are positive for LAMP1, suggesting that the autolysosomes had recovered GFP 

fluorescence. (B) Colocalization between GFP-LC3 direct fluorescence (green) and indirect 

immunostaining for GFP (red). Sections processed as in (A) were immunostained for GFP using 

a red fluorescence-tagged secondary antibody, and the colocalization with GFP fluorescence was 

examined by confocal microscopy. Almost all of the red puncta emit green fluorescence. Image 

provided by X. Wang. 

 

Figure 13. Saponin extraction allows quantification of LC3-II fluorescence by FACS. 

(A) Schematic diagram of the effects of the saponin wash. Due to the reorganization of the 

EGFP-LC3 reporter protein, induction of autophagosome formation does not change the total 

levels of fluorescence in EGFP-LC3-transfected cells. However, extraction of EGFP-LC3-I with 

saponin results in a higher level of fluorescence in cells with proportionally higher levels of 

EGFP-LC3-II-containing autophagosomes. This figure was previously published in reference 
309

. 

(B) Saponin extraction can also be used to measure flux of endogenous LC3 protein. Human 

osteosarcoma cells were starved of amino acids and serum by incubation in EBSS, for the 

indicated times in the presence or absence of a 1 h chloroquine (50 µM) treatment. Cells were 

then washed with PBS containing 0.05% saponin and processed for FACS analysis for 

endogenous LC3. Image provided by K.E. Eng and G.M. McInerney. 
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Figure 14. Assessing autophagy with multispectral imaging cytometry. (A) Bright Detail 

Intensity (BDI) measures the foreground intensity of bright puncta (that are 3 pixels or less) 

within the cell image. For each cell, the local background around the spots is removed before 

intensity calculation. Thus, autophagic cells with puncta have higher BDI values. (B) Media 

control (untreated wild type), rapamycin-treated wild-type and atg5
-/-

 MEFs were gated based on 

BDI. Representative images of cells with high or low BDI values. Scale bar: 10 µm. Images 

provided by M.L. Albert. 

 

Figure 15. Regulation of the SQSTM1 protein during autophagy. (A) The level of SQSTM1 

during starvation. Atg5
+/+

 and atg5
-/-

 MEFs were cultured in DMEM without amino acids and 

serum for the indicated times, and then subjected to immunoblot analysis using anti-

SQSTM1antibody (Progen Biotechnik, GP62). This figure was previously published in reference 

25
, and is reproduced by permission of Landes Bioscience, copyright 2007. (B) The level of 

SQSTM1 in the brain of neural-cell specific Atg5 knockout mice. Image provided by T. Hara. 

 

Figure 16. S. cerevisae cells transformed with a plasmid encoding HA-Atg1 were 

cultured to mid-log phase and shifted to SD-N (minimal medium lacking nitrogen that 

induces a starvation response). Immunoblotting was done with anti-HA antibody. The 

upper band corresponds to autophosphorylation of Atg1. This figure was modified from 

data previously published in reference 
488

, and is reproduced by permission of the 

American Society for Cell Biology, copyright 2011. 
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Figure 17. Confocal microscopy image of HCT116 cells immunostained with antibody specific 

to human ATG12. Cells were starved for 8 h or treated with chloroquine (50 µM) for 3 h. Scale 

bar: 10 µm. Image provided by M. Llanos Valero, M.A de la Cruz and R. Sanchez-Prieto. 

 

Figure 18. Automated WIPI1 puncta image acquisition and analysis monitors the 

induction and inhibition of autophagy. Stable U2OS clones expressing GFP-WIPI1 were 

selected using 0.6 μg/ml G418 and then cultured in 96-well plates. Cells were treated for 

3 h with nutrient-rich medium (control), nutrient-free medium (EBSS), or with 233 nM 

wortmannin. Cells were fixed in 3.7% paraformaldehyde and stained with DAPI (5 μg/ml 

in PBS). An automated imaging and analysis platform was used to determine the number 

of both GFP-WIPI1 puncta-positive cells and the number of GFP-WIPI1 puncta per 

individual cell.
450

 Cells without GFP-WIPI1 puncta are highlighted in red (cell detection) 

and purple (nuclei detection), whereas GFP-WIPI1 puncta-positive cells are highlighted 

in yellow (GFP-WIPI1 puncta detection), green (cell detection) and blue (nuclei 

detection). Bars: 20 µm. Images provided by S. Pfisterer and T. Proikas-Cezanne. 

 

Figure 19. pGFP-Atg8a can be used to monitor autophagy in Drosophila melanogaster. 

The autophagosome marker pGFP-Atg8a, results in expression of Atg8a fused to GFP 

from the endogenous Atg8a promoter.
263

 Live imaging of gastric caeca from Drosophila 

melanogaster midgut pGFP-Atg8a puncta (green) and Hoechst 33342 (blue). Midgut 

from early third instar larvae prior to the onset of cell death (top) and from dying midgut 

at 2 h after puparium formation (bottom). Bar: 25 µm. Image provided by D. Denton and 

S. Kumar. 
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Figure 20. S. cerevisae cells were cultured to mid-log phase and shifted to SD-N for the 

indicated times. Samples were taken before (+) and at the indicated times after (–) nitrogen 

starvation. Immunoblotting was done with anti-phospho-Slt2 and anti-phospho-Hog1 antibody. 

This figure was modified from data previously published in reference 
488

, and is reproduced by 

permission of the American Society for Cell Biology, copyright 2011. 

 

Figure 21. PINK1-dependent phosphorylation of ubiquitin (p-S65-Ub) upon mitophagic stress. 

(A) Human dermal fibroblasts from healthy controls or Parkinson disease patients carrying a 

PINK1 loss-of-function mutation (Q456X) were treated with valinomycin for the indicated times 

and lysates were analyzed by western blot. The p-S65-Ub signal is almost undetectable under 

nonstress conditions in controls, but is strongly induced in a PINK1 kinase-dependent manner 

during its stabilization on the outer mitochondrial membrane. MFN2 serves as a control substrate 

and VCL (vinculin) as a loading control. (B) HeLa cells stably expressing GFP-PARK2 (wild 

type) were treated with CCCP for the indicated times, fixed and stained with p-S65-Ub (red) and 

GFP-PARK2 (green) as well as mitochondrial (TOMM20, cyan) and nuclear (Hoechst, blue) 

markers. The p-S65-Ub staining is almost undetectable in nonstressed cells, but rapidly 

accumulates on damaged mitochondria where it functions to activate PARK2. On mitochondria, 

PINK1 and PARK2 together amplify the p-S65-Ub signal. Scale bar: 10 µm. Image provided by 

F.C. Fiesel and W. Springer. 

 

Figure 22. Autophagosomes with recognizable cargo are rare in cells. (A) To assess relative 

rates of autophagosome formation, the fusion inhibitor bafilomycin A1 (10 nM) was applied for 2 
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h prior to fixation with 2% glutaraldehyde in order to trap newly formed autophagosomes. Two 

different PINK1 shRNA lines (A14 and D14) exhibit increased AV formation over 2 h compared 

to the control shRNA line. *, p > 0.05 vs. Control. (B) Autophagosomes in bafilomycin A1-

treated control cells contain a variety of cytoplasmic structures (left, arrow), while mitochondria 

comprise a prominent component of autophagosomes in bafilomycin A1-treated (PINK1 shRNA) 

cells (right, arrow). Scale bar: 500 nm. These data indicate induction of selective mitophagy in 

PINK1-deficient cells. This figure was modified from Figure 2 published in Chu CT. A pivotal 

role for PINK1 and autophagy in mitochondrial quality control: implications for Parkinson 

disease. Human Molecular Genetics 2010; 19:R28-R37. 

 

Figure 23. Human fibroblasts showing colocalization of mitochondria with lysosomes.  

The degree of colocalization of mitochondria with lysosomes in human fibroblasts was 

measured via live cell imaging microscopy at 37°C and 5% CO2 atmosphere using the 

ApoTome® technique. LysoTracker® Red DND-99 staining was applied to mark 

lysosomal structures (red), and MitoTracker® Green FM to visualize mitochondria 

(green). Hoechst 33342 dye was used to stain nuclei (blue). A positive colocalization is 

indicated by yellow signals (merge) due to the overlap of LysoTracker® Red and 

MitoTracker® Green staining (white arrows). Scale bar: 10 µm. Statistical evaluation is 

performed by calculating the Pearson’s coefficient for colocalizing pixels. Image 

provided by L. Burbulla and R. Krüger. 

 

Figure 24. Detection of mitophagy in primary cortical neurons using mitochondria-

targeted Keima. Neurons transfected with mito-Keima were visualized using 458-nm 
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(green, mitochondria at neutral pH) and 561-nm (red, mitochondria in acidic pH) laser 

lines and 575-nm band pass filter. Compared with the control (A) wild-type PINK1 

overexpression (B) increases the number of the mitochondria exposed to acidic 

conditions. Scale bar: 2 µm. (C) Quantification of red dots suggests increased mitophagy 

in wild-type PINK1 but not in the kinase dead (kd) PINK1
K219M

-overexpressing neurons. 

Image provided by V. Choubey and A. Kaasik. 

 

Figure 25. Confocal microscopy deconvolved (AutoQuant X3) images and colocalization 

image analysis (ImageJ 1.47; Imaris 7.6) through a local approach showing perinuclear 

mitochondrial biogenesis in hippocampal neuronal cultures. The upper channels show 

TOMM20 (green channel), BrdU (for visualization of newly synthesized mitochondrial 

DNA, red channel), and merged fluorescence channels. Overlay, corresponds to the 

spatial pattern of software thresholded colocalized structures (white spots) layered on the 

merged fluorescence channels. Surface Plot, or luminance intensity height, is 

proportional to the colocalization strength of the colocalized structures (white spots). Plot 

Profile, corresponds to the spatial intensity profiles of the fluorescence channels of the 

white line positioned in the Merge image. Yellow arrows indicate a qualitative evaluation 

of the spatial association trends for the fluorescence intensities. Arrows pointing up 

indicate an increase in the colocalization, while arrows pointing down show a decrease. 

Scale bar: 2 m. This figure was was modified from previously published data
2085

 and 

provided by F. Florenzano.  

 

Figure 26. LysoTracker Red stains lysosomes and can be used to monitor autophagy in 
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Drosophila. Live fat body tissues from Drosophila were stained with LysoTracker Red (red) and 

Hoechst 33342 (blue) to stain the nucleus. Tissues were isolated from fed (left) or 3 h starved 

(right) animals. Bar: 25 µm. This figure was modified from data presented in ref. 
262

, 

Developmental Cell, 7, Scott RC, Schuldiner O, Neufeld TP, Role and regulation of starvation-

induced autophagy in the Drosophila fat body, pp. 167-78, copyright 2004, with permission from 

Elsevier.  

 

Figure 27. GFP::LGG-1 and GFP::LGG-2 are autophagy markers in C. elegans. (A-F) Animals 

were generated that carry an integrated transgene expressing a GFP-tagged version of lgg-1, the 

C. elegans ortholog of mammalian MAP1LC3. Representative green fluorescence images in the 

pharyngeal muscles of (A) control RNAi animals without starvation, (B) control RNAi animals 

after 9 d of starvation, (C) atg-7 RNAi animals after 9 d of starvation, (D) starvation-

hypersensitive gpb-2 mutants without leucine after 3 d of starvation, and (E) gpb-2 mutants with 

leucine after 3 d of starvation. The arrows show representative GFP::LGG-1-positive punctate 

areas that label pre-autophagosomal and autophagosomal structures. (F) The relative levels of 

PE-conjugated and unconjugated GFP::LGG-1 were determined by western blotting. These 

figures were modified from data previously published in Kang, C., Y.J. You, and L. Avery. 2007. 

Dual roles of autophagy in the survival of Caenorhabditis elegans during starvation. Genes & 

Development. 21:2161-2171, Copyright © 2007, Genes & Development by Cold Spring Harbor 

Laboratory Press and Kang, C., and L. Avery. 2009. Systemic regulation of starvation response in 

Caenorhabditis elegans. Genes & development. 23:12-17, Copyright © 2011, Genes & 

Development by Cold Spring Harbor Laboratory Press, www.genesdev.org. (G-H) GFP:LGG-2 

serves as a marker for autophagosomes in early C. elegans embryos. (G) GFP::LGG-2 expressed 
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in the germline from an integrated transgene reveal the formation of autophagosomes (green) 

around sperm inherited membranous organelles (red). DNA of the 2 pronuclei is stained (blue). 

(H) Later during development, GFP::LGG-2-positive structures are present in all cells of the 

embryo. Scale bar: 10 µm. Images provided by V. Galy. 

 

Figure 28. Transmission electron micrograph of erythroblasts obtained from the blood of regular 

donors after 10 days of culture in the presence of KITLG/SCF, IL3, EPO and dexamethasone. 

Original magnification 3000X. This figure shows 2 erythroblasts containing autophagic 

vacuoles. One erythroblast (red arrow) has the morphology of a live cell with several autophagic 

vacuoles that have engulfed cytoplasmic organelles. The other erythroblast (black arrow) has the 

electron-dense cytoplasm characteristic of a dead cell and is in the process of shedding its 

autolysosomes from the cytoplasm to the extracellular space. Image provided by A.R. Migliaccio 

and M. Zingariello. 

 

 

Figure 29. A large dystrophic neurite from a brain biopsy of a patient with Gerstmann-

Sträussler-Scheinker disease not unlike those reported for Alzheimer disease.
54

 This structure is 

filled with innumerable autophagic vacuoles, some of which are covered by a double membrane. 

Electron dense lysosomal-like structures are also visible. The red arrow points to a double-

membrane autophagic vacuole. Scale bar: 200 nm. Image provided by P. Liberski. 

 

Figure 30. A high-power electron micrograph from a brain biopsy showing autophagic vacuoles 

in a case of ganglioglioma. Scale bar: 200 nm. Image provided by P. Liberski. 

 

 

Figure 31. Macroautophagy in the digestive gland of Ruditapes decussatus (Mollusca, Bivalvia) 



 574 

subjected to a strict starvation of 2 months. Image provided by S. Baghdiguian. 

 

Figure 32. Detection of macroautophagy in tobacco BY-2 cells. (A) Induction of 

autophagosomes in tobacco BY-2 cells expressing YFP-NtAtg8 (shown in green for ease of 

visualization) under conditions of nitrogen limitation (Induced). Arrowheads indicate 

autophagosomes that can be seen as a bright green dot. No such structure was found in cells 

grown in normal culture medium (Control). Bar: 10 µm. N, nucleus; V, vacuole. (B) 

Ultrastructure of an autophagosome in a tobacco BY-2 cell cultured for 24 h without a nitrogen 

source. Bar: 200 µm. AP, autophagosome; CW, cell wall; ER, endoplasmic reticulum; P, plastid. 

Image provided by K. Toyooka. 

 

 

 

 

 


